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Abstract

For each of three types of ambiguity, we compute a robust Ramsey plan and an

associated worst-case probability model. Ex post, ambiguity of type I implies en-

dogenously distorted homogeneous beliefs, while ambiguities of types II and III imply

distorted heterogeneous beliefs. Martingales characterize alternative probability spec-

ifications and clarify distinctions among the three types of ambiguity. We use recur-

sive formulations of Ramsey problems to impose local predictability of commitment

multipliers directly. To reduce the dimension of the state in a recursive formulation,

we transform the commitment multiplier to accommodate the heterogeneous beliefs

that arise with ambiguity of types II and III. Our formulations facilitate comparisons

of the consequences of these alternative types of ambiguity.

Keywords: Robustness, ambiguity, martingales, Ramsey plan, commitment, local pre-

dictability, heterogeneous beliefs.

1 Introduction

Rational expectations models attribute a unique probability model to diverse agents. Gilboa

and Schmeidler (1989) express a single person’s ambiguity with a set of probability models.

∗We thank Marco Bassetto, Anmol Bhandari, Jaroslav Borovička, Rui Cui, Christopher Sleet, and Sevin
Yeltekin for helpful comments on earlier versions. We also thank Anmol Bhandari and Rui Cui for excellent
computational assistance.
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A coherent multi-agent setting with ambiguity must impute possibly distinct sets of mod-

els to different agents, and also specify each agent’s understanding of the sets of models of

other agents.1 This paper studies three ways of doing this for a Ramsey planner.

We analyze three types of ambiguity, called I, II, and III, that a Ramsey planner might

have. In all three, the Ramsey planner believes that private agents experience no ambiguity.

This distinguishes our models from others that attribute ambiguity to private agents. For

example, in what we shall call the type 0 ambiguity analyzed by Karantounias (2012), the

planner has no model ambiguity but believes that private agents do.

To illustrate these distinctions, figure 1 depicts four types of ambiguity within a class

of models in which a Ramsey planner faces a private sector. The symbols x and o signify

distinct probability models over exogenous processes. (The exogenous process is a cost-

push shock in the example that we will carry along in this paper). Circles with either x’s

or o denote boundaries of sets of models. An x denotes a Ramsey planner’s model while

an o denotes a model of the private sector. In a rational expectations model, there is one

model x for the Ramsey planner and the same model o = x for the private sector, so a

graph like figure 1 for a rational expectations model would be a single x on top of a single

o.

The top left panel of figure 1 depicts the type of ambiguity analyzed by Karantounias

(2012).2 To distinguish it from three other types to be studied in this paper, we call this

type 0 ambiguity. A type 0 Ramsey planner has a single model x but thinks that private

agents have a set of models o contained in an entropy ball that surrounds the planner’s

model. Karantounias’s Ramsey planner takes into account how its actions influence private

agents’ choice of a worst-case model along the boundary of the set of models depicted by

the o’s. Part of the challenge for the Ramsey planner is to evaluate the private agent’s

Euler equation using the private agent’s worst-case model drawn from the boundary of the

set.3

Models of types I, II, and III differ from the type 0 model because in these three

models, the Ramsey planner believes that private agents experience no model ambiguity.

But the planner experiences ambiguity. The three types differ in what the planner is

1Battigalli et al. (2011) analyze self-confirming equilibria in games where players are ambiguity averse.
2Orlik and Presno (2012) expand the space of strategies to study problems in which a Ramsey planner

cannot commit and in which the private sector and the Ramsey planner both have sets of probability
models. They represent history-dependent strategies in terms of pairs of continuation values and also
promised marginal utilities of private consumption.

3Through its choice of actions that affect the equilibrium allocation, the planner manipulates private
agents’ worst-case model.
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Type 0 Type I

Type II Type III

Figure 1: Type 0, top left: Ramsey planner trusts its approximating model (x), knowing
private agents (o) don’t trust it. Type I, top right: Ramsey planner has set of models
(x) centered on an approximating model, while private sector knows a correct model (o)
among Ramsey planner’s set of models x. Type II, bottom left; Ramsey planner has set of
models (x) surrounding its approximating model, which private sector trusts (o). Type III,
bottom right: Ramsey planner has single model (x) but private sector has another model
in an entropy ball around (x).
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ambiguous about. The private sector’s response to the Ramsey planner’s choices and the

private sector’s view of the exogenous forcing variables have common structures across all

three types of ambiguity. In all three, private agents view the Ramsey planner’s history-

dependent strategy as a sequence of functions of current and past values of exogenously

specified processes. In addition, the private sector has a well specified view of the evolution

of these exogenous processes. These two inputs determine the private sector’s actions.

Although the planner’s strategy and the private sector’s beliefs differ across our three types

of ambiguity, the mapping (i.e., the reaction function) from these inputs into private sector

responses is identical. We will represent this generalized notion of a reaction function as

a sequence of private sector Euler equations. When constructing Ramsey plans under our

three types of ambiguity, we will alter how the Ramsey planner views both the evolution of

the exogenous processes and the beliefs of the private sector. We will study the consequences

of three alternative configurations that reflect differences in what the Ramsey planner is

ambiguous about.

The top right panel of figure 1 depicts type I ambiguity. Here the Ramsey planner has

a set of models x centered on an approximating model. The Ramsey planner is uncertain

about both the evolution of the exogenous processes and how the private sector views

these processes. The planner presumes that private sector uses a probability specification

that actually governs the exogenous processes. To cope with its ambiguity, the Ramsey

planner’s alter ego chooses a model on the circle, while evaluating private sector Euler

equations using that model.

The bottom left panel of figure 1 depicts type II ambiguity. In the spirit of Hansen and

Sargent (2008, ch. 16), the Ramsey planner has a set of models surrounding an approxi-

mating model x that the private sector o completely trusts; so the private sector’s set of

models is a singleton on top of the Ramsey planner’s approximating model. The Ramsey

planner’s probability-minimizing alter ego chooses model on the circle, while evaluating

private the agent’s Euler equations using the approximating model o.

The bottom right panel of figure 1 depicts type III ambiguity. Following Woodford

(2010), the Ramsey planner has a single model x of the exogenous processes and thus

no ambiguity along this dimension. Nevertheless, the planner faces ambiguity because it

knows only that the private sector’s model o is within a “ball” around its own model. The

Ramsey planner evaluates the private sector’s Euler equations using a worst-case model

chosen by the Ramsey planner’s alter ego.

This figure is just for motivation. Our formal analysis is more complex. There are
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many (an infinite number of) dimensions associated with our “entropy balls” of probability

specifications. Technically, we do not specify such balls but instead penalize relative entropy

as a way to restrain how much concern the Ramsey planner has for model ambiguity. To

do this, we extend and apply the multiplier preferences of Hansen and Sargent (2001).

For each of our three types of ambiguity, we compute a robust Ramsey plan and an

associated worst-case probability model. A worst-case distribution is sometimes called an ex

post distribution, meaning after the robust decision maker’s minimization over probabilities.

Ex post, ambiguity of type 1 delivers a model of endogenously distorted homogeneous beliefs,

while ambiguities of types 2 and 3 give distinct models of endogenously heterogeneous

beliefs.

A Ramsey problem can be solved by having the planner choose a path for the private

sector’s decisions subject to restrictions on the private sector’s co-state variable λt at dates

t ≥ 0 that are implied by the private sector’s optimization.4 The private sector’s Euler

equation for λt involves conditional expectations of future values of λt, which makes it differ

from a standard ‘backward-looking’ state evolution equation in ways that we must take into

account when we pose Ramsey problems that confront alternative types of ambiguity. A

Ramsey plan can be represented recursively by using the “co-state on the private sector

costate,” λt, as a state variable ψt for the Ramsey planner. The planner chooses the initial

value ψ0 to maximize its time 0 value function. The evolution of ψt encodes the planner’s

commitment to confirm the private sector’s earlier expectations about the Ramsey planner’s

time t actions. It is particularly important for us to characterize the probability distribution

with respect to which the private sector’s expectations are formed and how ψt responds to

shocks.

For linear-quadratic problems without robustness, a certainty equivalence principle im-

plies that shock exposures have no impact on decision rules.5 But even in linear-quadratic

problems, concerns about robustness make shock exposures affect decision rules by affecting

the scope of concerns about statistical misspecification.

Along with others, in earlier work we have analyzed the effects of shock exposures on

robust decisions too casually. In this paper, we proceed systematically by starting with fun-

damentals and distinguishing among conditional expectations associated with alternative

probability models. We exploit the finding that, without concerns about robustness, the

4Marcet and Marimon (2011) and the references cited there formulate a class of problems like ours
under rational expectations. Marcet and Marimon (2011) discuss measurability restrictions on multipliers
that are closely related to ones that we impose.

5Shock exposures do affect constant terms in value functions.
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planner’s commitment multiplier ψt is “locally predictable” and hence has zero exposure

to shocks in the current period. We then describe ways that a Ramsey planner seeks to be

robust for each of our three types of statistical ambiguity and produce a Hamilton-Jacobi-

Bellman equation for each.

Technically, this paper (1) uses martingales to clarify distinctions among the three

types of ambiguity; (2) finds, to our initial surprise, that even in continuous time limits

and even in our very simple linear New Keynesian model, ambiguity of types II and III

lead to zero-sum games that are not linear-quadratic; (3) uses recursive formulations of

Ramsey problems to impose local predictability of commitment multipliers in a direct way;

and (4) finds, as a consequence of (3), that to reduce the dimension of the state in the

recursive formulation, it is convenient to transform the commitment multiplier in a way to

accommodate heterogeneous beliefs with ambiguity of types II and III.6

The ex post belief distortion that emerges from ambiguity of type I is reminiscent of some

outcomes for a robust social planning problem appearing in some of our earlier research, but

there are important differences. Hansen and Sargent (2008, chs. 12-13)) used a robust social

planning problem to compute allocations as well as worst-case beliefs that we imputed to

a representative agent in a model of competitive equilibrium without economic distortions.

In effect, we appealed to welfare theorems and restrictions on preferences to justify a robust

planner. We priced risky assets by taking the representative agent’s first-order conditions

for making trades in a decentralized economy, then evaluating them at the allocation chosen

by a robust social planner under the imputed worst-case beliefs (e.g. Hansen and Sargent

(2008, chs. 14)). In this paper, we can’t appeal to the welfare theorems.7

Section 2 describes a simple New Keynesian model that we use as a laboratory in which

to study our three types of ambiguity. Section 3 sets the stage by solving a Ramsey problem

without robustness in two ways, one in the space of sequences, another recursively. Section

4 describes how to represent alternative probability models as distortions of a baseline

approximating model. Section 5 solves a robust Ramsey problem under the first type

6We do not analyze the type 0 ambiguity studied by Karantounias (2012) mainly for the technical reason
that the trick we use to reduce the dimension of the state in the planner’s Bellman equations for ambiguity
of types II and III in sections 7 and 8 does not apply. The Bellman equation analyzed by Karantounias
(2012) contains an additional state variable relative to ours.

7Even in heterogeneous-agent economies without economic distortions, where the welfare theorems do
apply, formulating Pareto problems with agents who are concerned about robustness requires an additional
endogenous state variable to characterize efficient allocations recursively. See Anderson (2005), who studies
risk-sensitive preferences that also have an interpretation as expressing aversion to model ambiguity with
what have come to be called multiplier preferences.
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of ambiguity. Section 6 studies a Ramsey problem with exogenous belief heterogeneity

between the private sector and the Ramsey planner. The model with arbitrary belief

heterogeneity is of interest in its own right and is also useful in preparing for the analysis of

the robust Ramsey problem under the second type of ambiguity to be presented in section

7. Section 8 then studies the robust Ramsey problem under the third type of ambiguity.

Section 9 proposes new local approximations to compare outcomes under robust Ramsey

plans constructed under the three types of ambiguity. We illustrate our analysis with a

numerical example in section 10. After section 11 offers concluding remarks, appendices

B and C describe calculations that illustrate how sequence formulations and recursive

formulations of Ramsey plans agree.

2 Illustrative model

For concreteness, we use a simple version of a New Keynesian model of Woodford (2010).

We begin by describing the model and Ramsey problems without ambiguity in discrete

time and in continuous time.

Let time be discrete with t = εj for ε > 0 and integer j ≥ 0. A cost-push shock ct is a

function f(xt) of a Markov state vector xt described by

xt+ε = g(xt, wt+ε − wt, ε), (1)

where {wt} is a standard Brownian motion so that the increment wt+ε − wt is normally

distributed with mean zero and variance ε and is independent of ws for 0 ≤ s ≤ t. The

private sector treats c as exogenous to its decisions.

The private sector’s first-order necessary conditions are

pt − pt−ε = ελt (2)

λt = ε(κyt + ct + c∗) + exp(−δε)E [λt+ε|Ft] (3)

εiε,t − ελt = ρE [yt+ε|Ft]− ρyt + εd∗, (4)

where iε,t is the one-period (of length ε) nominal interest rate set at date t. Equation (3)

is a New Keynesian Phillips curve and equation (4) is a consumption Euler equation.

To obtain a continuous-time model that is mathematically easier to analyze, we shrink

the discrete-time increment ε. Index the time increment by ε = 1
2j

for some positive integer
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j. Define the local mean µλt to be

µλ,t = lim
ε↓0

1

ε
E [λt+ε − λt|Ft] ,

and drive ε to zero in (3) to get a continuous time version of a new Keynesian Phillips

curve:

µλ,t = δλt − κyt − ct − c∗. (5)

Applying a similar limiting argument to (4) produces a continuous-time consumption Euler

equation:

µy,t =
1

ρ
(it − λt − d∗) (6)

where here λt is the instantaneous inflation rate and it is the instantaneous nominal interest

rate. We depict the continuous-time counterpart to the exogenous state evolution equation

(1) as

dxt = µx(xt)dt+ σx(xt)dwt.

These equations, or modifications of them that appropriately allow for alternative specifi-

cations of private sector beliefs, constrain our Ramsey planners.

3 No concern about robustness

In this section, we first pose a Ramsey problem as a Lagrangian and deduce a set of first-

order conditions that restrict the dynamic evolution of the state variables and associated

Lagrange multipliers. We can compute a Ramsey plan by solving these equations subject to

the appropriate initial and terminal conditions. When these equations are linear, we could

solve them using invariant subspace methods. We take a different route by developing and

solving a recursive version of the Ramsey problem using the multiplier on the private sector

Euler equation as a state variable. The idea of constructing a recursive representation of a

Ramsey plan in this way has a long history. See (Ljungqvist and Sargent 2004, chs. 18,19)

for an extensive discussion and references. In later sections, we will extend that literature

by constructing robust counterparts to recursive formulation of the Ramsey problem in

discrete and continuous time.
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3.1 Planner’s objective function

In discrete time and without concerns about robustness the Ramsey planner maximizes

−1

2
E

(
ε

∞∑
j=0

exp(−εδj)
[
(λεj)

2 + ζ(yεj − y∗)2
]
|F0

)
. (7)

In a continuous-time limit, the planner’s objective becomes

−1

2
E

(∫ ∞
0

exp(−δt)
[
(λt)

2 + ζ(yt − y∗)2
]
dt|F0

)
.

In posing our Ramsey problem, we follow Woodford (2010) in specifying the Ramsey

planner’s objective function in a way that induces the Ramsey planner to trade off output

and inflation dynamics. The Ramsey planner takes the firm’s Euler equation (5) as an

implementability constraint and chooses welfare-maximizing processes for {λt} and {yt}.
The consumer’s Euler equation (6) will then determine an implied interest rate rule it =

λt − ρµy,t + d∗ that implements the Ramsey plan.

3.2 A discrete-time sequence formulation

A Ramsey planner chooses sequences {λεj, yεj}∞j=0 to maximize (7) subject to (3) and ct =

f(xt) with xt governed by (1). Form the Lagrangian

− 1

2
E

[
ε
∞∑
j=0

exp(−εδj)
[
(λεj)

2 + ζ(yεj − y∗)2
]
|F0

]

+E

[
∞∑
j=0

exp(−εδj)ψε(j+1)

[
λεj − ε (κyεj + cεj + c∗)− exp(−εδ)λ(j+1)ε

]
|F0

]
. (8)

Remark 3.1. The private sector Euler equation (3) is cast in terms of mathematical ex-

pectations conditioned on time t information. This makes it appropriate to restrict the

Lagrange multiplier ψt+ε to depend on date t information. We shall exploit this measura-

bility condition extensively when we drive ε to zero to obtain continuous-time limits. This

measurability condition is the source of local predictability of ψt.
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First-order conditions for maximizing (8) with respect to λt, yt, respectively, are

ψt+ε − ψt − ελt = 0 (9)

−ζ(yt − y∗)− κψt+ε = 0.

Combine (9) with the equation system (1) that describes the evolution of {xt} and also

the private-sector Euler equation (3). When the x dynamics (1) are linear, a Ramsey plan

without robustness is a stabilizing solution of the resulting system of equations, which can

be computed using a stabilizing subspace method described by Hansen and Sargent (2008,

chs. 4,16).

3.3 A recursive formulation

We now propose an alternative approach to the Ramsey problem without robustness that

builds on recursive formulations of Stackelberg or Ramsey problems that were summarized

by Ljungqvist and Sargent (2004, chs. 18,19) and extended by Marcet and Marimon (2011).

To encode history, view ψ as an endogenous state variable that evolves as indicated by (9),

namely,

ψt+ε = ελt + ψt.

Because the Brownian increment wt+ε − wt does not affect the evolution of ψt+ε, ψt+ε is

said to be “locally predictable”.

In the spirit of dynamic programming, we transform a multi-period problem to a se-

quence of two-period problems. Recall that the cost-push shock c is a function f(x) of a

Markov state vector x that obeys (1). Guess that an appropriate state vector for next pe-

riod is (x+, ψ+). Soon we will argue that we can interpret ψ+ as a commitment multiplier.

Let λ+ = F+(x+, ψ+) be a policy function for λ+. Let V +(x+, ψ+) denote a planner’s next-

period value function inclusive of a term that encodes commitment. To be more precise

V (x, ψ)+ψF (x, ψ) will be the discounted expected value of the single period contributions

given by

− ε
2

[
(λt)

2 + ζ(yt − y∗)2
]

to the Ramsey planner’s objective. In our first recursive formulation, we will take to be the

next period function V +(x+, ψ+) + ψ+F+(x+, ψ+) and then compute the current-period

functions F and V . To ensure that commitments are honored we will subtract a term ψλ

from the current-period objective when we optimize with respect λ required for computing
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F . Notice that V includes this term evaluated at λF (x, ψ).

It turns out that by virtue of optimization, we can restrict the two functions V + and

F+ to satisfy

V +
2 (x+, ψ+) = −F+(x+, ψ+) (10)

where V +
2 is the derivative of V + with respect to its second argument ψ+. We will show

that property (10) is replicated under iteration on the Bellman equation for the Ramsey

planner. The relations between V + and F+ and between V and F will lead us to construct

an alternative Bellman equation mapping V + to V . Our specific tasks in this section are

to i) provide an evolution equation for ψ+ and interpret ψ and ψ+ formally as commitment

multipliers; ii) show that the counterpart to restriction (10) applies to F ; and iii) construct

a Bellman equation that applies to V and V + with no specific reference to F or F+.

Problem 3.2. Our first Bellman equation for the Ramsey planner is

V (x, ψ) = max
y,λ
−ψλ− ε

2

[
λ2 + ζ(y − y∗)2

]
+

+ exp(−δε)E
[
V +(x+, ψ+) + ψ+F+(x+, ψ+)|x, ψ

]
(11)

where the maximization is subject to

λ− exp(−δε)E
[
F+(x+, ψ+)|x, ψ

]
− ε [κy + f(x) + c∗] = 0 (12)

ελ+ ψ − ψ+ = 0 (13)

g(x,w+ − w)− x+ = 0.

Notice the term −ψλ on the right side of (11). This term remembers and confirms

commitments and plays a vital role when it comes to optimizing with respect to λ. In the

special case in which ψ = 0, which happens to be the initial value set at by the Ramsey

planner at date zero, the only date at which the planner is free to set ψ, this commitment

term vanishes. Soon we will display an alternative Bellman equation (17) that involves

only the function V but that nevertheless encodes the private sector Euler equation.

To justify our interpretation of ψ+ and ψ as commitment multipliers, we solve the Bell-

man equation (11) by first introducing multipliers `1 and `2 on the first two constraints (12)

and (13) for Problem 3.2. First-order conditions for maximizing the resulting Lagrangian
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with respect to λ and y are

−ελ+ `1 + ε`2 − ψ = 0,

−ζ(y − y∗)− κ`1 = 0. (14)

Combining the first equation of (14) with the second constraint (13) for Problem 3.2 gives

ψ+ = `1 + ε`2.

Our next result justifies our interpretation of ψ+ and the evolution that we posited for ψ+

in the constraint (13). We link the multiplier `1 to ψ+ and verify that this constraint is

slack.

Lemma 3.3. In problem 3.2, the multiplier `1 on constraint (12) equals ψ+ and the mul-

tiplier `2 on constraint (13) equals zero. Furthermore,

y = y∗ −
(
κ

ζ

)
(ψ + ελ) , (15)

where λ = F (x, ψ) satisfies the private firm’s Euler equation (12). Finally, V2(x, ψ) =

−F (x, ψ).

See Appendix A for a proof.

Finally, we construct a Bellman equation for the Ramsey planner that incorporates the

private sector Euler equation by using our characterization of ψ+ as a Lagrange multiplier.

Express the contribution of the private sector Euler equation to a Lagrangian formed from

the optimization on the right side of (11):

ψ+
[
λ− exp(−δε)E

[
F+(x+, ξ+)|x, ψ

]
− ε (κy + c+ c∗)

]
= − exp(−δε)E

[
ψ+F+(x+, ψ+)|x, ψ

]
+ ψ+ [λ− ε (κy + c+ c∗)] ,

where we have used the fact that ψ+ is locally predictable. Adding this Lagrangian term

to the Ramsey planner’s objective results in:

− ψλ− ε

2

[
λ2 + ζ(y − y∗)2

]
+ exp(−δε)E

[
V +(x+, ψ+)|x, ψ

]
+ ψ+ [λ− ε (κy + c+ c∗)] . (16)
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Not surprisingly, by differentiating with respect to y, λ and ψ+, we reproduce consequence

(15) of the first-order conditions reported in Lemma 3.3. This optimization has us maximize

with respect to λ and y. By maximizing with respect to λ we obtain state evolution (13),

and by minimizing with respect to ψ+, we obtain the private sector Euler equation (12).

In what follows we consider ψ+ as an endogenous state variable and λ as a control. After

substituting for ψ+ into the Lagrangian (16), we are led to study the following recursive,

zero-sum game.

Problem 3.4. An alternative Bellman equation for a discrete-time Ramsey planner without

robustness is

V (x, ψ) = min
λ

max
y

ε

2

[
λ2 − ζ(y − y∗)2

]
+ exp(−δε)E

[
V +(x+, ψ+)|x, ψ

]
− ε(ψ + ελ) [κy + f(x) + c∗] , (17)

where the extremization is subject to

ψ + ελ− ψ+ = 0 (18)

g(x,w+ − w, ε)− x+ = 0.

Claim 3.5. Discrete-time problems 3.2 and 3.4 share a common value function V and

common solutions for y, λ as functions of the state vector (x, ψ).

Proof. The first-order condition for y implies the same formula given in Lemma 3.3. To

verify the private sector Euler equation, introduce a multiplier ` on constraint (18). Dif-

ferentiate with respect to λ and divide by ε:

λ+ `− ε [κy + f(x) + c∗] = 0. (19)

Differentiate with respect to ψ+ and substitute −F+ for V +
2 to get

−`− exp(−δε)E
[
F+(x+, ψ+)|x, ψ

]
= 0.

Solving this equation for ` and substituting into (19) allows us to express the private sector

Euler equation as constraint (12) in Problem 3.2.

Remark 3.6. In Problem 3.4, the Ramsey planner minimizes with respect to λ, taking into

account its contribution to the evolution of the multiplier ψ+. That we minimize with respect
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to λ is the outcome of our having substituted for ψ+ into (16). In contrast to Problem 3.2,

the constraint (13) ceases to be slack. Instead of being included as a separate constraint,

Problem 3.4 embeds the private-sector Euler equation (i.e., equation (12)), in the criterion

to be optimized.

Remark 3.7. At time 0, ψ is a choice variable for the Ramsey planner. The optimal choice

of ψ solves

min
ψ
V (x, ψ) + ψF (x, ψ).

First-order conditions are

V2(x, ψ) + F (x, ψ) + ψF2(x, ψ) = 0.

Since V2 = −F , a solution to the above equation is ψ = 0, which is consistent with our

initial condition ψ0 = 0.

3.4 Continuous-time recursive formulation

In a continuous-time formulation of the Ramsey problem without concerns about robust-

ness, the exogenous state vector evolves according to:

dxt = µx(xt)dt+ σx(xt)dwt

dψt = λtdt.

Using Ito calculus, we characterize the effects of the evolution of x, ψ on the value function

V by differentiating the value function. Subtract V from both sides of (17) and divide by

ε to obtain

Problem 3.8.

0 = min
λ

max
y

1

2
λ2 − ζ

2
(y − y∗)2 − κψy − ψf(x)− ψc∗

− δV + V1 · µx + V2λ

+
1

2
trace (σx

′V11σx) . (20)
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From the first-order conditions,

y = y∗ − κ

ζ
ψ

λ = −V2.

As in our discrete-time formulation, we used a Lagrangian to impose the private sector

Euler equation under the approximating model. In Appendix A, we verify that satisfac-

tion of the Hamilton-Jacobi-Bellman equation (20) implies that the Euler equation is also

satisfied.

We end the section with a caveat. We have assumed attainment and differentiability

without providing formal justification. We have not established the existence of smooth

solutions to our Bellman equations. While we could presumably appeal to more general

viscosity solutions to the Bellman equation, this would require a different approach to

verifying that the private sector’s Euler equation is satisfied than what we have done in

Appendix A. In the numerical example of section 10, there is a quadratic solution to the

Hamilton-Jacobi-Bellman (HJB) equation (20), so there the required smoothness prevails.

4 Representing probability distortions

To represent an alternative probability model, we use a positive martingale z with a math-

ematical expectation with respect to the approximating model equal to unity. By setting

z0 = 1, we indicate that we are conditioning on time 0 information. A martingale z is

a likelihood ratio process for a probability model perturbed vis a vis an approximating

model. It follows from the martingale property that the perturbed probability measure

obeys a Law of Iterated Expectations. Associated with a martingale z are the perturbed

mathematical expectations

Ê (ρt+τ |Ft) = E

(
zt+τ
zt

ρt+τ |Ft
)
,

where the random variable ρt+τ is in the date t + τ information set. By the martingale

property

E

(
zt+τ
zt
|Ft
)

= 1.
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4.1 Measuring probability distortions

To measure probability distortions, we use relative entropy, an expected log-likelihood ratio,

where the expectation is computed using a perturbed probability distribution. Following

Hansen and Sargent (2007), the term

∞∑
j=0

ε exp[−εδ(j + 1)]E
(
zε(j+1)

[
log zε(j+1) − log zεj

]
|F0

)
= [1− exp(−εδ)]

∞∑
j=0

ε exp[−εδ(j + 1)]E
[
zε(j+1) log zε(j+1)|F0

]
(21)

measures discounted relative entropy between a perturbed (by z) probability model and a

baseline approximating model. The component

E
[
zε(j+1) log zε(j+1)|F0

]
measures conditional relative entropy of perturbed probabilities of date ε(j + 1) events

conditioned on date zero information, while

E
(
zε(j+1)

[
log zε(j+1) − log zεj

]
|Fεj

)
measures conditional relative entropy of perturbed probabilities of date ε(j + 1) events

conditioned on date εj information.

4.2 Representing continuous-time martingales

We acquire simplifications by working with a continuous time model that emerges from

forming a sequence of discrete time models with time increment ε and driving ε to zero.

For continuous Brownian motion information structures, altering the probability model

changes the drift of the Brownian motion in a way conveniently described in terms of a

multiplicative representation of the martingale {zt}:

dzt = ztht · dwt.
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Under the perturbed model associated with the martingale z, the drift of dwt is htdt. We

use Ito’s lemma to characterize the evolution of log z and z log z:

d log zt = −1

2
|ht|2dt+ ht · dwt,

dzt log zt =
1

2
zt(ht)

2dt+ zt(1 + log zt)ht · dwt.

The drift or local mean of
(
zt+ε
zt

)
(log zt+ε− log zt) at t for small positive ε is 1

2
(ht)

2. Hansen

et al. (2006) used this local measure of relative entropy. Discounted relative entropy in

continuous time is

1

2
E

[∫ ∞
0

exp(−δt)zt(ht)2dt|F0

]
= δE

[∫ ∞
0

exp(−δt)zt log ztdt|F0

]
.

In our continuous-time formulation, the robust Ramsey planner chooses h.

5 The first type of ambiguity

In the first type of ambiguity, the planner thinks that the private sector knows a model

that is distorted relative to the planner’s approximating model.

5.1 Managing the planner’s ambiguity

To respond to its ambiguity about the private sector’s statistical model, the Ramsey planner

chooses z to minimize and y and λ to maximize a multiplier criterion8

− 1

2
E

(
ε

∞∑
j=0

exp(−εδj)zεj
[
(λεj)

2 + ζ(yεj − y∗)2
]
|F0

)

+ θE

(
∞∑
j=0

ε exp[−εδ(j + 1)]zε(j+1)

[
log zε(j+1) − log zεj

]
|F0

)
(22)

subject to the implementability constraint

λt = ε(κyt + ct + c∗) + exp(−δε)E
(
zt+ε
zt
λt+ε|Ft

)
(23)

8See Hansen and Sargent (2001).
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and the exogenously specified cost-push process. Here the parameter θ penalizes mar-

tingales z with large relative entropies. Setting θ arbitrarily large makes this problem

approximate a Ramsey problem without robustness. In (22), the Ramsey planner evalu-

ates its objective under the perturbed probability model associated with the martingale

z. Also, in the private sector’s Euler equation (23), the Ramsey planner evaluates the

expectation under the perturbed model. These choices capture the planner’s belief that

the private sector knows a correct probability specification linked to the planner’s approx-

imating model by a probability distortion z that is unknown to the Ramsey planner but

known by the private sector.

Evidently

E

[
zt+ε
zt

(ct+ε − ct)|Ft
]

= ενcct + E

[
zt+ε
zt

(wt+ε − wt)|Ft
]

where E
[
zt+ε
zt

(wt+ε − wt)|Ft
]

is typically not zero, so that the martingale {zt} alters the

conditional mean of the cost-push process.

Form the Lagrangian

− 1

2
E

[
ε
∞∑
j=0

exp(−εδj)zεj
[
(λεj)

2 + ζ(yεj − y∗)2
]
|F0

]

+θE

(
∞∑
j=0

ε exp[−εδ(j + 1)]zε(j+1)

[
log zε(j+1) − log zεj

]
|F0

)

+E

[
∞∑
j=0

exp(−εδj)zε(j+1)ψε(j+1)

[
λεj − ε (κyεj + cεj + c∗)− exp(−εδ)λ(j+1)ε

]
|F0

]
.

(24)

First-order conditions for maximizing (24) with respect to λt and yt, respectively, are

ztψt+ε − ztψt − εztλt = 0

−ζzt(yt − y∗)− κztψt+ε = 0,

where we have used the martingale property E(zt+ε|Ft) = zt. Because zt is a common

factor in both first-order conditions, we can divide both by zt and thereby eliminate zt.
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5.2 Recursive formulation with arbitrarily distorted beliefs

For our recursive formulation in discrete time, initially we posit that the cost-push process

c is a function f(x) of a Markov state vector x and that the martingale z itself has a

recursive representation, so that

x+ = g(x,w+ − w, ε)

z+ = zk(x,w+ − w, ε), (25)

where we impose the restriction E [k(x,w+ − w, ε)|x] = 1 that lets us interpret z+

z
=

k(x,w+ − w, ε) as a likelihood ratio that alters the one-step transition probability for x.

For instance, since w+ − w is a normally distributed random vector with mean zero and

covariance εI, suppose that

k(x,w+) = exp
[
q(x)′(w+ − w)− ε

2
q(x)′q(x)

]
.

Then the multiplicative martingale increment z+

z
= k(x,w+ − w, ε) transforms the distri-

bution of the increment (w+ − w) from a normal distribution with conditional mean zero

to a normal distribution with conditional mean q(x).

Using this recursive specification, we can adapt the analysis in section 3.3 to justify

solving

V (x, ψ) = min
λ

max
y

ε

2

[
λ2 − ζ(y − y∗)2

]
+ exp(−δε)E

[
k(x,w+ − w, ε)V +(x+, ψ+)|x, ψ

]
− ε(ψ + ελ) [κy + f(x) + c∗] + θE

[
k(x,w+ − w, ε) log k(x,w+ − w, ε)|x, ψ

]
,

where the extremization is again subject to (18). We minimize with respect to λ, taking

into account the contribution of λ to the evolution of ψ. This takes the specification of

the martingale as given. To manage ambiguity of the first type, we must contemplate the

consequences of alternative z’s.
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5.3 A Ramsey planner’s HJB equation for the first type of am-

biguity

In a continuous-time formulation of the Ramsey problem with concerns about the first type

of ambiguity, we confront the Ramsey planner with the state vector evolution

dxt = µx(xt)dt+ σx(xt)dwt

dzt = ztht · dwt
dψt = λtdt.

We characterize the impact of the state evolution on continuation values by applying the

rules of Ito calculus under the change of measure. We add a penalty term θ
2
|h|2 to the

continuous-time objective to limit the magnitude of the drift distortions for the Brownian

motion and then by imitating the derivation of HJB equation (20) deduce

0 = min
λ,h

max
y

1

2
λ2 − ζ

2
(y − y∗)2 +

θ

2
|h|2 − κψy − ψf(x)− ψc∗

− δV + V1 · (µx + σxh) + V2λ

+
1

2
trace (σx

′V11σx) . (26)

Notice how (26) minimizes over h.

The separable form of the objective implies that the order of minimization and maxi-

mization can be exchanged. First-order conditions imply

y = y∗ − κ

ζ
ψ

h = −1

θ
(σx)

′V1 (27)

λ = −V2.

As in the Ramsey problem without robustness (see Appendix A), to verify that the private

sector Euler condition is satisfied, differentiate the HJB equation (26) for V with respect

to ψ and apply the envelope condition.
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5.4 Interpretation of worst-case dynamics

The worst-case ht = −1
θ
(σx)

′V1(xt, ψt) from (27) feeds back on the endogenous state variable

ψt. As a consequence, the implied worst-case model makes this endogenous state influence

the dynamics of the exogenous state vector xt. The peculiar feature that {ψt} Granger-

causes {xt} can make the worst-case model difficult to interpret. What does it mean

for the Ramsey planner to believe that its decisions influence the motion of exogenous

state variables? To approach this question, Hansen et al. (2006) develop an alternative

representation. As shown by Fleming and Souganidis (1989), in a two-player zero-sum

HJB equation, if a Bellman-Isaacs condition makes it legitimate to exchange orders of

maximization and minimization for the recursive problem, then orders of maximization and

minimization can also be exchanged for a corresponding zero-sum game that constitutes a

date zero, formulation of a robust Ramsey problem in the space of sequences. That allows

us to construct an alternative representation of the worst-case model without dependence

of the dynamics of the exogenous state vector xt on ψt. We accomplish this by augmenting

the exogenous state vector as described in detail by Hansen et al. (2006) and Hansen and

Sargent (2008, ch. 7) in what amounts to an application of the “Big K, little k” trick

common in macroeconomics. In particular, we construct a worst-case exogenous state-

vector process

d

[
xt

Ψt

]
=

[
µx(xt)

F (ct,Ψt)

]
dt+

[
σx(xt)

0

] [
−1

θ
σx(xt)

′V1(xt,Ψt)dt+ dw̃t

]
(28)

for a multivariate standard Brownian increment dw̃t. We then construct a Ramsey problem

without robustness but with this expanded state vector. This yields an HJB equation for

a value function Ṽ (x,Ψ, ψ) that depends on both big Ψ and little ψ. After solving it, we

can construct F̃ via

F̃ = −Ṽ3.

Then

F (c, ψ) = F̃ (c, ψ, ψ).

Provided that we set ψ0 = Ψ0 = 0, it will follow that ψt = Ψt and that the resulting

{λt} and {yt} processes from our robust Ramsey plan with the first type of ambiguity will

coincide with the Ramsey processes under specification (28) for the cost-push process.
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5.5 Relation to previous literature

The form of HJB equation (26) occurs in the literature on continuous time robust control.

For instance, see James (1992) and Hansen et al. (2006). It is also a continuous-time version

of a discrete-time Ramsey problem studied by researchers including Walsh (2004), Giordani

and Soderlind (2004), Leitemo and Soderstrom (2008), Dennis (2008), and Olalla and

Gomez (2011). We have adapted and extended this literature by suggesting an alternative

recursive formulation together with appropriate HJB equations. In the next subsection, we

correct misinterpretations in some of the earlier literature.

5.5.1 Not sharing worst-case beliefs

Walsh (2004) and Giordani and Soderlind (2004) argue that private agents share the gov-

ernment’s concern about robustness so that when the government chooses beliefs in a robust

fashion, agents act on these same beliefs. We think that interpretation is incorrect and pre-

fer the one we have described as the first type of ambiguity. In selecting a worst-case model,

the private sector would look at its own objective functions and constraints, not the gov-

ernment’s, so robust private agents’ worst-case models would differ from the government’s.

Even if the government and the private agents were to share the same value of θ, they

would compute different worst-case models.9 Dennis (2008) argues that “the Stackelberg

leader believes the followers will use the approximating model for forming expectations and

formulates policy accordingly.” Our Ramsey problem for the second type of ambiguity has

this feature, but not our Ramsey problem for the first type, as was mistakenly claimed by

Dennis.

As emphasized above, we favor an interpretation of the robust Ramsey plans of Walsh

and others as one in which the Ramsey planner believes that private agents know the correct

probability model. Because the associated inference problem is so immense, the Ramsey

planner cannot infer private agents’ model by observing their decisions (see section 5.5.2).

The Ramsey planner’s worst-case z is not intended to “solve” this impossible inference

problem. It is just a device to construct a robust Ramsey policy. It is a cautious inference

9Giordani and Soderlind (2004), in particular, argue that “we follow Hansen and Sargent in taking the
middle ground, and assume that the private sector and government share the same loss function, reference
model and degree of robustness.” But even if the government and private sector share the same loss
function, the same reference model, and the same robustness parameter, they still might very well be led
to different worst-case models because they face different constraints. We do not intend to criticize Walsh
(2004) and Giordani and Soderlind (2004) unfairly. To the contrary, it is a strength that on this issue their
work is more transparent and criticizable than many other papers.
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about private agents’ beliefs that helps the Ramsey planner design that robust policy. Since

private firms know the correct model, they would actually make decisions by using a model

that generally differs from the one associated with the Ramsey planner’s minimizing {zt}.
Therefore, the Ramsey planner’s ex post subjective decision rule for the firm as a function

of the aggregate states, obtained by solving its Euler equation with the minimizing {z},
will not usually produce the observed value of pt+ε− pt. This discrepancy will not surprise

the Ramsey planner, who knows that discrepancy is insufficient to reveal the process {zt}
actually believed by the private sector.

5.5.2 An intractable model inference problem

The martingale {zt} defining the private sector’s model has insufficient structure to allow

the Ramsey planner to infer the private sector’s model from observed outcomes {pt+ε −
pt, xt, yt}. The Ramsey planner knows that the probability perturbation {zt} gives the pri-

vate sector a model that has constrained discounted entropy relative to the approximating

model. This leaves the immense set of unknown models so unstructured that it is impos-

sible to infer the private sector’s model from histories of outcomes for yt, xt, and λt. The

Ramsey planner does not attempt to reverse engineer {zt} from observed outcomes because

it cannot.

To indicate the magnitude of the inference problem, consider a discrete time speci-

fication and suppose that after observing inflation, the Ramsey planner solves an Euler

equation forward to infer a discounted expected linear combination of output and a cost-

push shock. If the Ramsey planner were to compare this to the outcome of an analogous

calculation based on the approximating model, it would reveal a distorted expectation. But

there are many consistent ways to distort dynamics that rationalize this distorted forecast.

One would be to distort only the next period transition density and leave transitions for

subsequent time periods undistorted. Many other possibilities are also consistent with the

same observed inflation. The computed worst-case model is one among many perturbed

models consistent with observed data.

6 Heterogeneous beliefs without robustness

In section 7, we shall study a robust Ramsey planner who faces our second type of ambiguity.

The section 7 planner distrusts an approximating model but believes that private agents

trust it. Because ex post the Ramsey planner and the private sector have disparate beliefs,

23



many of the same technical issues for coping with the second type of ambiguity arise

in a class of Ramsey problems with exogenous heterogeneous beliefs. So we begin by

studying situations in which both the Ramsey planner and the private agents completely

trust different models.

To make a Ramsey problem with heterogeneous beliefs manageable, it helps to use

the perturbed probability model associated with {zt} when computing the mathematical

expectations that appear in the system of equations whose solution determines an equilib-

rium. To prepare a recursive version of the Ramsey problem, it also helps to transform

the ψt variable that measures the Ramsey planner’s commitments in a way that reduces

the number of state variables. We extend the analysis in section 3.3 to characterize the

precise link between our proposed state variable and the multiplier on the private sector

Euler equation.

With exogenous belief heterogeneity, it is analytically convenient to formulate the La-

grangian for a discrete time version of the Ramsey planner’s problem as

− 1

2
E

[
ε
∞∑
j=0

exp(−εδj)zεj
[
(λεj)

2 + ζ(yεj − y∗)2
]
|F0

]

+E

[
∞∑
j=0

exp(−εδj)zεjψε(j+1)

[
λεj − ε (κyεj + cεj + c∗)− exp(−εδ)λ(j+1)ε

]
|F0

]
.(29)

6.1 Explanation for treatment of ψt+ε

Compare (29) with the corresponding Lagrangian (24) for the robust Ramsey problem for

the first type of ambiguity from section 5. There we used zt+εψt+ε as the Lagrange multiplier

on the private firm’s Euler equation at the date t information set. What motivated that

choice was that in the section 5 model with the first type of ambiguity, private agents use

the z-perturbed model, so their expectations can be represented as

E

(
zt+ε
zt
λt+ε|Ft

)
,

where zt is in the date t information set. Evidently

zt+ε
zt
ztψt+ε = zt+εψt+ε,
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which in section 5 allowed us to adjust for the probability perturbation by multiplying ψt+ε

by zt+ε and then appropriately withholding zt+ε as a factor multiplying λt+ε in the Euler

equation that ψt+εzt+ε multiplies. In contrast to the situation in section 5, here the private

sector embraces the original benchmark model, so the private firm’s Euler equation now

involves the conditional expectation E (λt+ε|Ft) taken with respect to the approximating

model. The form of this conditional expectation leads us to attach Lagrange multiplier

ztψt+ε to the private firm’s Euler equation at the information set at date t, a choice that

implies that the ratio zt+ε
zt

does not multiply λt+ε in the Lagrangian (29).

6.2 Analysis

First-order conditions associated with λt for t ≥ 0 are

ztψt+ε − εztλt − zt−εψt = 0, (30)

and first-order conditions for yt for t ≥ 0 are

−εζzt(yt − y∗)− εκψt+εzt = 0.

To facilitate a recursive formulation, define

ξt+ε =
zt
zt+ε

ψt+ε, (31)

which by virtue of (30) implies

ξt+ε = ε
zt
zt+ε

λt +
zt
zt+ε

ξt.

While the process {ξt} is not locally predictable, the exposure of ξt+ε to shocks comes

entirely through zt+ε. The conditional mean of ξt+ε under the perturbed measure associated

with {zt} satisfies

E

(
zt+ε
zt
ξt+ε|Ft

)
= ελt + ξt.

First-order conditions for yt imply

(yt − y∗) = −
(
κ

ζ

)
zt+ε
zt
ξt+ε.
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Evidently,

E

[(
zt+ε
zt

)
ξt+ελt+ε|Ft

]
= ψt+εE (λt+ε|Ft) ,

a prediction formula that suggests a convenient way to pose the Ramsey planner’s opti-

mization under the z model.

6.3 Recursive formulation with exogenous heterogeneous beliefs

We continue to view the cost-push shock c is a function f(x) of a Markov state vector x

and use evolution equation (25) for x+ and z+. As a prolegomenon to studying robustness,

we extend the analysis of section 3.3 to describe a recursive way to accommodate exoge-

nous heterogeneity in beliefs described by the likelihood ratio k(x,w+ − w, ε). We again

work backwards from a continuation-policy function F+(x+, ξ+) for the private-sector co-

state variable λ+ and a continuation-value function V +(x+, ξ+). To start our backwards

recursions, we assume that

V +
2 (x+, ξ+) = −F+(x+, ξ+). (32)

Problem 6.1. The Ramsey planner’s Bellman equation is

V (x, ξ) = max
y,λ
−ξλ− ε

2

[
λ2 + ζ(y − y∗)2

]
+ exp(−δε)E

[(
z+

z

)[
V +(x+, ξ+) + ξ+F+(x+, ξ+)

]
|x, ξ

]
,

where the maximization is subject to

λ− exp(−δε)E
[
F+(x+, ξ+)|x, ξ

]
− ε
[
κy + f(x) + c+

]
= 0 (33)( z

z+

)
(ελ+ ξ)− ξ+ = 0 (34)

g(x,w+ − w, ε)− x+ = 0

zk(x,w+ − w, ε)− z+ = 0.

We now construct an alternative Bellman equation for the Ramsey planner. It absorbs

the forward-looking private sector Euler equation into the planner’s objective function. We

still carry along a state transition equation for ξ+.

Introduce multipliers `1 and
(
z+

z

)
`2 on the constraints (33) and (34). Maximizing the
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resulting Lagrangian with respect to λ and y gives

−ελ+ `1 + ε`2 − ξ = 0,

−ζ(y − y∗)− κ`1 = 0.

Thus, (
z+

z

)
ξ+ − `1 = ε`2.

Therefore, from what we have imposed so far, it seems that ψ+ can differ from `1, so we

cannot yet claim that ψ+ is “the multiplier on the multiplier”. Fortunately, there is more

structure to exploit.

Lemma 6.2. The multiplier `1 on constraint (33) equals
(
z+

z

)
ξ+ and the multiplier `2 on

constraint (34) equals zero. Furthermore,

y = y∗ −
(
κ

ζ

)
(ξ + ελ) ,

where λ = F (x, ξ) solves the private firm’s Euler equation (33). Finally, V2(x, ξ) =

−F (x, ξ).

See Appendix A for a proof. Lemma 6.2 extends Lemma 3.3 to an environment with

heterogeneous beliefs.

Finally, we deduce an alternative Bellman equation that accommodates heterogeneous

beliefs. From Lemma 6.2, the Ramsey planner’s value function V (x, ξ) satisfies

V (x, ξ) = max
y,λ
−ξλ− ε

2

[
λ2 + ζ(y − y∗)2

]
+

+ exp(−δε)E
[(

z+

z

)[
V +(x+, ξ+) + ξ+F+(x+, ξ+)

]
|x, ξ

]
,

where the maximization is subject to constraints (33) and (34) and where λ = F (x, ξ).

Express the contribution of the private sector Euler equation to a Lagrangian as(
z+

z

)
ξ+
[
λ− exp(−δε)E

[
F+(x+, ξ+)|x, ξ

]
− ε
(
κy + c+ c+

)]
= − exp(−δε)E

[(
z+

z

)[
ξ+F+(x+, ξ+)

]
|x, ξ

]
+

(
z+

z

)
ξ+ [λ− ε (κy + c+ c∗)] ,
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where we have used the fact that
(
z+

z

)
ξ+ is locally predictable. Adding this term to the

Ramsey planner’s objective results in the Lagrangian

− ξλ− ε

2

[
λ2 + ζ(y − y∗)2

]
+ exp(−δε)E

[(
z+

z

)[
V +(x+, ξ+)

]
|x, ξ

]
+

(
z+

z

)
ξ+
[
λ− ε

(
κy + c+ c+

)]
.

Next we substitute from (
z+

z

)
ξ+ = ξ + ελ

to arrive at

Problem 6.3. An alternative Bellman equation for a discrete-time Ramsey planner with

belief heterogeneity is

V (x, ψ) = min
λ

max
y

ε

2

[
λ2 − ζ(y − y∗)2

]
+ exp(−δε)E

[
k(x,w+ − w, ε)

[
V +(x+, ξ+)

]
|x, ξ

]
− ε(ξ + ελ) [κy + f(x) + c∗] ,

(35)

where the extremization is subject to( z
z+

)
(ελ+ ξ)− ξ+ = 0

g(x,w+ − w, ε)− x+ = 0,

where we have used z+ = zk(x,w+ − w, ε) to eliminate the ratio z+

z
.

Claim 6.4. Discrete-time problems 6.1 and 6.3 share a common value function V and

common solutions for y, λ as functions of the state vector (x, ξ).

In problem 6.3, we minimize with respect to λ, taking into account its contribution to the

evolution of the transformed multiplier ξ+.

In the next subsection, we study the continuous-time counterpart to Problem 6.3. Tak-

ing a continuous-time limit adds structure and tractability to the probability distortions in

ways that we can exploit in formulating a robust Ramsey problem.
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6.4 Heterogeneous beliefs in continuous time

Our first step in producing a continuous-time formulation is to characterize the state evo-

lution. For a Brownian motion information structure, a positive martingale {zt} evolves

as

dzt = ztht · dwt

for some process {ht}. In this section where we assume exogenous belief heterogeneity,

we suppose that h is a given function of the state, but in section 7 we will study how a

robust planner chooses ht. When used to alter probabilities, the martingale zt changes the

distribution of the Brownian motion w by appending a drift htdt to a Brownian increment.

Recall from (31) that ξt+ε = zt
zt+ε

ψt+ε. The “exposure” of dzt to the Brownian increment dwt

determines the exposure of dξt to the Brownian increment and induces a drift correction

implied by Ito’s Lemma. By differentiating the function 1
z

of the real variable z with respect

to z and adjusting for the scaling by zt = z, it follows that the exposure is −ξthtdwt.
By computing the second derivative of 1

z
and applying Ito’s Lemma, we obtain the drift

correction ξt|ht|2. Thus,

dξt = λtdt+ ξt|ht|2dt− ξtht′dwt.

Also suppose that

dxt = µx(xt)dt+ σx(xt)dwt.

While we can avoid using zt as an additional state variable, the {ξt} process has a local

exposure to the Brownian motion described by −ht · dwt. It also has a drift that depends

on ht under the approximating model.

Write the law of motion in terms of dwt as

d

[
xt

ξt

]
=

[
µx(xt)

λt + ξt|ht|2

]
dt+

[
σx(xt)

−ξtht′

]
dwt,

where {wt} is standard Brownian motion under the approximating model. Under the

distorted model,

d

[
xt

ξt

]
=

[
µ(xt) + σx(xt)ht

λt

]
dt+

[
σx(xt)

−ξht′

]
dŵt,

where {ŵt} is a Brownian motion.
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In continuous time, we characterize the impact of the state evolution using Ito calculus

to differentiate the value function. We subtract V from both sides of (35) and divide by ε

to obtain

0 = min
λ

max
y

1

2
λ2 − ζ

2
(y − y∗)2 − κξy − ξc− ξc∗

− δV + V1 · µx + V2λ

+ (V1)
′σxh− ξV21σxh+

1

2
ξ2V22|h|2

+
1

2
trace (σx

′V11σx) , (36)

where we use the distorted evolution equation. From the first-order conditions

y = y∗ − κ

ζ
ξ

λ = −V2.

As hoped, the private sector Euler equation under the approximating model imposed

by the Lagrangian is satisfied as we verify in Appendix A.

Remark 6.5. To accommodate belief heterogeneity, we have transformed the predetermined

commitment multiplier. Via the martingale used to capture belief heterogeneity, the trans-

formed version of this state variable acquires a nondegenerate exposure to the Brownian

increment. This structure is reminiscent of the impact of belief heterogeneity in continuous-

time recursive utility specifications. Dumas et al. (2000) show that conveniently chosen

Pareto weights are locally predictable when beliefs are homogeneous, but with heterogeneous

beliefs Borovička (2012) shows that the Pareto weights inherit an exposure to a Brownian

increment from the martingale that alters beliefs of some economic agents.

7 The second type of ambiguity

By exploiting the structure of the exogenous heterogeneous beliefs Ramsey problem of

section 6, we now analyze a concern about robustness for a Ramsey planner who faces our

second type of ambiguity. In continuous time, we add a penalty term θ |h|
2

2
to the planner’s
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objective and minimize with respect to h:

0 = min
λ,h

max
y

1

2
λ2 − ζ

2
(y − y∗)2 +

θ

2
|h|2 − κξy − ξc− ξc∗

− δV + V1 · µx + V2λ

+ (V1)
′σxh− ξV12σxh−

1

2
ξ2V22|h|2

+
1

2
trace (σx

′V11σx) .

Recursive formulas for y and λ remain

y = y∗ − κ

ζ
ξ

λ = −V2,

but now we add minimization over h to the section 6 statement of the Ramsey problem.

First-order conditions for h are

θh+ (σx)
′V1 − ξ(σx)′V12 + ξ2V22h = 0,

so the minimizing h is

h = −
(

1

θ + ξ2V22

)
[(V1)

′σx − ξV12σx]′ . (37)

As was the case for the Ramsey plan under the first type of ambiguity, separability of the

recursive problem implies that a Bellman-Isaacs condition is satisfied. Again in the spirit of

Hansen and Sargent (2008, ch. 7), we can use a date zero sequence formulation of the worst-

case model to avoid having the exogenous state vector feed back onto the endogenous state

variable ξt. For a Ramsey plan under the second type of ambiguity, we use this construction

to describe the beliefs of a Ramsey planner while the private sector continues to embrace

the approximating model. This makes heterogeneous beliefs endogenous.

8 The third type of ambiguity

We now turn to our third type of ambiguity. Here, following Woodford (2010), a Ramsey

planner trusts an approximating model but does not know the beliefs of private agents.
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We use {zt} to represent the private sector’s unknown beliefs.

8.1 Discrete time

Here the Lagrangian associated with designing a robust Ramsey plan is

− 1

2
E

[
ε
∞∑
j=0

exp(−εδj)
[
(λεj)

2 + ζ(yεj − y∗)2
]
|F0

]

+θ

[
∞∑
j=0

ε exp[−εδ(j + 1)]

(
zε(j+1)

zεj

)[
log zε(j+1) − log zεj

]
|F0

]

+E

[
∞∑
j=0

exp(−εδj)ψε(j+1)

[
λεj − ε (κyεj + cεj + c∗)− exp(−εδ)

(
zε(j+1)

zεj

)
λ(j+1)ε

]
|F0

]
.

First-order conditions for λt are

ψt+ε − ελt −
(
zt
zt−ε

)
ψt = 0.

Let

ξt+ε =

(
zt+ε
zt

)
ψt+ε

so that

ξt+ε = ε

(
zt+ε
zt

)
λt +

(
zt+ε
zt

)
ξt. (38)

We can imitate the argument underlying Claim 6.4 to construct a Bellman equation

V (x, ξ) = min
λ

max
y

ε

2

[
λ2 − ζ(y − y∗)2

]
+ exp(−δε)E

[
V +(x+, ξ+)|x, ξ

]
− ε(ξ + ελ) (κy + c+ c∗) , (39)

where the extremization is subject to

x+ = g(x,w+ − w, ε)

ξ+ = k(x,w+ − w, ε)ξ + εk(x,w+ − w, ε)λ,

where we have used z+ = zk(x,w+ − w, ε) to rewrite the evolution equation for ξ+.
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8.2 Woodford’s way of restraining perturbations of beliefs

His assumption that the Ramsey planner embraces the approximating model prompted

Woodford (2010) to measure belief distortions in his own special way. Thus, while we have

measured model discrepancy by discounted relative entropy (21), Woodford (2010) instead

uses

∞∑
j=0

ε exp[−εδ(j + 1)]E

([
zε(j+1)

zεj

] [
log zε(j+1) − log zεj

]
|F0

)
. (40)

Whereas at date zero we weight (log zt+ε − log zt) by zt+ε, Woodford weights it by zt+ε
zt

.

Remark 8.1. In discrete time, Woodford’s measure (40) is not relative entropy, but a

continuous-time counterpart 1
2
E
[∫∞

0
exp(−δt)(ht)2dt|F0

]
is relative entropy with a reversal

of models. To see this, consider the martingale evolution

dzt = ztht · dwt (41)

for some process {ht}. By applying Ito’s Lemma,

lim
ε↓0

E

[
zt+ε
zt

(log zt+ε − log zt) |Ft
]

=
1

2
|ht|2.

Thus, the continuous-time counterpart to Woodford’s discrepancy measure is

1

2
E

[∫ ∞
0

exp(−δt)(ht)2dt|F0

]
= −δE

[∫ ∞
0

exp(−δt) log ztdt|F0

]
,

where the right side is a measure of relative entropy that switches roles of the {zt}-perturbed

model and the approximating model.

8.3 Third type of ambiguity in continuous time

We use equation (41) for dzt to depict the small ε limit of (38) as

dξt = λtdt+ ξtht · dwt.

For a Ramsey planner confronting our third type of ambiguity, we compute a robust Ramsey

plan under the approximating model. Stack the evolution equation for ξt together with the
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evolution equation for xt:

d

[
xt

ξt

]
=

[
µ(xt)

λt

]
dt+

[
σx(xt)

ξtht
′

]
dwt.

The continuous-time counterpart to the Hamilton-Jacobi-Bellman equation (39) adjusted

for a robust choice of h is

0 = min
λ,h

max
y

1

2

[
λ2 − ζ(y − y∗)2

]
− κξy − ξc− ξc∗

+ V1µx + V2λ− δV (x)

+
θ

2
|h|2 +

1

2
trace [σx

′V11σx] + ξh′σx
′V12 +

1

2
(ξ)2|h|2V22.

First-order conditions for extremization are

y = y∗ − κ

ζ
ξ

λ = −V2

h = − 1

θ + ξ2V22
ξσx

′V12. (42)

We can verify the private sector Euler equation as we did earlier, except that now we have

to make sure that the private sector expectations are computed with respect to a distorted

model that assumes that dwt has drift htdt, where ht is described by equation (42).

As with the robust Ramsey planner under the first and second types of ambiguity, we

can verify the corresponding Bellman-Isaacs condition. Under the third type of ambiguity,

the worst-case model is attributed to the private sector while the Ramsey planner embraces

the approximating model.

9 Comparisons

In this section, we use new types of local approximations to compare models. We modify

earlier local approximations in light of the special structures of our three types of robust

Ramsey problems, especially the second and third types, which appear to be unprecedented

in the robust control literature. It is convenient to refer to robust Ramsey plans under our

three types of ambiguity as Types I, II, and III, respectively.
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James (1992) constructs expansions that simultaneously explore two dimensions un-

leashed by increased conditional volatility, namely, increased noise and increased concern

about robustness.10 In particular, within the context of our model, he would set σx =
√
τςx,

θ = 1
ϑτ

, and then compute first derivatives with respect to τ and ϑ. James’s approach is

enlightening for Type I, but not for Type II or Type III. To provide insights about Type

II and Type III, we compute two first-order expansions, one that holds θ <∞ fixed when

we differentiate with respect to τ ; and another that holds fixed τ when we differentiate

with respect γ = 1
θ
. For both computations, our New Keynesian economic example is

simple enough to allow us to attain quasi-analytical solutions for the parameter configura-

tions around which we approximate. We use these first-order approximations to facilitate

comparisons.11

Suppose that

dxt = A11xtdt+ σxdwt

ct = H · xt,

where σx is a vector of constants.

Recall the adjustments (27), (37), and (42) in the drift of the Brownian motion that

emerge from our three types of robustness:

Type I: h∗ = −1

θ
[σx
′V1(x, ξ)]

Type II: h∗ = − 1

θ + ξ2V22(x, ξ)
[σx
′V1(x, ξ)− ξσx′V12(x, ξ)]

Type III: h∗ = − 1

θ + ξ2V22(x, ξ)
[ξσx

′V12(x, ξ)] ,

where the value functions V (x, ξ) and the scaling of the commitment multiplier ξt differs

across our three types of ambiguity. In particular, for Type I we used the commitment

multiplier ψt and did not rescale it as we did for the Type II and III models.. To facilitate

comparisons, for the Type I Ramsey problem we take ξt = ψt. For Type I, the drift

adjustment includes only a contribution from the first derivative of the value function as

is typical for problems studied in the robust control literature. For our Type II and III

10See Anderson et al. (2012) and Borovička and Hansen (2011) for related approaches.
11James (1992) provides formal justification for his bi-variate expansion. Our presentation is informal in

some respects. Modifications of our calculations will be required before they can be applied to a broader
class of models.
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problems, the second derivative also makes contributions. The associated adjustments to

the planner’s value function in our three types of Ramsey problems are:

Type I: − 1

2θ
|σx′V1(x, ξ)|2 +

1

2
trace [σx

′V11(x, ξ)σx]

Type II: − 1

2[θ + ξ2V22(x, ξ)]
|σx′V1(x, ξ)− ξσx′V12(x, ξ)|2 +

1

2
trace [σx

′V11(x, ξ)σx]

Type III: − 1

2[θ + ξ2V22(x, ξ)]
|ξσx′V12(x, ξ)|2 +

1

2
trace [σx

′V11(x, ξ)σx] , (43)

where we have included terms involving σx. For each Ramsey plan, let Φ(V, σx, θ) denote

the adjustment described in (43).

These adjustment formulas are suggestive but also potentially misleading as a basis for

comparison because the Ramsey planner’s value functions themselves differ across our three

types of ambiguity. In the following section, we propose more even-footed comparisons by

taking small noise and small robustness approximations around otherwise linear-quadratic

economies.

9.1 Common baseline value function

The baseline value function is the same as that given in Appendix B except the constant

term differs because we now set σx = 0 when computing W . The minimization problem

0 = min
λ

1

2
λ2 +

κ2

2ζ
(ξ)2 − κξy∗ − ξc− ξc∗

− δW (x, ξ) + [W1(x, ξ)] · A11x+W2(x, ξ)λ

yields a quadratic value function W (x, ξ) that we propose to use as a baseline with respect

to which we compute adjustments for our three types of robust Ramsey problems. The

Riccati equation is the same one given in Appendix B for the stochastic problem without

a concern for robustness except that initially we ignore a constant term contributed by the

shock exposure σx, allowing us to solve a deterministic problem.

9.2 A small-noise approximation

To facilitate comparisons, we study effects of variations in τ for small τ under the “small

noise” parameterization σx =
√
τςx, where ςx is a vector with the same number of columns
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as x.

We deduce the first-order value function expansion

V (x, ξ) ≈ W (x, ξ) + τN(x, ξ).

We approximate the optimal λ by

λ ≈ −W2(x, ξ)− τN2(x, ξ),

where N2 differs across our three types of robust Ramsey problems.

We study a parameterized HJB equation of the form

0 =− 1

2
V2(x, ξ)

2 +
κ2

2ζ
(ξ)2 − κξy∗ − ξc− ξc∗

− δV (x, ξ) + [V1(x, ξ)] · A11x+ Φ (V, τςx, θ) (x, ξ). (44)

We can ignore the impact of minimization with respect to λ and h because of the usual “En-

velope Theorem” that exploits first-order conditions to eliminate terms involving derivatives

of λ and h.

We start by computing derivatives with respect to τ of the terms included in (43). Thus,

we differentiate Φ(V, τςx, θ) with respect to τ for all three plans. These derivatives are

Type I: S(x, ξ) = − 1

2θ
|ςx′W1(x, ξ)|2 +

1

2
trace [ςx

′W11ςx]

Type II: S(x, ξ) = − 1

2[θ + ξ2W22]
|ςx′W1(x, ξ)− ξς ′W12|2 +

1

2
trace [ςx

′W11ς]

Type III: S(x, ξ) = − 1

2[θ + ξ2W22]
|ξςx′W12|2 +

1

2
trace [ςx

′W11ςx] .

The function S is then used to compute N . To obtain the equation of interest, differentiate

the (parameterized by τ) HJB equation (44) with respect to τ to obtain:

0 = −W2(x, ξ) ·N2(x, ξ)− δN(x, ξ) +N1(x, ξ)
′A11x+ S(x, ξ), (45)

where we have used the first-order conditions for λ to inform us that

λ
∂λ

∂τ
+ V2

∂λ

∂τ
= 0.
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Then N solves the Lyapunov equation (45). Notice that S is a quadratic function of the

states for Type I, but not for Types II and III. For Type II and III, this equation must be

solved numerically, but it has a quasi-analytic, quadratic solution for Type I.

9.3 A small robustness approximation

So far we have kept θ fixed. Instead, we now let θ = 1
γ

and let γ become small and hence

θ large. The relevant parameterized HJB equation becomes

0 =− 1

2
V2(x, ξ)

2 +
κ2

2ζ
(ξ)2 − κξy∗ − ξc− ξc∗

− δV (x, ξ) + [V1(x, ξ)] · A11x+ Φ

(
V, σx,

1

γ

)
(x, ξ), (46)

where Φ(V, σx, θ) is given by (43). Write the three respective adjustment terms Φ(V, τςx,
1
γ
)

defined in (43) as

Type I: − γ

2
|σx′V1(x, ξ)|2 +

1

2
trace [σx

′V11(x, ξ)σx]

Type II: − γ

2[1 + γξ2V22(x, ξ)]
|σx′V1(x, ξ)− ξσx′V12(x, ξ)|2 +

1

2
trace [σx

′V11(x, ξ)σx]

Type III: − γ

2[1 + γξ2V22(x, ξ)]
|ξσx′V12(x, ξ)|2 +

1

2
trace [σx

′V11(x, ξ)σx] . (47)

Since σx is no longer made small in this calculation, we compute the limiting value function

as γ becomes small to be

W (x, ξ) +
1

2δ
trace [σx

′W11σx] ,

where the additional term is constant and identical for all three robust Ramsey plans. This

outcome reflects a standard certainty equivalent property for linear-quadratic optimization

problems.

We now construct a first-order robustness adjustment

V ≈ W +
1

2δ
trace [σx

′W11σx] + γG

λ ≈ −W2 − γG2.

As an intermediate step on the way to constructing G, first differentiate (47) with respect
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to γ:

Type I: H(x, ξ) = −1

2
|σx′W1(x, ξ)|2

Type II: H(x, ξ) = −1

2
|σx′W1(x, ξ)− ξσx′W12|2

Type III: H(x, ξ) = −1

2
|ξσx′W12|2.

To obtain the equation of interest, differentiate the parameterized HJB equation (46) with

respect to γ to obtain

0 = −W2(x, ξ) ·G2(x, ξ)− δG(x, ξ) +G1(x, ξ)
′A11x+H(x, ξ). (48)

Given H, we compute the function G by solving Lyapunov equation (48). See Appendix D

for more detail.

9.4 Relation to previous work

To relate our expansions to an approach taken in Hansen and Sargent (2008, ch. 16), we

revisit Type II. Using the same section 9.3 parameterization that we used to explore small

concerns about robustness, we express the HJB equation as

0 = min
λ,h

max
y

1

2
λ2 − ζ

2
(y − y∗)2 +

1

2γ
|h|2 − κξy − ξc− ξc∗

− δV + V1 · µx + V2λ

+ (V1)
′σxh− ξV21σxh−

1

2
ξ2V22|h|2

+
1

2
trace (σx

′V11σx) . (49)

In Hansen and Sargent (2008, ch. 16), we arbitrarily modified this HJB equation to become

0 = min
λ,h

max
y

1

2
λ2 − ζ

2
(y − y∗)2 +

1

2γ
|h|2 − κξy − ξc− ξc∗

− δU + U1 · µx + U2λ

+ (U1)
′σxh− ξU21σxh

+
τ

2
trace (σx

′U11σx) , (50)
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which omits the term −1
2
ξ2V22|h|2 that is present in (49). A quadratic value function solves

the modified HJB equation (50) provided that γ is not too large. Furthermore, it shares

the same first-order robustness expansions that we derived for Type II. The worst-case h

distortion associated with the modified HJB equation (50) is

h = −γσx′ [U1(x, ξ)− ξU12] .

Hansen and Sargent (2008) solve a version of the modified HJB equation (50) iteratively.

They guess σx
′U12, solve the resulting Riccati equation, compute a new guess for σx

′U12,

and then iterate to a fixed point. Thus, the Hansen and Sargent (2008, ch. 16) approach

yields a correct first-order robustness expansion for a value function that itself is actually

incorrect because of the missing term that appears in the HJB equation (49) but not in

(50).12

Consider the first-order robustness expansion for Type II. SinceW is quadratic, W1(x, ξ)−
ξW12 depends only on x and not on ξ. Also, H and G both depend only on x and not on ξ,

so G2 is zero and there is no first-order adjustment for λ. The approximating continuation

value function is altered, but only those terms that involve x alone. Given the private

sector’s trust in the approximating model, even though the Ramsey planner thinks that

the approximating model might misspecify the evolution of {xt}, there is no impact on

the outcome for λ. That same statement applies to U(x, ξ) − ξU12, which illustrates an

observation made by Dennis (2008) in the context of the approach suggested in Hansen

and Sargent (2008, ch. 16). When we use that original HJB equation to compute the value

function, this insensitivity of λ to γ may not hold.

10 Numerical example

Using parameter values given in Appendix C and a robustness parameter θ = .014, we

illustrate the impact of a concern for robustness. Most of these parameter values are

borrowed from Woodford (2010). Woodford takes the cost-push shock to be independent

and identically distributed. In our continuous-time specification, we assume an AR process

with the same unconditional standard deviation .02 assumed by Woodford. Since θ acts

as a penalty parameter, we find it revealing to think about the consequences of θ for the

12Hansen and Sargent (2008) take the shock exposure of dξt to be zero, as is the case for dψt. The
correct shock exposure for dξt scales with γ and is zero only in the limiting case. Hansen and Sargent
(2008) interpret σx

′U12 as the shock exposure for λt, which is only an approximation.

40



worst-case model when setting θ. Under the worst-case model, the average drift distortion

for the standardized Brownian increment is about .34. We defer to later work a serious

quantitative investigation including the calibration of θ.13 What follows is for illustrative

purposes only. Appendix C contains more numerical details.

10.1 Type I

For Type I ambiguity, we have quasi-analytical solutions. Under the approximating model,

the cost-push shock evolves as

dct = −.15ctdt+ .011dwt, (51)

while under the worst-case model it evolves as

d

[
ct

Ψt

]
=

[
−.0983 .0107

1.2485 −.6926

][
ct

Ψt

]
dt+

[
.0017

.0173

]
dt+

[
.011

0

]
dwt, (52)

a system in which {Ψt} Granger causes {ct}. In what follows we construct ordinary (non-

robust) Ramsey plans for both cost-push shock specifications (51) and (52). If we set

Ψ0 = 0 in (52), the time series trajectories under the ordinary Ramsey plan constructed as-

suming that the planner completely trusts the above worst-case cost-push shock model will

coincide with time series trajectories chosen by the robust Ramsey planner who distrusts

the approximating model (51).

To depict dynamic implications, we report impulse response functions for the output

gap and inflation using the two specifications (51) and (52) for the cost-push process.

Figure 2 reports impulse responses under the approximating model (51) and these same

responses under the worst-case model (52). Outcomes for the different cost-push shock

models are depicted in the two columns of this figure. We also compute optimal plans

for both cost-push shock specifications and consider the impact of misspecification. Thus,

we plot two impulse response functions depending on which cost-push shock model, (51)

or (52), is imputed to the planner who computes an ordinary non-robust Ramsey plan.

The impulse response functions plotted in each of the panels line up almost on top of each

other even though the actual cost processes are quite differenct. The implication is that

the important differences in outcomes do not come from misspecification in the mind of the

13See Anderson et al. (2003) for a discussion of an approach to calibration based on measures of statistical
discrimination.
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Ramsey planner but from what we can regard as different models of the cost-push process

imputed to an ordinary non-robust Ramsey planner.

The worst-case drift distortion includes a constant term that has no impact on the

impulse response functions. To shed light on the implications of the constant term, we

computed trajectories for the output gap and inflation under the approximating model,

setting the initial value of the cost-push variable to zero. Again we compare outcomes un-

der a robust Ramsey plan with those under a Ramsey planner who faces type I ambiguity.

The left panel of Figure 3 reports differences in logarithms scaled by one-hundred. By

construction, the optimal Ramsey plan computed under the approximating model gives a

higher value of the objective function when the computations are done under the approx-

imating model. The optimal plan begins at y∗ and diminishes to zero. Under the robust

Ramsey plan (equivalently the plan that is optimal under the worst-case cost model), out-

put starts higher than the target y∗ and then diminishes to zero. Inflation is also higher

under the robust Ramsey plan. The right panel of Figure 3 reports these differences under

the worst-case model for the cost process. We initialize the calculation at c0Ψ0

ψ0

 =

.0249

0

0

 ,
where .0249 is the mean of the cost-push shock under the worst-case model. Again the

output gap and inflation are higher under this robust Ramsey plan. If the worst-case

model for the cost-push shock were to be completely trusted by a Ramsey planner, he

would choose the same plan as the robust Ramsey planner. As a consequence, the output

gap starts at y∗ and diminishes to zero. The optimal plan under the approximating model

starts lower and diminishes to zero. The percentage differences depicted in the right panel

of Figure 3 are substantially larger than those depicted in the left panel.

To summarize our results for type I ambiguity, while the impulse response function

depend very little on whether or not the robustness adjustment is made, shifts in constant

terms do have a nontrivial impact on the equilibrium dynamics that are reflected in transient

responses from different initial conditions.
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Impulse-response functions
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Figure 2: The left panels assume the approximating model for the cost process, and the
right panels assume the worst-case models for the cost process. The top panels give the
impulse response functions for the cost process, the middle panels for the logarithm of
the output gap, the bottom panels for inflation. The dashed line uses the approximating
model solution and the solid line uses the worst-case model solution. The time units on
the horizontal axis are quarters.
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Extrapolation from alternative initial conditions
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Figure 3: The left panels assume the approximating model for the cost process initialized
at its unconditional mean, 0. The right panels assume the worst-case models for the
cost process initialized at its unconditional mean, .0249. The top panels give trajectory
differences without shocks for the logarithm of the output gap (times one hundred), and the
bottom panels give trajectory differences (times one hundred) for inflation without shocks.
The time units on the horizontal axis are quarters.
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10.2 Comparing Types II and III to Type I

To compare Type I with Types II and III, we compute derivatives for the worst-case drift

distortion and for the decision rule for λ. The worst-case drift coefficients are shown in

table 1. Notice the structure in these coefficients. Recall that the Type II problem has the

Ambiguity Type c ξ 1
I .4752 .1271 .0111
II .4752 0 .0111
III 0 - .1271 0

Table 1: Coefficients for the derivatives of the drift distortion with respect to γ times 10.

private sector embracing the approximating model, and that this substantially limits the

impact of robustness. The coefficient on the (transformed) commitment multiplier is zero,

but the other two coefficients remain the same as in Type I. In contrast, for Type III only

the coefficient on ξ is different from zero. The coefficient is the negative of that for Type I

because the Ramsey planner now embraces the approximating model in contrast to Type

I. Since the constant term is zero for Type III, the impact of robustness for a given value

of θ, say θ = .014 as in our previous calculations, will be small. A calibration of θ using

statistical criteria in the style of Anderson et al. (2003) would push us to much lower values

of θ.

Robustness also alters the decision rule for λ as reflected in the derivatives with respect

to γ, as shown in table 2. The Type II adjustments are evidently zero because the private

Ambiguity Type c ξ 1
I 0.0854 0.0114 0.0022
II 0.0000 0.0000 0.0000
III 0.0154 0.0114 0.0002

Table 2: Coefficients for the derivatives for inflation with respect to γ times 100.

sector embraces the approximating model. Type III derivatives are relatively small for the

coefficients on ct and ξt.

While we find these derivatives to be educational, the numerical calculations for Type

I reported in section 10 are apparently outside the range to which a linear approximation

in γ is accurate. This suggests that better numerical approximations to the HJB equations
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for Type II and III ambiguity will be enlightening. We defer such computations to future

research.

11 Concluding remarks

This paper has made precise statements about the seemingly vague topic of model ambigu-

ity within a setting with a timing protocol that allows a Ramsey planner who is concerned

about model misspecification to commit to history-contingent plans to which a private sec-

tor adjusts. There are different things that decision makers can be ambiguous about, which

means that there are different ways to formulate what it means for either the planner or

the private agents to experience ambiguity. We have focused on three types of ambiguity.

We chose these three partly because we think they are intrinsically interesting and have

potential in macroeconomic applications, and partly because they are susceptible to closely

related mathematical formulations. We have used a very simple New Keynesian model as

a laboratory to sharpen ideas that we aspire to apply to more realistic models.

We are particularly interested in type II ambiguity because here there is endogenous

belief heterogeneity. Since our example precluded endogenous state variables other than a

commitment multiplier, robustness influenced the Ramsey planner’s value function but not

Ramsey policy rules. In future research, we hope to study settings with other endogenous

state variables and with pecuniary externalities that concern a Ramsey planner and whose

magnitudes depend partly on private-sector beliefs.

In this paper, we started with a model that might be best be interpreted as the outcome

of a log-linear approximation, but then ignored the associated approximation errors when

we explored robustness. Interestingly, even this seemingly log-linear specification ceased to

be log-linear in the presence of the Type II and Type III forms of ambiguity. In the future,

we intend to analyze more fully the interaction between robustness and approximation.

The small noise and small robustness expansions and related work in Adam and Woodford

(2011) are steps in this direction, but we are skeptical about the sizes of the ranges of pa-

rameters to which these local approximations apply and intend to explore global numerical

analytic approaches. Our exercises in the laboratory provided by the New Keynesian model

of this paper should pave the way for attacks on more quantitatively ambitious Ramsey

problems.
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A Some basic proofs

Lemma 3.3 is a special case of Lemma 6.2 with z+ = z > 0, ψ+ = ξ+ and ψ = ξ. We

restate and prove Lemma 6.2.

Lemma A.1. The multiplier `1 on constraint (33) equals
(
z+

z

)
ξ+ and the multiplier `2 on

constraint (34) equals zero. Furthermore,

y = y∗ −
(
κ

ζ

)
(ξ + ελ) ,

where λ = F (x, ξ) solves the private firm’s Euler equation (33). Finally, V2(x, ξ) =

−F (x, ξ).

Proof. From relation (32)

∂

∂ξ+
[
V +(x+, ξ+) + ξ+F+(x+, ξ+)

]
= ξ+F+

2 (x+, ξ+).

Differentiate the Lagrangian with respect to ξ+ to obtain

−
(
z+

z

)
`2 − `1 exp(−δε)F+

2 (x+, ξ+) + exp(−δε)
(
z+

z

)
ξ+F+

2 (x+, ξ+) = 0.

Taking conditional expectations gives

−`2 +

[(
z+

z

)
ξ+ − `1

]
exp(−δε)E

[
F+
2 (x+, ξ+)|x, ξ

]
= 0

so that

`2
(
1− ε exp(−δε)E

[
F+
2 (x+, ξ+)|x, ξ

])
= 0.

We conclude that `1 =
(
z+

z

)
ξ+. The relation V2(x, ψ) = −F (x, ψ) follows from an envelope

condition.

Next we verify that HJB equation (20) or (36) assures that the firm’s Euler equation

is satisfied. We carry out this verification for HJB equation (36), but the same argument

applies for HJB equation (20) after we set h = 0 and ξ = ψ. Differentiating the objective
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of the planner with respect to ξ and using V2 = −F gives

0 =− κy − c− c∗ + δF − F1 · µx − F2λ

− (F1)
′σxh+ ξF12σxh−

1

2
ξ2F22|h|2

− 1

2
trace (σx

′F11σx) + (F1)
′σxh− ξF2|h|2,

where we have used the envelope condition to adjust for optimization. Multiplying by

minus one and simplifying gives

0 =κy + c+ c∗ − δF + F1 · µx + F2λ+ ξF2|h|2

+
1

2
trace (σx

′F11σx)− ξF12σxh+
1

2
ξ2F22|h|2.

Observe that

µλ,t =F1(xt, ψt) · µx(xt) + F2(xt, ψt)λt + ξtF2(xt, ψt)|ht|2

+
1

2
trace

[
σx(xt)

′F11(xt, ψt)σx(xt)
]
− ξtF12(xt, ξt)σx(xt)ht +

1

2
(ξt)

2F22(xt, ξt)|ht|2.

Thus, the Euler equation µλ,t = −κyt − ct − c∗ + δF (xt, ψt) is satisfied.

B Example without robustness

If we suppose the exogenous linear dynamics

dxt = A11xtdt+ σxdwt

ct = H · xt,

where σx is a vector of constants, it is natural to guess that the Ramsey planner’s value

function is quadratic:

V (x, ψ) =
1

2

[
x ψ 1

]
Λ

xψ
1

+ v.
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Then

F (x, ψ) = −
[
0 1 0

]
Λ

cψ
1

 .
Let

B =

0

1

0



A =

A11 − δ
2

0 0

0 − δ
2

0

0 0 − δ
2



Q =

 0 −H 0

−H ′ κ2

ζ
−κy∗ − c∗

0 −κy∗ − c∗ 0

 .
The matrix Λ solves what is not quite a standard Riccati equation because the matrix Q

is indefinite:

−ΛBB′Λ + A′Λ + ΛA+Q. (53)

The last thing to compute is the constant

v =
(σc)

2

δ

[
1 0 0

]
Λ

1

0

0

 .
We have confirmed numerically that we can compute the same Ramsey plan by using

either the sequential formulation of section 3.2 that leads us to solve for the stabilizing

solution of a linear equation system or the recursive method of section 3.3 that leads us to

solve the Riccati equation (53). We assume the parameter values:

δ = .0101 A11 = −.15

κ = .05 H = 1

ζ = .005 σx =
√
.3× .02

y∗ = .2 c∗ = 0
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Most of these parameter values are borrowed from Woodford (2010). Woodford takes the

cost shock to be independent and identically distributed. In our continuous-time speci-

fication, we assume an AR process with the same unconditional standard deviation .02

assumed by Woodford.

The Matlab Riccati equation solver care.m applied to (53) gives14

F (c, ψ) =
[
1.1599 −0.7021 0.0140

]cψ
1



d

[
ct

ψt

]
=

[
−0.15 0

1.1599 −0.7021

][
ct

ψt

]
dt+

[
0

0.014

]
dt+

[
.011

0

]
dwt

V =

−4.3382 −1.1599 −0.1017

−1.1599 0.7021 −0.0140

−0.1017 −0.0140 −0.0195


C Example with first type of ambiguity

For our linear-quadratic problem, it is reasonable to guess that the value function is

quadratic:

V (c, ψ) =
1

2

[
c ψ 1

]
Λ

cψ
1

+ v.

Then

F (x, ψ) = −
[
0 1 0

]
Λ

cψ
1

 .
14As expected, the invariant subspace method for solving (9), (1), and (3) gives identical answers.
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Let

B =

0 σc

1 0

0 0



A =

A11 − δ
2

0 0

0 − δ
2

0

0 0 − δ
2



Q =

 0 −H 0

−H ′ κ2

ζ
−κy∗ − c∗

0 −κy∗ − c∗ 0


R =

[
1 0

0 θ

]
.

The matrix Λ solves

−ΛBR−1B′Λ + A′Λ + ΛA+Q.

Again, this Riccati equation is not quite standard because the matrix Q is indefinite.

Finally,

v =
(σc)

2

δ

[
1 0 0

]
Λ

1

0

0

 .
C.0.1 Example

Parameter values are the same as those in Appendix B except that now θ = .014.

Using the Matlab program care,

λ = F (c, ψ) =
[
1.2485 −0.6926 0.0173

]cψ
1

 (54)

h =
[
4.7203 0.9769 0.1556

]cψ
1
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V =

−6.0326 −1.2485 −0.1988

−1.2485 0.6926 −0.0173

−0.1988 −0.0173 −0.0630

 .
The function F̃ that emerges by solving the Ramsey problem without robustness is

F̃ (c,Ψ, ψ) =
[
1.2485 0.0095 −0.7021 0.0173

]

c

Ψ

ψ

1

 .

Notice that the first coefficient and last coefficients equal the corresponding ones on the

right side of (54) and that the sum of the second two coefficients equals the second coefficient

in (54).

D Sensitivity to robustness

To compute the first-order adjustments for robustness, form

−H(x, ψ) =
1

2

[
x′ ξ 1

]
Υ

xξ
1

 .
Guess a solution of the form

−G(x, ψ) =
1

2

[
x′ ξ 1

]
Γ

xξ
1

 .
The Lyapunov equation

(A∗)′Γ + ΓA∗ + Υ = 0

can be solved using the Matlab routine lyap. We used this approach to compute the

derivatives reported in section 9.
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