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Abstract

We use statistical detection theory in a continuous-time environment to pro-

vide a new perspective on calibrating a concern about robustness or an aversion

to ambiguity. A decision maker repeatedly confronts uncertainty about state

transition dynamics and a prior distribution over unobserved states or param-

eters. Two continuous-time formulations are counterparts of two discrete-time

recursive specifications of [16]. One formulation shares features of the smooth

ambiguity model of [24, 25]. Here our statistical detection calculations guide

how to adjust contributions to entropy coming from hidden states as we take a

continuous-time limit.
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1 Introduction

Following Frank Knight, I use the word “uncertainty” to mean random

variation according to an unknown probability law. . . . An increase in

uncertainty aversion increases the multiplicity of subjective distributions.

An uncertainty neutral decision maker has only one subjective distribution

and so is Bayesian. [5], p. 1

We contribute to this volume honoring Truman Bewley, whom we both greatly

admire, by refining some of our recent efforts to construct workable models of what

[3, 4, 5] called Knightian uncertainty.1 Bewley’s papers revoked Savage’s completeness

axiom and modeled choices among incompletely ordered alternatives by assuming that

the decision maker has multiple probability models and a ‘status quo’ choice. The

status quo is preferred to another choice unless it yields higher expected utility under

all of those probability models. Our work shares motivations with Bewley’s, but we

take a different approach to modeling an agent who uses multiple probability models.

Our decision maker starts with a single approximating model. But because he does

not trust that model, the decision maker investigates the utility consequences of other

models in hopes of constructing a decision rule that is robust to misspecification.

We propose two continuous-time recursive specifications of robust control prob-

lems with hidden state variables, some of which can be interpreted as unknown pa-

rameters. Each specification is a continuous-time limit of a discrete-time problem

proposed by [16]. The first is a recursive counterpart to formulations in the robust

control literature with a continuation value function that depends on hidden states,

while the second reinterprets the recursive utility model of [26] and [24, 25] in terms

of concerns about robustness when a continuation value function depends only on

observed information.2

We quantify the decision maker’s ambiguity by constructing a worst-case model

and assessing its statistical discrepancy from the benchmark model. We do this

by modifying statistical discrimination methods developed by [29] and [1]3 so that

they apply to our continuous-time setting. We use these statistical model detection

1For more testimonies to our admiration of Truman Bewley, see the chapters on what we call
‘Bewley models’ in [31], ch. 6 and [28], ch. 17.

2The first is a limiting version of recursions (20)-(21) of [16] and the second is a version of
recursion (23).

3 [29] and [1] built on [8].
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calculations to formulate entropy penalties that enable us to represent preferences that

express model ambiguity and concerns about statistical robustness. These statistical

measures of model discrimination tell us how to calibrate a decision maker’s ambiguity.

The ability to quantify model ambiguity is important because promising empirical

results in [23], [9], and [18] make us want to understand how much ambiguity aversion

is a priori reasonable.

The remainder of this paper is organized as follows. Sections 2 and 3 describe

the stochastic model, information structure, and a continuous time filtering problem.

Section 4 describes alternative representations of entropy and establishes that entropy

over alternative posterior distributions is the pertinent concept for decision making.

A peculiar consequence of this finding is that corrections representing smooth ambi-

guity over hidden states vanish in a continuous time limit. We trace this outcome

to how various contributions to entropy are scaled with respect to the accumulation

of information over time as reflected in likelihood ratios. Section 5 describes two

robust control problems that sustain concerns about model misspecification even in

their continuous-time limits. For the subsection 5.1 formulation in which continua-

tion values depend only on observed information, a key aspect is how our statistical

model detection calculations tell us to rescale with the passage of time those contri-

butions to entropy that come from unknown distributions of hidden states. Section

6 extends the analysis to hidden Markov settings with time-varying states. We study

models with both continuous hidden states (Kalman filtering) and discrete hidden

states (Wonham filtering). Section 7 extends outcomes from the statistical detec-

tion literature to justify our way of rescaling contributions to entropy in the section

5.1 formulation in which continuation values depend only on observed information.

Section 8 then describes how our proposal for rescaling relates to characterizations

of smooth ambiguity. Section 9 offers some concluding remarks, while appendix A

solves a discrete-state entropy problem.

2 The benchmark model specification

To set out essential components of our formulation, we start with a relatively simple

stochastic specification that allows either for multiple models or for unknown param-

eters that generate a continuous-time trajectory of data. We have designed things so

that recursive filtering can be readily characterized. Our continuous time specification
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reveals important aspects of modeling and calibrating a preference for robustness. In

section 6, we will consider extensions that incorporate more general learning about a

possibly evolving hidden state.

Consider a continuous-time specification with model uncertainty. The state dy-

namics are described by a collection of diffusions index by ι:

dYt = µ(Yt, ι)dt+ σ(Yt)dWt. (1)

The parameter ι, which indexes a model, is hidden from the decision-maker, who does

observe Y . The matrix σ(Y ) is nonsingular, implying that the Brownian increment

dWt would be revealed if ι were known. Initially, we assume that the unknown model

ι is in a finite set I, a restriction we impose mainly for notational simplicity. Later

we will also consider examples with a continuum of models, in which case we shall

think of ι as an unknown parameter.

To characterize preferences under model uncertainty, we suppose that Y is be-

yond the control of the decision maker. We display Bellman equations that can be

solved for value functions that express model specification doubts. We stress how

these Bellman equations allow us to distinguish aspects of the model specification

that concern the decision maker, in particular, the stochastic transition laws for the

hidden states versus the decision maker’s subjective prior over those hidden states.

Two different risk-sensitivity parameters express these distinct specification suspi-

cions. In this paper we focus on specifying continuous-time Bellman equations that

express a decision maker’s specification doubts; but we do not provide rigorous state-

ments of the conditions for existence of solutions of the Bellman equations. We warn

readers that existence is a loose end that will have to be addressed when applying

our formulations.4 Nevertheless, for particular examples that especially interest us,

we provide explicit solutions of the Bellman equations.

4We know from the structure of verification theorems that in general we would have to add
some technical restrictions about transition dynamics, utility functions, and entropy constraints.
Typically there are tradeoffs among these restrictions, and sometimes the special structure of the
decision problem can be exploited to good advantage.
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3 Filtering without ambiguity

A filtering problem in which the model ι is unknown to the decision-maker is central

to our analysis. A key ingredient is the log-likelihood conditioned on the unknown

model ι. For the moment, we ignore concerns about model misspecification.

3.1 Log-likelihoods

Log-likelihoods are depicted relative to some measure over realized values of the data.

Consider a counterpart to (1) in which the drift is zero, but the same σ matrix governs

conditional variability. This process has a local evolution governed by the stochastic

differential equation

dYt = σ(Yt)dWt.

We use a solution that takes Y0 as given to induce a probability measure τ over vector

valued continuous functions on [0, t]. Likelihoods are constructed from densities with

respect to τ . In particular, the local evolution of the log-likelihood is5

d logLt(ι) = µ(Yt, ι)
′[σ(Yt)σ(Yt)

′]−1dYt −
1

2
µ(Yt, ι)

′[σ(Yt)σ(Yt)
′]−1µ(Yt, ι)dt.

We initialize the likelihood by specifying L0(ι). We stipulate that L0(ι) includes

contributions both from the density of Y0 conditioned on ι and from a prior probability

π0(ι) assigned to model ι, and so Lt(ι) is a likelihood for [Yu : 0 < u ≤ t] conditional

on Y0 and ι times a prior over ι conditioned on Y0.

3.2 Posterior

As a consequence, the date t posterior for ι is

πt(ι) =
Lt(ι)
∑

ι Lt(ι)
.

The date t posterior for the local mean of dYt is

µt =
∑

ι

πt(ι)µ(Yt, ι).

5For example, see [27] chapter 9.
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Then

dYt = µtdt+ σ(Yt)dW t, (2)

and

dW t = σ(Yt)
−1[µ(Yt, ι) − µt]dt+ dWt (3)

is a multivariate standard Brownian motion relative to a filtration Y generated by Y

that does not include knowledge of the model ι. Since he does not know the model ι,

the increment dW t is the date t innovation pertinent to the decision-maker. Equation

(2) gives the stochastic evolution of Y in terms of this innovation. The decomposition

of the increment to the innovation process W with reduced information Y into the

two components on the right side of (3) will play a significant role later.

The evolution for likelihood L̄t of the mixture (of means) model (2)-(3) is

d logLt = (µt)
′[σ(Yt)σ(Yt)

′]−1dYt −
1

2
(µt)

′[σ(Yt)σ(Yt)
′]−1µtdt

= (µt)
′[σ(Yt)σ(Yt)

′]−1σ(Yt)dW t +
1

2
(µt)

′[σ(Yt)σ(Yt)
′]−1µtdt.

We shall use the following example.

Example 3.1. Consider an additively separable drift µ(Y, ι) = ν(Y ) + ι so that

dYt = ν(Yt)dt+ ιdt+ σdWt.

Suppose that I = R
n for some n and impose a normal prior π0 over ι, so that

log π0(ι) = −1

2
(ι− ι0)

′Λ0(ι− ι0) + constant

where Λ0 is the prior precision matrix and ι0 is the prior mean.

For this example,

d logLt(ι) = [ν(Yt) + ι]′(σσ′)−1dYt −
1

2
[ν(Yt) + ι]′(σσ′)−1[ν(Yt) + ι]dt.

We form a likelihood conditioned on Y0 and use the prior over ι to initialize logL0(ι).

Since the log-likelihood increment and the logarithm of the prior are both quadratic

in ι, it follows that the posterior density for ι is normal.
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To obtain the evolution of posterior probabilities, note that

dLt(ι) = Lt(ι)[ν(Yt) + ι]′(σσ′)−1dYt.

Integrating with respect to ι, we obtain

dLt =

[
∫

Lt(ι)[ν(Yt) + ι]dι

]′

(σσ′)−1dYt.

Then the posterior probability density

πt(ι) =
Lt(ι)

Lt

evolves as

dπt(ι) =
Lt(ι)

Lt

(

[ν(Yt) + ι]′ −
∫

Lt(ι)

Lt
[ν(Yt) + ι]′dι

)

(σσ′)−1dYt

− Lt(ι)

Lt
[ν(Yt) + ι]′(σσ′)−1

(
∫

Lt(ι)

Lt
[ν(Yt) + ι]′dι

)′

dt

+
Lt(ι)

Lt

[
∫

Lt(ι)

Lt
[ν(Yt) + ι]′dι

]

(σσ′)−1

(
∫

Lt(ι)

Lt
[ν(Yt) + ι]′dι

)

dt

=πt(ι) (ι− ιt)
′ (σσ′)−1 [dYt − ν(Yt)dt− ιtdt] , (4)

where ιt is the posterior mean of ι. Multiplying both sides of (4) by ι and integrating

with respect to ι, the posterior mean evolves as

dιt = Σt(σσ
′)−1 [dYt − ν(Yt)dt− ιtdt] ,

where Σt is the posterior covariance matrix for ι.

To get a formula for Σt, first note that the evolution of the logarithm of the

posterior density implied by (4) is

d log πt(ι) = (ι− ιt)
′ (σσ′)−1 [dYt − ν(Yt)dt− ῑtdt]

− 1

2
(ι− ιt)

′ (σσ′)−1 (ι− ιt) dt.

This follows because dYt−ν(Yt)dt−ῑtdt is a Brownian increment under the Y filtration

with instantaneous covariance σσ′. The evolution for d log πt(ι) follows from Ito’s

7



formula. Integrating between zero and t, the log-density is quadratic in ι, and hence

ι is normally distributed. From the resulting quadratic form in ι, the date t precision

matrix Λt = (Σt)
−1 is

Λt = Λ0 + t(σσ′)−1,

where Λ0 is the prior precision matrix.

4 Relative entropy

Statistical discrimination and large-deviation theories6 underlie relative entropy’s

prominent role in dynamic stochastic robust control theory. In this section, we con-

struct relative entropies and discuss some of their implications in the continuous-time

stochastic setting of sections 2 and 3. This will set the stage for explorations of al-

ternative ways of scaling different contributions to entropy that will concern us in

subsequent sections.

4.1 Factorization

Recall that Lt(ι) is the likelihood as a function of ι and scaled to incorporate the prior

probability of ι. This likelihood depends implicitly on the record y
.
= [Yu, 0 ≤ u ≤ t]

of observed states between zero and t. Let ft(y, ι) be the density constructed so that

ft(Yu, 0 ≤ u ≤ t, ι) = Lt(ι), where y is our hypothetical realization of the Y process

between dates zero and t. Similarly, the marginal density is

gt(y) =
∑

ι

ft(y, ι),

which implies that gt(y) = Lt. Let f̃t(y, ι) be an alternative joint density for ι and Y

observed between dates zero and t. Then relative entropy is

ent(f̃t) =
∑

ι

∫

[

log f̃t(y, ι) − log ft(y, ι)
]

f̃t(y, ι)dτ(y).

6See [12] for an exposition and development of these tools.
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We can factor the joint density ft(y, ι) as

ft(y, ι) = gt(y)

[

ft(y, ι)

gt(y)

]

= gt(y)ψt(ι|y),

and similarly for the alternative ·̃ densities. Notice that ψt(ι|y) ≡ πt(ι), the posterior

probability of ι. These density factorizations give rise to an alternative representation

of entropy:

ent(g̃t, ψ̃t) =

∫

(

∑

ι

ψ̃t(ι|y)
[

log ψ̃t(ι|y) − logψt(ι|y)
]

)

g̃t(y)dτ(y)

+

∫

[log g̃t(y) − log gt(y)] g̃t(y)dτ(y).

For a fixed t, consider the following ex ante decision problem:

Problem 4.1.

max
a

min
g̃t,ψ̃t

∫

∑

ι

U [a(y), y, ι]ψ̃t(ι|y)g̃t(y)dτ(y) + θent(g̃t, ψ̃t)

where U is a concave function of action a.

This is a static robust control problem. We refer to it as an ex ante problem

because the objective averages across all data that could possibly be realized. But the

decision a depends only on the data that are actually realized. Just as in Bayesian

analysis, prior to computing the worst case g̃t we can find optimal a and ψ̃t by solving

the following conditional problem:

Problem 4.2.

max
a

min
ψ̃t

∑

ι

U [a(y), y, ι]ψ̃t(ι|y) + θ
∑

ι

ψ̃t(ι|y)
[

log ψ̃t(ι|y) − logψt(ι|y)
]

separately for each value of y without simultaneously computing g̃t. Solving this

conditional problem for each y gives a robust decision for a.

In the conditional problem, we perturb only the posterior ψt(ι|y).7 This simplifi-

cation led [16] to perturb the outcome of filtering, namely, the posterior distribution,

7In practice it suffices to compute a(y) for y given by the realization of Y between dates zero and
t.
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rather than the likelihood and prior.

Thus, we have established that for decision making, the pertinent concept of

relative entropy over an interval of time reduces to a measure of entropy over the

posterior:

ent∗(π̃t) =
∑

ι

π̃t(ι) [log π̃t(ι) − log πt(ι)] (5)

where πt(ι) = ψt(ι|Yu, 0 ≤ u ≤ t).

4.2 Forward-looking and backward-looking concerns for mis-

specification

We follow [16] in considering forward-looking model misspecifications (i.e., misspecifi-

cations of future shocks to states conditional on the entire state) as well as backward-

looking misspecifications (i.e., misspecifications of the distribution of hidden states

arising from filtering). We say forward-looking because of how worst-case distortions

of this type depend on value functions. We say backward-looking because filtering

processes historical data.

To distinguish these two forms of misspecification, consider first a joint density

for Yt+ǫ−Yt, [Yu : 0 < u ≤ t] and ι and conditioned on Y0. We decompose the process

of conditioning in terms of the product of three densities: i) the density for Yt+ǫ − Yt

conditioned on Yt and ι, ii) the density for [Yu, 0 < u ≤ t] conditioned on ι and Y0, and

iii) a prior over ι conditioned on Y0. To characterize misspecfications using relative

entropy, we consider contributions from all three sources. Since the decision-maker

conditions on [Yu : 0 < u ≤ t], in section 4.1 we established that it suffices to focus on

the relative entropy of the date t “posterior” (conditioned on information available

at time t) defined in (5). Specifically the relative entropy measure is:

∑

ι

π̃t(ι)

∫

[

log ℓ̃ǫ,t(z|y, ι) − log ℓǫ,t(z|y, ι)
]

ℓ̃ǫ,t(z|y, ι)dz

+
∑

ι

π̃t(ι) [log π̃t(ι) − log πt(ι)] (6)

where ℓǫ,t(z|y, ι) is the density for Yt+ǫ − Yt conditioned on [Yu : 0 < u ≤ t] and ι and

z is a realized value of Yt+ǫ − Yt. Thus, in our study of misspecification we focus on

two component densities: a) the density for Yt+ǫ − Yt conditioned on [Yu : 0 < u ≤ t]
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and ι, and b) the density for ι conditioned on [Yu : 0 < u ≤ t], which is the posterior

for ι given date t information. Since we are using date t as the point of reference, we

refer to distortions in a) as forward-looking and distortions in b) as backward looking.

Under the benchmark or approximating model, the density ℓǫ,t(z|Y t
0 , ι) is (ap-

proximately) normal with mean ǫµ(Yt, ι) and variance ǫσ(Yt)
2 and Y t

0 is short-hand

notation for [Yu : 0 < u ≤ t]. In the small ǫ or continuous-time limit, the distor-

tions have a very simple structure. The original Brownian motion increment dWt is

altered by appending a drift, as occurs in the continuous time case with observed

Markov states discussed by [22], [7], [1], and [19]. That is, in the distorted model,

dWt = ht(ι)dt+ dW̃t, where dW̃t is a standard Brownian increment. The correspond-

ing contribution to relative entropy scaled by 1
ǫ

is

lim
ǫ↓0

1

ǫ

∫

[

log ℓ̃ǫ,t(z|Y t
0 , ι) − log ℓǫ,t(z|Y t

0 , ι)
]

ℓ̃ǫ,t(z|Y t
0 , ι)dz =

1

2
|ht(ι)|2.

Thus, the forward-looking contribution to entropy is 1
2
|ht(ι)|2dt, which scales linearly

with the time increment dt, and the limiting version of the combined entropy in (6)

is (heuristically)

∑

ι

π̃t(ι)

[

1

2
|ht(ι)|2dt+ log π̃t(ι) − log πt(ι)

]

.

A key observation for us is that because it reflects the history of data up to t, the

contribution to entropy that comes from distorting the distribution πt(ι) of ι, namely,

∑

ι

π̃t(ι) [log π̃t(ι) − log πt(ι)] ,

does not scale linearly with the time increment dt. As we explain in detail in the next

subsection, this has the consequence of making it very costly in terms of entropy to

distort the distribution of ι, causing adjustments for an unknown distribution of ι to

vanish in a continuous-time limit.
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4.3 The scaling problem

Associated with the two distortions ht and π̃t is a distorted conditional mean:

µ̃t =
∑

ι

π̃t(ι) [σ(Yt)ht(ι) + µ(Yt, ι)] .

Notice that µ̃t is influenced by both ht(ι) and π̃t.

The difference in how the entropies are scaled implies that to achieve a given

distorted mean µ̃t at a minimum cost in terms of entropy

∑

ι

π̃t(ι)

(

1

2
|ht(ι)|2dt+ [log π̃t(ι) − log πt(ι)]

)

we should set ht(ι) = σ(Yt)
−1(µ̃t − µt) and leave the model probabilities unchanged,

thus setting π̃t(ι) = πt(ι). These choices make the resulting minimized entropy be

scaled linearly by dt.

This outcome has important consequences for recursive specifications of decision

problems that are designed to express a decision maker’s concerns about misspecifi-

cation. When a single entropy restriction is imposed over the joint distribution of the

data and model, and when the objective of a probability distorting minimizing player

is to distort the drift µt, it is evidently too costly in terms of entropy to induce any

distortion to the current-period posterior as an intermediate step that aims ultimately

to distort µt.

We will explore two responses that are designed to allow a decision maker to ex-

press ambiguity about the prior πt(ι) in a continuous time limit. One reduces the cost,

while another enhances the benefits that accrue to the fictitious evil agent imagined to

be perturbing the prior over the hidden state ι. Our formulation in section 5.1 weights

the entropy contribution from π̃t by dt; our formulation in section 5.2 makes changes

in π̃t more consequential to the decision-maker by altering the forward-looking ob-

jective function. These two alternative amendments lead to continuous-time versions

of two distinct discrete-time formulations in [16], with section 5.1 corresponding to

recursion (23) of [16] and section 5.2 corresponding to their recursion (20)-(21).8

8A third approach is to apply robust control theory to the decision problem by directly perturbing
the transition probabilities for Yt+ǫ − Yt conditioned on [Yu : 0 ≤ u ≤ t] without explicit reference
to an estimation problem. In this approach, learning and filtering are regarded just as means to
compute benchmark probabilities but are not used independently to make contributions to perturbed

12



5 Robustness-inspired alternatives to expected util-

ity

In this section, we describe recursive representations of preferences that express con-

cerns about robustness in a continuous time setting. We do this by constructing

continuous-time versions of two discrete-time recursive specifications of preferences

for robustness proposed by [16]. The two specifications differ in the information sets

used to compute benchmark value functions.

5.1 Continuation values that don’t depend on ι

First, we consider a counterpart to recursion (23) in [16], where continuation values

do not depend on the hidden state. The evolution of a continuation-value process V

adapted to Y is

dVt = η̄tdt+ ςt · dW t.

For (time additive) discounted utility, the drift satisfies

η̄t = δVt − δU(Ct),

where δ is the subjective rate of discount and U is the instantaneous utility function.

Recall that

dW t = σ(Yt)
−1[µ(Yt, ι) − µt]dt+ dWt. (7)

It is convenient to view the right-hand side of (7) as a two-stage lottery. One stage is

modeled as a Brownian increment and the other stage is a lottery over ι with proba-

bilities given by the date t posterior distribution. This distribution over ι induces a

distribution for the increment σ(Yt)
−1[µ(Yt, ι) − µt]dt.

9 r in turn two distortions to

dW t.

Remark 5.1. The two contributions to dW t displayed on the right side of (7) be-

have very differently over small time intervals because the variance of a Brownian

increment dWt scales with dt, while the variance of σ(Yt)
−1[µ(Yt, ι)−µt]dt scales with

probabilities.
9 As we shall see in section 8, the behavior of the component σ(Yt)

−1[µ(Yt, ι)−µ
t
]dt on the right

side of (7) will also motivate our way of parameterizing ambiguity about the distribution of the
hidden state or parameter.
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(dt)2. For small time intervals, variation in the Brownian increment dWt dominates

the variation in dW t.

We next consider distortions to the two components on the right side of (7).

5.1.1 Distortion to dWt

Introduce a drift distortion ht(ι)dt so that dWt = ht(ι)dt + dŴt, where dŴt is a

standard Brownian increment. Recall that local entropy is |ht(ι)|2

2
dt. Find a worst-

case model by solving

Problem 5.2.

min
ht(ι)

{

ςt · ht(ι) +
θ1
2
|ht(ι)|2

}

,

where θ1 is an entropy penalty parameter.

The minimizer

h̃t = − 1

θ1
ςt,

is independent of ι. Our first adjustment for robustness of the continuation value

drift is

η̄t = δVt − δU(Ct) +
|ςt|2
2θ1

.

As discussed in [19], this distorted drift outcome is a special case of the variance mul-

tiplier specification of [11] in which our 1
θ1

becomes their multiplier on the conditional

variance of the continuation value.10

5.1.2 Distortion to σ(Yt)
−1[µ(Yt, ι) − µt]

We distort the other component of dW t on the right side of (7) by altering the

posterior πt(ι). Once again, we penalize distortions in terms of relative entropy. Since

changing πt alters the drift, we adopt a common scaling for both the instantaneous

return and the contribution (5) to relative entropy. We accomplish this by multiplying

the object ent∗(π̃t) defined in equation (5) by dt in order to constructing a penalty for

the minimizing agent. This adjustment sharply distinguishes the treatments of the

two entropy penalties that [16] include in their discrete-time specification, one that

measures unknown dynamics, the other that measures unknown states. By altering

10[11] construct continuous-time limiting versions of the recursive utility specification of [26].
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the filtering probabilities we induce a change in the drift of the continuation value

given by

(ςt)
′σ(Yt)

−1
∑

ι

[π̃t(ι) − πt(ι)]µ(Yt, ι).

Since this term and the relative entropy measure ent∗(π̃t) are scaled by dt, we are led

to solve:

Problem 5.3.

min
π̃t

(ςt)
′σ(Yt)

−1
∑

ι

[π̃t(ι) − πt(ι)]µ(Yt, ι) + θ2ent∗(π̃t)

where θ2 is a penalty parameter.

The minimized objective is

(ςt)
′σ(Yt)

−1µt + θ2 log

(

∑

ι

πt(ι) exp

[

− 1

θ2
(ςt)

′σ(Yt)
−1µ(Yt, ι)

]

)

.

Result 5.4. The drift η̄t and local Brownian exposure vector ςt for the continuation

value process {Vt} satisfy

η̄t =δVt − δU(Ct) +
|ςt|2
2θ1

+ (ςt)
′σ(Yt)

−1µt

+ θ2 log

(

∑

ι

πt(ι) exp

[

− 1

θ2
(ςt)

′σ(Yt)
−1µ(Yt, ι)

]

)

. (8)

The total contribution from the two distortions, namely,

|ςt|2
2θ1

+ θ2 log

(

∑

ι

πt(ι) exp

[

− 1

θ2
(ςt)

′σ(Yt)
−1µ(Yt, ι)

]

)

is necessarily nonnegative.

Example 5.5. Reconsider the filtering problem in example 3.1. Given that the bench-
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mark posterior is normal, formulas for exponentials of normals imply

θ2 log

(
∫

πt(ι) exp

[

− 1

θ2
(ςt)

′σ(Yt)
−1µ(Yt, ι)

]

dι

)

= − (ςt)
′σ(Yt)

−1µt +
1

2θ2
(ςt)

′σ(Yt)
−1Σt[σ(Yt)

−1]′ςt. (9)

For this example, the composite penalty can be decomposed as

|ςt|2

2θ1
+ 1

2θ2
(ςt)

′σ(Yt)
−1Σt[σ(Yt)

−1]ςt.

↑ ↑
misspecified misspecified

dynamics state estimation

5.2 Continuation values that do depend on ι

We now turn to a continuous-time version of recursions (20)-(21) in [16] where con-

tinuation values do depend on the hidden state.11 This structure will impel us to

compute two value functions, one to be called V that conditions on the hidden state,

another to be called V̂ that conditions only on observable information. Suppose that

the continuation value is constructed knowing ι. Thus, we write

dVt(ι) = ηt(ι)dt+ ςt(ι) · dWt.

5.2.1 Distortion to dWt

We again append a drift to the Brownian increment subject to an entropy penalty

and solve:

Problem 5.6.

min
ht(ι)

{

ςt(ι) · ht(ι) +
θ1
2
|ht(ι)|2

}

,

where θ1 is an entropy penalty parameter.

The minimizer is

h̃t(ι) = −1

θ 1
ςt(ι).

11[15] describe a distinct formulation that is explicitly linked to the robust control literature. It
imposes commitment to prior distortions.
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The optimized ht(ι) will typically depend on ι. As an outcome, we are led to the

equation:

ηt(ι) = δVt(ι) − δU(Ct) +
|ςt(ι)|2

2θ1
.

We compute the continuation value subject to this restriction, imposing an appro-

priate terminal condition. In this way, we adjust for robustness with respect to the

motion of the state variables.

5.2.2 Distortion to σ(Yt)
−1[µ(Yt, ι) − µt]

To adjust for robustness in estimation, i.e., for robustness with respect to the proba-

bility density of ι, we solve

Problem 5.7.

V̂t = min
π̃t

∑

ι

π̃t (Vt(ι) + θ2 [log π̃t(ι) − log πt(ι)])

Result 5.8. The date t continuation value V̂t that solves problem 5.7 is

V̂t = −θ2 log

(

∑

ι

exp

[

− 1

θ2
Vt(ι)

]

πt(ι)

)

.

where the drift ητ (ι) and shock exposure ςτ (ι) for the complete information continua-

tion value process {Vτ (ι) : τ ≥ t} are restricted by

ητ (ι) = δVτ (ι) − δU(Cτ ) +
|ςτ (ι)|2

2θ1
.

We use the continuation value V̂t to rank alternative consumption processes from

the perspective of time t. Since we apply the robustness adjustment for estimation

to the continuation value and not its stochastic increment, we do not scale relative

entropy linearly by dt in the minimization problem on the right side of the equation

defining problem 5.7.

In this formulation, the value function for the fictitious evil agent can be con-

structed recursively, but the induced preferences for the decision-maker change over

time. As in [30], we confront this intertemporal change in preferences by having our

decision-maker play a dynamic game with future versions of himself.
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5.3 Examples

We illustrate the two recursions when the state dynamics in example 3.1 are special-

ized so that U(Ct) = logCt = H · Yt, where

dYt = ∆Ytdt+ ιdt+ σdWt.

Example 5.9. Consider first the subsection 5.1 formulation in which the continuation

value does not depend on ι. Guess that

Vt = λ · Yt + κ · ιt + φt.

Then

η̄t =(∆Yt + ιt) · λ+
dφt
dt

ςt =σ′λ+ σ−1Σtκ.

Moreover, since the posterior for ι is normal, it follows from (8) and (9) that

η̄t = δVt − δHYt +
|ςt|2
2θ1

+
1

2θ2
(ςt)

′σ−1Σt(σ
−1)′ςt.

Combining these findings, we know

∆′λ = δλ − δH

λ = δκ
dφt

dt
= δφt + |ςt|2

2θ1
+ 1

2θ2
(ςt)

′σ−1Σt(σ
−1)′ςt

↑ ↑
misspecified misspecified

dynamics state estimation.

The first equation can be solved for λ and then the second for κ. To compute φt, we

solve a first-order differential equation forward:

φt = −
∫ ∞

0

exp(−δu)
[

|ςt+u|2

2θ1
+ 1

2θ2
(ςt+u)

′σ−1Σt+u(σ
−1)′ςt+u

]

du

The fact that φt is negative reflects an aversion to uncertainty (a.k.a. a concern
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about misspecified estimation and models). Welfare implications of this aversion can

be quantified using the methods of [2] and [6].

Example 5.10. Now consider the subsection 5.2 formulation in which the continua-

tion value depends on the model ι. Guess

Vt(ι) = λ · Yt + κ · ι+ φ

where

∆′λ = δλ− δH

λ = δκ

δφ = − 1

2θ1
λ′σσ′λ.

Then
V̂t = λ · Yt + κ · ιt − 1

2δθ1
λ′σσ′λ − 1

2θ2
κ′Σtκ.

↑ ↑
misspecified misspecified

dynamics state estimation

Here, our robust-adjusted continuation value includes two negative terms, one that

adjusts for model misspecification and another that adjusts for estimation based on a

possibly misspecified model.

6 Hidden-state Markov models

This section extends the previous Markov setup by letting ι itself be governed by

Markov transitions. This motivates the decision maker to learn about a moving target

ιt. Bayesian learning carries an asymptotic rate of learning linked in interesting ways

to the tail behavior of detection error probabilities. For expositional convenience, we

use special Markov settings that imply quasi-analytical formulas for filtering.
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6.1 Kalman filtering

Consider a linear model in which some time-varying Markov states are hidden and in

which the Markov state follows the linear law of motion

dXt = AXtdt+BdWt

dYt = DXtdt+ Fdt+GdWt

where dYt is observed. The random vector DXt+F plays the role of µ(Yt)+ ιt in the

previous section and is partially hidden from the decision-maker. The Kalman filter

provides a recursive solution to the filtering problem. We abstract from one aspect of

time variation by letting the prior covariance matrix for the state vector Σ0 equal its

limiting value. Recursive filtering implies the innovations representation for Yt with

the conditional mean X t of Xt obeying

dX t = AX tdt+BdW t

dYt = µtdt+ σdW t, (10)

where σ is nonsingular, µt = DX t + F is the drift for the signal increment dYt,

σσ′ = GG′

B = (ΣD′ +BG′)(GG′)−1σ = (ΣD′ +BG′)(σ′)−1

dW t = σ−1
(

dYt −DXt − Fdt
)

= σ−1
[

GdWt +D(Xt −X t)dt
]

.

The matrix Σ is the limiting covariance matrix, which we assume exists and is non-

singular. Log consumption is logCt = H · Yt and the benchmark preferences are

discounted expected logarithmic utility, as in section 5.3.

6.1.1 Continuation values that do not depend on hidden states

Consider the case in which continuation values do not depend on the hidden states,

as in section 5.1.

Guess a solution

Vt = λ ·X t +H · Yt + φ.
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The innovation for the continuation value is

(λ′B +H ′σ)dW t = (λ′B +H ′σ)σ−1
[

GdWt +D(Xt −X t)dt
]

,

=
[

λ′(ΣD′ +BG′)(GG′)−1 +H ′
] [

GdWt +D(Xt −X t)dt
]

and the drift for the continuation value under our guess is

η̄t = λ · (AX t) +H · (DX t) +H · F. (11)

From the specification of preferences, the drift η satisfies

η̄t =δVt − δ logCt +
1

2θ1

[

λ′(ΣD′ +BG′)(GG′)−1 +H ′
]

GG′
[

(GG′)−1(DΣ +GB′)λ+H
]

+
1

2θ2

[

λ′(ΣD′ +BG′)(GG′)−1 +H ′
]

DΣD′
[

(GG′)−1(DΣ +GB′)λ+H
]

.

(12)

Equating coefficients on Xt as given from (11) and (12) gives

A′λ+D′H = δλ

Therefore, λ = (δI −A′)−1D′H .

As inputs into constructing detection-error probabilities, we require the worst-case

distortions. The worst-case drift for dWt is

h̃t = − 1

θ1
G′
[

(GG′)−1(DΣ +GB′)λ+H
]

and the distorted mean X̃t for Xt is

X̃t = X t −
1

θ2
ΣD′

[

(GG′)−1(DΣ +GB′)λ+H
]

.

Combining these distortions gives

dW t = −(G)−1

(

1

θ1
GG′ +

1

θ 2
DΣD′

)

[

(GG′)−1(DΣ +GB′)λ+H
]

+ dW̃t, (13)

where dW̃t is a multivariate standard Brownian motion under the distorted probability
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law. Both drift distortions are constant. Substituting (13) into (10) gives the implied

distorted law of motion for the reduced information structure generated by the signal

history. In particular, the distorted drift µ̃t for dYt is:

µ̃t = DXt−G
1

θ1
[(DΣ +GB′)λ+ (GG′)H ]− 1

θ2
DΣD′

[

(GG′)−1(DΣ +GB′)λ+H
]

.

6.1.2 Continuation values that depend on the hidden states

As in section 5.2, we now turn to the case in which continuation values depend on

the hidden states. Guess a solution

Vt = λ ·Xt +H · Yt + φ.

The innovation to the continuation value is

(B′λ+G′H) · dWt,

and the drift is

ηt = λ · (AXt) +H · (DXt + F ).

This drift satisfies

ηt = δVt − δH ·Xt +
1

2θ1
|B′λ+G′H|2.

The vector λ is the same as in the limited information case, and the worst-case model

prescribes the following drift to the Brownian increment dWt:

h̃t = − 1

θ1
(B′λ+G′H).

The robust state estimate X̃t is

X̃t = X t −
1

θ2
Σλ.

Thus, the combined distorted drift for dYt is

µ̃t = DXt −
1

θ1
G(B′λ+G′H) − 1

θ2
DΣλ.

The drift distortions in both robustness specifications are constant. While the pa-
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rameterization of a hidden-state Markov model leading to this outcome is convenient,

the constant distortions make it empirically limiting when it comes to accounting for

history-dependent market prices of uncertainty.12 Partly for that reason, we consider

next environments that imply state dependent distortions in the probabilities that in-

cidentally can lead to time-varying and state-dependent market prices of uncertainty.

6.2 Wonham filtering

Suppose that

dYt = ∆Ytdt+ ιtdt+ σdWt

where ιt = ΓZt and Zt follows a discrete-state Markov chain with intensity matrix

A. The realized values of Zt are coordinate vectors, i.e., a basis of vectors with 1

in one location, zeroes elsewhere. This is a Wonham filtering problem where the

signal increment is now dYt − ∆Ytdt. The local population regression of Zt onto

dYt − ∆Ytdt− ΓZtdt has the conditional regression coefficient vector

Kt =
[

diag
(

Zt

)

− ZtZt
′
]

G′(σσ′)−1.

The notation “diag” denotes a diagonal matrix with the entries of the argument in

the respective diagonal positions. Then the recursive solution to the filtering problem

is

dYt = ∆Y dt+ ΓZtdt+ σdW t

dZt = A′Ztdt+KtσdW t,

where the innovation

dW t = σ−1Γ(Zt − Zt)dt+ dWt

is an increment to a multivariate standard Brownian motion.

12This observation motivated [18] and [14] to explore alternative specifications in their empirical
applications that give rise to history dependent contributions of model uncertainty to risk prices.
We could induce time dependence by initializing the state covariance matrix away from its invariant
limit, but this induces only a smooth alteration in uncertainty prices that does not depend on the
data realizations.
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6.2.1 Continuation values

When continuation values do not depend on hidden states, the continuation value

function must be computed numerically. The full information value function, however,

is of the form

Vt = λ · Yt + κ · Zt + ξ.

Appendix A derives formulas for κ and λ when the logarithm of consumption is given

byH ·Xt and the instantaneous utility function is logarithmic (a unitary intertemporal

elasticity of substitution). Given solutions for λ and κ, appendix A also provides

formulas for the worst-case drift distortion h̃ and the worst-case intensity matrix Ã

for the continuous-time Markov chain.

6.2.2 Worst-case state estimate

It remains to compute the worst-case state estimate. For this, we solve

min
{Z̃i,t}i

∑

i

Z̃i,t

[

κi + θ2

(

log Z̃i,t − logZ i,t

)]

subject to
∑

i

Z̃i,t = 1.

The minimizer

Z̃i,t ∝ Z i,t exp

(

−κi
θ2

)

“tilts” Z̃t towards states with smaller continuation values.

6.2.3 Combined distortion

Given the initial robust state estimate and the worst-case dynamics, we again apply

the Wonham filter to obtain:

dYt = ∆Ytdt+ ΓZ̃tdt+ σh̃dt+ σdW̃t

dZ̃t = Ã′Z̃tdt+ K̃t(dYt − ∆Ytdt− ΓZ̃tdt− σh̃dt)

where

K̃t =
[

diag
(

Z̃t

)

− Z̃tZ̃
′
t

]

Γ′(σσ′)−1.
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7 Statistical discrimination

This section uses insights from the statistical detection literature to defend the rescal-

ing of entropy contributions recommended in sections 5, 6, and 8. [8] used likelihood

ratios to discriminate among competing statistical models. [29] extended [8]’s anal-

ysis to apply to continuous-time Markov processes with observable states. We follow

[1], [14], and [17], ch. 9 in using such methods to quantify how difficult it is to dis-

tinguish worst-case models from the decision maker’s benchmark models. We extend

the analysis of [1] to allow for hidden Markov states.

For the hidden-state Markov models of section 6, the log-likelihood ratio between

the worst-case and benchmark models evolves as

d log L̃t − d logLt =(µ̃t − µ̄t)
′(σσ′)−1dYt

− 1

2
(µ̃t)

′(σσ′)−1µ̃tdt

+
1

2
(µ̄t)

′(σσ′)−1µ̄tdt,

where the specification of µ̄t and µ̃t depends on the specific hidden state. Equivalently,

the evolution of the likelihood ratio can be written as

d log L̃t − d logLt =(µ̃t − µ̄t)
′(σ′)−1dW t

− 1

2
(µ̃t − µ̄t)(σσ

′)−1(µ̃t − µ̄t)dt,

which makes the likelihood ratio a martingale with respect to the reduced information

filtration Y generated the process Y under the benchmark model probabilities. The

alternative specifications in section 6 imply different formulas for the conditional

means of the hidden states and worst-case adjustments, but the continuous-time

likelihood ratio for each of them shares this common structure.

[8] used the expected value of the likelihood ratio to a power 0 < α < 1 to bound

the limiting behavior of the probability that the likelihood ratio exceeds alternative

thresholds.13 In our setting, this approach leads us to study the behavior of the

13Chernoff’s calculation was an early application of Large Deviation Theory.

25



conditional expectation of Mt(α) =
(

L̃t/Lt

)α

. The logarithm of Mt(α) evolves as:

d logMt(α) =α(µ̃t − µ̄t)
′(σ′)−1dW t

− α

2
(µ̃t − µ̄t)(σσ

′)−1(µ̃t − µ̄t)

=α(µ̃t − µ̄t)
′(σ′)−1dW t −

α2

2
(µ̃t − µ̄t)(σσ

′)−1(µ̃t − µ̄t)

+

(

α2 − α

2

)

(µ̃t − µ̄t)(σσ
′)−1(µ̃t − µ̄t).

This shows that Mt(α) can be factored into two components identified by the last

two lines. The first component M1
t (α) evolves as

d logM1
t (α) = α(µ̃t − µ̄t)

′(σ′)−1dW t −
α2

2
(µ̃t − µ̄t)(σσ

′)−1(µ̃t − µ̄t)

and is a local martingale in levels. The second component M2
t (α) evolves as

d logM2
t (α) =

(

α2 − α

2

)

(µ̃t − µ̄t)(σσ
′)−1(µ̃t − µ̄t)dt.

Since it has no instantaneous exposure to dW t, this second component is locally pre-

dictable. An additive decomposition in logarithms implies a multiplicative decompo-

sition in levels. Since the conditional expectation of the martingale component does

not grow, the local growth rate is fully encoded in the locally predictable component.

7.1 Local discrimination

[1] used the d logM2
t (α) component for a fully observed Markov process to define the

local rate of statistical discrimination. This local rate gives a statistical measure of

how easy it is to discriminate among competing models using historical data, in the

sense that it bounds the rate at which the probability of making a mistake in choosing

between two models decreases as the sample size grows. The counterpart of this local

rate for a hidden state model is

1

8
(µ̃t − µ̄t)(σσ

′)−1(µ̃t − µ̄t) (14)
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This rate attains

max
α

(

α− α2

2

)

(µ̃t − µ̄t)(σσ
′)−1(µ̃t − µ̄t)

where the objective is maximized by setting α = 1/2. Since [1] consider complete

information models, they focus only on the drift distortion to an underlying Brownian

motion. But for us, states are hidden from the decision-maker, so robust estimation

necessarily gives rise to an additional contribution to the local rate of statistical

discrimination between models.14

For the stochastic specification with an invariant ι and continuation values that

do not depend on the unknown model,

µ̃t − µ̄t = −1
θ 1
σ(Yt)ςt + [

∑

ι π̃t(ι)µ(Yt, ι)] − µ(Yt)

↑ ↑
misspecified misspecified

dynamics model estimation

where π̃t solves problem 5.3. This formula displays the two contributions to statisti-

cal discrimination and via the second term on the right shows how a concern about

misspecified model estimation alters the local rate of statistical discrimination. Re-

call that in our recursive formulation, we scaled the contribution of entropy from the

posterior over the unknown model by dt. Evidently this scaling balances the contri-

butions to the detection error rate in a way designed to make both components be of

comparable magnitudes. The impact of the misspecified model estimation will vanish

over time as the decision maker learns ι, however.

Consider next the Kalman filtering model with continuation values that do not

depend on the hidden state. In this case, we showed that

µ̃t − µ̄t = − 1
θ1
G(B′λ+G′H) − 1

θ2
DΣλ.

↑ ↑
misspecified misspecified

dynamics state estimation

14The term σ−1(µ̃t − µ̄t) entering (14) is also the uncertainty component to the price of local
exposure to the vector dW t. See [1] and [18].
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Now the second term on the right shows how a concern about misspecified state

estimation alters the local rate of statistical discrimination. Since the hidden state

evolves over time, the impact of the second term will not vanish. Both contributions,

however, are time invariant.

Finally, consider the Wonham filtering model with continuation values that do not

depend on the discrete hidden state. Now both distortions must be computed nu-

merically. They depend on the vector of vector Yt of observables and on probabilities

over the hidden states, persist through time, and have comparable magnitudes.

An analogous set of results can be obtained when continuation values depend on

the unknown model or hidden states.

7.2 Long-run discrimination

For the Kalman filtering model, the local discrimination rate is constant and neces-

sarily coincides with its long-term counterpart. For the Wonham filtering model with

discrete hidden states, the local discrimination rate is state dependent. However, it

has a limiting discrimination rate that is state independent. [29] construct this rate for

a fully observed Markov state. The filtering problem associated with a hidden state

Markov process implies an alternative Markov process in which the hidden state is

replaced by the density of the hidden state conditional on the history of signals. The

recursive representation of the motion of that posterior distribution shows how the

posterior responds to new information. We apply the approach suggested by [29] to

the Markov process constructed from the recursive solution to the filtering problem.

We know the likelihood ratio and its evolution under the benchmark model. In

particular, notice that we can construct Z̃t as a function of Zt given the vector κ.

The long-run rate maximizes the limit

ρ(α) = lim
t→∞

1

t
logE

[

Mt(α)|Y0 = y, Z0 = z
]

,

by choice of α. The rate ρ(α) can also be characterized by finding the dominant

eigenvalue for the generator of a semigroup of operators. Operator t in this semigroup

maps a function of (y, z) into another function of (y, z) defined by

E

[

Mt(α)

M0(α)
ϕ(Yt, Zt)|Y0 = y, Z0 = z

]

.
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The pertinent eigenvalue problem is

E

[

Mt(α)

M0(α)
ϕ(Yt, Zt)|Y0 = y, Z0 = z

]

= exp[−ρ(α)t]ϕ(y, z)

where ϕ is restricted to be a positive function.15 Since this equation must hold

for all t, there is a local counterpart that requires solving a second-order partial

differential equation. Again, concerns about misspecified dynamics and misspecified

state estimation both contribute to the asymptotic rate. Following [29], the long-term

counterpart to Chernoff entropy is:

max
0≤α≤1

ρ(α).

To relate this to our discussion of local discrimination rates, for a given α, suppose

that Mα
t is a martingale (not just a local martingale). This multiplicative martingale

is associated with a change in probability measure, one that preserves the Markov

structure. With the change of measure, we may use the approach pioneered by

Donsker and Varadhan to characterize ρ(α) as the solution to a problem that maxi-

mizes the average local discrimination rate subject to a relative entropy constraint for

the probability measures used in computing the average.16 The benchmark probabil-

ity distribution used in forming the relative entropy criterion is that of the stationary

distribution for the Markov process under the change of measure, presuming that such

a distribution exists. Given this averaging property, the comparability of magnitudes

that we described for the local discrimination rates carries over to the global rates.

8 Smooth adjustments for model uncertainty

Thus far, we have described links between entropy-based robust control problems and

recursive utility in continuous time. In this section, we explore an analogous link of ro-

bust control theory to the smooth ambiguity decision theoretic model of [24, 25]. [16]

mentioned this link for the discrete-time model counterpart to the decision problem

described above in 5.1. In particular, instead of directly introducing perturbations in

probabilities as we do in robust control theory, we can use an exponential adjustment

15There may be multiple solutions to this eigenvalue problem but there are well known ways to
select the appropriate solution. See [20].

16See, for instance, [10].
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for model ambiguity and view it as a special case of [25] parameterized by θ2. That

is, we impose the exponential adjustment directly without viewing it as the outcome

of a multiplier problem that involves θ2-penalized minimization over perturbations to

probabilities. To isolate the link to decision-theoretic models with smooth ambiguity,

we set θ1 to infinity. Here we explore the link between the decision problem in section

5.1 and a version of the problem studied by [25] appropriately modified to match our

continuous-time specification. For simplicity, we feature the case in which learning is

about an invariant parameter or model indicator, ι.

Consider a sequence of stochastic environments indexed by a parameter ǫ that

sets the time gap between observations. It is perhaps simplest to think of ǫ = 2−j for

nonnegative integers j and for a fixed j construct a stochastic process of observations

at dates 0, ǫ, 2ǫ, .... Incrementing from j to j+1 divides the sampling interval in half.

To simplify notation and approximation, we use the continuous-time formulation

structures set out in subsection 5.1 with continuation values not depending on the

unknown parameter, but we consider consumption choices made on the ǫ-spaced grid

just described.17

Given knowledge of ι, the decision maker uses expected utility preferences:

Vt(ι) = [1 − exp(−ǫδ)]E
[

∞
∑

k=0

exp(−kǫδ)U [Ct+kǫ]|Yt, ι
]

= [1 − exp(−ǫδ)]U(Ct) + exp(−ǫδ)E [Vt+ǫ(ι)|Yt, ι] .

Thus,

E [Vt+ǫ(ι)|Yt, ι] − Vt(ι) = [exp(ǫδ) − 1]Vt(ι) − [exp(ǫδ) − 1]U(Ct)

≈ ǫδVt − ǫδU(Ct). (15)

To extend these preferences to accommodate smooth ambiguity as in [25], we

first consider preferences over one step-ahead continuation plans. The one step-ahead

construction begins with a consumption process at date t: (Ct, Ct+ǫ, Ct+2ǫ, ...) and

forms a new stochastic sequence: (Ct, Ct+ǫ, Ct+ǫ, ...) that is constant over time from

17An alternative approach would be to sample {Yt} for each choice of ǫ and solve the corresponding
filtering problem in discrete-time for each ǫ.
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time period t+ ǫ forward. Therefore, the date t+ ǫ continuation value Vt+ǫ is

Vt+ǫ = U(Ct+ǫ).

Because no C’s beyond t+ ǫ affect Vt+ǫ, knowledge of ι plays no role in the valuation

from date t + ǫ forward. For a given ι, [25] define the one-step ahead certainty

equivalent Čt(ι) to be the solution to

[1−exp(−ǫδ)]U(Ct)+exp(−ǫδ)U [Čt(ι)] = [1−exp(−ǫδ)]U(Ct)+exp(−ǫδ)E [Vt+ǫ|Yt, ι] .

Therefore,

Čt(ι) = U−1 (E [Vt+ǫ|Yt, ι]) .

For future reference, define

V̌t(ι) = U [Čt(ι)] = E [Vt+ǫ|Yt, ι] . (16)

[25] refer to Čt(ι) as the second-order act associated with (Ct, Ct+ǫ, Ct+2ǫ...), and they

impose an assumption of subjective expected utility over second-order acts, where

the probability measure is the date t posterior for ι. See their Assumption 7.

To form a bridge between the formulation of [25] and our work, we would let the

function that they use to represent expected utility over second-order acts have the

exponential form18

U∗(C) = − exp[−γU(C)]. (17)

Then the date t objective applied to second-order acts is the expected utility

−E
(

exp
[

−γV̌t(ι)
]

|Yt
)

.

The continuation value certainty equivalent of V̌t is

−1

γ
logE

(

exp
[

−γV̌t(ι)
]

|Yt
)

.

18Note that [24] allow for more general utility functions U∗.
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Assembling these components gives the recursive representation

Vt = [1 − exp(−ǫδ)]U(Ct) − exp(−ǫδ) 1

γ
logE

[

exp
[

−γV̌t(ι)
]

|Yt
]

= [1 − exp(−ǫδ)]U(Ct) − exp(−ǫδ) 1

γ
logE [exp (−γE [Vt+ǫ|Yt, ι]) |Yt] ,

where we have substituted for V̌t(ι) from (16). [25] use dynamic consistency to extend

this preference representation beyond second-order acts.

8.1 A smooth ambiguity adjustment that vanishes in contin-

uous time

Consider now a continuous-time approximation. Take a continuation value process

{Vt} with drift ηt(ι) conditioned on ι. For example, take Vτ = U(Ct+ǫ) τ ≥ t + ǫ as

in the construction of second-order acts. Using a continuous-time approximation,

V̌t(ι) = E [Vt+ǫ|Yt, ι] ≈ Vt + ǫηt(ι)

Then

−1

γ
logE

(

exp
[

−γV̌t(ι)
]

|Yt
)

≈ Vt + ǫη̄t −
1

γ
logE

(

exp [−γǫ[ηt(ι) − η̄t] |Yt
)

(18)

where

η̄t = E [ηt(ι)|Yt]

is the date t drift for the process {U(Cτ ) : τ ≥ t} under the filtration {Yτ : τ ≥ t

that omits knowledge of ι. Since [ηt(ι) − η̄t] has conditional mean zero,

1

γ
logE (exp [−γǫ[ηt(ι) − η̄t] |Yt)

contributes only an ǫ2 term. This can be seen by using the power series expansion

for the exponential and taking conditional expectations of the terms. The first-order

term in ǫ is zero because [ηt(ι) − η̄t] has conditional mean zero, so the second-order

term dominates for small ǫ. The limiting counterpart to (15) scaled by 1
ǫ

is

η̄t = δVt − δU(Ct).
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The parameter γ drops out of this equation in the limit and there is no adjustment

for ambiguity. This calculation reaffirms a finding of [32] that a smooth ambiguity

adjustment completely dissipates in a continuous-time limit.

8.2 A smooth (in a derivative) ambiguity adjustment that

survives in continuous time

As an alternative, suppose that we adjust the utility function U∗ over second-order

acts simultaneously with ǫ. In particular, we replace γ with γ

ǫ
on the right-hand side

of (18):

U(Ct) + ǫη̄t −
ǫ

γ
logE [exp (−γ [ηt(ι) − η̄t]) |Yt] .

This leads to

η̄t −
1

γ
logE [exp (−γ [ηt(ι) − η̄t]) |Yt] = δVt − δCt,

or

η̄t = δVt − δCt +
1

γ
logE [exp (−γ [ηt(ι) − η̄t]) |Yt] . (19)

Our alternative adjustment thus makes the concern about ambiguity remain in a

continuous-time limit.

To connect to our subsection 5.1 analysis of continuous-time versions of preferences

for robustness, write the local evolution for the continuation value under the filtration

Y as:

dVt = η̄tdt+ ςt · dW̄t

and recall from equation (7) that19

dW̄t = dWt + σ(Yt)
−1 [µ(Yt, ι) − µ̄(Yt)] dt.

Thus,

ηt(ι) = η̄t + (ςt)
′σ(Yt)

−1 [µ(Yt, ι) − µ̄(Yt)] dt,

19Here we see the important role of decomposition (7) alluded to in footnote 9.
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and the drift for our version of smooth ambiguity can be expressed as

η̄t =δVt − δU(Ct) + (ςt)
′σ(Yt)

−1µ(Yt)

+
1

γ
log

(

∑

ι

πt(ι) exp
[

−γ(ςt)′σ(Yt)
−1µ(Yt, ι)

]

)

.

This formulation coincides with (8) when θ1 = ∞ and θ2 = 1
γ
.

8.2.1 Senses of smoothness

As we showed in (19), the continuous-time limit of our scaling makes a smooth ex-

ponential ambiguity adjustment to the derivative of the continuation value. The

way that this limit U∗ in (18) depends on the sampling interval ǫ leads us to raise

the important question of the extent to which we can hope to parameterize ambigu-

ity preferences through U∗ in a way that plausibly remains fixed across alternative

environments. When we follow [25] and use U∗ in (18) and expected utility over

second-order acts, the ambiguity adjustment vanishes in the continuous time limit

computed in subsection 8.1. The reason that the adjustment disappears in the limit

is that the impact of uncertainty about ι on transition distributions for the Markov

state vanishes too quickly as we shrink the sampling interval ǫ to zero. In order to

sustain an ambiguity adjustment in continuous time, we have increased the curvature

of U∗ as we have diminished the sampling interval. In terms of the [25] analysis, we

performed this adjustment because of how uncertainty about ι is manifested in the

constructed second-order acts.

The robustness model counterpart to the smooth ambiguity model is our subsec-

tion 5.1 formulation of preferences in which continuation values do not depend on

hidden states or parameters. Our study of the properties of statistical detection has

led us directly to suggest an alternative scaling in which ambiguity aversion becomes

reflected in the local evolution of the continuation value. The statistical detection

link under our proposed rescaling is an important outcome for us because of how it

conveniently links to the strategy that [1] proposed for quantifying model ambiguity

by calibrating θ.
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8.2.2 Example

In order to illustrate the impact of our proposed adjustment, return to the first

example in section 5.3. We showed that the value function has the form

Vt = λ · Yt + κ · ιt + φt

and reported formulas for λ, κ and φt. Under the ambiguity interpretation

φt = −γ
∫ ∞

0

exp(−δu)
[

ςt+u
′(σ−1)Σt+u(σ

−1)′ςt+u
]

du

scales linearly in the ambiguity parameter γ.

What lessons do we learn from this? The exposure of a continuation value to

model uncertainty diminishes proportionally to ǫ as ǫ shrinks to zero. But the risks

conditioned on a model ι, namely, Wt+ǫ −Wt, have standard deviations that scale as
√
ǫ, and these risks come to dominate the uncertainty component. By replacing the

ambiguity parameter γ with γ

ǫ
, we offset this diminishing importance of ambiguity

when we move toward approximating a continuous-time specification.

The consequences of our rescaling proposal for preferences over consumption pro-

cesses are apparently reasonable. This is because even though we drive the ambiguity

aversion parameter γ

ǫ
to infinity in the continuous-time limit, the local uncertainty

exposure of continuation values and consumption diminish simultaneously at com-

parable rates. This calculation provokes further thoughts about how separately to

calibrate both a decision maker’s ambiguity aversion and his risk aversion. The em-

pirical analyses of [23] and [9] study implications of smooth ambiguity models. Our

continuous-time limiting investigations motivate the discrete-time ambiguity aversion

parameter γ in terms of the local uncertainty that confronts a decision maker.

Our example sets an intertemporal substitution elasticity equal to unity with

the consequence that a proportionate change in the consumption process leads to a

change in the constant term of the continuation value equal to the logarithm of the

proportionality factor. If we modify the intertemporal substitution elasticity param-

eter using the [25] formulation in conjunction with our exponential risk adjustment,

this homogeneity property no longer applies. In discrete-time, [23] and [21] propose

an alternative recursion with ambiguity that preserves the homogeneity property just

described.
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9 Concluding remarks

All versions of max-min expected utility models, including the recursive specifications

of robustness developed in [16], assign a special role to a worst-case model. We

advocate a strategy for quantifying model ambiguity in particular applications by

imagining that a decision maker thinks about the statistical plausibility of that model

worst-case model. How he thinks about statistically discriminating it from other

models should affect his robust decision making procedure.

In our formulations, robust decision makers use an approximating model as a

benchmark around which they put a cloud of perturbed models with respect to which

they want robust valuations and decisions. To characterize how “robust” the decision

maker wants to be, [1] and [17], ch. 19 employed measures of statistical discrepancy

between worst-case models and benchmark models. This paper has pushed that use

of detection error calculations further by employing them to justify a proposal for a

new way of scaling contributions to entropy in continuous time hidden Markov models

with robust decision making. The link to statistical detection that is preserved under

our proposed way of scaling is helpful because it permits us to use the detection error

probabilities advocated by [1] as a way of quantifying model ambiguity as captured

by our penalty parameter θ.

We have explored robustness to two alternative types of misspecifications. The

first type is misspecified dynamics as reflected in distributions of current and future

states and signals conditioned on current states. The second type is misspecified dy-

namics of the histories of the signals and hidden state variables occurring in filtering

problems. We investigate the impact of both forms of misspecification on decision

making and to understand better the impact of relative entropy restraints on the

model mispecifications that a decision maker chooses to explore. We considered pa-

rameterizations of preferences for robustness for which both types of misspecification

are parts of the problem of designing robust decision rules in the continuous-time

limit. We have advocated specific continuous-time formulations for robust decision

problems in light of how both types of misspecification contribute to measures of

statistical discrepancy.

By construction, model ambiguity survives in our limiting formulations. As a

consequence, our continuous-time formulations respond to a challenge that [32] posed

for recursive formulations of smooth ambiguity like one of [24, 25]. The smoothness
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in [24, 25] refers to averaging using probabilities as weights. Expressing ambiguity

in this way avoids the kinks in indifference curves that are present when ambiguity

is expressed using the max-min expected utility theory of [13]. [32] showed how a

smooth concern for ambiguity vanishes in a particular continuous-time limit, but the

[32]’s limit is distinct from ours. Indeed, our statistical detection approach tells us to

explore a different continuous-time limit than the one criticized by [32]. We recognize

that the sense in which our limiting preferences remain smooth is delicate. They are

smooth, in the sense of taking a weighted average of a derivative (and not the level)

of a continuation value using probabilities as weights.
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A Discrete-state entropy problem

In this appendix, we follow [1] in computing the worst-case distortion of a discrete-

state Markov chain. The continuation value is assumed to be given by

Vt = λ · Yt + κ · Zt + ξ.

Consider a matrix R with nonnegative entries. Each row has at least on strictly

positive entry and the row gives transition probabilities conditioned that a jump

occurs up to a proportionality factor. The proportionality factor gives the state

dependent jump intensity. The implied intensity matrix A is

A = R− diag {R1n}

where 1n is an n-dimensional vector with all entries equal to one, and the matrix of

transition probabilities is exp(tA) over an interval of time t. Consider an alternative

specification of R given by S ⊗ R, where S has all positive entries and ⊗ denotes

entry-by-entry multiplication.

The combined conditional relative entropy for the drift distortion for the Brownian

motion and the distortion to the intensity matrix is

ent(h, S) =
|h|2
2

+ z · vec
[

∑

j

rij(1 − sij + sij log sij)

]

where “vec” denotes a vector formed by stacking the numbers in its argument. Notice

that

1 − sij + sij log sij ≥ 0

since sij log sij is convex and lies above its gradient approximation at sij = 1. Thus, as

expected ent(h, S) is nonnegative. The associated distorted drift for the continuation

value inclusive of the entropy penalty is

λ · (∆y + Γz + σh) + z · [(R⊗ S)κ] − (z · κ) (z · [(R⊗ S)1n]) + θ1ent(h, s).

To compute the worst-case model for the state dynamics, we minimize this expression

by choice of the vector h and matrix S.
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The worst-case model appends the drift

h̃ = − 1

θ1
σ′λ

to the Brownian increment dWt and includes a multiplicative distortion S̃ to the

matrix R:

s̃ij = exp

(

−1

θ 1
κj +

1

θ1
κi

)

.

The minimized drift inclusive of the robustness penalty is

λ · (∆y) − 1

2θ1
λ′σσ′λ+

z′∆ exp
(

− 1
θ1
κ
)

z′ exp
(

− 1
θ1
κ
) ,

where exp
(

− 1
θ1
κ
)

is a vector with entries given by exponentials of the entries in the

vector argument. The drift of the value function must satisfy

λ · (∆y + Γz) − 1

2θ1
λ′σσ′λ+

z′A exp
(

− 1
θ1
κ
)

z′ exp
(

− 1
θ1
κ
) = δ(λ · y + κ · z + ξ) − δH · y,

which gives equations to be solved for λ and κ.
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