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1. Introduction

1.1. Foundations. von Neumann and Morgenstern (1944), Savage (1954), and
Muth (1961) created mathematical foundations that applied economists have used to
construct quantitative dynamic models for policy making. These foundations give
modern dynamic models an internal coherence that lead to sharp empirical pre-
dictions. When we acknowledge that models are approximations, logical problems
emerge that unsettle those foundations. Because the rational expectations assump-
tion works the presumption of a correct specification particularly hard, admitting
model misspecification raises especially interesting problems about how to extend
rational expectations models.1

A model is a probability distribution over a sequence. The rational expectations
hypothesis delivers empirical power by imposing a communism of models: the people
being modeled, the econometrician, and nature share the same model, i.e., the same
probability distribution over sequences of outcomes. This ‘communism’ is used both
in solving a rational expectations model and when a law of large numbers is appealed
to when justifying GMM or maximum likelihood estimation of model parameters.
Imposition of a common model removes economic agents’ models as objects that
require separate specification. The rational expectations hypothesis converts agents’
beliefs from model inputs to model outputs.

The idea that models are approximations puts more models in play than the
rational expectations equilibrium concept handles. To say that a model is an ap-
proximation is to say that it approximates another model. Viewing models as ap-
proximations requires somehow reforming the common models requirement imposed
by rational expectations.

The consistency of models imposed by rational expectations has profound implica-
tions about the design and impact of macroeconomic policy-making, e.g. see Lucas
(1976) and Sargent and Wallace (1975). There is relatively little work studying how
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1Applied dynamic economists readily accept that their models are tractable approximations.

Sometimes we express this by saying that our models are abstractions or idealizations. Other
times we convey it by focusing a model only on ‘stylized facts’.
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those implications would be modified within a setting that explicitly acknowledges
decision makers’ fear of model misspecification.2

Thus, the idea that models are approximations conflicts with the von Neumann-
Morgenstern-Savage foundations for expected utility and with the supplementary
equilibrium concept of rational expectations that underpins modern dynamic mod-
els. In view of those foundations, treating models as approximations raises three
questions. What standards should be imposed when testing or evaluating dynamic
models? How should private decision makers be modeled? How should macroeco-
nomic policy-makers use misspecified models? This essay focuses primarily on the
latter two questions. But in addressing these questions we are compelled to say
something about testing and evaluation.

This essay describes an approach in the same spirit but differing in many details
from Epstein and Wang (1994). We follow Epstein and Wang in using the Ellsberg
paradox to motivate a decision theory for dynamic contexts that is based on the
min-max theory with multiple priors of Gilboa and Schmeidler (1989). We differ
from Epstein and Wang (1994) in drawing our formal models from recent work in
control theory. This choice leads to many interesting technical differences in the
particular class of models against which our decision maker prefers robust decisions.
Like Epstein and Wang (1994), we are intrigued by a passage from Keynes (1936):

A conventional valuation which is established as the outcome of the
mass psychology of a large number of ignorant individuals is liable to
change violently as the result of a sudden fluctuation in opinion due to
factors which do not really make much difference to the prospective
yield; since there will be no strong roots of conviction to hold it
steady.

Epstein and Wang provide a model of asset price indeterminacy that might explain
the sudden fluctuations in opinion that Keynes mentions. In Hansen and Sargent
(2008a), we offer a model of sudden fluctuations in opinion coming from a repre-
sentative agent’s difficulty in distinguishing between two models of consumption
growth that differ mainly in their implications about hard-to-detect low frequency
components of consumption growth. We describe this force for sudden changes in
beliefs in section 5.5 below.

2. Knight, Savage, Ellsberg, Gilboa-Schmeidler, and Friedman

In Risk, Uncertainty and Profit, Frank Knight (1921) envisioned profit-hunting en-
trepreneurs who confront a form of uncertainty not captured by a probability model.3

2But see Karantounias (2009), Woodford (2010), Hansen and Sargent (2008b), chapters 15 and
16, and Orlik and Presno (2009).

3See Epstein and Wang (1994) for a discussion containing many of the ideas summarized here.
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He distinguished between risk and uncertainty, and reserved the term risk for ven-
tures with outcomes described by known probabilities. Knight thought that prob-
abilities of returns are not known for many physical investment decisions. Knight
used the term uncertainty to refer to such unknown outcomes.

After Knight (1921), Savage (1954) contributed an axiomatic treatment of decision-
making in which preferences over gambles could be represented by maximizing ex-
pected utility under subjective probabilities. Savage’s work extended the earlier
justification of expected utility by von Neumann and Morgenstern (1944) that had
assumed known objective probabilities. Savage’s axioms justify subjective assign-
ments of probabilities. Even when accurate probabilities, such as the fifty-fifty put
on the sides of a fair coin, are not available, decision makers conforming to Savage’s
axioms behave as if they form probabilities subjectively. Savage’s axioms seem to
undermine Knight’s distinction between risk and uncertainty.

2.1. Savage and model misspecification. Savage’s decision theory is both el-
egant and tractable. Furthermore, it provides a possible recipe for approaching
concerns about model misspecification by putting a set of models on the table and
averaging over them. For instance, think of a model as being a probability specifica-
tion for the state of the world y tomorrow given the current state x and a decision or
collection of decisions d: f(y|x, d). If the conditional density f is unknown, then we
can think about replacing f by a family of densities g(y|x, d, α) indexed by param-
eters α. By averaging over the array of candidate models using a prior (subjective)
distribution, say π, we can form a ‘hyper model’ that we regard as being correctly
specified. That is we can form:

f(y|x, d) =

∫
g(y|x, d, α)dπ(α).

In this way, specifying the family of potential models and assigning a subjective
probability distribution to them removes model misspecification.

Early examples of this so-called Bayesian approach to the analysis of policy-
making in models with random coefficients are Friedman (1953) and Brainard (1967).
The coefficient randomness can be viewed in terms of a subjective prior distribution.
Recent developments in computational statistics have made this approach viable for
a potentially rich class of candidate models.

This approach encapsulates specification concerns by formulating (1) a set of
specific possible models, and (2) a prior distribution over those models. Below we
raise questions about the extent to which these steps can really fully capture our
concerns about model misspecification. As concerns (1), a hunch that a model is
wrong might occur in a vague form that ‘some other good fitting model actually
governs the data’ and that might not so readily translate into a well enumerated set
of explicit and well formulated alternative models g(y|x, d, α). As concerns (2), even
when we can specify a manageable set of well defined alternative models, we might
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struggle to assign a unique prior π(α) to them. Hansen and Sargent (2007) address
both of these concerns. They use a risk-sensitivity operator T

1 as an alternative to
(1) by taking each approximating model g(y|x, d, α), one for each α, and effectively
surrounding each one with a cloud of models specified only in terms of how closely
they approximate the conditional density g(y|x, d, α) statistically. Then they use
a second risk-sensitivity operator T

2 to surround a given prior π(α) with a set of
priors that again are statistically close to the baseline π. We describe an application
to a macroeconomic policy problem in section 5.4.

2.2. Savage and rational expectations. Rational expectations theory withdrew
freedom from Savage’s decision theory by imposing equality between agents’ subjec-
tive probabilities and the probabilities emerging from the economic model containing
those agents. Equating objective and subjective probability distributions removes
all parameters that summarize agents’ subjective distributions, and by doing so cre-
ates the powerful cross-equation restrictions characteristic of rational expectations
empirical work.4 However, by insisting that subjective probabilities agree with ob-
jective ones, rational expectations make it much more difficult to dispose of Knight’s
distinction between risk and uncertainty by appealing to Savage’s Bayesian inter-
pretation of probabilities. Indeed, by equating objective and subjective probability
distributions, the rational expectations hypothesis precludes a self-contained anal-
ysis of model misspecification. Because it abandons Savage’s personal theory of
probability, it can be argued that rational expectations indirectly increases the ap-
peal of Knight’s distinction between risk and uncertainty. Epstein and Wang (1994)
argue that the Ellsberg paradox should make us rethink the foundation of rational
expectations models.

2.3. The Ellsberg paradox. Ellsberg (1961) expressed doubts about the Savage
approach by refining an example originally put forward by Knight. Consider two
urns. In Urn A it is known that there are exactly ten red balls and ten black balls.
In Urn B there are twenty balls, some red and some black. A ball from each urn
is to be drawn at random. Free of charge, a person can choose one of the two urns
and then place a bet on the color of the ball that is drawn. If he or she correctly
guesses the color, the prize is 1 million dollars, while the prize is 0 dollars if the
guess is incorrect. According to the Savage theory of decision-making, Urn B should
be chosen even though the fraction of balls is not known. Probabilities can be
formed subjectively, and a bet placed on the (subjectively) most likely ball color. If
subjective probabilities are not fifty-fifty, a bet on Urn B will be strictly preferred to
one on Urn A. If the subjective probabilities are precisely fifty-fifty then the decision
maker will be indifferent. Ellsberg (1961) argued that a strict preference for Urn A is
plausible because the probability of drawing a red or black ball is known in advance.
He surveyed the preferences of an elite group of economists to lend support to this

4For example, see Sargent (1981).
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Urn A:

10 red balls

10 black balls

Urn B:

unknown fraction of

red and black balls

Ellsberg defended a preference for Urn A

Figure 1. The Ellsberg Urn

position.5 This example, called the Ellsberg paradox, challenges the appropriateness
of the full array of Savage axioms.6

2.4. Multiple priors. Motivated in part by the Ellsberg (1961) paradox, Gilboa
and Schmeidler (1989) provided a weaker set of axioms that included a notion of
uncertainty aversion. Uncertainty aversion represents a preference for knowing prob-
abilities over having to form them subjectively based on little information. Consider
a choice between two gambles between which you are indifferent. Imagine forming a
new bet that mixes the two original gambles with known probabilities. In contrast
to von Neumann and Morgenstern (1944) and Savage (1954), Gilboa and Schmeidler
(1989) did not require indifference to the mixture probability. Under aversion to
uncertainty, mixing with known probabilities can only improve the welfare of the
decision maker. Thus, Gilboa and Schmeidler required that the decision maker at
least weakly prefer the mixture of gambles to either of the original gambles.

5Subsequent researchers have collected more evidence to substantiate this type of behavior. See
Camerer (1999), especially table 3.2 on page 57, and also Harlevy (2007).

6In contrast to Ellsberg, Knight’s second urn contained seventy-five red balls and twenty-five
black balls (see Knight (1921), page 219). While Knight contrasted bets on the two urns made by
different people, he conceded that if an action was to be taken involving the first urn, the decision
maker would act under ‘the supposition that the chances are equal.’ He did not explore decisions
involving comparisons of urns like that envisioned by Ellsberg.
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The resulting generalized decision theory implies a family of priors and a decision
maker who uses the worst case among this family to evaluate future prospects.
Assigning a family of beliefs or probabilities instead of a unique prior belief renders
Knight’s distinction between risk and uncertainty operational. After a decision has
been made, the family of priors underlying it can typically be reduced to a unique
prior by averaging using subjective probabilities, from Gilboa and Schmeidler (1989).
However, the prior that would be discovered by that procedure depends on the
decision being considered and is an artifact of a decision-making process designed
to make a conservative assessment. In the case of the Knight-Ellsberg urn example,
a range of priors is assigned to red balls, say .45 to .55, and similarly to black balls
in Urn B. The conservative assignment of .45 to red balls when evaluating a red ball
bet and .45 to black balls when making a black ball bet implies a preference for Urn
A. A bet on either ball color from Urn A has a .5 probability of success.

A product of the Gilboa-Schmeidler axioms is a decision theory that can be for-
malized as a two-player game. For every action of one maximizing player, a second
minimizing player selects associated beliefs. The second player chooses those beliefs
in a way that balances the first player’s wish to make good forecasts against his
doubts about model specification.7

Just as the Savage axioms do not tell a model-builder how to specify the subjective
beliefs of decision makers for a given application, the Gilboa-Schmeidler axioms do
not tell a model-builder the family of potential beliefs. The axioms only clarify the
sense in which rational decision making may require multiple priors along with a
fictitious second agent who selects beliefs in a pessimistic fashion. Restrictions on
beliefs must come from outside.8

2.5. Ellsberg and Friedman. The Knight-Ellsberg Urn example might look far re-
moved from the dynamic models used in macroeconomics. But a fascinating chapter
in the history of macroeconomics centers on Milton Friedman’s ambivalence about
expected utility theory. Although Friedman embraced the expected utility theory of
von Neumann and Morgenstern (1944) in some work (Friedman and Savage (1948)),
he chose not to use it9 when discussing the conduct of monetary policy. Instead,
Friedman (1959) emphasized that model misspecification is a decisive consideration
for monetary and fiscal policy. Discussing the relation between money and prices,
Friedman concluded that:

7The theory of zero-sum games gives a natural way to make a concern about robustness algorith-
mic. Zero-sum games were used in this way in both statistical decision theory and robust control
theory long before Gilboa and Schmeidler supplied their axiomatic justification. See Blackwell and
Girshick (1954), Ferguson (1967), and Jacobson (1973).

8That, of course, was why restriction-hungry macroeconomists and econometricians seized on
the ideas of Muth (1961) in the first place.

9Unlike Lucas (1976) and Sargent and Wallace (1975).
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If the link between the stock of money and the price level were direct
and rigid, or if indirect and variable, fully understood, this would be
a distinction without a difference; the control of one would imply the
control of the other; ... . But the link is not direct and rigid, nor
is it fully understood. While the stock of money is systematically
related to the price level on the average, there is much variation in
the relation over short periods of time ... . Even the variability in
the relation between money and prices would not be decisive if the
link, though variable, were synchronous so that current changes in
the stock of money had their full effect on economic conditions and
on the price level instantaneously or with only a short lag. ... In fact,
however, there is much evidence that monetary changes have their
effect only after a considerable lag and over a long period and that
lag is rather variable.

Friedman thought that misspecification of the dynamic link between money and
prices should concern proponents of activist policies. Despite Friedman and Savage
(1948), his treatise on monetary policy (Friedman (1959)) did not advocate forming
prior beliefs over alternative specifications of the dynamic models in response to this
concern about model misspecification.10 His argument reveals a preference not to
use Savage’s decision theory for the practical purpose of designing monetary policy.

3. Formalizing a taste for robustness

The multiple priors formulation provides a way to think about model misspecifi-
cation. Like Epstein and Wang (1994) and Friedman (1959), we are specifically
interested in decision-making in dynamic environments. We draw our inspira-
tion from a line of research in control theory. Robust control theorists challenged
and reconstructed earlier versions of control theory because it had ignored model-
approximation error in designing policy rules. They suspected that their models
had misspecified the dynamic responses of target variables to controls. To confront
that concern, they added a specification error process to their models, and sought
decision rules that would work well across a set of such error processes. That led
them to a two-player game and a conservative-case analysis much in the spirit of
Gilboa and Schmeidler (1989). In this section, we describe the modifications of
modern control theory made by the robust control theorists. While we feature lin-
ear/quadratic Gaussian control, many of the results that we discuss have direct
extensions to more general decision environments. For instance, Hansen, Sargent,
Turmuhambetova, and Williams (2006) consider robust decision problems in Markov
diffusion environments.

10However, Friedman (1953) conducts an explicitly stochastic analysis of macroeconomic policy
and introduces elements of the analysis of Brainard (1967).
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3.1. Control with a correct model. First, we briefly review standard control
theory, which does not admit misspecified dynamics. For pedagogical simplicity,
consider the following state evolution and target equations for a decision maker:

xt+1 = Axt + But + Cwt+1(1)

zt = Hxt + Jut(2)

where xt is a state vector, ut is a control vector, and zt is a target vector, all at
date t. In addition, suppose that {wt+1} is a sequence of vectors of independent and
identically and normally distributed shocks with mean zero and covariance matrix
given by I. The target vector is used to define preferences via:

(3) −1

2

∞∑

t=0

βtEz′tzt

where 0 < β < 1 is a discount factor and E is the mathematical expectation operator.
The aim of the decision maker is to maximize this objective function by choice of
control law ut = −Fxt. The linear form of this decision rule for ut is not a restriction
but is an implication of optimality.

The explicit, stochastic, recursive structure makes it tractable to solve the control
problem via dynamic programming:

Problem 1. (Recursive Control)
Dynamic programming reduces this infinite-horizon control problem to the follow-

ing fixed-point problem in the matrix Ω in the following functional equation:

(4) −1

2
x′Ωx − ω = max

u

{
−1

2
z′z − β

2
Ex∗′Ωx∗ − βω

}

subject to

x∗ = Ax + Bu + Cw∗

where w∗ has mean zero and covariance matrix I.11 Here ∗ superscripts denote
next-period values.

The solution of the ordinary linear quadratic optimization problem has a special
property called certainty equivalence that asserts that the decision rule F is inde-
pendent of the volatility matrix C. We state this formally in the following claim:

Claim 2. (Certainty Equivalence Principle)
For the linear-quadratic control problem, the matrix Ω and the optimal control law

F do not depend on the volatility matrix C. Thus, the optimal control law does not
depend on the matrix C.

11There are considerably more computationally efficient solution methods for this problem. See
Anderson, Hansen, McGrattan, and Sargent (1996) for a survey.
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The certainty equivalence principle comes from the quadratic nature of the objec-
tive, the linear form of the transition law, and the specification that the shock w∗ is
independent of the current state x. Robust control theorists challenge this solution
because of their experience that it is vulnerable to model misspecification. Seeking
control rules that will do a good job for a class of models induces them to focus on
alternative possible shock processes.

Can a temporally independent shock process wt+1 represent the kinds of mis-
specification decision makers fear? Control theorists think not, because they fear
misspecified dynamics , i.e., misspecifications that affect the impulse response func-
tions of target variables to shocks and controls. For this reason, they formulate
misspecification in terms of shock processes that can feed back on the state vari-
ables, something that i.i.d. shocks cannot do. As we shall see, allowing the shock to
feed back on current and past states will modify the certainty equivalence property.

3.2. Model misspecification. To capture misspecification in the dynamic system,
suppose that the i.i.d. shock sequence is replaced by unstructured model specification
errors. We temporarily replace the stochastic shock process {wt+1} with a deter-
ministic sequence {vt} of model approximation errors of limited magnitude. As in
Gilboa and Schmeidler (1989), a two-person zero-sum game can be used to represent
a preference for decisions that are robust with respect to v. We have temporarily
suppressed randomness, so now the game is dynamic and deterministic.12 As we
know from the dynamic programming formulation of the single-agent decision prob-
lem, it is easier to think of this problem recursively. A value function conveniently
encodes the impact of current decisions on future outcomes.

Game 3. (Robust Control)
To represent a preference for robustness, we replace the single-agent maximization

problem (4) by the two-person dynamic game:

(5) −1

2
x′Ωx = max

u
min

v
−1

2
z′z +

θ

2
v′v − β

2
x∗′Ωx∗

subject to

x∗ = Ax + Bu + Cv

where θ > 0 is a parameter measuring a preference for robustness. Again we have
formulated this as a fixed-point problem in the value function: V (x) = −1

2
x′Ωx− ω.

Notice that a malevolent agent has entered the analysis. This agent, or alter ego,
aims to minimize the objective, but in doing so is penalized by a term θ

2
v′v that is

added to the objective function. Thus, the theory of dynamic games can be applied
to study robust decision-making, a point emphasized by Basar and Bernhard (1995).

12See appendix A for an equivalent but more basic stochastic formulation of the following robust
control problem.
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The fictitious second agent puts context-specific pessimism into the control law.
Pessimism is context specific and endogenous because it depends on the details of
the original decision problem, including the one-period return function and the state
evolution equation. The robustness parameter or multiplier θ restrains the magni-
tude of the pessimistic distortion. Large values of θ keep the degree of pessimism
(the magnitude of v) small. By making θ arbitrarily large, we approximate the
certainty-equivalent solution to the single-agent decision problem.

3.3. Types of missspecifications captured. In formulation (5), the solution
makes v a function of x and u a function of x alone. Associated with the solu-
tion to the two-player game is a worst-case choice of v. The dependence of the
“worst-case” model shock v on the control u and the state x is used to promote
robustness. This worst case corresponds to a particular (A†, B†) that is a device
to acquire a robust rule. If we substitute the value-function fixed point into the
right side of (5) and solve the inner minimization problem, we obtain the following
formula for the worst-case error:

(6) v† = (θI − βC ′ΩC)−1C ′Ω(Ax + Bu).

Notice that this v∗ depends on both the current period control vector u and state
vector x. Thus, the misspecified model used to promote robustness has:

A† = A + C(θI − βC ′ΩC)−1C ′ΩA

B† = B + C(θI − βC ′ΩC)−1C ′ΩB.

Notice that the resulting distorted model is context specific and depends on the ma-
trices A, B, C, the matrix Ω used to represent the value function, and the robustness
parameter θ.

The matrix Ω is typically positive semidefinite, which allows us to exchange the
maximization and minimization operations:

(7) −1

2
x′Ωx = min

v
max

u
−1

2
z′z +

θ

2
v′v − β

2
x∗′Ωx∗

We obtain the same value function even though now u is chosen as a function of v
and x while v depends only on x. For this solution:

u‡ = −(J ′J + B′ΩB)−1J ′ [Hx + Ω (Ax + Cv)]

The equilibrium v that emerges in this alternative formulation gives an alternative
dynamic evolution equation for the state vector x. The robust control u is a best
response to this alternative evolution equation (given Ω). In particular, abusing
notation, the alternative evolution is:

x∗ = Ax + Cv(x) + Bu

The equilibrium outcomes from zero-sum games (5) and (7) in which both v and u
are represented as functions of x alone coincide.
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This construction of a worst-case model by exchanging orders of minimization and
maximization may sometimes be hard to interpret as a plausible alternative model.
Moreover, the construction depends on the matrix Ω from the recursive solution to
the robust control problem and hence includes a contribution from the penalty term.
As an illustration of this problem, suppose that one of the components of the state
vector is exogenous, by which we mean a state vector that cannot be influenced by
the choice of the control vector. But under the alternative model this component
may fail to be exogenous. The alternative model formed from the worst-case shock
v(x) as described above may thus include a form of endogeneity that is hard to
interpret. Hansen and Sargent (2008b) describe ways to circumvent this annoying
apparent endogeneity by an appropriate application of the macroeconomist’s ‘Big
K, little k’ trick.13

What legitimizes the exchange of minimization and maximization in the recursive
formulation is something referred to as a Bellman-Isaacs condition. When this
condition is satisfied, we can exchange orders in the date zero problem. This turns
out to give us an alternative construction of a worst-case model that can avoid any
unintended endogeneity of the worst-case model. In addition, the Bellman-Issacs
condition is central in justifying the use of recursive methods for solving date-zero
robust control problems. See the discussions in Fleming and Souganidis (1989),
Hansen, Sargent, Turmuhambetova, and Williams (2006), and Hansen and Sargent
(2008b).

What was originally the volatility exposure matrix C now also becomes an impact
matrix for misspecification. It contributes to the solution of the robust control
problem control problem, while for the ordinary control problem, it did not by
virtue of certainty equivalence. We summarize the dependence of F on C in the
following, which is fruitfully compared and contrasted with claim 2:

Claim 4. (Breaking Certainty Equivalence)
For θ < +∞, the robust control u = −Fx that solves game (3) depends on the

volatility matrix C.

We shall remark below how the breaking down of certainty equivalence is at-
tributable to a kind of precautionary motive emanating from fear of model mis-
specification. While the certainty equivalent benchmark is special, it points to a
force prevalent in more general settings. Thus, in settings where the presence of
random shocks does have an impact on decision rules in the absence of a concern
about misspecification, introducing such concerns typically leads to an enhanced
precautionary motive.

3.4. Gilboa and Schmeidler again. To relate formulation (3) to that of Gilboa
and Schmeidler (1989), we look at a specification in which we alter the distribution
of the shock vector. The idea is to change the conditional distribution of the shock

13See Ljungqvist and Sargent (2004), p. 384.
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vector from a multivariate standard normal that is independent of the current state
vector by multiplying this baseline density by a likelihood ratio (relative to the
standardized multivariate normal). This likelihood ratio can depend on current and
past information in a general fashion so that general forms of misspecified dynamics
can be entertained when solving versions of a two-player zero-sum game in which
the minimizing player chooses the distorting density. This more general formulation
allows misspecifications that include neglected nonlinearities, higher-order dynamics,
and an incorrect shock distribution. As a consequence, this formulation of robustness
is called unstructured .14

For the linear-quadratic-Gaussian problem, it suffices to consider only changes
in the conditional mean and the conditional covariance matrix of the shocks. See
Appendix A for details. The worst-case covariance matrix is independent of the
current state but the worst-case mean will depend on the current state. This con-
clusion extends to continuous-time decision problems that are not linear-quadratic
provided that the underlying shocks can be modeled as diffusion processes. It suffices
to explore misspecifications that append state dependent drifts to the underlying
Brownian motions. See Hansen, Sargent, Turmuhambetova, and Williams (2006)
for a discussion. The quadratic penalty 1

2
v′v becomes a measure of what is called

conditional relative entropy in the applied mathematic literature. It is a discrepancy
measure between an alternative conditional density and, for example, the normal
density in a baseline model. Instead of restraining the alternative densities to reside
in some prespecified set, for convenience we penalize their magnitude directly in the
objective function. As discussed in Hansen, Sargent, and Tallarini (1999), Hansen,
Sargent, Turmuhambetova, and Williams (2006) and Hansen and Sargent (2008b),
we can think of the robustness parameter θ as a Lagrange multiplier on a time 0
constraint on discounted relative entropy.15

4. Calibrating a taste for robustness

Our model of a robust decision maker is formalized as a two-person zero-sum
dynamic game. The minimizing player, if left unconstrained, can inflict serious
damage and substantially alter the decision rules. It is easy to construct examples
in which the induced conservative behavior is so cautious that it makes the robust
decision rule look silly. Such examples can be used to promote skepticism about the
use of minimization over models rather than the averaging advocated in Bayesian
decision theory.

14See Onatski and Stock (1999) for an example of robust decision analysis with structured
uncertainty.

15See Hansen and Sargent (2001), Hansen, Sargent, Turmuhambetova, and Williams (2006), and
Hansen and Sargent (2008b), chapter 7, for discussions of ‘multiplier’ preferences defined in terms
of θ and ‘constraint preferences’ that are special cases of preferences supported by the axioms of
Gilboa and Schmeidler (1989).
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Whether the formulation in terms of the two-person zero-sum game looks silly or
plausible depends on how the choice set open to the fictitious minimizing player is
disciplined. While an undisciplined malevolent player can wreak havoc, a tightly
constrained one cannot. Thus, the interesting question is whether it is reasonable
as either a positive or normative model of decision-making to make conservative
adjustments induced by ambiguity over model specification, and if so, how big these
adjustments should be. Some support for making conservative adjustments appears
in experimental evidence (see Camerer (1995) for a discussion) and other support
comes from the axiomatic treatment of Gilboa and Schmeidler (1989). Neither of
these sources answer the quantitative question of how large the adjustment should be
in applied work in economic dynamics. Here we think that the theory of statistical
discrimination can help.

We have parameterized a taste for robustness in terms of a single free parameter, θ,
or else implicitly in terms of the associated discounted entropy η0. Let Mt denote the
date t likelihood ratio of an alternative model vis a vis the original “approximating”
model. Then {Mt : t = 0, 1, ...} is a martingale under the original probability law,
and we normalize M0 = 1. The date zero measure of relative entropy is

E (Mt log Mt|F0) ,

which is the expected log-likelihood ratio under the alternative probability measure,
where F0 is the information set at time 0. For infinite-horizon problems, we find it
convenient to form a geometric average using the subjective discount factor β ∈ (0, 1)
to construct the geometric weights,

(8) (1 − β)
∞∑

j=0

βjE (Mj log Mj |F0) ≤ η0.

By a simple summation-by-parts argument,

(9) (1 − β)
∞∑

j=0

βjE (Mj log Mj |F0) =
∞∑

j=0

βjE (Mj log Mj − log Mj−1|F0) .

For computational purposes it is useful to use a penalization approach and to solve
the decision problems for alternative choices of θ. Associated with each θ, we can find
a corresponding value of η0. This seemingly innocuous computational simplification
has subtle implications for the specification of preferences. In defining preferences,
it matters if you hold fixed θ (here you get the so-called multiplier preferences) or
hold fixed η0 (and here you get the so-called constraint preferences.) See Hansen,
Sargent, Turmuhambetova, and Williams (2006) and Hansen and Sargent (2008b)
for discussions. Even when we adopt the multiplier interpretation of preferences,
it is revealing to compute the implied η0

′s as suggested by Petersen, James, and
Dupuis (2000).
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For the purposes of calibration we want to know which values of the parameter
θ correspond to reasonable preferences for robustness. To think about this issue,
we start by recalling that the rational expectations notion of equilibrium makes the
model that economic agents use in their decision-making be the same model that
generates the observed data. A defense of the rational expectations equilibrium con-
cept is that discrepancies between models should have been detected from sufficient
historical data and then eliminated. In this section, we use a closely related idea
to think about reasonable preferences for robustness. Given historical observations
on the state vector, we use a Bayesian model detection theory originally due to
Chernoff (1952). This theory describes how to discriminate between two models as
more data become available. We use statistical detection to limit the preference
for robustness. The decision maker should have noticed easily detected forms of
model misspecification from past time series data and eliminated them. We pro-
pose restricting θ to admit only alternative models that are difficult to distinguish
statistically from the approximating model. We do this rather than study a consid-
erably more complicated learning and control problem. We will discuss relationships
between robustness and learning in section 5.

4.1. State evolution. Given a time series of observations on the state vector xt,
suppose that we want to determine the evolution equation for the state vector.
Let u = −F †x denote the solution to the robust control problem. One possible
description of the time series is

(10) xt+1 = (A − BF †)xt + Cwt+1

where {wt+1} is a sequence of i.i.d. normalized Gaussian vectors. In this case,
concerns about model misspecification are just in the head of the decision maker:
the original model is actually correctly specified. Here the approximating model
actually generates the data.

An worst-case evolution equation is the one associated with the solution to the
two-player zero-sum game. This changes the distribution of wt+1 by appending a
conditional mean as in (6)

v† = −K†x

where

K† =
1

θ
(I − β

θ
C ′Ω∗C)−1C ′Ω∗(A − BF r).

and altering the covariance matrix CC ′. The alternative evolution remains Markov
and can be written as:

(11) xt+1 = (A − BF † − CK†)xt + Cw†
t+1.

where

wt+1 = −K†xt + w†
t+1
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and w†
t+1 is normally distributed with mean zero, but a covariance matrix that typ-

ically exceeds the identity matrix. This evolution takes the constrained worst-case
model as the actual law of motion of the state vector, evaluated under the robust de-
cision rule and the worst-case shock process that the decision maker plans against.16

Since the choice of v by the minimizing player is not meant to be a prediction, only
a conservative adjustment, this evolution equation is not the decision maker’s guess
about the most likely model. The decision maker considers more general changes
in the distribution for the shock vector wt+1, but the implied relative entropy (9)
is no larger than that for the model just described. The actual misspecification
could take on a more complicated form than the solution to the two-player zero-sum
game. Nevertheless, the two evolution equations (10) and (11) provide a convenient
laboratory for calibrating plausible preferences for robustness.

4.2. Classical model detection. The log-likelihood ratio is used for statistical
model selection. For simplicity, consider pairwise comparisons between models. Let
one be the basic approximating model captured by (A, B, C) and a multivariate
standard normal shock process {wt+1}. Suppose another is indexed by {vt} where
vt is the conditional mean of wt+1. The underlying randomness masks the model
misspecification and allows us to form likelihood functions as a device for studying
how informative data are in revealing which model generates the data.17

Imagine that we observe the state vector for a finite number T of time periods.
Thus, we have x1, x2, ..., xT . Form the log likelihood ratio between these two models.
Since the {wt+1} sequence is independent and identically normally distributed, the
date t contribution to the log likelihood ratio is

wt+1 · v̂t −
1

2
v̂t · v̂t

where v̂t is the modeled version of vt. For instance, we might have that v̂t =
f(xt, xt−1, ..., xt−k). When the approximating model is correct, vt = 0 and the
predictable contribution to the (log) likelihood function is negative: −1

2
v̂t · v̂t. When

the alternative v̂t model is correct, the predictable contribution is 1
2
v̂t · v̂t. Thus, the

term 1
2
v̂t · v̂t is the average (conditioned on current information) time t contribution

to a log-likelihood ratio. When this term is large, model discrimination is easy, but
it is difficult when this term is small. This motivates our use of the quadratic form
1
2
v̂t · v̂t as a statistical measure of model misspecification. Of course, the v̂t’s depend

16It is the decision rule from the Markov perfect equilibrium of the dynamic game.
17Here, for pedagogical convenience we explore only a special stochastic departure from the

approximating model. As emphasized by Anderson, Hansen, and Sargent (2003), statistical detec-
tion theory leads us to consider only model departures that are absolutely continuous with respect
to the benchmark or approximating model. The departures considered here are the discrete-time
counterparts to the departures admitted by absolute continuity when the state vector evolves
according to a possibly nonlinear diffusion model.
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on the state xt, so that to simulate them requires simulating a particular law of
motion (11).

Use of 1
2
v̂t · v̂t as a measure of discrepancy is based implicitly on a classical notion

of statistical discrimination. Classical statistical practice typically holds fixed the
type I error of rejecting a given null model when the null model is true. For instance,
the null model might be the benchmark v̂t model. As we increase the amount of
available data, the type II error of accepting the null model when it is false decays
to zero as the sample size increases, typically at an exponential rate. The likelihood-
based measure of model discrimination gives a lower bound on the rate (per unit
observation) at which the type II error probability decays to zero.

4.3. Bayesian model detection. Chernoff (1952) studied a Bayesian model dis-
crimination problem. Suppose we average over both the type I and II errors by
assigning prior probabilities of say one half to each model. Now additional informa-
tion at date t allows one to improve model discrimination by shrinking both type
I and type II errors. This gives rise to a discrimination rate (the deterioration of
log probabilities of making a classification error per unit time) equal to 1

8
v̂t · v̂t for

the Gaussian model with only differences in means, although Chernoff entropy is
defined much more generally. This rate is known as Chernoff entropy. When the
Chernoff entropy is small, models are hard to tell apart statistically. When Chernoff
entropy is large, statistical detection is easy. The scaling by 1

8
instead of 1

2
reflects

the trade-off between type I and type II errors. Type I errors are no longer held
constant. Notice that the penalty term that we added to the control problem to
enforce robustness is a scaled version of Chernoff entropy, provided that the model
misspecification is appropriately disguised by Gaussian randomness. Thus, when
thinking about statistical detection, it is imperative that we include some actual
randomness, which though absent in many formulations of robust control theory, is
present in virtually all macroeconomic applications.

In a model generating data that are independent and identically distributed, we
can accumulate the Chernoff entropies over the observation indices to form a de-
tection error probability bound for finite samples. In dynamic contexts, more is
required than just this accumulation, but it is still true that Chernoff entropy acts
as a short-term discount rate in the construction of the probability bound.18

We believe that the model detection problem confronted by a decision maker is
actually more complicated than the pairwise statistical discrimination problem we
just described. A decision maker will most likely be concerned about a wide array
of more complicated models, many of which may be more difficult to formulate and
solve than the ones considered here. Nevertheless, this highly stylized framework
for statistical discrimination gives one way to think about a plausible preference for
robustness. For any given θ, we can compute the implied worst-case process {v†

t}

18See Anderson, Hansen, and Sargent (2003).
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and consider only those values of θ for which the {v†
t} model is hard to distinguish

from the vt = 0 model. From a statistical standpoint, it is more convenient to think
about the magnitude of the v†

t ’s than of the θ’s that underlie them. This suggests
solving robust control problems for a set of θ’s and exploring the resulting v†

t ’s.
Indeed, Anderson, Hansen, and Sargent (2003) establish a close connection between

v†
t · v†

t and (a bound on) a detection error probability.

4.3.1. Detection probabilities: an example. Here is how we construct detection error
probabilities in practice. Consider two alternative models with equal prior proba-
bilities. Model A is the approximating model and model B is the worst-case model
associated with an alternative distribution for the shock process for a particular
positive θ. Consider a fixed sample of T observations on xt. Let Li be the likelihood
of that sample for model i for i = A, B. Define the likelihood ratio

ℓ = log LA − log LB

We can draw a sample value of this log-likelihood ratio by generating a simulation
of length T for xt under model i. The Bayesian detection error probability averages
probabilities of two kinds of errors. First, assume that model A generates the data
and calculate

pA = Prob(error|A) = freq(ℓ ≤ 0|A).

Next, assume that model B generates the data and calculate

pB = Prob(error|B) = freq(ℓ ≥ 0|B).

Since the prior equally weights the two models, the probability of a detection error
is

p(θ) =
1

2
(pA + pB).

Our idea is to set p(θ) at a plausible value, then to invert p(θ) to find a plausi-
ble value for the preference-for-robustness parameter θ. We can approximate the
values of pA, pB composing p(θ) by simulating a large number N of realizations of
samples of xt of length T . In the example below, we simulated 20,000 samples. See
Hansen, Sargent, and Wang (2002) for more details about computing detection error
probabilities.

We now illustrate the use of detection error probabilities to discipline the choice
of θ in the context of the simple dynamic model that Ball (1999) designed to study
alternative rules by which a monetary policy authority might set an interest rate.19

19See Sargent (1999a) for further discussion of Ball’s model from the perspective of robust
decision theory. See Hansen and Sargent (2008b) (chapter 16) for how to treat robustness in
‘forward-looking’ models.
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Ball’s is a ‘backward-looking’ macro model with the structure

yt = −βrt−1 − δet−1 + ǫt(12)

πt = πt−1 + αyt−1 − γ(et−1 − et−2) + ηt(13)

et = θrt + νt,(14)

where y is the logarithm of real output, r is the real interest rate, e is the logarithm of
the real exchange rate, π is the inflation rate, and ǫ, η, ν are serially uncorrelated and
mutually orthogonal disturbances. As an objective, Ball assumed that a monetary
authority wants to maximize

−E
(
π2

t + y2
t

)
.

The monetary authority sets the interest rate rt as a function of the current state,
which Ball shows can be reduced to yt, et.

Ball motivates (12) as an open-economy IS curve and (13) as an open-economy
Phillips curve; he uses (14) to capture effects of the interest rate on the exchange
rate. Ball set the parameters γ, θ, β, δ to the values .2, 2, .6, .2. Following Ball, we
set the innovation shock standard deviations equal to 1, 1,

√
2, respectively.

To discipline the choice of the parameter expressing a preference for robustness,
we calculated the detection error probabilities for distinguishing Ball’s model from
the worst-case models associated with various values of σ ≡ −θ−1. We calculated
these taking Ball’s parameter values as the approximating model and assuming that
T = 142 observations are available, which corresponds to 35.5 years of annual data
for Ball’s quarterly model. Figure 2 shows these detection error probabilities p(σ)
as a function of σ. Notice that the detection error probability is .5 for σ = 0, as
it should be, because then the approximating model and the worst-case model are
identical. The detection error probability falls to .1 for σ ≈ −.085. If we think that a
reasonable preference for robustness is to design rules that work well for alternative
models whose detection error probabilities are .1 or greater, then σ = −.085 is a
reasonable choice of this parameter. Later, we will compute a robust decision rule
for Ball’s model with σ = −.085 and compare its performance to the σ = 0 rule
that expresses no preference for robustness.

4.3.2. Reservations and extensions. Our formulation treats misspecification of all
of the state-evolution equations symmetrically and admits all misspecification that
can be disguised by the shock vector wt+1. Our hypothetical statistical discrimina-
tion problem assumes historical data sets of a common length on the entire state
vector process. We might instead imagine that there are differing amounts of confi-
dence in state equations not captured by the perturbation Cvt and quadratic penalty
θvt · vt. For instance, to imitate aspects of Ellsberg’s two urns we might imagine

that misspecification is constrained to be of the form C

[
v1

t

0

]
with corresponding

penalty θv1
t · v1

t . The rationale for the restricted perturbation would be that there is
more confidence in some aspects of the model than others. More generally, multiple
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Figure 2. Detection error probability (coordinate axis) as a function
of σ = −θ−1 for Ball’s model.

penalty terms could be included with different weighting. A cost of this generaliza-
tion is a greater burden on the calibrator. More penalty parameters would need to
be selected to model a robust decision maker.

The preceding use of the theory of statistical discrimination conceivably helps to
excuse a decision not to model active learning about model misspecification. But
sometimes that excuse might not be convincing. For that reason, we next explore
ways of incorporating learning.

5. Learning

The robust control model outlined above sees decisions being made via a two-stage
process:

• 1. There is an initial learning-model-specification period during which data
are studied and an approximating model is specified. This process is taken
for granted and not analyzed. However, afterwards, learning ceases, though
doubts surround the model specification.

• 2. Given the approximating model, a single fixed decision rule is chosen and
used forever. Though the decision rule is designed to guard against model
misspecification, no attempt is made to use the data to narrow the model
ambiguity during the control period.

The defense for this two-stage process is that somehow the first stage discovers an
approximating model and a set of surrounding models that are difficult to distinguish
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from it with the data available in stage 1 and that are likely to be available only
after a long time has passed in stage 2.

This section considers approaches to model ambiguity coming from literatures on
adaptation and that do not temporally separate learning from control as in the two
step process just described. Instead, they assume continuous learning about the
model and continuous adjustment of decision rules.

5.1. Bayesian models. For a low-dimensional specification of model uncertainty,
an explicit Bayesian formulation might be an attractive alternative to our robust
formulation. We could think of matrices A and B in the state evolution (1) as
being random and specify a prior distribution for this randomness. One possibility
is that there is only some initial randomness, to represent the situation that A and
B are unknown but fixed in time. In this case, observations of the state would
convey information about the realized A and B. Given that the controller does not
observe A and B, and must make inference about these matrices as time evolves,
this problem is not easy to solve. Nevertheless, numerical methods may be employed
to approximate solutions. For example, see Wieland (1996) and Cogley, Colacito,
and Sargent (2007).

We shall use a setting of Cogley, Colacito, and Sargent (2007) first to illustrate
purely Bayesian procedures for approaching model uncertainty, then to show how
to adapt these to put robustness into decision rules. A decision maker wants to
maximize the following function of states st and controls vt:

(15) E0

∞∑

t=0

βtr(st, vt).

The observable and unobservable components of the state vector, st and zt, respec-
tively, evolve according to a law of motion

st+1 = g(st, vt, zt, ǫt+1),(16)

zt+1 = zt,(17)

where ǫt+1 is an i.i.d. vector of shocks and zt ∈ {1, 2} is a hidden state variable that
indexes submodels. Since the state variable zt is time invariant, specification (16)-
(17) states that one of the two submodels governs the data for all periods. But zt is
unknown to the decision maker. The decision maker has a prior probability Prob(z =
1) = π0. Given history st = [st, st−1, . . . , s0], the decision maker recursively computes
πt = Prob(z = 1|st) by applying Bayes’ law:

(18) πt+1 = B(πt, g(st, vt, zt, ǫt+1)).

For example, Cogley, Colacito, Hansen, and Sargent (2008) take one of the sub-
models to be a Keynesian model of a Phillips curve while the other is a new classical
model. The decision maker must decide while he learns.



WANTING ROBUSTNESS IN MACROECONOMICS 21

Because he does not know zt, the policy maker’s prior probability πt becomes a
state variable in a Bellman equation that captures his incentive to experiment. Let
asterisks denote next-period values and express the Bellman equation as

(19) V (s, π) = max
v

{
r(s, v) + Ez

[
Es∗,π∗(βV (s∗, π∗)|s, v, π, z)|s, v, π

]}
,

subject to

s∗ = g(s, v, z, ǫ∗),(20)

π∗ = B(π, g(s, v, z, ǫ∗)).(21)

Ez denotes integration with respect to the distribution of the hidden state z that
indexes submodels, and Es∗,π∗ denotes integration with respect to the joint distri-
bution of (s∗, π∗) conditional on (s, v, π, z).

5.2. Experimentation with specification doubts. Bellman equation (19) ex-
presses the motivation that a decision maker has to experiment, i.e., to take into
account how his decision affects future values of the component of the state π∗. We
describe how Hansen and Sargent (2007) and Cogley, Colacito, Hansen, and Sargent
(2008) adjust Bayesian learning and decision making to account for fears of model
misspecification. Bellman equation (19) invites us to consider two types of misspec-
ification of the stochastic structure: misspecification of the distribution of (s∗, π∗)
conditional on (s, v, π, z), and misspecification of the probability π over submodels
z. Following Hansen and Sargent (2007), we introduce two risk-sensitivity operators
that can help a decision maker construct a decision rule that is robust to these types
of misspecification. While we refer to them as “risk-sensitivity” operators, it is ac-
tually their dual interpretations that interest us. Under these dual interpretations,
a risk-sensitivity adjustment is an outcome of a minimization problem that assigns
worst-case probabilities subject to a penalty on relative entropy. Thus, we view the
operators as adjusting probabilities in cautious ways that assist the decision maker
design robust policies.

5.3. Two risk-sensitivity operators.

5.3.1. T
1 operator. The risk-sensitivity operator T

1 helps the decision maker guard
against misspecification of a submodel.20 Let W (s∗, π∗) be a measurable function
of (s∗, π∗). In our application, W will be a continuation value function. Instead of
taking conditional expectations of W , Cogley, Colacito, Hansen, and Sargent (2008)
and Hansen and Sargent (2007) apply the operator:

(22) T
1(W (s∗, π∗))(s, π, v, z; θ1) = −θ1 log Es∗,π∗ exp

(−W (s∗, π∗)

θ1

)∣∣∣(s, π, v, z)

20See appendix A for more discussion on how to derive and interpret the risk-sensitivity operator
T.
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where Es∗,π∗ denotes a mathematical expectation with respect to the conditional dis-
tribution of s∗, π∗. This operator yields the indirect utility function for a problem in
which the minimizing agent chooses a worst-case distortion to the conditional distri-
bution for (s∗, π∗) in order to minimize the expected value of a value function W plus
an entropy penalty. That penalty limits the set of alternative models against which
the decision maker guards. The size of that set is constrained by the parameter θ1

and is decreasing in θ1, with θ1 = +∞ signifying the absence of a concern for robust-
ness. The solution to this minimization problem implies a multiplicative distortion
to the Bayesian conditional distribution over (s∗, π∗). The worst-case distortion is
proportional to

(23) exp
(−W (s∗, π∗)

θ1

)
,

where the factor of proportionality is chosen to make this nonnegative random vari-
able have conditional expectation equal to unity. Notice that the scaling factor
and the outcome of applying the T

1 operator will depend on the state z indexing
submodels even though W does not. A likelihood ratio proportional to (23) pes-
simistically twists the conditional density of (s∗, π∗) by upweighting outcomes that
have lower continuation values.

5.3.2. T
2 operator. The risk-sensitivity operator T

2 helps the decision maker
evaluate a continuation value function U that is a measurable function of (s, π, v, z)
in a way that guards against misspecification of his prior π:

(24) T
2(W̃ (s, π, v, z))(s, π, v; θ2) = −θ2 log Ez exp

(−W̃ (s, π, v, z)

θ2

)∣∣∣(s, π, v)

This operator yields the indirect utility function for a problem in which the malev-
olent agent chooses a distortion to the Bayesian prior π in order to minimize the

expected value of a function W̃ (s, π, v, z) plus an entropy penalty. Once again, that
penalty constrains the set of alternative specifications against which the decision
maker wants to guard, with the size of the set decreasing in the parameter θ2. The
worst-case distortion to the prior over z is proportional to

(25) exp
(−W̃ (s, π, v, z)

θ2

)
,

where the factor of proportionality is chosen to make this nonnegative random vari-
able have mean one. The worst-case density distorts the Bayesian prior by putting
higher probability on outcomes with lower continuation values.

Our decision maker directly distorts the date t posterior distribution over the
hidden state, which in our example indexes the unknown model, subject to a penalty
on relative entropy. The source of this distortion could be a change in a prior
distribution at some initial date or it could be a past distortion in the state dynamics
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conditioned on the hidden state or model.21 Rather than being specific about this
source of misspecification and updating all of the potential probability distributions
in accordance with Bayes rule with the altered priors or likelihoods, our decision
maker directly explores the impact of changes in the posterior distribution on his
objective.

Application of this second risk-sensitivity operator provides a response to Levin
and Williams (2003) and Onatski and Williams (2003). Levin and Williams (2003)
explore multiple benchmark models. Uncertainty across such models can be ex-
pressed conveniently by the T

2 operator and a concern for this uncertainty is imple-
mented by making robust adjustments to model averages based on historical data.22

As is the aim of Onatski and Williams (2003), the T
2 operator can be used to explore

the consequences of unknown parameters as a form of “structured” uncertainty that
is difficult to address via application of the T

1 operator.23 Finally application of the
T

2 operation gives a way to provide a benchmark to which one can compare the
Taylor rule and other simple monetary policy rules.24

5.4. A Bellman equation for inducing robust decision rules. Following Hansen
and Sargent (2007), Cogley, Colacito, Hansen, and Sargent (2008) induce robust de-
cision rules by replacing the mathematical expectations in (19) with risk-sensitivity
operators. In particular, they substitute (T1)(θ1) for Es∗,π∗ and replace Ez with
(T2)(θ2). This delivers a Bellman equation

(26) V (s, π) = max
v

{
r(s, v) + T

2
[
T

1(βV (s∗, π∗)(s, v, π, z; θ1))
]
(s, v, π; θ2)

}
.

Notice that the parameters θ1 and θ2 are allowed to differ. The T
1 operator ex-

plores the impact of forward-looking distortions in the state dynamics and the T
2

operator explores backward-looking distortions in the outcome of predicting the cur-
rent hidden state given current and past information. Cogley, Colacito, Hansen, and
Sargent (2008) document how applications of these two operators have very differ-
ent ramifications for experimentation in the context of their extended example that
features competing conceptions of the Phillips curve.25 Activating the T

1 operator

21A change in the state dynamics would imply a misspecification in the evolution of the state
probabilities.

22In contrast Levin and Williams (2003) do not consider model averaging and implications for
learning about which model fits the data better.

23See Petersen, James, and Dupuis (2000) for an alternative approach to “structured
uncertainty”.

24See Taylor and Williams (2009) for a robustness comparison across alternative monetary policy
rules.

25When θ1 = θ2 the two operators applied in conjunction give the recursive formulation of risk
sensitivity proposed in Hansen and Sargent (1995a), appropriately modified for the inclusion of
hidden states.
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reduces the value to experimentation because of the suspicions about the specifica-
tions of each model that are introduced. Activating the T

2 operator enhances the
value to experimentation in order reduce the ambiguity across models. Thus, the
two notions of robustness embedded in these operators have offsetting impacts on
the value of experimentation.

5.5. Sudden changes in beliefs. Hansen and Sargent (2008a) apply the T
1 and T

2

operators to build a model of sudden changes in expectations of long-run consump-
tion growth ignited by news about consumption growth. Since the model envisions
an endowment economy, the model is designed to focus on the impacts of beliefs
on asset prices. Because concerns about robustness make a representative consumer
especially averse to persistent uncertainty in consumption growth, fragile expec-
tations created by model uncertainty transmit induce what ordinary econometric
procedures would measure as high and state-dependent market prices of risk.

Hansen and Sargent (2008a) analyze a setting in which there are two submodels
of consumption growth. Let ct be the logarithm of per capita consumption. Model
ι ∈ {0, 1} has a more or less persistent component of consumption growth

ct+1 − ct = µ(ι) + zt + σ1(ι)ει,t+1

zt+1(ι) = ρ(ι)zt(ι) + σ2(ι)ε2,t+1

where µ(ι) is an unknown parameter with prior distribution N (µc(ι), σc(ι)), εt is
an i.i.d. 2 × 1 vector process distributed N (0, I), and z0(ι) is an unknown scalar
distributed as N (µx(ι), σx(ι)). Model ι = 0 has low ρ(ι) and makes consumption
growth nearly i.i.d., while model ι = 1 has ρ(ι) approaching 1, which, with a small
value for σ2(ι), gives consumption growth a highly persistent component of low
conditional volatility but high unconditional volatility.

Bansal and Yaron (2004) tell us that these two models are difficult to distinguish
using post World War II data for the United States. Hansen and Sargent (2008a)
put an initial prior of .5 on these two submodels and calibrate the submodels so that
that the Bayesian posterior over the two submodels is .5 at the end of the sample.
Thus, the two models are engineered so that the likelihood functions for the two
submodels evaluated for the entire sample are identical. The solid blue line in figure
3 shows the Bayesian posterior on the long-run risk ι = 1 model constructed in this
way. Notice that while it wanders, it starts and ends at .5.

The higher green line show the worst-case probability that emerges from applying
a T

2 operator. The worst-case probabilities depicted in Figure 3 indicate that the
representative consumer’s concern for robustness makes him slant model selection
probabilities towards the long-run risk model because, relative to the ι = 0 model
with less persistent consumption growth, the long-run risk ι = 1 model has adverse
consequences for discounted utility. A cautious investor mixes submodels by slant-
ing probabilities towards the model with the lower discounted expected utility. Of
especial interest in Figure 3 are recurrent episodes in which news expands the gap
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Figure 3. Bayesian probability πt = Et(ι) attached to long-run risk
model for growth in U.S. quarterly consumption (nondurables plus
services) per capita for p0 = .5 (lower line) and worst-case probability
p̌t (higher line). We have calibrated θ1 to give a detection error prob-
ability conditional on observing µ(0), µ(1) and zt of .4 and θ2 to give
a detection error probability of .2 for the distribution of ct+1 − ct.

between the worst-case probability and the Bayesian probability πt assigned to the
long-run risk model ι = 1. This provides Hansen and Sargent (2008a) with a way
to capture instability of beliefs alluded to by Keynes in the passage quoted above.

Hansen and Sargent (2008a) explain how the dynamics of continuation utilities
conditioned on the two submodels contribute to countercyclical market prices of risk.
The representative consumer regards an adverse shock to consumption growth as
portending permanent bad news because he increases the worst-case probability p̌t

that he puts on the ι = 1 long-run risk model, while he interprets a positive shock to
consumption growth as only temporary good news because he raises the probability
1 − p̌t that he attaches to the ι = 0 model that has less persistent consumption
growth. Thus, the representative consumer is pessimistic in interpreting good news
as temporary and bad news as permanent.

5.6. Adaptive Models. In principle, the approach of the preceding sections could
be applied to our basic linear-quadratic setting by positing a stochastic process of
the A, B matrices so that there is a tracking problem. The decision maker must learn
about a perpetually moving target. Current and past data must be used to make
inferences about the process for the A, B matrices. But specifying the problem
completely now becomes quite demanding, as the decision maker is compelled to
take a stand on the stochastic evolution of the matrices A, B. The solutions are also
much more difficult to compute because the decision maker at date t must deduce
beliefs about the future trajectory of A, B given current and past information. The
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greater demands on model specification may cause decision makers to second guess
the reasonableness of the auxiliary assumptions that render the decision analysis
tractable and credible. This leads us to discuss a non-Bayesian approach to tracking
problems.

This approach to model uncertainty comes from distinct literatures on adap-
tive control and vector autoregressions with random coefficients.26 What is some-
times called passive adaptive control is occasionally justified as providing robustness
against parameter drift coming from model misspecification.

Thus, a random coefficients model captures doubts about the values of compo-
nents of the matrices A, B by specifying that

xt+1 = Atxt + Btut + Cwt+1

where wt+1 ∼ N (0, I) and the coefficients are described by

(27)

[
col(At+1)
col(Bt+1)

]
=

[
col(At)
col(Bt)

]
+

[
ηA,t+1

ηB,t+1

]

where now

νt+1 ≡




wt+1

ηA,t+1

ηB,t+1




is a vector of independently and identically distributed shocks with specified covari-
ance matrix Q, and col(A) is the vectorization of A. Assuming that the state xt is
observed at t, a decision maker could use a tracking algorithm

[
col(Ât+1)

col(B̂t+1)

]
=

[
col(Ât)

col(B̂t)

]
+ γth(xt, ut, xt−1; col(Ât), col(B̂t)),

where γt is a ‘gain sequence’ and h(·) is a vector of time-t values of ‘sample or-
thogonality conditions’. For example, a least squares algorithm for estimating A, B
would set γt = 1

t
. This would be a good algorithm if A, B were not time varying.

When they are time-varying (i.e., some of the components of Q corresponding to
A, B are not zero), it is better to set γt to a constant. This in effect discounts past
observations.

Problem 5. (Adaptive Control)
To get what control theorists call an adaptive control model, or what Kreps (1998)

calls an anticipated utility model, for each t solve the fixed point problem (4) subject
to

(28) x∗ = Âtx + B̂tu + Cw∗.

26See Kreps (1998) and Sargent (1999b) for related accounts of this approach. See Marcet
and Nicolini (2003), Sargent, Williams, and Zha (2006), Sargent, Williams, and Zha (2009), and
Carboni and Ellison (2009) for empirical applications.
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The solution is a control law ut = −Ftxt that depends on the most recent estimates
of A, B through the solution of the Bellman equation (4).

The adaptive model misuses the Bellman equation (4), which is designed to be
used under the assumption that the A, B matrices in the transition law are time-
invariant. Our adaptive controller uses this marred procedure because he wants a
workable procedure for updating his beliefs using past data and also for looking into
the future while making decisions today. He is of two minds: when determining the
control ut = −Fxt at t, he pretends that (A, B) = (Ât, B̂t) will remain fixed in the
future; but each period when new data on the state xt are revealed, he updates his
estimates. This is not the procedure of a Bayesian who believes (27), as we have
seen above. It is often excused because it is much simpler than a Bayesian analysis
or some loosely defined kind of ‘bounded rationality’.

5.7. State prediction. Another way to incorporate learning in a tractable manner
is to shift the focus from the transition law to the state. Suppose the decision maker
is not able to observe the entire state vector and instead must make inferences about
this vector. Since the state vector evolves over time, we have another variant of a
tracking problem.

When a problem can be formulated as learning about an observed piece of the
original state xt, the construction of decision rules with and without concerns about
robustness becomes tractable.27 Suppose that the A, B, C matrices are known a
priori but that some component of the state vector is not observed. Instead, the
decision maker sees an observation vector y constructed from x

y = Sx.

While some combinations of x can be directly inferred from y, others cannot. Since
the unobserved components of the state vector process x may be serially correlated,
the history of y can help in making inferences about the current state.

Suppose, for instance, that in a consumption-savings problem, a consumer faces
a stochastic process for labor income. This process might be directly observable,
but it might have two components that cannot be disentangled: a permanent com-
ponent and a transitory component. Past labor incomes will convey information
about the magnitude of each of the components. This past information, however,
will typically not reveal perfectly the permanent and transitory pieces. Figure 4
shows impulse response functions for the two components of the endowment process
estimated by Hansen, Sargent, and Tallarini (1999). The first two panels display
impulse responses for two orthogonal components of the endowment, one of which,
d1, is estimated to resemble a permanent component, the other of which, d2 is more
transitory. The third panel shows the impulse response for the univariate (Wold)
representation for the total endowment dt = d1

t + d2
t .

27See Jovanovic (1979) and Jovanovic and Nyarko (1996) for examples of this idea.
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Figure 4. Impulse responses for two components of endowment pro-
cess and their sum in a model of Hansen, Sargent, and Tallarini (1999).
The top panel is the impulse response of the transitory component d2

to an innovation in d2; the middle panel, the impulse response of the
permanent component d1 to its innovation; the bottom panel is the
impulse response of the sum dt = d1

t + d2
t to its own innovation.

Figure 5 depicts the transitory and permanent components to income implied
by the parameter estimates of Hansen, Sargent, and Tallarini (1999). Their model
implies that the separate components di

t can be recovered ex post from the detrended
data on consumption and investment that they used to estimate the parameters.
Figure 6 uses Bayesian updating (Kalman filtering) to form estimators of d1

t , d
2
t

assuming that the parameters of the two endowment processes are known, but that
only the history of the total endowment dt is observed at t. Note that these filtered
estimates in Figure 6 are smoother than the actual components.

Alternatively, consider a stochastic growth model of the type advocated by Brock
and Mirman (1972), but with a twist. Brock and Mirman studied the efficient evo-
lution of capital in an environment in which there is a stochastic evolution for the
technology shock. Consider a setup in which the technology shock has two com-
ponents. Small shocks hit repeatedly over time and large technological shifts occur
infrequently. The technology shifts alter the rate of technological progress. Investors
may not be able to disentangle small repeated shifts from large but infrequent shifts
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Figure 5. Actual permanent and transitory components of endow-
ment process from Hansen, Sargent, Tallarini (1999) model.
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Figure 6. Filtered estimates of permanent and transitory compo-
nents of endowment process from Hansen, Sargent, Tallarini (1999)
model.
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Figure 7. Top panel: the growth rate of the Solow residual, a mea-
sure of of the rate of technological growth. Bottom panel: the prob-
ability that growth rate of the Solow residual is in the low-growth
state.

in technological growth.28 For example, investors may not have perfect informa-
tion about the timing of a productivity slowdown that probably occurred in the
seventies. Suppose investors look at the current and past levels of productivity to
make inferences about whether technological growth is high or low. Repeated small
shocks disguise the actual growth rate. Figure 7 reports the technology process ex-
tracted from postwar data and also shows the probabilities of being in a low growth
state. Notice that during the so-called productivity slowdown of the seventies, even
Bayesian learners would not be particularly confident in this classification for much
of the time period. Learning about technological growth from historical data is
potentially important in this setting.

5.8. The Kalman filter. Suppose for the moment that we abstract from concerns
about robustness. In models with hidden state variables, there is a direct and elegant
counterpart to the control solutions described above. It is called the Kalman filter,
and recursively forms Bayesian forecasts of the current state vector given current
and past information. Let x̂ denote the estimated state. In a stochastic counterpart

28It is most convenient to model the growth rate shift as a jump process with a small number of
states. See Cagetti, Hansen, Sargent, and Williams (2002) for an illustration. It is most convenient
to formulate this problem in continuous time. The Markov jump component pushes us out of the
realm of the linear models studied here.
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to a steady state, the estimated state and the observed y∗ evolve according to:

x̂∗ = Ax̂ + Bu + Gxŵ
∗(29)

y∗ = SAx̂ + SBu + Gyŵ
∗(30)

where Gy is nonsingular. While the matrices A and B are the same, the shocks
are different, reflecting the smaller information set available to the decision maker.
The nonsingularity of Gy guarantees that the new shock ŵ can be recovered from
next-period’s data y∗ via the formula

(31) ŵ = (Gy)
−1(y∗ − SAx̂ − SBu).

However, the original w∗ cannot generally be recovered from y∗. The Kalman filter
delivers a new information state that is matched to the information set of a decision
maker. In particular, it produces the matrices Gx and Gy.

29

In many decision problems confronted by macroeconomists, the target depends
only on the observable component of the state, and thus:30

(32) z = Hx̂ + Ju,

5.9. Ordinary filtering and control. With no preference for robustness, Bayesian
learning has a modest impact on the decision problem (1).

Problem 6. (Combined Control and Prediction)
The steady-state Kalman filter produces a new state vector, state evolution equa-

tion (29) and target equation (32). These replace the original state evolution equa-
tion (1) and target equation (2). The Gx matrix replaces the C matrix, but because
of certainty equivalence, this has no impact on the decision rule computation. The
optimal control law is the same as in problem 1, but it is evaluated at the new (es-
timated) state x̂ generated recursively by the Kalman filter.

5.10. Robust filtering and control. To put a preference for robustness into the
decision problem, we again introduce a second agent and formulate a dynamic recur-
sive two-person game. We consider two such games. They differ in how the second
agent can deceive the first agent.

In decision problems with only terminal rewards, it is known that Bayesian-
Kalman filtering is robust for reasons that are subtle (see Basar and Bernhard (1995)
chapter 7 and Hansen and Sargent (2008b), chapters 17 and 18, for discussions).
Suppose the decision maker at date t has no concerns about past rewards. He only
cares about rewards in current and future time periods. This decision maker will
have data available from the past in making decisions. Bayesian updating using the
Kalman filter remains a defensible way to use this past information, even if model

29In fact, the matrices Gx and Gy are not unique but the so-called gain matrix K = Gx(Gy)−1

is.
30A more general problem in which z depends directly on hidden components of the state vector

can also be handled.
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misspecification is entertained. Control theorists break this result by having the
decision maker continue to care about initial period targets even as time evolves
(e.g. see Basar and Bernhard (1995) and Zhou, Doyle, and Glover (1996)). In the
games posed below, we take a recursive perspective on preferences by having time
t decision makers only care about current and future targets. That justifies our
continued use of the Kalman filter even when there is model misspecification and
delivers separation of prediction and control that is not present in the counterpart
control theory literature. See Hansen and Sargent (2008b), Hansen, Sargent, and
Wang (2002), and Cagetti, Hansen, Sargent, and Williams (2002) for an elaboration.

Game 7. (Robust Control and Prediction, i)
To compute a robust control law, we solve the two-person zero-sum game 3 but

with the information or predicted state x̂ replacing the original state x. Since we
perturb evolution equation (29) instead of (1), we substitute the matrix Gx for C
when solving the robust control problem. Since the equilibrium of our earlier two-
person zero-sum game depended on the matrix C, the matrix Gx produced by the
Kalman filter alters the control law.

Except for replacing C by Gx and the unobserved state x with its predicted state
x̂, the equilibria of game 7 and game 3 coincide.31 The separation of estimation and
control makes it easy to modify our previous analysis to accommodate unobserved
states.

A complaint about game 7 is that the original state evolution was relegated to
the background by forgetting the structure for which the innovations representation
(29), (30) is an outcome. That is, when solving the robust control problem, we
failed to consider direct perturbations in the evolution of the original state vector,
and only explored indirect perturbations from the evolution of the predicted state.
The premise underlying game 3 is that the state x is directly observable. When x
is not observed, an information state x̂ is formed from past history, but x is not
observed. Game 7 fails to take account of this distinction.

To formulate an alternative game that recognizes this distinction, we revert to
the original state evolution equation:

x∗ = Ax + Bu + Cw∗.

The state x is unknown, but can be predicted by current and past values of y using
the Kalman filter. Substituting x̂ for x yields:

(33) x∗ = Ax̂ + Bu + Ǧw̌∗,

where w̌∗ has an identity matrix as its covariance matrix and the (steady-state)
forecast-error covariance matrix for x∗ given current and past values of y is ǦǦ′.

31Although the matrix Gx is not unique, the implied covariance matrix Gx(Gx)′ is unique. The
robust control depends on Gx only through the covariance matrix Gx(Gx)′.
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To study robustness, we disguise the model misspecification by the shock w̌∗.
Notice that the dimension of w̌∗ is typically greater than the dimension of ŵ∗,
providing more room for deception because we use the actual next-period state x∗ on
the left-hand side of evolution equation (33) instead of the constructed information
state x̂∗. Thus, we allow perturbations in the evolution of the unobserved state
vector when entertaining model misspecification.

Game 8. (Robust Control and Prediction, ii)
To compute a robust control law, we solve the two-person zero-sum game 3 but

with the matrix Ǧ used in place of C.

For a given choice of the robustness parameter θ, concern about misspecifica-
tion will be more potent in game 8 than in the other two-person zero-sum games.
Mechanically, this is because

Ǧ(Ǧ)′ ≥ CC ′

Ǧ(Ǧ)′ ≥ Gx(Gx)
′.

The first inequality compares the covariance matrix of x∗ conditioned on current
and past values of y to the covariance matrix of x∗ conditioned on the current state
x. The second inequality compares the covariance of x∗ to the covariance of its
estimator x̂∗, both conditioned on current and past values of y. These inequalities
show that there is more latitude to hide model misspecification in game 8 than in
the other two robustness games. The enlarged covariance structure makes statistical
detection more challenging. The fact that the state is unobserved gives robustness
more potency in game 8 than in game 3.32 The fact that the decision makers explore
the evolution of x∗ instead of the information state x̂∗ gives robustness more potency
in game 8 than 7.33

In summary, the elegant decision theory for combined control and prediction has
direct extensions to accommodate robustness. Recursivity in decision-making makes
Bayesian updating methods justifiable for making predictions while looking back at
current and past data even when there are concerns about model misspecification.
When making decisions that have future consequences, robust control techniques
alter decision rules in much the same way as when the state vector is fully observed.
These ideas are reflected in games 7 and 8.

32Game 3 corresponds to the outcome in risk-sensitive joint filtering and control. See Whittle
(1980). Thus, when filtering is part of the problem, the correspondence between risk-sensitive
control and preferences for robustness is modified.

33As emphasized in Hansen, Sargent, and Wang (2002), holding θ fixed across games is different
than holding detection errors probabilities fixed. See Barillas, Hansen, and Sargent (2009) for an
illustration of this in the context of an example that links risk-premia culled from asset prices to
measuring the uncertainty costs associated with aggregate fluctuations.
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5.11. Adaptive control versus robust control. The robustness of Bayesian up-
dating is tied to the notion of an approximating model (A, B, C) and perturbations
around that model. The adaptive control problem 5 is aimed at eliminating the
commitment to a time-invariant benchmark model. While a more flexible view is
adopted for prediction, a commitment to the estimated model is exploited in the de-
sign of a control law for reasons of tractability. Thus, robust control and prediction
combines Bayesian learning (about an unknown state vector) with robust control,
while adaptive control combines flexible learning about parameters with standard
control methods.

6. Robustness in action

6.1. Robustness in a simple macroeconomic model. We use Ball’s model to
illustrate the robustness attained by alternative settings of the parameter θ. For
Ball’s model, we present Figure 8 to show that while robust rules do less well when
the approximating model actually generates the data, their performance deteriorates
more slowly with departures of the data generating mechanism from the approxi-
mating model.

Following the risk-sensitive control literature, we transform θ into the risk-sensitivity
parameter σ ≡ −θ−1. Figure 8 plots the value −E(π2 + y2) attained by three rules
under the the worst-case model for the value of σ on the ordinate axis. The rules
are those for the three values σ = 0,−.04,−.085. Recall how the detection error
probabilities computed above associate a value of θ = −0.085 with a detection error
probability of about .1. Notice how the robust rules (those computed with pref-
erence parameter σ = −.04 or −.085) have values that deteriorate at a lower rate
with model misspecification (they are flatter). Notice that the rule for σ = −.085
does worse than the σ = 0 or σ = −.04 rules when σ = 0, but is more robust in
deteriorating less when the model is misspecified. Next, we turn to various ways of
characterizing the features that make the robust rules more robust.

6.2. Responsiveness. A common method for studying implications of dynamic
economic models is to compute the impulse responses of economic variables to
shocks. Formally, these responses are a sequence of dynamic multipliers that show
how a shock vector wt alters current and future values of the state vector xt and the
target zt tomorrow. These same impulse response sequences provide insights into
how concerns about robustness alter the decision-making process.

6.2.1. Impulse Responses. Let F be a candidate control law and suppose there is no
model misspecification. Thus, the state vector xt evolves according to:

xt+1 = (A − BF )xt + Cwt+1.

and the target is now given by:

zt = (H − JF )xt.
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Figure 8. Value of −E(π2 + y2) for three decision rules when the
data are generated by the worst-case model associated with the value
of σ on the horizontal axis: σ = 0 rule (solid line), σ = −.04 rule
(dashed-dotted line), σ = −.085 ( dashed) line.

To compute an impulse response sequence, we run the counterfactual experiment of
setting x−1 to zero, w0 to some arbitrary vector of numbers, and all future wt’s to
zero. It is straightforward to show that the resulting targets are:

(34) zt = (H − JF )(A − BF )tCw0.

The impulse response sequence is just the sequence of matrices: I(F, 0) = (H −
JF )C, I(F, 1) = (H − JF )(A−BF )C, ... , I(F, t− 1) = (H − JF )(A−BF )t−1C,
... .

Under this counterfactual experiment, the objective (3) is given by:

(35) −1

2
(w0)

′

∞∑

t=0

βtI(F, t − 1)′I(F, t − 1)w0.

Of course, shocks occur in all periods not just period zero, so the actual object should
take these into account as well. Since the shocks are presumed to be independent
over time, the contributions of shocks at different time periods can effectively be
uncoupled (see the discussion of spectral utility in Whiteman (1986)). Absorbing
the discounting into the impulse responses, we see that in the absence of model
misspecification, the aim of the decision maker is to choose F to make the sequence

of matrices I(F, 0),
√

βI(F, 1), . . . ,
√

β
tI(F, t), . . . small in magnitude. Thus, (35)

induces no preferences over specific patterns of the impulse response sequence, only
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about the overall magnitude of the sequence as measured by the discounted sum
(35).

Even though we have only considered a degenerate shock sequence, maximizing
objective (3) by choice of F gives precisely the solution to problem 1. In particular,
the optimal control law does not depend on the choice of w0 for w0 6= 0. We
summarize this in:

Claim 9. (Frequency Domain Problem) For every w0, the solution of the problem

of choosing a fixed F to maximize (35) is the same F̂ that solves problem (1). This
problem induces no preferences about the shape of the impulse response function,
only about its magnitude as measured by (35).

In the next subsection, we shall see that a preference for robustness induces pref-
erences about the shape of the impulse response function as well as its magnitude.

6.2.2. Model misspecification with filtering. Consider now potential model misspec-
ification. As in game 3, we introduce a second, minimizing agent. In our counter-
factual experiment, suppose this second agent can choose future vt’s to damage the
performance of the decision rule F . Thus, under our hypothetical experiment, we
envision state and target equations:

xt+1 = Axt + But + Cvt

zt = Hxt + Jvt

with x0 = Cw0. By conditioning on an initial w0, we are free to think of the second
agent as choosing a sequence of the vt’s that might depend on the initial w0. A
given vt will influence current and future targets via the impulse response sequence
derived above.

To limit the damage caused by the malevolent agent, we penalize the choice of the
vt sequence by using the robustness multiplier parameter θ. Thus, the non-recursive
objective for the two-player zero-sum dynamic game is:

(36) −
∞∑

t=0

βt
{
|zt| − θ|vt|2

}
.

When the robustness parameter θ is large, the implicit constraint on the magnitude
of the sequence of vt’s is small and very little model misspecification is tolerated.
Smaller values of θ permit sequences vt that are larger in magnitude. A malevolent
player agent chooses a vt sequence to minimize (36) To construct a robust control law,
the original decision maker then maximizes (36) by choice of F . This non-recursive
representation of the game can be solved using the Fourier transform techniques
employed by Whiteman (1986), Kasa (1999), and Christiano and Fitzgerald (1998).
See Hansen and Sargent (2008b), chapter 8, for a formal development. This non-
recursive game has the same solution as the recursive game 3.
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Before describing some details, it is easy to describe informally how the malevolent
agent will behave. He will detect seasonal, cyclical or long-run patterns in the
implied impulse response sequences {√βI(F, t)}∞t=0, then use his limited resources
to concentrate deception at those frequencies. Thus, the minimizing agent will
make the vt’s have cyclical components at those frequencies in the impulse response
function at which the maximizing agent’s choice of F leaves himself most vulnerable
as measured by (35).

Here the mathematical tool of Fourier transforms allows us to summarize the
impulse response function in the frequency domain.34 Imagine using a representation
of the components of the specification error vt sequence in terms of sines and cosines
to investigate the effects on the objective function when misspecification is confined
to particular frequencies. Searching over frequencies for the most damaging effects
on the objective allows the minimizing agent to put particular temporal patterns
into the vt’s. It is necessary to view the composite contribution of entire vt sequence,
including its temporal pattern.

An impulse response sequence summarizes how future targets respond to a cur-
rent period vt; a Fourier transform of the impulse response function quantifies how
future targets respond to vt sequences that are pure cosine waves. When the min-
imizing agent chooses a temporally dependent vt sequence, the maximizing agent
should care about the temporal pattern of the impulse response sequence, not just its
overall magnitude.35 The minimizing agent in general will find that some particular
frequencies (e.g., a cosine wave of given frequency for the vt’s) will most efficiently
exploit model misspecification. To respond best to the actions of the minimizing
agent, therefore, in addition to making the impulse response sequence small, now
the maximizing agent wants to design a control law F in part to flatten the frequency
sensitivity of the (appropriately discounted) impulse response sequence. This con-
cern causes a trade-off across frequencies to emerge. The robustness parameter θ
balances a tension between asking that impulse responses be small in magnitude
and also that they be insensitive to model misspecification.

6.3. Some frequency domain details. To investigate these ideas in more detail,
we use some arithmetic of complex numbers. Recall that

exp(iωt) = cos(ωt) + i sin(ωt).

We can extract a frequency component from the misspecification sequence {vt} using
a Fourier transform. Define:

FT (v)(ω) =

∞∑

t=0

βt/2vt exp(iωt), ω ∈ [−π, π].

34Also see Brock, Durlauf, and Rondina (2008).
35It was the absence of the temporal dependence in the vt’s under the approximating model

that left the maximizing agent indifferent to the shape of the impulse response function in (35).
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We can interpret

FT (v)(ω) exp(−iωt)

as the frequency ω component of the misspecification sequence. Our justification
for this claim comes from the integration recovery (or inversion) formula:

βt/2vt =
1

2π

∫ π

−π

FT (v)(ω) exp(−iωt)dω.

Thus, we have an additive decomposition over the frequency components. By adding
up or integrating over these frequencies, we recover the misspecification sequence in
the time domain. Moreover, the squared magnitude of the misspecification sequence
can be depicted as an integral:

∞∑

t=0

βtvt · vt =
1

2π

∫ π

−π

|FT (v)(ω)|2dω

Thus, Fourier transforms provide a convenient toolkit for thinking formally about
misspecification in terms of frequency decompositions.

It may appear troubling that the frequency components are complex. However, by
combining contribution at frequencies ω and −ω, we obtain sequences of real vectors.
The periodicity of frequency ω and frequency −ω are identical, so it makes sense to
treat these two components as a composite contribution. Moreover, |FT (v)(ω)| =
|FT (v)(−ω)|.

We can get a version of this decomposition for the appropriately discounted target
vector sequence.36 This calculation results in the following formula for the Fourier
transform FT (z)(ω) of the ‘target’ zt sequence:

FT (z)(ω) = h(ω)[w0 + exp(iω)FT (v)(ω)]

where the matrix function

h(ω) = (H − JF )[I −
√

β(A − BF ) exp(iω)]−1C

=

∞∑

t=0

βt/2I(F, t) exp(iωt).

is the Fourier transform of the sequence of impulse responses from the shocks to
the target zt. This transform depends implicitly on the choice of control law F .
This Fourier transform describes how frequency components of the misspecification
sequence influence the corresponding frequency components of the target sequence.
When the matrix h(ω) is large in magnitude relative to other frequencies, frequency
ω is particularly vulnerable to misspecification.

36That cosine shocks lead to cosine responses of the same frequency reflects the linearity of the
model. In nonlinear models, the response to a cosine wave shock is more complicated.
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Objective (36) has a frequency representation given by:

− 1

4π

∫ π

−π

(|FT (z)(ω)|2 − θ|FT (v)(ω)|2)dω.

The malevolent agent chooses to minimize this objective by choice of FT (v)(ω). The
control law F is then chosen to minimize the objective. As established in Hansen
and Sargent (2008b), chapter 8, this is equivalent to ranking control laws F using
the frequency-based entropy criterion:

(37) entropy = − 1

2π

∫ π

−π

log det[θI − h(ω)′h(−ω)]dω.

See Hansen and Sargent (2008b) for an explanation of how this criterion induces the
same preferences over decision rules F as the two-player game 3. Lowering θ causes
the decision maker to design Fθ to make (trace h(ω)′h(−ω)) flatter as a function
of frequency, thereby lowering its larger values at the cost of raising smaller ones.
Flattening (trace h(ω)′h(−ω)) makes the realized value of the criterion function less
sensitive to departures of the shocks from the benchmark specification of no serial
correlation.

6.3.1. A limiting version of robustness. There are limits on the size of the robustness
parameter θ. When θ is too small, it is known that the two-player zero-sum game
suffers a breakdown. The fictitious malevolent player can inflict sufficient damage
that the objective function remains at −∞ regardless of the control law F . The
critical value of θ can be found by solving:

θ = sup
v

1

2π

∫ π

−π

|h(ω)FT (v)(ω)|2dω

subject to
1

2π

∫ π

−π

|FT (v)(ω)|2dω = 1.

The sup is typically not attained, but is approximated by a sequence that isolates
one particular frequency.

The critical value θ depends on the choice of control law F . One (somewhat
extreme) version of robust control theory, called H∞ control theory, instructs a
decision maker to select a control law to make this critical value of θ as small as
possible.

6.3.2. A related econometric defense for filtering. In econometric analyses, it is often
argued that time series data should be filtered before estimation to avoid contam-
inating parameters. Indeed, frequency decompositions can be used to justify such
methods. The method called spectral analysis is about decomposing time series into
frequency components. Consider an econometrician with a formal economic model
to be estimated. He suspects, however, that the model may not be well suited to
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explain all of the component movements in the time series. For instance, many
macroeconomic models are not well designed to explain seasonal frequencies. The
same is sometimes claimed for low frequency movements as well. In this sense the
data may be contaminated vis a vis the underlying economic model.37

One solution to this problem would be to put a prior distribution over all pos-
sible forms of contamination and to form a hyper model by integrating over this
contamination. As we have argued above, that removes concerns about model mis-
specification from discussion, but arguably in a contrived way. Also, this approach
will not give rise to the common applied method of filtering the data to eliminate
particular frequencies where the most misspecification is suspected.

Alternatively , we could formalize the suspicion of data contamination by intro-
ducing a malevolent agent who has the ability to contaminate time series data over
some frequency range, say seasonal frequencies or low frequencies that correspond
to long-run movements in the time series. This contamination can undermine pa-
rameter estimation in a way formalized in the frequency domain by Sims (1972) for
least squares regression models and Sims (1993) and Hansen and Sargent (1993)
for multivariate time-series models. Sims (1974) and Wallis (1974) used frequency
domain characterizations to justify a seasonal-adjustment filter and to provide guid-
ance about the appropriate structure of the filter. They found that if one suspects
that a model is better specified at some frequencies than others, then it makes sense
to diminish approximation errors by filtering the data to eliminate frequencies most
vulnerable to misspecification.

Consider a two-player zero-sum game to formulate this defense. If an econome-
trician suspects that a model is better specified at some frequencies than others,
this can be operationalized by allowing the malevolent agent to concentrate his
mischief-making only at those frequencies, like the malevolent agent from robust
control theory. The data filter used by the econometrician can emerge as a solution
to an analogous two-player game. To arrest the effects of such mischief-making, the
econometrician will design a filter to eliminate those frequencies from estimation.

Such an analysis provides a way to think about both seasonal adjustment and
trend removal. Both can be regarded as procedures that remove frequency compo-
nents with high power with the aim of focusing empirical analysis on frequencies
where a model is better specified. Sims (1993) and Hansen and Sargent (1993)
describe situations in which the cross-equation restrictions of misspecified rational
expectations models provide better estimates of preference and technological param-
eters with seasonally adjusted data.

6.3.3. Comparisons. It is useful to compare the frequency domain analysis of data
filtering with the frequency domain analysis of robust decision making. The robust
decision maker achieves a robust rule by damping the influence of frequencies most
vulnerable to misspecification. In the Sims (1993) analysis of data filtering, an

37Or should we say that the model is contaminated vis a vis the data?
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econometrician who fears misspecification and knows the approximation criterion is
advised to choose a data filtering scheme that down plays frequencies at which he
suspects the most misspecification. He does ‘window carpentry’ in crafting a filter
to minimize the impact of specification error on the parameters estimates that he
cares about.

6.4. Friedman: long and variable lags. We now return to Friedman’s concern
about the use of misspecified models in the design of macroeconomic policies, and in
particular to his view that lags in the effects of monetary policy are long and variable.
The game theoretic formulation of robustness gives one possible expression to this
concern about long and variable lags. That the lags are long is determined by the
specification of the approximating model. (We will soon give an example in the
form of the model of Laurence Ball.) That the lags are variable is captured by the
innovation mean distortions vt that are permitted to feed back arbitrarily on the
history of states and controls. By representing misspecified dynamics, the vt’s can
capture one sense of variable lags. Indeed, in the game theoretic construction of a
robust rule, the decision maker acts as though he believes that the way that the
worst-case vt+1 process feeds back on the state depends on his choice of decision rule
F . This dependence can be expressed in the frequency domain in the way we have
described. The structure of the original model (A, B, C) and the hypothetical control
law F dictate which frequencies are most vulnerable to model misspecification. They
might be low frequencies, as in Friedman’s celebrated permanent income model,
or they might be business cycle or seasonal frequencies. Robust control laws are
designed in part to dampen the impact of frequency responses induced by the vt’s.
To blunt the role of this second player, under robustness the original player will
aim to diminish the importance of the impulse response sequence beyond the initial
response. The resulting control laws often lead to impulse responses that are greater
at impact and are more muted in the tails. We give an illustration in the next
subsection.

6.4.1. Robustness in Ball’s model. We return to Ball’s model and use it to illustrate
how concerns about robustness affect frequency domain representations of impulse
response functions. We discount the return function in Ball’s model, altering the
object that the government would like to maximize to be

−E
∞∑

t=0

βt(π2
t + y2

t ).

We derive the associated robust rules for three values of the robustness parameter
θ. In the frequency domain, the criterion can be represented as

H2 = −
∫ π

−π

trace[h(ω)′h(−ω)]d ω.
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Figure 9. Frequency decompositions of trace [h(ω)′h(−ω)] for ob-
jective function of Ball’s model under three decision rules; discount
factor β = 1 on left panel, β = .9 on right panel.

Here h(ω) is the transfer function from the shocks in Ball’s model to the targets,
the inflation rate and output. The transfer function h depends on the government’s
choice of a feedback rule Fθ. Ball computed F∞.

Figure 9 displays frequency decompositions of [trace h(ω)′h(−ω)] for robust
rules with β = 1 and β = .9. Figure 9 shows frequency domain decomposi-
tions of a government’s objective function for three alternative policy rules labeled
θ = +∞, θ = 10, θ = 5. The parameter θ measures a concern about robustness, with
θ = +∞ corresponding to no concern about robustness, and lower values of θ rep-
resenting a concern for misspecification. Of the three rules whose transfer functions
are depicted in Figure 9, Ball’s rule (θ = +∞) is the best under the approximating
model because the area under the curve is the smallest.

The transfer function h gives a frequency domain representation of how targets
respond to serially uncorrelated shocks. The frequency domain decomposition C
depicted by the θ = +∞ curve in Figure 9 exposes the frequencies that are most
vulnerable to small misspecifications of the temporal and feedback properties of the
shocks. Low frequency misspecifications are most troublesome under Ball’s optimal
feedback rule because for those frequencies, trace[h(ζ)′h(ζ)] is highest.

We can obtain more robust rules by optimizing the entropy criterion (37). Flat-
tening the frequency response trace[h(ω)′h(−ω)] is achieved by making the interest
rate more sensitive to both y and e; as we reduce θ, both a and b increase in the
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Figure 10. Top panel: impulse responses of inflation to the shock
ηt for three values of θ: θ = +∞ (solid line), θ = 10 (dashed-dotted
line), and θ = 5 (dotted line), with β = 1. Bottom panel: impulse
response of inflation to shock ǫt under same three values of θ.

feedback rule rt = ayt + bπt.
38 This effect of activating a preference for robust rules

has the following interpretation. Ball’s model specifies that the shocks in (12),(13),
(14) are serially uncorrelated. The no-concern about robustness θ = +∞ rule ex-
poses the policy maker to the biggest costs if the shocks instead are actually highly
positively serially correlated. This means that a policy maker who is worried about
misspecification is most concerned about misreading what is actually a ‘permanent’
or ‘long-lived’ shock as a temporary (i.e., serially uncorrelated) one. To protect
himself, the policy maker responds to serially uncorrelated shocks (under the ap-
proximating model) as though they were positively serially correlated. This response
manifests itself in his making the interest rate more responsive to both yt and πt.

An interesting aspect of the two panels of Figure 9 is that in terms of trace [h(ω)′h(−ω)],
lowering the discount factor β has similar effects as lowering θ (compare the θ = 5
curves in the two panels). Hansen, Sargent, and Tallarini (1999) uncovered a simi-
lar pattern in a permanent income model; they showed that there existed offsetting
changes in β and θ that would leave the quantities (but not the prices) of a perma-
nent income model unchanged.

Figure 10 displays impulse response functions of inflation to ηt (the shock in the
Phillips curve) and ǫt (the shock in the IS curve) under the robust rules for θ =
+∞, 10, 5 when β = 1. The panels show that activating preferences for robustness

38See Sargent (1999a) for a discussion.
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causes the impulse responses to damp out more quickly, which is consistent with
the flatter trace [h(ω)′h(−ω)] functions observed as we accentuate the preference
for robustness. Note also that the impact effect of ǫt on inflation is increased with
an increased preference for robustness.

6.5. Precaution. A property or limitation of the linear-quadratic decision problem
1 in the absence of robustness is that it displays certainty equivalence. The optimal
decision rule does not depend on the matrix C that governs how shocks impinge on
the the state evolution. The decision rule fails to adjust to presence of fluctuations
induced by shocks (even though the decisions themselves do depend on the shocks).
The rule would be the same even if shocks were set to zero. Thus, there is no motive
for precaution.

The celebrated permanent-income model of Friedman (1956) (see Zeldes (1989)
for an elaboration) has been criticized because it precludes a precautionary motive
for savings. Leland (1968) and Miller (1974) extended Friedman’s analysis to ac-
commodate precautionary savings by moving outside the linear-quadratic functional
forms given in problem 1. Notice that in decision problem 1, both the time t con-
tribution to the objective function and the value function are quadratic and hence
have zero third derivatives. For general decision problems under correct model spec-
ification, Kimball (1990) constructs a measure of precaution in terms of the third
derivatives of the utility function or value function.

We have seen how a preference for robustness prompts the C matrix to influ-
ence behavior even within the confines of decision problem 1, which because it has
a quadratic value function precludes a precautionary motive under correct model
misspecification. Thus, a concern about model misspecification introduces an addi-
tional motivation for precaution beyond that suggested by Leland (1968) and Miller
(1974). Shock variances play a role in this new mechanism because the model mis-
specification must be disguised to a statistician. Hansen, Sargent, and Tallarini
(1999) are able to reinterpret Friedman’s permanent income model of consumption
as one in which the consumer is concerned about model misspecification. Under the
robust interpretation, consumers discount the future more than under the certainty-
equivalent interpretation. In spite of this discounting, consumers save in part be-
cause of concerns that their model of the stochastic evolution of income might be
incorrect.

This new mechanism for precaution remains when robustness is introduced into
the models studied by Leland (1968), Miller (1974), Kimball (1990), and others. In
contrast to the precautionary behavior under correct model specification, robustness
makes precaution depend on more than just third derivatives of value functions. The
robust counterpart to Kimball (1990)’s measures of precaution depends on the lower
order derivatives as well. This dependence on lower-order derivatives of the value
function makes robust notions of precaution distinct from and potentially more
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potent than the earlier notion of precaution coming from a non-zero third derivative
of a value function.

6.6. Risk aversion. Economists are often perplexed by behavior of market par-
ticipants that seems to indicate extreme risk aversion, for example, the behavior
of asset prices and returns. To study risk aversion, economists want to confront
decision makers with gambles described by known probabilities. From knowledge
or guesses about how people would behave when confronted with specific and well
defined risks, economists infer degrees of risk aversion that are reasonable. For in-
stance, Barsky, Juster, Kimball, and Shapiro (1997) administered survey questions
eliciting from people their willingness to participate in gambles. A distinct source
of information about risk-aversion comes from measurements of risk-return trade-
offs from financial market data. The implied connection between risk aversion as
modeled by a preference parameter and risk-return trade-offs measured by financial
econometricians was delineated by Hansen and Jagannathan (1991) and Cochrane
and Hansen (1992). But evidence extracted in this way from historical security
market data suggest that risk aversion implied by security market data is very much
larger than that elicited from participants facing those hypothetical gambles with
well understood probabilities.

There is a variety of responses to this discrepancy. One questions the appropri-
ateness of extrapolating measures of risk-aversion extracted from hypothetical small
gambles to much larger ones. For example, it has been claimed that people look more
risk averse when facing small gambles than large ones (see Segal and Spivak (1990),
Epstein and Melino (1995), and Rabin (1999)). Others question the empirical mea-
surements of the risk-return trade-off because, for example, mean returns on equity
are known to be difficult to measure reliably. Our statistical notion of robustness
easily makes contact with such responses. Thus, a concern about robustness comes
into play when agents believe that their probabilistic descriptions of risk might be
misspecified. In security markets, precise quantification of risks is difficult. It turns
out that there is a formal sense in which a preference for robustness as modeled
above can be reinterpreted in terms of a large degree of risk aversion, treating the
approximating model as known. This formal equivalence has manifestations in both
decision-making and in prices. The observationally equivalent risk-averse or risk-
sensitive interpretation of robust decision making was first provided by Jacobson
(1973), but outside the recursive framework used here. Hansen and Sargent (1995b)
build on work of Jacobson (1973) and Whittle (1980) to establish an equivalence
between a preference for robustness and risk-sensitive preferences for the two-person
zero-sum game 3. Anderson, Hansen, and Sargent (2003) and Hansen, Sargent, Tur-
muhambetova, and Williams (2006) extend this equivalence result to a larger class
of recursive two-person zero-sum games. Thus, the decision rules that emerge from
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robustness games are identical with those rules that come from risk-sensitive control
problems with correctly specified models.39

Hansen, Sargent, and Tallarini (1999), Tallarini (2000), Cagetti, Hansen, Sargent,
and Williams (2002) show that in a class of stochastic growth models the effects of
a preference for robustness or of a risk-sensitive adjustment to preferences are very
difficult or impossible to detect in the behavior of quantities along, for example,
aggregate data on consumption and investment. The reason is that in these models
altering a preference for robustness has effects on quantities much like those that
occur under a change in a discount factor. Alterations in the parameter measuring
preference for robustness can be offset by a change in the discount factor and thereby
leave consumption and investment allocations virtually unchanged.

However, that kind of observational equivalence result does not extend to asset
prices. The same adjustments to preferences for robustness and discount factors that
leave consumption and investment allocations unaltered can have marked effects on
the value function of a planner in a representative agent economy and therefore
on equilibrium market prices of risk. Hansen, Sargent, and Tallarini (1999) and
Hansen, Sargent, and Wang (2002) have used this observation to study the effects
of a preference for robustness on the theoretical value of the equity premium.

A simple and pedagogically convenient model of asset prices is obtained by study-
ing the shadow prices from optimal resource allocation problems. These shadow
prices contain a convenient decomposition of the risk-return trade-off. Let γt denote
a vector of factor loadings, so that under an approximating model, the unpredictable
component of the return is γt · wt+1. Let rf

t denote the risk-free interest rate. Then
the required mean return µt satisfies the factor pricing relation

µt − rf
t = γt · qt

where qt is a vector of what are commonly referred to as factor risk prices. Changing
the price vector qt changes the required mean return. Economic models with risk-
averse investors imply a specific shadow price formula for qt. This formula depends
explicitly on the risk preferences of the consumer. An implication of many economic
models is that the magnitude |qt| of the price vector implied by a reasonable amount
of risk aversion is too small to match empirical observations.

Introducing robustness gives us an additive decomposition for qt in correspond-
ing continuous-time models, as demonstrated by Anderson, Hansen, and Sargent
(1999), Anderson, Hansen, and Sargent (2003) and Chen and Epstein (1998). One

39This observational equivalence applies within an economy for perturbations modeled in the
manner described here. It can be broken by either restricting the class of perturbations, by
introducing differential penalty terms, or in some of formulations with hidden states. Also, this
equivalence result applies for a given economic environment. The robustness penalty parameter
θ should not be thought of as being invariant across environments with different state equations.
Recall that in our discussion of calibration, we used specific aspects of the environment to constrain
the magnitude of the penalty parameter.
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Figure 11. Four-Period Market Price of Knightian Uncertainty ver-
sus Detection Error Probability for three models: HST denotes the
model of Hansen, Sargent, and Tallarini (1999); ‘benchmark’ denotes
their model modified along the lines of the first robust filtering game
7; ‘HSW’ denotes their model modified according to the second robust
filtering game 8.

component is an explicit risk component and the other is a model uncertainty com-
ponent. The model uncertainty component relates directly to the detection-error
rates that emerge from the statistical discrimination problem described above. By
exploiting this connection, Anderson, Hansen, and Sargent (2003) argue that it is
reasonable to assign about a third of the observed |qt| to concerns about robust-
ness. This interpretation is premised on the notion that the market experiment is
fundamentally more complicated than the stylized experiments confronting people
with well understood risks that are typically used to calibrate risk aversion. Faced
with this complication, investors use models as approximations and make conserva-
tive adjustments. These adjustments show up prominently in security market prices
even when they are disguised in macroeconomic aggregates.

Figure 11 is from Hansen, Sargent, and Wang (2002), who studied the contribu-
tion to the market price of risk from a concern about robustness in three models:
the basic model of Hansen, Sargent, and Tallarini (1999) and two modified versions
of it in which agents do not observe the state and so must filter. Those two versions
corresponded to the two robust filtering games 7 and 8 described above. Figure 11
graphs the contribution to the market price of risk of four-period securities coming
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from robustness for each of these models graphed against the detection error prob-
ability. Freezing the detection error probability across models makes the value of
θ depend on the model. (See the discussion above about how the detection error
probability depends on θ and the particular model.) Figure 11 affirms the tight
link between detection error probabilities and the contribution of a concern about
robustness to the market price of risk that was asserted by Anderson, Hansen, and
Sargent (2003). Notice how the relationship between detection error probabilities
and the contribution of robustness to the market price of risk does not depend on
which model is selected. The figure also conveys that a preference for robustness cor-
responding to a plausible value of the detection error probability gives a substantial
boost to the market price of risk.

7. Concluding remarks

This paper has discussed work designed to account for a preference for decisions
that are robust to model misspecification. We have focused mainly on single-agent
decision problems. The decision maker evaluates decision rules against a set of
models near his approximating model, and uses a two-person zero-sum game in
which a malevolent agent chooses the model as an instrument to achieve robustness
across the set of models.

We have not touched issues that arise in contexts where multiple agents want
robustness. Those issues deserve serious attention. One issue is the appropri-
ate equilibrium concept with multiple agents who fear model misspecification. We
need an equilibrium concept to replace rational expectations. Hansen and Sargent
(2008b), chapters 15 and 16, and Karantounias (2009) use an equilibrium concept
that seems a natural extension of rational expectations because all agents share
the same approximating model. Suitably viewed, the communism of models seen
in rational expectations models extends only partially to this setting: now agents
share an approximating model, but not necessarily their sets of surrounding models
against which they value robustness, nor the synthesized worst-case models that
they use to attain robustness. Anderson (2005) studies a pure endowment economy
whose agents have what we would interpret as different concerns about robustness,
and shows how the distribution of wealth over time is affected by those concerns.40

Hansen and Sargent (2008b) (chapter 16), Kasa (1999), and Karantounias (2009)
describe multi-agent problems in the form of Ramsey problems for a government
facing a competitive private sector.

Preferences for robustness also bear on the Lucas critique. Lucas’s critique is
the assertion that rational expectations models make decision rules functions of sto-
chastic processes of shocks and other variables exogenous to decision makers. To

40Anderson embraces the risk-sensitivity interpretation of his preference specification, but it is
also susceptible to a robustness interpretation. He studies a Pareto problem of a planner who
shares the approximating model and recognizes the differing preferences of the agents.
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each shock process, a rational expectations theory associates a distinct decision rule.
Lucas criticized earlier work for violating this principle. What about robust deci-
sion theory? It partially affirms but partially belies the Lucas critique. For a given
preference for robustness (that is, for a given θ < +∞), a distinct decision rule is
associated with each approximating model, respecting the Lucas critique. However,
for a given preference for robustness and a fixed approximating model, the decision
maker is supposed to use the same decision rule for a set of models surrounding the
approximating model, superficially ‘violating the Lucas critique’. Presumably, the
decision maker would defend that violation by appealing to detection error proba-
bilities large enough to make members of that set of models difficult to distinguish
from the approximating model based on the data available.

Appendix A. Generalizations

This appendix describes how the linear-quadratic setups in much of the text link
to more general non-linear, non-Gaussian problems. We define relative entropy and
how it relates to the term v′

tvt that plays such a vital role in the robust control
problems treated in the text.

A.1. Relative entropy and multiplier problem. Let V (ǫ) be a (value) function
of a random vector ǫ with density φ(ǫ). Let θ > 0 be a scalar penalty parameter.

Consider a distorted density φ̂(ǫ) = m(ǫ)φ(ǫ) where m(ǫ) ≥ 0 is evidently a likeli-
hood ratio. The risk-sensitivity operator is defined in terms of the indirect utility
function TV that emerges from:

Problem 10.

(38) TV = min
m(ǫ)≥0

∫
m(ǫ)

[
V (ǫ) + θ log m(ǫ)

]
φ(ǫ)dǫ

subject to

(39)

∫
m(ǫ)φ(ǫ)dǫ = 1

Here
∫

m(ǫ) log m(ǫ)φ(ǫ)dǫ =
∫

log m(ǫ)φ̂(ǫ)dǫ is the entropy of φ̂ relative to φ.
The minimizing value of m(ǫ) is

(40) m(ǫ) =
exp

(
−V (ǫ)/θ

)
∫

exp
(
−V (ǫ̃)/θ

)
φ(ǫ̃)dǫ̃

and the indirect utility function satisfies

(41) TV = −θ log

∫
exp

(
−V (ǫ)/θ)φ(ǫ)dǫ.
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A.2. Relative entropy and Gaussian distributions. It is useful first to compute
relative entropy for the case that φ is N (0, I) and φ̂ is N (w, Σ), where the covariance

matrix Σ is nonsingular. We seek a formula for
∫

m(ε) log m(ε)φ(ε)dε =
∫

(log φ̂(ε)−
log φ(ε))φ̂(ε)dε. The log-likelihood ratio is

(42) log φ̂(ε) − log φ(ε) =
1

2

[
−(ε − w)′Σ−1(ε − w) + ε′ε − log det Σ

]
.

Observe that

−
∫

1

2
(ε − w)′Σ−1(ε − w)φ̂(ε)dε = −1

2
trace(I).

Applying the identity ε = w + (ε − w) gives

1

2
ε′ε =

1

2
w′w +

1

2
(ε − w)′(ε − w) + w′(ε − w).

Taking expectations under φ̂,

1

2

∫
ε′εφ̂(ε)dε =

1

2
w′w +

1

2
trace(Σ).

Combining terms gives

(43) ent =

∫
(log φ̂ − log φ)φ̂dε = −1

2
log det Σ +

1

2
w′w +

1

2
trace(Σ − I).

Notice the separate appearances of the mean distortion w and the covariance dis-
tortion Σ − I. We will apply formula (43) to compute a risk-sensitivity operator T

in the next subsection.

A.3. A static valuation problem. In this subsection, we construct a robust es-
timate of a value function that depends on a random vector that for now we as-
sume is beyond the control of the decision maker. Consider a quadratic value
function V (x) = −1

2
x′Px − ρ where P is a positive definite symmetric matrix,

and x ∼ N (x̄, Σ). We shall use the convenient representation x = x̄ + Cε, where
CC ′ = Σ and ε ∼ N (0, I). Here x ∈ Rn, ε ∈ Rm, and C is an n × m matrix.

We want to apply the risk-sensitivity operator T to the value function V (x) =
−1

2
x′Px − ρ,

TV (x̄) = −θ log

∫
exp

(−V (x̄ + Cε)

θ

)
φ(ε)dε,

where φ(ε) ∝ exp
(
−1

2
ε′ε

)
by the assumption that φ ∼ N (0, I).

Remark 11. For the minimization problem defining TV to be well posed, we require
that θ be sufficiently high that (I − θ−1C ′PC) is nonsingular. The lowest value of θ
that satisfies this condition is called the breakdown point.41

41See Hansen and Sargent (2008b), chapter 8, for a discussion of the breakdown point and its
relation to H∞ control theory as viewed especially from the frequency domain. See Brock, Durlauf,



WANTING ROBUSTNESS IN MACROECONOMICS 51

To compute TV , we will proceed in two steps.

• Step 1. First, we compute φ̂(ǫ, x̄). Recall that the associated worst-case
likelihood ratio is

m(ε, x̄) ∝ exp

(−V (x̄ + Cε)

θ

)
,

which for the value function V (x) = −1
2
x′Px − ρ becomes

m(ε, x̄) ∝ exp

( 1
2
ε′C ′PCε + ε′C ′P x̄

θ

)
.

Then the worst-case density of ε is

φ̂(ε, x̄) = m(ε, x̄)φ(ε)

∝ exp

(
−1

2
ε′(I − θ−1C ′PC)ε +

1

θ
ε′(I − θ−1C ′PC)(I − θ−1C ′PC)−1C ′P x̄

)
.

From the form of this expression, it follows that the worst-case density φ̂(ε, x̄)
is Gaussian with covariance matrix (I − θ−1C ′PC)−1 and mean θ−1(I −
θ−1C ′PC)−1C ′P x̄ = (θI − C ′PC)−1C ′x̄.

• Step 2. Second, to compute TV (x̄), we can use

(44) TV (x̄) =

∫
V (x̄ + Cε)φ̂(ε)dε + θ

∫
m(ε, x̄) log m(ε, x̄)φ(ε)dε

while substituting our formulas for the mean and covariance matrix of φ̂
into our formula (43) for the relative entropy of two Gaussian densities. We
obtain

TV (x̄) = −1

2
x̄′D(P )x̄− ρ − 1

2
trace

(
PC(I − θ−1C ′PC)−1C ′

)
+

θ

2
trace

[
(I − θ−1C ′PC)−1 − I

]
− θ

2
log det(I − θ−1C ′PC)−1(45)

where

(46) D(P ) = P + PC(θI − C ′PC)−1C ′P.

The matrix D(P ) appearing in the quadratic term in the first line on the
right side of (45) emerges from summing contributions coming from (i) eval-
uating the expected value of the quadratic form x′Px under the worst-case
distribution, and (ii) adding in θ times that part of the contribution to en-
tropy 1

2
w′w in (43) coming from the dependence of the worst-case mean

w = (θI − C ′PC)−1C ′x̄ on x̄. The term −1
2
trace

(
PC(I − θ−1CPC)−1C ′

)
is

the usual contribution to the expected value from a quadratic form, but eval-
uated under the worst-case variance matrix (I−θ−1C ′PC)−1. The two terms

and Rondina (2008) for another attack on robust policy design that exploits a frequency domain
formulation.
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on the second line of (45) are θ times the two contributions from entropy in
(43) other than 1

2
w′w .42

Formula (45) simplifies when we note that

(I − θ−1C ′PC)−1 − I = θ−1(I − θ−1C ′PC)−1C ′PC

and that therefore

−1

2
trace

(
PC(I − θ−1CPC)−1C ′

)
+

θ

2
trace

[
(I − θ−1C ′PC)−1 − I

]
= 0.

So it follows that

(47) TV (x̄) = −1

2
x̄′D(P )x̄− ρ − θ

2
log det(I − θ−1C ′PC)−1.

It is convenient that with a quadratic objective, linear constraints, and Gauss-
ian random variables, the value function for the risk-sensitivity operator and the
associated worst-case distributions can be computed by solving a deterministic pro-
gramming problem:

Problem 12. The worst-case mean v = (θI − C ′PC)−1C ′P x̄ attains:

min
v

{
−1

2
(x̄ + Cv)′P (x̄ + Cv) + θ

v′v

2

}
.

The minimized value function is −1
2
x̄′D(P )x̄ where D(P ) satisfies (51).

A.4. A two-period valuation problem. In this section, we describe a pure val-
uation problem in which the decision maker does not influence the distribution of
random outcomes. We assume the following evolution equation:

(48) y∗ = Ay + Cε

where y is today’s and y∗ is next period’s value of the state vector, and ε ∼ N (0, I).
There is a value function

V (y∗) = −1

2
(y∗)′Py∗ − ρ.

Our risk-sensitive adjustment to the value function is

T(V )(y) = −θ log

[∫
exp

(−V [Ay + Cε]

θ

)
π(ε)dε

]

=

∫
V (y∗)π̂dε + θ

∫
(log π̂ − log π)π̂dε(49)

42In the special (no-concern about robustness) case that θ = +∞, we obtain the usual result
that

TV (x̄) = EV (x̄) = −1

2
x̄′P x̄ − ρ − 1

2
trace

(
PCC′

)
.

To verify this, one shows that the limit of the log det term is the trace term in the second line of
(45) as θ → ∞. Write the log det as the sum of logs of the corresponding eigenvalues, then take
limits and recall the formula expressing the trace as the sum of eigenvalues.
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where π̂ is obtained as the solution to the minimization problem in a multiplier
problem. We know that the associated worst-case likelihood ratio satisfies the ex-
ponential twisting formula

m̂(ε, y) ∝ exp

[
1

2θ
ε′C ′PCε +

1

θ
ε′C ′PAy

]
.

(We have absorbed all non-random terms into the factor of proportionality signified
by the ∝ sign. This accounts for the dependence of m̂(ε, y) on y.) When π is a
standard normal density, it follows that

π(ε)m̂(ε, y) ∝ exp
[
−1

2
ε′

(
I − 1

θ
C ′PC

)
ε +ε′

(
I − 1

θ
C ′PC

)
(θI − C ′PC)

−1
C ′PAy

]
,

where we choose the factor of proportionality so that the function of ε on the right-
hand side integrates to unity. The function on the right side is evidently pro-

portional to a normal density with covariance matrix
(
I − 1

θ
C ′PC

)−1
and mean

(θI − C ′PC)−1 C ′PAy. The covariance matrix of the worst-case distribution is(
I − 1

θ
C ′PC

)−1
exceeds the covariance matrix I for the original distribution of

ε. The altered mean for ε implies that the distorted conditional mean for y∗ is[
I + C (θI − C ′PC)−1 C ′P

]
Ay.

Applying (47), the risk-sensitive adjustment to the objective function −1
2
(y∗)′P (y∗)−

ρ is

T(V )(y) = −1

2
(Ay)′D(P )(Ay)− ρ

− θ

2
log det

(
I − 1

θ
C ′PC

)−1

(50)

where the operator D(P ) is defined by

(51) D(P ) = P + PC(θI − C ′PC)−1C ′P.

All of the essential ingredients for evaluating (49) or (50) can be computed by
solving a deterministic problem.

Problem 13. Consider the following deterministic law of motion for the state vec-
tor:

y∗ = Ay + Cw

where we have replaced the stochastic shock ε in (48) by a deterministic specification
error w. Since this is a deterministic evolution equation, covariance matrices do not
come into play now, but the matrix C continues to play a key role in designing a
robust decision rule. Solve the problem

min
w

{
−1

2
(Ay + Cw)′P (Ay + Cw) +

θ

2
w′w

}
.
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In this deterministic problem, we penalize the choice of the distortion w using only
the contribution to relative entropy (43) that comes from w. The minimizing w is

w∗ = (θI − C ′PC)
−1

C ′PAy.

This coincides with the mean distortion of the worst-case normal distribution for the
stochastic problem. The minimized objective function is

−1

2
(Ay)′D(P )(Ay),

which agrees with the contribution to the stochastic robust adjustment to the value
function (50) coming from the quadratic form in Ay. What is missing relative to
the stochastic problem is the distorted covariance matrix for the worst-case normal
distribution and the constant term in the adjusted value function.

The idea of solving a deterministic problem to generate key parts of the solu-
tion of a stochastic problem originated with Jacobson (1973) and underlies much
of linear-quadratic-Gaussian robust control theory (for example, see Hansen and
Sargent (2008b)). For the purposes of computing and characterizing the decision
rules in the linear-quadratic model, we can abstract from covariance distortions
and focus exclusively on mean distortions. In the linear-quadratic case, the covari-
ance distortion alters the value function only through the additive constant term
ρ− 1

2
log det(I −θ−1C ′PC)−1. We can deduce both the covariance matrix distortion

and the constant adjustment from formulas that emerge from the purely determin-
istic problem.
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