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Abstract

This paper discusses senses in which alternative representations of the preferences
that underlie robust control theory are or are not time consistent. The multiplier pref-
erences of Hansen, Sargent, Turmuhambetova, and Williams (2006) are time consistent
by construction. So too are their constraint preference, provided that continuation en-
tropy is carried along as an additional state variable. The min-max expected utility
theory of Gilboa and Schmeidler (1989) depicts preferences using multiple prior distri-
butions, a set of distributions that robust control theory specifies in a very parsimonious
way.

1 Introduction

This paper responds to criticisms by Chen and Epstein (2002) and Epstein and Schneider
(2003) of the decision theoretic foundations of our work that builds on robust control theory.
Epstein, Chen, and Schneider focus on what they regard as an undesirable dynamic inconsis-
tency in the preferences that robust control theorists implicitly impute to the decision maker.
This paper describes representations of robust control theory as two-player zero-sum games,
provides senses of time consistency that robust control theories do and do not satisfy, and
asserts our opinion that the dynamic inconsistency that concerns Epstein and his coauthors
is not particularly troublesome for economic applications.

Hansen, Sargent, Turmuhambetova, and Williams (2006) used ideas from robust control
theory1 to form a set of time-zero multiple priors for the min-max expected utility theory of
Gilboa and Schmeidler (1989). They express the set of priors as a family of perturbations
to a single explicitly stated benchmark model. Hansen, Sargent, Turmuhambetova, and
Williams (2006) call the resulting min-max preferences the constraint preferences because
they are formulated directly in terms of a set of priors represented via a constraint on the

∗We thank Sherwin Rosen for urging us to write this paper. We thank Nan Li and Martin Schneider for
useful comments on earlier drafts.

1Especially Anderson, Hansen, and Sargent (2000), which builds extensively on Basar and Bernhard
(1995), James (1992) and Petersen, James, and Dupuis (2000).
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magnitude of allowable perturbations from the benchmark model. In this way, Hansen, Sar-
gent, Turmuhambetova, and Williams (2006) connected Gilboa and Schmeidler’s approach
to uncertainty aversion with the literature on robust control.

Hansen, Sargent, Turmuhambetova, and Williams (2006) show that the control law that
solves the time-zero robust control problem can also be expressed in terms of a recursive
representation of preferences that penalizes deviations from the benchmark model. These
multiplier preferences are distinct from the date zero constraint preferences, but are related
to them via the Lagrange Multiplier Theorem.2 Multiplier problems are standard in the
robust control theory literature, probably because they are readily computable.

The multiplier preferences used by Hansen, Sargent, and Tallarini (1999), Anderson,
Hansen, and Sargent (2003) and Anderson, Hansen, and Sargent (2000) are dynamically
consistent (see Maccheroni, Marinacci, and Rustichini (2006a)) and have been given ax-
iomatic underpinnings by Maccheroni, Marinacci, and Rustichini (2006b) and Wang (2003).
But Chen and Epstein (2002) and Epstein and Schneider (2003) assert that the constraint
preferences, which link more directly to Gilboa and Schmeidler (1989), are ‘dynamically
inconsistent’. We shall argue that the type of dynamic inconsistency to which they refer
differs from that familiar to macroeconomists. Indeed, by using an appropriate endogenous
state variable, the constraint preferences can be depicted recursively. The robust control law
can then be viewed as the maximizing player’s part of the Markov perfect equilibrium of a
two-player, zero-sum dynamic game. As a consequence, dynamic programming methods are
applicable.

The type of dynamic inconsistency of robust control that disturbs Epstein and Schneider
is this: as time unfolds, the minimizing agent in robust control is not allowed freely to
choose anew from among the original time 0 potential probability distortions. This set is
so large that it includes probability distortions conditioned on events that can no longer
be realized and probability distortions over events that have already been realized. Our
recursive constraint implementation of robust control theory prevents the minimizing agent
from exploring these types of perturbations. If he did, he would want to revise his earlier
distortions of conditional probabilities conditioned on those events now known not to occur.
In that sense, our multiplier formulation of robust control is time consistent.

This paper uses dynamic games to shed light on the concerns raised by Epstein and
Schneider (2003). The representation of preferences by Gilboa and Schmeidler (1989) makes
decision problems look like games. The game theoretic formulation has a long history in
statistical decision theory (see Blackwell and Girshick (1954)). We will argue that the form
of dynamic inconsistency that worries Epstein and his co-authors comes from arresting the
equilibrium of a two-player dynamic game in the middle of the game. Their objection
amounts to a quarrel about the types of state variables that should and should not be allowed
within the dynamic game used to model behavior. We concede that the continuation entropy
state variable that we used in Hansen, Sargent, Turmuhambetova, and Williams (2006)
requires a form of commitment to the preferences orders as they are depicted in subsequent

2Hansen and Sargent (2001) characterize aspects of choices over which the constraint and multiplier
preferences agree and disagree.
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time periods. However, that does not disturb us because robust control theory does have
the type of time-consistency that we need to study recursive competitive equilibria and asset
pricing in dynamic economies.

The remainder of this paper is organized as follows. Section 2 describes Bellman equations
for robust control problems. Section 3 reviews economic reasons for dynamically consistent
preferences. Section 4 describes how dynamic programming applies to robust control prob-
lems. Sections 5 and 6 describe the preference orderings induced by robust control problems
and alternative senses in which they are or are not time consistent. Sections 7, 8, and 9
describe the amounts of commitment, endogeneity, and separability of constraints on model
misspecification built into robust control formulations, while section 10 concludes.

2 Recursive Portrayal of Robust Control Problems

A recursive version of a discrete time robust control problem can be cast in terms of the
Bellman equation

V (r, x) = max
c∈C

min
q∗≥0,r∗≥0

U(c, x) + β

∫

q∗(w)V [r∗(w), g(x, c, w)]F (dw)

where the extremization is subject to:

r =

∫

q∗(w)[log q∗(w) + βr∗(w)]F (dw)

1 =

∫

q∗(w)F (dw)

In this specification, F is the distribution function for a shock vector w that is assumed to
be independently and identically distributed, c is a control vector, and x is a state vector.
The decision maker’s approximating model asserts that next period’s realized state is

x∗ = g(x, c, w).

To generate a class of perturbed models around the approximating model, the decision
maker distorts the shock distribution F by using a nonnegative density q∗ that serves as the
Radon-Nikodym derivative of the distorted density vis-a-vis the benchmark model.

For reasons discussed in Anderson, Hansen, and Sargent (2000), we refer to the endoge-
nous state variable r as conditional entropy. It measures the difference between two models
and is related to statistical discrimination through the construction of log-likelihood ratios.
The function r∗ allocates next period’s continuation entropy as a function of the realized
shock. The pair (q∗, r∗) is constrained by the current entropy r. We assume that a discrete
time Bellman-Isaacs condition makes the order of minimization and maximization irrelevant.

This problem has a special structure. The envelope condition is

Vr(x, r) = Vr(x
∗, r∗),
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which implies a time invariant relation between x and r. As a consequence, we can depict
policies that attain the right side of the Bellman equation as functions of x only: c = φc(x)
and q∗ = φq(·, x). Moreover, it is convenient to parameterize the problem in terms of a
multiplier

θ = Vr(x, r)

that is held fixed over time. Consider instead the control problem associated with the
Bellman equation:

W (x) = max
c∈C

min
q∗≥0

U(c, x) + θ

∫

q∗(w) log q∗(w)F (dw) + β

∫

q∗(w)W [g(x, c, w)]F (dw) (1)

subject to
∫

q∗(w)F (dw) = 1.

This problem has one fewer state variable, implies the same solutions for q∗ and c, and is
more manageable computationally. Setting the multiplier θ corresponds to initializing the
state variable r.

3 Why Time Consistency?

Johnsen and Donaldson (1985) contribute a valuable analysis of time consistency outside the
context of model misspecification. They want a decision maker follow through with his or
her initial plans as information accrues:

Let us consider a decision maker’s dynamic choice problem, as time passes and
the states of the world unfold. Having carried out the current action of his chosen
plan and knowing that state s obtains, he is free to choose any action in the set
Ys. Having ruled out any surprise as to what his remaining options are, if his
choice deviates from the original plan, this may be taken as prima facia evidence
of “changing tastes”. If on the other hand, the original plan is carried through
whatever state obtains, we may that the decision maker’s tastes remain constant.
His dynamic preferences will then be said to admit time consistent planning.

Johnsen and Donaldson also seek preference specifications for which there is no incentive to
reopen markets at future dates provided that Arrow-Debreu contingent claims are traded at
the outset. Solutions to robust control problems fulfill the Johnsen and Donaldson desiderata

and produce interpretable security market price predictions.
In what follows we describe two other time consistency issues and comment on their

importance.
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4 Dynamic Programming and Markov Perfect Equilib-

ria

One reason for imposing time consistency in preferences is that it guarantees that dynamic
programming methods can be applied. As we shall see, the dynamic inconsistency that
concerns Chen and Epstein (2002) and Epstein and Schneider (2003) does not impede ap-
plication of dynamic programming. Before discussing the kind of time inconsistency that
concerns them, we briefly another time consistency issue that we view as central in robust
formulations of decision problems.

4.1 Time consistency and timing protocols

James (1992) and Basar and Bernhard (1995) like to emphasize the link between robust
control theory and dynamic two-player, zero-sum games. A recipe for choosing robust deci-
sions requires a maximizing agent to rank control processes and a second malevolent agent
whose distortions of probabilities relative to the benchmark model induce the maximizing
agent to prefer robust decisions. Thus, prescriptions for robust decisions come from solving a
two-player, zero-sum dynamic game (see Basar and Bernhard (1995) and James (1992)). An
equilibrium of the dynamic game produces a sequence of robust decision rules. We can study
how dynamic games with different timing protocols, manifested in alternative restrictions on
strategies, alter equilibrium outcomes and representations.3

In what follows, we use a discrete-time counterpart to the games studied by Hansen,
Sargent, Turmuhambetova, and Williams (2006). Consider a two-player, zero-sum game in
which one player chooses a control process {ct} and the other player chooses a distortion
process {qt+1}, where qt+1 is nonnegative, depends on date t + 1 information, and satisfies
E(qt+1|Ft) = 1. The transition probabilities between dates t and t + τ are captured by
multiplying qt+1...qt+τ by the τ -period transition probabilities from a benchmark model.
Value processes

Vt = U(ct, xt) + βE(qt+1Vt+1|Ft)

and
Wt = U(ct, xt) + E [qt+1(θ log qt+1 + βWt+1)|Ft]

can be constructed recursively, where E(·|Ft) is the expectation operator associated with
the benchmark model and Ft is the sigma algebra of date t events.4 Notice that the date
t recursions depend on the pair (ct, qt+1). No symptom of time inconsistency appears in
these recursions. The robustness games have one player choosing ct by maximizing and the
other choosing qt+1 by minimizing subject to intertemporal constraints, as in the two robust
decision problems described in the previous section.

3Also see Hansen and Sargent (2007), chapter 7.
4While we have changed notation relative to that used in section 2, there is a simple relation. Since q∗

was a function of w before and could be chosen to depend on x, when evaluated at xt and wt+1, the earlier
q∗ is a Ft+1 measurable random variable.
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Time consistency issues are resolved by verifying a Bellman-Isaacs condition that guar-
antees that the outcomes in the equilibrium of the date zero commitment game coincides
with those for the Markov perfect equilibrium. The Markov perfect equilibrium can be
computed recursively by backward induction. The equivalence of the equilibrium outcomes
of these two-player zero-sum games having different timing protocols (e.g., commitment of
both players to sequences at time 0 versus sequential decision making by both players) is
central to the results in James (1992), Basar and Bernhard (1995), and Hansen, Sargent,
Turmuhambetova, and Williams (2006).

4.2 Epstein and Schneider’s notion of time-consistency

The notion of time consistency satisfied by robust control problems is distinct from the notion
of dynamic consistency that concerns Chen and Epstein (2002) and Epstein and Schneider
(2003). To understand the source of the difference, recall that when Gilboa and Schmeidler
(1989) construct preferences that accommodate uncertainty aversion, they solve a minimiza-
tion problem over measures for each hypothetical consumption process, instead of computing
values for decision pairs (ct, qt+1), as in the dynamic games. A dynamic counterpart to
Gilboa and Schmeidler’s procedure would take as a starting point a given consumption pro-
cess {ct} and then minimize over the process {qt+1}, subject to an appropriate constraint.
A time consistency problem manifests itself in the solution of this problem for alternative
choices of {ct}, as we will see below. Nevertheless, the presence of this form of time consis-
tency problem does not lead to incentives to re-open markets nor does it subvert dynamic
programming.

5 A Recursive Portrayal of Preferences

Using recursions analogous to the ones described above, we can also define preferences that
minimize over the process {qt+1}. For simplicity, suppose now that the control is consumption
and that the utility function U depends only on ct.

5 To define preferences, we construct
a value function for a general collection of consumption processes that are restricted by
information constraints but are not restricted to be functions of an appropriately chosen
Markov state.

We begin with a recursive constraint formulation of preferences that uses a convenient
recursive specification of a discounted version of the entropy of a stochastic process. We
display it in order to understand better the sense in which the resulting preferences are
recursive and to investigate their time consistency.

Given a consumption process {ct : t ≥ 0}, define

V ∗
t (r) = min

q∗,r∗
U(ct) + βE

[

q∗V ∗
t+1(r

∗)|Ft

]

(2)

5Below we consider a habit persistence specification in which past consumptions are used to construct a
current habit stock that enters U .
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subject to

r = E [q∗(log q∗ + βr∗)|Ft] (3)

1 = E(q∗|Ft),

where now q∗ and r∗ are nonnegative Ft+1 measurable random variables. Here we are building
a function V ∗

t (·) from V ∗
t+1(·). The random variable q∗ distorts the one-period transition

probability. The adding up constraint in (3) guarantees that multiplication by q∗ produces
a legitimate probability distribution.

As before, the constraint that entropy be r is used to limit the amount of model mis-
specification that is acknowledged, q∗ log q∗ is the current period contribution to entropy,
and r∗ is a continuation entropy that connotes the part of entropy to be allocated in future
time periods. The functions V ∗

t are constructed via backward induction. The preferences
are initialized using an exogenously specified value of r0.

Holding θ fixed across alternative consumption processes gives rise to a second preference
ordering. This preference-ordering can be depicted recursively, but without using entropy as
an additional state variable. The alternative recursion is

W ∗
t = min

q∗
U(ct) + βE

(

q∗W ∗
t+1|Ft

)

+ θE (q∗ log q∗|Ft) , (4)

which is formed as a penalty problem, where θ > 0 is a penalty parameter.
Given two consumption processes, {c1

t} and {c2
t} we can construct two date zero func-

tions V ∗
0,1 and V ∗

0,2 using (2) for each process. We can rank consumptions by evaluating these
functions at r0. The larger function at r0 will tell us which of the consumption processes is
preferred. For instance, if V ∗

0,1(r0) ≥ V ∗
0,2(r0), then the first process is preferred to the second

one. Holding the penalty parameter θ fixed differs from holding fixed the entropy constraint
across consumption processes, however. The value θ that makes the solution of model (4)
deliver that given value of r0 depends on the choice of the hypothesized consumption. Nev-
ertheless, holding fixed θ gives rise to an alternative but well defined preference order. See
Wang (2003) for axioms that justify these and other preferences.

6 Conditional Preference Orders

Any discussion of time inconsistency in preferences must take a stand on the preference
ordering used in subsequent time periods. We now consider three different ways to con-
struct preference orders in subsequent dates. We focus on the constraint preferences because
the multiplier preferences are automatically time consistent in the sense of Johnsen and
Donaldson (1985).

6.1 Implicit Preferences

Starting from date zero preferences, Johnsen and Donaldson (1985) construct an implied
conditional preference order for other calendar dates, but conditioned on realized events.
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They then explore properties of the conditional preference order. As they emphasize, the
resulting family of conditional preference orders is, by construction, time consistent. The
question is whether these preference orders are appealing. To judge this, Johnsen and Don-
aldson (1985) define the properties of history dependence, conditional weak dependence, and
dependence on unrealized alternatives.

At date zero, we can use a common r0 to initialize the constraint preference orders.
However, different consumption processes are associated with different specifications {qt+1 :
0 ≤ t ≤ τ − 1} as well as different processes for continuation entropy rτ . The different
choices of qt+1 will cause history dependence, despite the separability over time and across
states in the objective. Moreover, V ∗

τ (rτ ) in states that are known not to be realized based
on date τ information will have an impact on the conditional preference order over states
that can be realized. As time unfolds, the minimization used to define preferences induces
the following unappealing feature of the implied consumption ranking: despite the recursive
construction, all branches used to construct V ∗

0 remain relevant when it comes time to
reassess the preferences over consumption from the vantage point of date τ .

Nevertheless, this aspect of the implied preference orders in does not undermine the
applicability of dynamic programming. Moreover, as we will see in section 6.3 there is
another and more tractable way to specify preferences over time.

6.2 Unconstrained Reassessment of Date Zero Models

In an analysis of a continuous-time multiple priors model, Chen and Epstein (2002) take a
different point of view about the intertemporal preference orders. Suppose that the date τ

minimizing decision maker uses the date zero family of models but cares only about con-
sumption from date τ forward conditioned on date τ information. Absence of dependence
on past consumptions is posited because, at least for the moment, U depends only on ct.
Exploring the conditional probabilities implied by the full set of date zero models generates
time inconsistency for the following reason.

The function V ∗
τ (·) is constructed via backward induction. But at date τ the minimization

suggested by Chen and Epstein (2002) includes minimizing over rτ . To make the date τ

conditional entropy rτ large, the minimizing agent would make the ex ante probability of
the date τ observed information small. For instance, suppose that τ is one. Then at date
one we consider the problem:

min
q∗,r∗

V ∗
1 (r∗)

subject to:

r0 = E [q∗(log q∗ + βr∗)|F0]

1 = E(q∗|F0)

where q∗ and r∗ are restricted to be nonnegative and F1 measurable. The objective is to be
minimized conditioned on date one conditioning information. Notice that when q∗ is zero
for the realized date one information, r∗ can be made arbitrarily large. Thus, the date one
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re-optimization becomes degenerate and inconsistent with the recursive construction of V ∗
0 .

The source of the time inconsistency is the freedom given to the date τ minimization to
reassign distortions to the benchmark probabilities that apply to events that have already
been realized.

To avoid this problem, Chen and Epstein (2002) argue for imposing separate restrictions
on the set of admissible conditional densities across time and states. For instance, instead
of the recursive constraint (3) we could require

E [q∗(log q∗)|Ft] ≤ ηt (5)

E(q∗|Ft) = 1

for an exogenously specified process {ηt}.
6

6.3 A Better Approach

Our recursive construction of V and V ∗
τ suggests a different approach than either the implicit

approach of section 6.1 or the unconstrained reassessment approach of section 6.2. Suppose
that the re-optimization from date τ forward precludes a reassessment of the distortion of
probabilities of events that have already been realized as of date τ .That can be accomplished
by endowing the time τ minimizing agent with a state variable rτ that ‘accounts’ for prob-
ability distortions over events that have already been realize and thus have already been
‘spent’. Thus, rτ accounts for continuation entropy already allocated to distorting events
that can no longer be realized given date τ information.
When evaluating alternative consumption processes, this state variable is held fixed at date
τ . We use appropriately constructed valuations V ∗

τ (rτ ) to rank consumption processes from
date τ forward. The common value of the state variable rτ is held fixed across consumption
processes. It was chosen earlier as a function of date τ shocks) and is inherited by the date
τ decision-maker(s). Conditioning on this state variable makes contributions from previous
dates and from unrealized states irrelevant to the time τ ranking of the continuation path
of consumption from τ on.

This approach allows the date τ decision maker to explore distortions of the probabili-
ties of future events that can be realized given date τ information. Reallocation of future
conditional relative entropy r∗ is permitted at date τ , subject to (3). Given our recursive
construction, this more limited type of reassessment will not cause the preferences to be time
inconsistent.

6Alternatively, Epstein and Schneider (2003) suggest that one might begin with a family of models
constrained in accordance with difference equation (3) solved forward from date zero. One could then
expand this family of models sufficiently to satisfy their dynamic consistency requirement. In particular,
one might hope to find an implied choice of ηt’s in (5) to support this construction. Unfortunately, this
way of constructing the ηt’s suffers from an analogous problem. The restrictions on the densities q in future
periods would be effectively removed so that the ηt’s in (5) would have to be infinite. Therefore, Epstein and
Schneider’s proposed repair is uninteresting for our decision problem because the expanded set of probability
models is too large.
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We see very little appeal to the idea of distorting probabilities of events that have already
been realized, and thus are not bothered by limiting the scope of the re-evaluation in this
way. Nevertheless, our formulation requires a form of commitment and a state variable to
keep track of it.

While this approach results in a different family of preference orders than the implicit
approach, the differences are inconsequential in recursive control problems. The preferences
remain consistent in the following sense. Consider the re-evaluation of the process {c1

t}.
Associated with this process is a continuation entropy rτ for date τ . Consider an alternative
process {c2

t} that agrees with the original process up until (but excluding) time τ . If {c1
t}

is preferred to {c2
t} at date τ with probability one, then this preference ordering will be

preserved at date zero.7 The date zero problem allows for a more flexible minimization,
although this flexibility will only reduce the date zero value of {c2

t} and so cannot reverse
the preference ordering.8

7 Commitment

Provided that the date τ decision-maker commits to using rτ in ranking consumptions from
date τ forward, the implied preferences by (2) are made recursive by supposing that the date
τ minimizing agent can assign the continuation entropy for date τ + 1 chosen as a function
of tomorrow’s realized state. A possible complaint about this formulation is that it requires
too much commitment. In ranking consumption processes from date τ forward, why should
the rτ chosen for a particular consumption process be adhered to?

Some such form of commitment in individual decision-making does not seem implausible
to us. We can debate how much commitment is reasonable, but then it would also seem
appropriate to ask Epstein and Schneider what leads decision makers to commit to an ex-
ogenously specified process {ηt} of entropy distortions specified period-by-period as in (5).
Neither our decision-making environment nor that envisioned by Chen and Epstein (2002)
and Epstein and Schneider (2003) is, in our view, rich enough to address this question.

8 Endogenous State Variable

Our representation requires an additional endogenous state variable to describe preferences.
The fact that we have carried along that state variable as an argument in the function V ∗

t dis-
tinguishes our formulation from typical specifications of preferences in single agent decision
problems. But state variables do play a role in other preference orders. For instance, pref-
erences with intertemporal complementarities such as those with habit persistence include a
state variable called a habit stock that is constructed from past consumptions.

7This can be seen by computing a date zero value for the {c2
t
} using the minimizing distortions between

date one and τ .
8See also Epstein and Schneider (2003) for a closely related discussion of a weaker dynamic consistency

axiom.
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To illustrate the differences between a state variable to depict habit persistence and the
state variable that appears in our representation of preferences, suppose that the habit stock
is constructed as a geometric weighted average:

ht = (1 − λ)ct + λht−1, (6)

for 0 < λ < 1. Define the date t preferences using

Ṽt = U(ct, ht−1) + βE
(

Ṽt+1|Ft

)

(7)

where (6) is used to build the habit stock from current and past consumption. A feature
of (7) is that we may be able depict date t preferences in terms of consumption from date
t forward and the habit stock ht−1 coming into time t. A state variable ht−1 is used to
define the date t preferences, but this variable can be constructed mechanically from past
consumption.

Consider now two consumption processes {c1
t} and {c2

t} that agree from date zero through
date τ − 1 and suppose that h−1 is fixed at some arbitrary number. Thus, h1

t = h2
t for

t = 0, 1, ..., τ − 1. If Ṽ 1
τ ≥ Ṽ 2

τ with probability one, then Ṽ 1
0 ≥ Ṽ 2

0 with probability one.
This is the notion of time consistency in preferences used by Duffie and Epstein (1992) and
others, appropriately extended to include a state variable. Habit persistent preferences are
dynamically consistent in this sense, once we introduce an appropriate a state variable into
the analysis. In contrast to the conditional entropy rt, the habit stock state variable ht−1

can be formed mechanically from past consumptions. No separate optimization step beyond
that needed to choose {ct} itself is needed to construct ht−1 when we compare consumption
processes with particular attributes.

By way of contrast, our state variable rτ cannot be formed mechanically in terms of past
consumption. It is constructed through optimization and is therefore forward-looking. Some
people might regard this feature as unattractive because it makes the date τ preferences look
‘too endogenous’. The forward-looking nature of this variable makes it depend on unrealized
alternatives. (See Epstein and Schneider (2003) for an elaboration on this complaint.) Thus,
our state variable rτ can be said to play a rather different role than the hτ the emerges under
habits. In particular, if we condition on an initial r0 and compare consumption processes
that agree between dates zero and τ − 1, we will not necessarily be led to use the same
value of rτ because the decision of how to allocate continuation entropy at date τ − 1 will
reflect forward looking calculations. In particular, it will depend on how future consumption
depends on events that might be realized in the future.

This complaint that our state variable rτ is too endogenous does not especially disturb us.
Proponents of habit persistence like to emphasize the endogeneity of the resulting preference
ordering. While the habit-stock state variable can be formed mechanically, along a chosen
consumption path the realized habit stock will typically depend on beliefs about the future
and be forward-looking. This feature is emphasized in models of “rational addiction” and
is an attribute for which no apologies are offered.9 Whenever we have history dependence

9A form of commitment is also present in habit persistent models since the date τ decision-maker remains
‘committed’ to past experience as measured by the habit stock hτ−1.
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in preference orders, along a chosen consumption path the date τ preference order will
depend on ‘unrealized alternatives’ through the endogeneity of the state variable. Just as
minimization induces this dependence in our investigation, utility maximization will induce it
along a chosen path. In effect, the time consistency problem in preferences over consumption
processes comes from studying only the minimizing player’s half of a two-player, dynamic
game.

9 We Don’t Like Time-and-State Separable Constraints

on Entropy

Our aim in studying preferences that can represent concerns about robustness is to explore
extensions of rational expectations that accommodate model misspecification. We seek con-
venient ways to explore the consequences of decisions across dynamic models with similar
observable implications. Statistical discrimination leads us to study relative likelihoods.
Likelihood ratios for dynamic models intrinsically involve intertemporal tradeoffs.

Accommodating misspecification in a dynamic evolution equation using a separable spec-
ification would seem to require some form state dependence in the constraints. For in-
stance, many interesting misspecifications of a first-order autoregression would require a
state-dependent restriction on the one-period conditional entropy. This state dependence
is permitted by Chen and Epstein (2002) and Epstein and Schneider (2003) but its pre-
cise nature is in practice left to the researcher or decision-maker.10 It is intractable to
explore misspecification that might arise from arbitrary state dependence in the setting of ηt

period-by-period. For this reason we have considered nonseparable specifications of model
misspecification with explicit intertemporal tradeoffs.

We achieve computational tractability partly through our separable specification of an
entropy-penalty for distorting q∗. (See the construction for W in (1).) But this differs from
adopting a separable constraint on the date t conditional entropy11, 12

E
[

log(q∗t+1)q
∗
t+1|Ft

]

≤ ηt.

A virtue of the robust control theory approach is that it delivers state dependence in the
implied ηt’s from a low parameter representation. For instance, we could back-solve ηt from
our date zero commitment problem via the formula:

ηt = rt − βE
(

q∗t+1rt+1|Ft

)

10Epstein and Schneider (2003) feature state dependence in one of their examples.
11For sufficiently nice specifications of the state dependence, presumably tractable recursive computation

methods can also be developed to solve sparable-constraint models.
12By extending the notions of dynamic consistency used by Epstein and Schneider (2003) to include state

variables like those that support habit persistence, we suspect that separability in the construction of this
constraint will no longer be required. Instead of being specified exogenously, the ηt’s will possibly also depend
on the same state variables used to capture more familiar forms of time nonseparability. In particular, ηt

might depend on past consumptions. Martin Schneider concurred with this guess in private correspondence.
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where {rt} is the date t continuation entropy. However, back-solving for the η’s will typically
not produce identical decisions and worst case distortions as would emerge from simply
exogenously specifying the η’s. In the separable constraint specification, the minimization
problem for q∗t+1 will take account of the fact this choice will alter the probabilities over
constraints that will pertain in the future. That will result in different valuation processes
and may well lead to a substantively interesting differences between the two approaches.

Nevertheless, because of its links to maximum likelihood estimation and statistical detec-
tion, this back-solving remains interesting. See Anderson, Hansen, and Sargent (2000) for a
discussion. Just as a Bayesian explores when a given decision rule is a Bayes rule and eval-
uates that rule by exploring the implicit prior, we may wish to use the implied {ηt} process
better to understand the probability models that are admitted in robust control problems.13

10 Concluding Remarks

In all approaches to robustness and uncertainty aversion, the family of candidate models is
ad hoc. Savage’s single-prior theory and multi-prior generalizations of it are not rich enough
to produce beliefs for alternative hypothetical environments. An advantage of rational ex-
pectations is that it delivers one well defined endogenous specification of beliefs and that it
predicts how beliefs change across environments. Robust control theory does too, although it
is not clear that r0 or ηt should have the status of a policy invariant parameter to be trans-
ferred from one environment to another.14 What is and what is not transportable under
hypothetical interventions is an important question that can only be addressed with more
structure or information from other sources.

Nevertheless, the development of computationally tractable tools for exploring model
misspecification and its ramifications for modeling dynamic economies should focus on de-
ciding what are the interesting classes of candidate models for applications. We believe that
it would impede this endeavor if we were to remove robust control methods from economists’
toolkit. These methods have been designed to be tractable and we should not ignore them.

References

Anderson, E., L. Hansen, and T. Sargent (2003). A quartet of semigroups for model
specification, robustness, prices of risk, and model detection. Journal of the European

Economic Association 1 (1), 68–123.

13Thus it might illuminate situations in which our continuation entropy approach is not very attractive
relative to an approach with an exogenous specification of {ηt}. For instance, if it is optimal to ‘zero out’
the exposure to risk in some given date, the minimizing agent will chose not to distort beliefs at that date
and approximation errors will be allocated in future dates. If the {ηt} were instead exogenously set to be
positive, then multiple beliefs would support the no-exposure solution and substantially change the pricing
implications.

14But since it can be viewed as a special case that sets r0 = 0, the same qualification applies to rational
expectations.

13



Anderson, E., L. P. Hansen, and T. Sargent (2000, March). Robustness, detection and the
price of risk. Mimeo.

Basar, T. and P. Bernhard (1995). H∞-Optimal Control and Related Minimax Design

Problems. Boston: Birkhauser.

Blackwell, D. and M. Girshick (1954). Thoery of Games and Statistical Decisions. New
York: Wiley.

Chen, Z. and L. G. Epstein (2002). Ambiguity, risk and asset returns in continuous time.
Econometrica 70, 1403–1443.

Duffie, D. and L. G. Epstein (1992). Stochastic differential utility. Econometrica 60 (2),
353–394.

Epstein, L. and M. Schneider (2003, November). Recursive multiple priors. Journal of

Economic Theory 113 (1), 1–31.

Gilboa, I. and D. Schmeidler (1989). Maxmin expected utility with non-unique prior.
Journal of Mathematical Economics 18, 141–153.

Hansen, L. P., T. Sargent, and T. Tallarini (1999). Robust permanent income and pricing.
Review of Economic Studies 66, 873–907.

Hansen, L. P. and T. J. Sargent (2001). Robust control and model uncertainty. American

Economic Review 91, 60–66.

Hansen, L. P. and T. J. Sargent (2007). Robustness. Princeton University Press, forth-
coming.

Hansen, L. P., T. J. Sargent, G. A. Turmuhambetova, and N. Williams (2006, March).
Robust control, min-max expected utility, and model misspecification. Journal of Eco-

nomic Theory 128, 45–90.

James, M. R. (1992). Asymptotic analysis of nonlinear stochastic risk sensitive control
and differential games. Mathematics of Control, Signals, and Systems 5, 401–417.

Johnsen, T. H. and J. B. Donaldson (1985). The structure of intertemporal preferences
under uncertainty and time consistent plans. Econometrica 53, 1451–1458.

Maccheroni, F., M. Marinacci, and A. Rustichini (2006a, November). Ambiguity aver-
sion, robustness, and the variational representation of preferences. Econometrica 74 (6),
1447–1498.

Maccheroni, F., M. Marinacci, and A. Rustichini (2006b). Dynamic variational preferences.
Journal of Economic Theory 128, 4–44.

Petersen, I. R., M. R. James, and P. Dupuis (2000). Minimax optimal control of stochastic
uncertain systems with relative entropy constraints. IEEE Transactions on Automatic

Control 45, 398–412.

Wang, T. (2003, February). Conditional preferences and updating. Journal of Economic

Theory 108, 286–321.

14


