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Abstract

Was UK inflation was more stable and/or less uncertain before 1914 or after 1945?

We address these questions by estimating a statistical model with changing volatilities

in transient and persistent components of inflation. Three conclusions emerge. First,

since periods of high and low volatility occur in both eras, neither features uniformly

greater stability or lower uncertainty. When comparing peaks with peaks and troughs

with troughs, however, we find clear evidence that the price level was more stable before

World War I. We also find some evidence for lower uncertainty at pre-1914 troughs,

but its statistical significance is borderline.
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1 Introduction

Figure 1 portrays annual data on the consumer price level and inflation rate in the United

Kingdom for the period 1791-2011. To us, the figure shows contending patterns of price

stability and predictability. Data on the logarithm of the price level, shown in the left panel,

convey the impression that the gold and silver commodity standards that prevailed before

1914 had produced a century of long-term predictability of price levels, while the years after

1914 witnessed a struggle to prove that a well-managed fiat standard could deliver as much

price stability as had been achieved under the gold standard. But data on inflation, exhibited

in the right panel, suggest that volatility peaked early in the 1800s and declined for much

of the following two centuries, albeit with momentous interruptions during and after World

War I and amidst the Great Inflation of the 1970s.

These countervailing visual impressions are associated with different features of the in-

flation process. The left panel is dominated by variation in a stochastic trend for inflation,

which was close to zero for much of the period between 1791 and 1913 and then turned

positive around the time of World War I. Variation in the right panel is dominated by tran-

sient volatility, especially in the first-half of the 19th century. Both sources of variation

make future price levels difficult to predict and contribute to price level instability. Because

transient inflation volatility seems to have fallen while persistent inflation variation seems

to have increased, it is not obvious whether future price levels were more predictable before

World War I or after World War II.1

In addition, because persistent inflation variation gives rise to predictable movements,

the two sources of variation have different implications about nominal stability as opposed

to nominal uncertainty. To the extent that trend inflation is forecastable, the positive trend

that appears after 1914 matters less for price-level uncertainty than for price-level instability.

1It is important to account for the decline in transient volatility when comparing the two eras, which is

part of our interpretation of some of the comments by Christopher Sims that set us off on this paper.

2



In principle, the price level could have been less stable after World War II even if it were

more predictable. The two features also operate differently at different forecast horizons,

with persistent inflation variation mattering more in the long run. Thus, price levels could

have been more predictable over short horizons after World War II even they were less

predictable over long horizons.2

In this paper, we roll up our sleeves and estimate a statistical model simple and flexible

enough to let us evaluate evidence about movements in conditional volatilities of future price

levels. At a minimum, we think that four features are required for an adequate statistical

representation. First, to fit both the 19th century, when average inflation was close to

zero, and the 1970s, when average inflation was in double digits, the model must include a

stochastic trend in inflation. Second, to fit the short-term volatility seen near the beginning

of the sample, the model must also include a transient component. Third, so that volatility

can change, innovations to the two components must have time-varying variances. These

three features are captured in a simple and elegant model developed by Stock and Watson

(2007) that we adapt to include a fourth feature.

The fourth feature concerns measurement error in older data. Christina Romer (1986a,b)

warns about hazards involved in comparing data from before and after World War II. She

points out that pre-war data were constructed differently and measured less accurately, and

she contends that much of the apparent decline in volatility in several important macroeco-

nomic variables that followed the war could be due to improved measurements. To respect

this possibility, we append a measurement equation to Stock and Watson’s model and allow

pre-World War II data to be measured with noise. To estimate the magnitude of measure-

ment errors and to purge older data of noise, we solve a nonlinear signal-extraction problem.3

2The terms transitory and persistent refer to unobserved components in a statistical model of inflation,

while uncertainty and instability are about conditional moments of the log price level.

3Hendry (2001) also studies UK inflation data over the period 1875-1991 but does not address measure-

ment error in historical data.
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After estimating the model using Bayesian methods, we use it to quantify price-level

uncertainty and instability. We measure uncertainty and instability, respectively, by the

conditional variance and second moment of cumulative inflation. By comparing conditional

variances and second moments at various dates over various forecast horizons, we trace the

rise and fall of price stability and predictability in the U.K.4

Three main conclusions emerge. First, we find periods of high and low volatility both

before 1914 and after 1945, with transient volatility dominating in the first period and

persistent variation becoming important in the second. As a consequence, neither period

features uniformly greater stability or lower uncertainty. This leads us to compare peaks

with peaks and troughs with troughs across eras. Second, we find clear evidence that the

price level was more stable at pre-1914 peaks and troughs, respectively, than at those that

occurred after 1945. And third, from the same for measures of uncertainty, we find mixed

evidence for lower uncertainty during the period before World War I. There is no evidence

that price-level uncertainty was lower at the pre-1914 peak (1800) than at the post-1945

peak (1976). On the contrary, measures of uncertainty at the two peaks are quite similar.

There is some evidence that price-level uncertainty was lower at the pre-1914 trough in 1890

than at the post-1945 troughs in 1955 and 2005, but its statistical significance is borderline.

The remainder of the discussion is organized as follows. Section 2 describes the data,

while section 3 discusses the statistical model and our priors. Various features of the posterior

4Several aspects of British economic history make the UK a particularly interesting case for our purposes.

First, for much of our long historical sample, the British empire played a very important role in the global

economy, as exemplified by the central role of the British pound during the gold standard. Second, the

establishment of economic and statistical institutions at the national level in the UK preceded by many

decades similar institutions in other advanced economies, meaning that the coverage and quality of British

historical data is probably better than in the rest of the industrialized world. Third, British monetary history

has been characterized by a number of sharp changes in policy regimes, ranging from the silver and gold

standard, to Bretton Woods, to money and exchange-rate targeting, and, finally, to inflation targeting.

4



are presented in section 4. Section 5 concludes with a summary and a few interpretative

remarks.

2 Data

The consumer price data shown in figure 1 are spliced together from four sources. The U.K.

Ministry of Labor launched the first official consumer price index at the beginning of World

War I, and data from this source measures inflation between 1915 and 1947 (see B.R. Mitchell

(1988), table 10, p. 738-39). Bowley (1937) contributed two extensions, first going back to

1880 using “virtually similar material” as the Ministry of Labor and then proceeding “more

tentatively” with rougher raw material back to 1846 (Mitchell, p. 717). We refer to these

periods as Bowley I and II, respectively (Mitchell, table 9, p. 738). Lindert and Williamson

(1983) contributed an even more tentative backward extension, constructing a ‘best guess’

consumer price index going back to 1783 (Mitchell, table 8, p. 737). Two other sources

complete the data set. The sample was extended from 1947 through 2011 by appending

data from the Global Financial Database. Last but not least, wholesale price data for 1721-

1790 taken from Phelps-Brown and Hopkins (1956) are used as a training sample to calibrate

aspects of the prior. The sample used for estimation covers the period 1791-2011.

3 An unobserved-components, stochastic-volatility model

for inflation

Our statistical representation extends Stock and Watson’s (2007) unobserved components

model for inflation:

πt = µt +
√
rtεπt, (1)

µt = µt−1 +
√
qtεµt,

ln rt = ln rt−1 + σrηrt,

ln qt = ln qt−1 + σqηqt,

5



where πt is inflation, µt is trend inflation, and rt and qt are stochastic volatilities that

evolve as geometric random walks. The innovations επt, εµt, are standard normal, serially

uncorrelated, and independent of all the other shocks in the model. Following Shephard

(2013), we assume that the log volatility innovations ηrt and ηqt are iid normal with mean

zero and covariance matrix

W =

[

σ2
r σrq

σrq σ2
q

]

, (2)

thus allowing the log volatility innovations to be correlated.

Our main extension of the Stock-Watson-Shephard model confronts the measurement

issues raised by Romer. To address her concern, we regard (1) as transition equations for a

nonlinear state-space model, and we add measurement error to πt,

yt = πt +mt. (3)

Our first challenge is to specify a plausible form for the measurement error process mt.

In a companion paper on the United States (Cogley and Sargent 2014), we were able to

exploit price-level data constructed by Christopher Hanes (1997) to identify measurement

error. Following Romer, Hanes created a noisy postwar price-level series whose properties

are consistent with prewar data. For the period 1948-1990, Hanes’s noisy measure overlaps

with the noise-free measure constructed by the US Bureau of Labor Statistics, and the

difference between noisy and clean inflation measures sharply identifies measurement-error

parameters. Alas, as far as we know, no one has created a consistent price-level series for the

UK analogous to that of Hanes. Consequently, identification is weaker than for the US. In

this paper, we simply assume that the measurement-error process has the same functional

form as in the US. Although this assumption is debatable, it can be defended weakly by

noting that the statisticians and economists who first constructed historical price indices for

the two countries faced the same conceptual problems and had comparable data sources.

Thus, it seems likely that they adopted kindred solutions and compromises. If that is so,

the measurement-error processes are likely to be similar.
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For the US, we found that measurement errors are well approximated by a mean-zero,

first-order autoregressive process,

mt = ρmtmt−1 + σmtεmt, (4)

where the noise innovation εmt is iid standard normal and independent of the state innova-

tions. We also adopt an AR(1) form for the UK.

For the US, a single consistently noisy series was available for the period 1798-1990; hence

no breaks in measurement-error parameters were necessary. For the UK, a long series can be

compiled only by splicing a number of sources that B.R. Mitchell describes as having different

degrees of noise. Hence breaks in measurement-error parameters are wanted. In particular,

we assume that ρmt and σmt are constant within each subsample but vary across subsamples.

We also assume that inflation is correctly measured after 1947. The measurement-error

parameters therefore break at the following dates,

ρmt = ρ1m, σmt = σ1m t ≤ 1846, (5)

ρmt = ρ2m, σmt = σ2m 1847 ≤ t ≤ 1879,

ρmt = ρ3m, σmt = σ3m 1880 ≤ t ≤ 1914,

ρmt = ρ4m, σmt = σ4m 1915 ≤ t ≤ 1947,

ρmt = 0, σmt = 0 t ≥ 1948.

Equations (4) and (5) define define additional transition equations for a nonlinear state-

space model, while equation (3) defines the measurement equation. In contrast to the model

for the US, only one observation on inflation is available in each year, noisy ones for 1791-

1947 and clean ones for 1948-2011. The presence of overlapping clean and noisy measures

in the postwar U.S. was important for identification. Unfortunately, as far as we know,

consistently noisy postwar data are unavailable for the UK.

The distinction between the smooth transitions of rt and qt and the discrete variation in

measure-error parameters helps to identify the model. In contrast, Cecchetti, et al. (2007)
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represent log-volatility innovations as a two-state Markov process, thus allowing jumps in

rt and qt as well. Exploring their fat-tailed specification would be an interesting extension,

but identifying mt would be more difficult if rt could also jump. We suspect that other

identifying information would be required in that case.

3.1 Priors

Our next task is to estimate the latent states πt, µt, rt, qt, and mt, the covariance matrix

W for log-volatility innovations, and the measurement-error parameters ρim, σim, i = 1, ...4.

We do this via Bayesian methods. Toward this end, we must specify priors for the initial

states µ0, π0, r0, q0, and m0 and the constant hyperparameters W , ρim, σim, i = 1, ...4.

The transition equations then imply priors for the remaining states µt, πt, qt, rt, and mt.

Following much of the literature, we assume independent priors for these elements, and we

specify marginal priors for each. Many aspects of the priors are calibrated from the 1721-1790

training sample.

Starting with the initial states, the prior for (µ0, π0) is normal with mean equal to the

training sample average (0.34 percent per annum) and variance

P0 =

[

0.152 0
0 0.0252

]

. (6)

Since prior credible sets for π0 and µ0 are roughly (-0.3,0.3) and (-0.05,0.05), respectively,

the prior is weakly informative about initial inflation.

We also adopt normal priors for ln r0 and ln q0, the logs of the initial innovation variances

for the transitory and persistent components of inflation, respectively. The prior median for

ln r0 is the log of the training sample variance for inflation (-5.46), thereby equating the prior

median for r0 and q0 with the training sample variance.5 Similarly, the prior mean for ln q0

is the log of the training sample variance divided by 25 (-8.68). We set the prior standard

deviation for both to 5, a value that is huge on a log scale. This makes the prior on ln r0

and ln q0 very weakly informative.

5The prior mean and mode are larger and smaller, respectively, than the prior median.
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For the measurement error parameters ρim and σim, we adopt the same prior for all pre-

World War II subsamples. The prior for ρm is normal with mean zero and standard deviation

0.45, thus centering on a white-noise specification and concentrating the preponderance of

prior mass in the stationary region (see the solid line in the top-right panel of figure 2).6

For σm, we adopt an inverse-gamma7 prior whose mode equals 50 percent of the training

sample standard deviation for inflation (70.71 percent of the variance), thereby expressing

an initial belief that historical data are very noisy. Not wanting to hardwire this prior belief,

however, we set the prior degrees of freedom to 2, so that a centered 95 credible set ranges

from roughly 25 percent to more than 100 percent of the training sample standard deviation.

The result, an IG1(0.04, 2) specification, is portrayed by a solid line in the top-left panel of

figure 2. By combining the priors for ρm and σm, we can deduce the implied prior for the

unconditional standard deviation of mt. The solid line in the bottom-left panel depicts this

prior.

A prior for W , the covariance matrix for log-volatility innovations, is harder to calibrate

using the training sample. Instead, we adopt an informative inverse-Wishart prior that is

inspired by Stock and Watson’s calibration. We start with their parameter for the variance

of log-volatility innovations in quarterly data, adjust for time aggregation to an annual

sampling frequency, and then set the diagonal elements of the prior scale matrix so that

the prior modes for σ2
r and σ2

q equal the adjusted value. Lacking a strong prior view about

the covariance σrq, we set the off-diagonal elements of the prior scale matrix to zero, thus

centering the prior covariance on zero. After centering the prior in this way, we set the degree

of freedom parameter to deliver plausible prior credible sets. After some experimentation, we

6Truncating the prior at the boundary of the stationary region was unnecessary because only a tiny

fractions of draws were in the non-stationary region.

7A standard deviation σ is an IG1 random variable if and only if the variance σ2 is an IG2 random

variable (Bauwens, et al., 1999, p. 292). We abuse terminology by referring to both as inverse-gamma

random variables.
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settled on an IW (0.055 · I2, 10) prior for W . Solid lines in figure 3 portray prior histograms

for the standard deviations σr and σq and the correlation σrq/σrσq. A centered prior 95

percent credible set for the standard deviations ranges from 0.17 to 0.45, while that for the

correlation covers the interval ±0.6.

4 Features of the posterior

This section records various features of the posterior probability distribution that conditions

on our full sample 1791-2011. We approximate the posterior via a MCMC algorithm. Except

for the structural breaks in measurement-error parameters, the model is very similar to that

of Cogley and Sargent (2014). Our MCMC algorithm is therefore also very similar. Details

can be found in their appendix A. Shephard (2013) describes an alternative approach based

on particle filters.

4.1 Measurement error

Figure 2 depicts posterior distributions for ρim and σim. As expected, the measurement error

parameters vary across subsamples, with accuracy improving throughout the 18th and 19th

centuries. For the period before World War I, Lindert and Williamson’s ‘best guess’ series

for 1791-1846 has the highest measurement-error variance, followed by Bowley I (1847-1879),

and then Bowley II (1880-1914). For these subsamples, measurement errors account for 34

percent, 56 percent, and 40 percent, respectively, of measured inflation variance.8 Somewhat

to our surprise, however, the trend toward improving accuracy does not continue after 1914.

The unconditional measurement-error variance for the Ministry of Labor’s first official index

(1915-1947) is about the same as that for Lindert and Williamson’s series, and measurement

errors account for 61 percent of inflation variance in this period. The persistence of imputed

measurement errors is also greatest for the 1915-1947 subperiod.

In the appendix, we report estimates for a more strongly informative prior based on

8These numbers are averages across posterior sample paths.
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results for the U.S. to see whether evidence for a monotonic improvement in measurement

can be found. The short answer is no; the results in the appendix are similar to those

reported here.

That measurement error accounts for so much of interwar inflation variation seems more

a puzzle to be explained than a firm conclusion. One possibility is that this is a symptom

of autocorrelation in the inflation gap πt − µt. Since our model assumes that πt − µt is a

martingale difference and that mt is AR(1), weakly autocorrelated variation in yt would be

attributed to measurement error. More work is needed to get to the bottom of this.9

4.2 Variance of log-volatility innovations

Figure 3 portrays posterior distributions for elements ofW, the innovation variance for the log

volatilities. Overall, the figure suggests that the log-volatility innovation variances are weakly

identified.10 Posteriors for σr and σq overlap substantially with the prior but are shifted

slightly to the right. Hence the data want a bit more time variation in log volatilities than is

encoded in the prior. Moreover, the posterior for σr is shifted further to the right than that

for σq, suggesting that the innovation variance for the transient component of inflation varies

more than that of the permanent component. The posterior for the correlation coefficient

σrq/σrσq also overlaps substantially with its prior. As in Cogley and Sargent (2014), weak

evidence is found of positive correlation between innovations to ln rt and ln qt.
11

9Mertens (2012) extends the Stock-Watson model by allowing serial correlation in the the inflation gap.

For cleanly measured post-World War II data, this extension is straightforward. Matters are more compli-

cated with noisy data because allowing AR(1) components in both πt−µt and mt could weaken identification.

10The more strongly informative prior discussed in the apppendix helps a little in this respect, but not

much.

11Shephard (2013) finds a stronger positive correlation in quarterly post-World War II U.S. data.
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4.3 Hidden states

Figure 4 portrays posterior median and interquartile ranges for the latent states µt (the

stochastic trend in inflation), πt − µt (the transitory component of inflation), and
√
qt and

√
rt (the standard deviations of the log-volatility innovations). A number of salient points

emerge.

The median estimate of trend inflation µt hovered around zero throughout the 19th

century and increased gradually to about 2 percent by 1930. Trend inflation rose sharply

during the Great Inflation, with the median estimate exceeding 10 percent during 1973-1981

and peaking at 16 percent in 1975. The median estimate of µt declined throughout the

1980s and 1990s and settled between 2.5 and 3 percent after the Bank of England achieved

operational independence in 1997.12,13

Second, the transient component πt−µt is centered near zero (by design) throughout the

sample. It was enormously volatile during the Napoleonic wars, highly volatile after World

War I, and less volatile after World War II. Because measurement error has been purged,

the model asserts that this decline in volatility is genuine.

Third, much of the long-term decline in inflation volatility is due to a decrease in the

variance rt of transient shocks. Transient volatility was highest during the Napoleonic Wars

12While our postwar estimates are broadly consistent with those of Cecchetti et al. (2007), the precise

timing of shifts differ. In particular, their estimates of µt have more spikes, especially in the mid-1970s when

trend inflation rose and fell more quickly than our estimates. The chief difference between their specification

and ours is that by assuming that rt and qt follow a two-state variance process they allow fat-tailed shocks

to stochastic volatility. Their specification attempts to capture abrupt shifts in regime, while ours assumes

a gradual drift in volatilities.

13Chan, et al. (2013) introduce a priori bounds on the random walk component µt. Our estimates of µt

seem plausible, making explicit bounds unnecessary. In addition, bounds that are reasonable for periods in

which a commodity standard or inflation-targeting policy was operative would be inappropriate for other

eras, and vice versa.
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when convertibility to gold was suspended.14 Over the next 75 years, however, the median

estimate of
√
rt declined by about 90 percent, reaching about 1.25 percent per annum by

1890. Convertibility to gold was again suspended during and after World War I, and transient

volatility increased sharply at that time. But it declined throughout much of the remainder

of the sample and reached its lowest point after 1997. By 2011, the median estimate of
√
rt

was about 1.2 percent per annum, just a bit lower than in 1890. Thus, transient volatility

was tamed twice, once in the 19th century and again after World War II.

Fourth, prior to World War II, most bursts of inflation were transient. Before 1950, the

median estimate of the standard deviation of shocks to the permanent component µt was an

order of magnitude smaller than that of shocks to the transient component πt − µt. After

the Second World War, however, the relative importance of permanent shocks increased, as

qt rose and rt fell. The biggest change came during the Great Inflation of the 1970s, when

qt increased sharply and began to approach rt. Both volatilities declined after Thatcher’s

disinflation, but rt fell faster. At the end of the sample, both qt and qt/rt remained high

by historical standards. Thus, while transient volatility has been tamed, the conquest of

persistent volatility remains a work in progress.

As we shall see, the conditional variance for the log price level depends on both qt and

rt, and both contribute terms that make the conditional variance increase with the forecast

horizon. That qt and qt/rt remain high will be important.

4.4 Orders of integration

Our model implies that inflation is I(1) and that the log price level is I(2), a common

specification for post-World War II data. However, whether these orders of integration are

consistent with pre-World War I data is not obvious. To examine this issue, we estimate an

14Convertibility was suspended between 1797 and 1821, during which time the Bank of England effectively

operated a fiat regime.
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augmented Dickey-Fuller regression,

yt = µ+ ρyt−1 +
∑2

j=1
ζj∆yt−j + ut, (7)

where yt is measured inflation for the period 1791-1913, and we calculate the t-statistic for

ρ − 1. This augmented Dickey-Fuller statistic is -7.1, and its 1-percent asymptotic critical

value is -3.43. The test therefore seems very strongly to reject a unit root in inflation.

However, the estimates shown in figure 4 suggest that the random-walk component of

inflation was small prior to World War I and that the transient component plus measure-

ment error was large. It is tenuous whether an augmented Dickey-Fuller test can detect

a small random-walk component hidden under substantial noise. To check the size of the

test for a specification like ours, we simulate our state-space model, generating artificial

data on measured inflation by drawing from the posterior for the hidden state πt and the

measurement-error parameters (ρim, σim) and then calculating the implied distribution for

the augmented Dickey-Fuller statistic. It turns out that the null distribution is shifted well

to the left of the asymptotic distribution and that the correct 10 percent critical value is

-8.61, implying that a unit root in inflation is not rejected. Indeed, the p-value for a sample

statistic of -8.7 is 0.52.

None of this proves that inflation was I(1), but it does establish that our I(1) representa-

tion is not grossly at odds with the data. We are sufficiently reassured that our representation

for inflation is good enough for pre-World War I data to allow us to proceed.

4.5 Price-level uncertainty

As in Cogley and Sargent (2014), we measure price-level uncertainty by the conditional

standard deviation of cumulative h-year inflation,

σ(pt+h − pt|ωt,W ) =

√

qt
∑h

j=1
(h− j + 1)2 exp(jσ2

q/2) + rt
∑h

j=1
exp(jσ2

r/2), (8)
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where W is the log-volatility innovation variance and ωt = (πt, µt, rt, qt) represents histo-

ries of time-varying states.15 This is the square root of the prediction-error variance for a

hypothetical forecaster who knew the structure of the model and its parameters and had

experienced a history of realizations ωt. We sample from its posterior distribution by calcu-

lating σ(pt+h − pt|ωt,W ) for every (ωt,W ) pair in our MCMC sample. We call the resulting

values smoothed conditional volatilities because they are derived from a posterior for (ωt,W )

that conditions on the full sample yT .

For forecast horizons of 5 and 10 years, figure 5 portrays the posterior median and

interquartile range for σ(pt+h − pt|ωt,W ). Both the decline in transient volatility and the

flareup of persistent volatility shape long run trends in price-level uncertainty, with the first

mattering more before 1914 and the second becoming influential after 1945.

As mentioned above, transient volatility dominated during the 19th century. Conse-

quently, paths for price-level uncertainty over the first half of our sample largely reflect the

fall in rt shown in figure 4. Shortly after the suspension of convertibility in 1797, median

estimates of σ(pt+h−pt|ωt,W ) 5 and 10 years ahead peaked at 0.357 and 0.496, respectively,

but then they fell as rt declined, sharply in the first half of the century and more gradually in

the second. Key steps in this process were the resumption of convertibility to gold in 1821;

the Bank Charter Act of 1844, which progressively extinguished the right of country banks

to issue paper money; and the gradual transformation of the Bank of England from a private

enterprize to a central bank.16 That the U.K. fought no extraordinarily costly war between

1815 and 1914 also played a big part, for war finance is the Achilles heel of a commodity

standard.17 By the end of the 19th century, through some combination of luck and practice,

monetary and fiscal authorities had somehow reduced price-level uncertainty by remarkable

15Because the current log price level pt is in the conditioning set, σ(pt+h − pt|ωt,W ) = σ(pt+h|ωt,W ), the

conditional standard deviation for the future log price level pt+h.

16See Feavearyear and Morgan (1963), chs. 8-12, for a narrative history of this period.

17War finance is a major challenge for any monetary regime, and a commodity standard is no exception.
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amounts. In 1890, median estimates of σ(pt+h − pt|ωt,W ) 5 and 10 years ahead reached

troughs of 0.061 and 0.077, respectively, and neither has returned to that level since.18

The first World War profoundly altered monetary arrangements, and price-level un-

certainty increased as war finance became a paramount concern of economic policy. Au-

thorities struggled to reestablish the gold standard after the war but failed to restore the

degree of price-level predictability that had prevailed before 1914. Median estimates of

σ(pt+h − pt|ωt,W ) 5 and 10 years ahead surged to 0.179 and 0.239 in 1920 before stabiliz-

ing in the 1930s at levels approximately 70 percent above those of 1890. Once shattered,

the economic conditions on which prewar price predictability were based proved difficult to

reconstitute.

Progress toward reducing price-level uncertainty stalled after World War II, with median

estimates of σ(pt+h−pt|ωt,W ) changing only slightly in the 1950s. In the 1960s, as monetary

and fiscal pressures in the U.S. and other countries began to undermine the Bretton Woods

system, price-level uncertainty began to rise, eventually spiking during the Great Inflation of

the 1970s. At the peak in 1976, median estimates of σ(pt+h−pt|ωt,W ) 5 and 10 years ahead

were 0.402 and 0.451, respectively, levels not seen since the Napoleonic era. This time, the

spike was mainly due to an increase in the variance qt of persistent shocks to inflation.

Regaining control over trend inflation took the better parts of two decades. Trend in-

flation µt and its innovation variance qt both declined after the Bank of England adopted

an inflation-targeting framework and achieved operational independence. But because qt

remained relatively high by historical standards, so did σ(pt+h − pt|ωt,W ). A local trough

in uncertainty was reached in 2005, at which time median estimates of σ(pt+h − pt|ωt,W )

were 0.149 and 0.162, respectively, at forecast horizons of 5 and 10 years. These estimates

are about one-third those of 1976 but twice those of 1890.

Thus we find three peaks in price-level uncertainty – in 1800, 1920, and 1976 – as well as

three troughs – in 1890, 1955, and 2005. Table 1 compares these peaks and troughs, recording

18More will be said about the posterior distribution below.
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the ratio of mean smoothed volatilities as well as the proportion of posterior sample paths

on which uncertainty was lower after the Second World War.

The first fact that emerges is that peaks in uncertainty in one era exceed troughs in the

other, implying that neither period dominates. Mean estimates of uncertainty at the peak

in 1800 exceed those at the postwar troughs (1955 and 2005) by factors of 2 or 3, and more

than 95 percent of sample paths exhibit less uncertainty at the postwar troughs (see column

2, rows 3 and 5). Likewise, mean estimates of uncertainty at the peak in 1976 are more

than 6 times greater those for 1890, and only a tiny fraction of sample paths exhibit less

uncertainty at the postwar peak (see column 3, row 4).

A second fact is that levels of uncertainty at the two big peaks are comparable. Mean

smoothed conditional standard deviations were about the same in 1800 and 1976, and the

proportion of sample paths featuring lower volatility in 1976 was not far from 50 percent

(see column 2, row 4). The forces driving inflation in the two periods were very different,

but the amount of price-level uncertainty they engendered was similar. For uncertainty at

the two big peaks, the decline in rt offset the rise in qt.

In these respects, our results are much like those for the United States (Cogley and

Sargent 2014). One dimension in which results for the U.K. differ concerns trough-to-trough

comparisons of uncertainty. For the U.S., we found comparable degrees of uncertainty at

pre- and postwar troughs. For the U.K., uncertainty seems to be lower at the 1890 trough.

Estimates of mean smoothed volatilities for 1955 and 2005 are double those for 1890, and

only about 10 percent of posterior sample paths exhibited less uncertainty at the postwar

troughs (see column 3, rows 3 and 5). We interpret this as persuasive but not decisive

evidence that uncertainty was lower at the prewar trough.

4.6 Price-level instability

Conditional variances are suitable for measuring uncertainty, but the concept of price sta-

bility seems different. ‘Stability’ describes total variation, not just unpredictable variation.
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For assessing price stability, we therefore compare (the square root of) conditional second

moments across dates. Since the conditional second moment is the conditional variance plus

the square of the conditional mean, we just need to add the latter to the numbers already

reported. Conditional on the log-volatility innovation variance W and history of states ωt,

the conditional mean of cumulative h-year inflation is

E(pt+h − pt|ωt,W ) = hµt. (9)

Therefore the conditional root mean square is

cmrs(pt+h − pt|ωt,W ) =
√

σ2(pt+h − pt|ωt,W ) + h2µ2
t . (10)

As before, we sample from its posterior distribution by calculating cmrs for every draw of

ωt,W in our MCMC sample. Table 2 and figure 6 summarize the results.

Penalizing the conditional mean as well as the conditional variance shifts the balance of

evidence in favor of the period before 1914. The Great Inflation of the 1970s now emerges

as the time of greatest price-level instability, with the Napoleonic era coming in a distant

second. At the peak in 1976, mean cmrs statistics are more than double those for 1800, and

roughly 95 percent of posterior sample paths exhibit greater instability at the postwar peak

(see column 2, row 4). Thus, while there was about as much price-level uncertainty at the

two big peaks, the price level was much less stable during the Great Inflation.

Similarly, when comparing troughs with troughs, strong evidence emerges that the price

level was more stable in 1890. Mean cmrs statistics for 1955 and 2005 are 2 to 3.5 times

greater than those for 1890, and the postwar troughs exhibit less stability on all but a

handful of posterior sample paths (see column 3, rows 3 and 5). Borderline evidence of

greater uncertainty at postwar troughs becomes decisive evidence of greater instability.

4.7 Deflation risk

Another difference between pre- and postwar inflation dynamics concerns the risk of deflation.

Following Cogley and Sargent (2014), we develop evidence about this feature of the data by
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calculating smoothed conditional deflation probabilities,

dpr(ωt,W ) ≡ pr(pt+h < pt|ωt,W ) =

∫

Ideflation

(

pt+h(ω
t,W, ξht ), pt(ω

t,W )
)

pN(ξ
h
t )dξ

h
t ,

where Ideflation

(

pt+h(ω
t,W, ξht ), pt(ω

t,W )
)

is an indicator variable that records whether cu-

mulative inflation going forward from a current log price level pt(ω
t,W ) is positive or nega-

tive,

Ideflation

(

pt+h(ω
t,W, ξht ), pt(ω

t,W )
)

= 1 if pt+h < pt, (11)

= 0 otherwise.

The random vector ξht is a sequence of potential future shocks {επs, εµs, ηqs, ηrs}t+h
s=t+1 which,

according to the model, has a normal unconditional distribution that we denote pN(ξ
h
t ). The

function dpr therefore represents the probability of cumulative deflation going forward from

a given (ωt,W ) pair.

We approximate the posterior distribution for dpr by evaluating the second line of the

right side of equation (11) for every (ωt,W ) pair in the posterior sample.19 As before,

we call the resulting values smoothed conditional deflation probabilities because they are

derived from a posterior for ωt and W that conditions on the full sample yT . The results are

summarized in table 3 and figure 7.

Deflation risk is decreasing in µt and either increasing or decreasing in σt, depending on

whether µt is positive or negative. As shown in figure 7, changes in µt seem to have been

quantitatively more important. Median estimates peaked above 75 percent in the 1880s

when µt was slightly negative. A secondary peak of about 60 percent appeared in the 1820s,

another period when µt was negative. After µt became positive around the turn of the 20th

century, deflation risk fell sharply, eventually reaching a global trough below 1 percent in

the 1970s when µt was highest.

The effects of changing conditional variances are less easy to see, but some insight can

be gained by comparing years with similar values of µt and different values of rt and qt. For

19This is done by Monte Carlo integration.
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instance, estimates for the late 1940s suggest the modest rates of trend inflation are sufficient

to drive deflation risk close to zero provided that qt and rt are held in check. Similar rates

of trend inflation in the 2000s were associated with higher deflation risk because of higher

values of qt. Nevertheless, these influences are secondary to those of changing µt.

Table 3 compares peaks and troughs in deflation risk before and after the Second World

War. Peaks were reached in 1884, 1922, and 2001, and troughs occurred in 1911, 1974, and

2006. We also include 2011 to measure deflation risk at the end of the sample. As before, the

top row records the ratio of mean deflation risks before and after the war, and the bottom

depicts the probability that dpr was lower after 1945.

Mean deflation risk at the 2001 postwar peak was roughly 80 percent lower than at the

prewar peak in 1884, and conditional deflation probabilities were lower in 2001 along more

than 90 percent of posterior sample paths (see column 2, row 3). Comparing 2011 with

1884 yields slightly stronger evidence of reduced deflation risk (see column 2, row 5). At the

prewar trough in 1911, mean deflation risk was 20-30 times greater than that of the postwar

trough in 1974, and conditional deflation risk was higher in 1911 on 95 percent of sample

paths (see column 3, row 3). Thus, when comparing peaks with peaks and troughs with

troughs, clear evidence emerges that deflation risk was lower after 1945. Indeed, preventing

a recurrence of the 1930s deflation might have been one of the central aims of post-World

War II monetary policy.

5 Concluding remarks

Our analysis of UK inflation data evinces recurring episodes of rising and falling price-level

volatility. Big shocks such as the French revolution and Napoleonic wars, two World Wars

and the Great Depression, and the Great Inflation disrupted monetary arrangements and

created appreciable uncertainty about future price levels. Because periods of high and low

volatility appear both before 1914 and after 1945, neither period dominates uniformly. When

comparing peaks with peaks and troughs with troughs, we find clear evidence that the price
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level was more stable before 1914. Weaker evidence also emerges that uncertainty was lowest

at the pre-1914 trough in 1890. But its statistical significance is borderline, and there is no

evidence that price-level uncertainty was lower at pre-1914 peaks than at post-1945 peaks.

Although the classical gold standard delivered more stability and perhaps less uncertainty,

there is little reason to believe that a commodity standard would permanently guarantee

either. Big shocks threaten commodity as well as fiat regimes, and convertibility can and

perhaps should be suspended in times of crisis. The classical gold standard and Bretton

Woods system ended not because the authorities thought they had discovered better methods

for maintaining price stability but because other economic objectives supervened. That the

U.K. fought no great war in the second half of the 19th century is surely one factor behind

the success of the classical gold standard. When a great war did break out in 1914, the gold

standard shattered, never to be restored. The ability to maintain a commodity standard is

at least partly a consequence of economic stability.
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Appendix: a more strongly informative prior for mea-

surement error parameters

One puzzling aspect of our results is that measurement error is worse in the first official

index produced by the Ministry of Labor than in the ex post measures for earlier periods

constructed by Bowley (1937) and Lindert and Williamson (1983). We are concerned that

this might be an artifact of weak identification. To check the robustness of this finding,

we re-estimate the model using a more strongly informative prior on measurement-error

parameters. All other aspects of the model and prior are the same as in the text.

To strengthen the measurement-error prior, we assume not only that the measurement

error process has the same functional form as in the US but also that its parameters are

similar. We formalize ‘similarity’ by assuming that the UK prior for measurement-error

parameters is the same as the US posterior constructed by Cogley and Sargent (2014).

Although this is a stronger assumption than that made in section 3.1, three remarks can

be offered in defense. First, as noted above, the statisticians and economists who first

constructed historical price indices for the two countries may have adopted similar approaches

to similar problems. Second, because those working in the UK probably had better data

sources, their historical indices might be less noise ridden than those for the US. If that is

true, our prior would overstate the magnitude of UK measurement error. And last but not

least, the assumption is encoded in the prior, not hardwired into the posterior, so the data

can still influence our conclusions.

The US posterior for ρm is well approximated by a normal distribution with mean 0.325

and standard deviation 0.145, while that for σm is well approximated by an inverse-gammma

density with scale parameter 0.0368 and degrees of freedom 27. Solid lines in figure 8 depict

these densities, along with the implied prior for the unconditional measurement-error vari-

ance σ2
m/(1−ρ2m). The other curves portray posteriors for the various subsamples. Although

differences across subsamples are less pronounced than for the baseline model, measurement

error is still worse for the period 1915-1947. That this feature survives a strengthening of
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the prior means that it cannot be dismissed as an artifact of weak identification.

Figures 9-13 and tables 4-6 portray the rest of the results for this model. Since the

stronger prior has little effect on measurement-error posteriors, the remainder of the results

also resemble those for the baseline specification. One exception is that evidence that the

peak in instability in 1976 is greater than that for 1800 is weaker. Mean RMS statistics

for 1976 are still roughly double those for 1800, but statistical significance is a bit weaker

(compare column 2, row 4 in tables 2 and 5). Another minor exception is the 1820s peak in

deflation probabilities that surpasses that of the 1880s (compare figures 7 and 13). Otherwise

the results are much the same as those discussed above.
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Figure 1: UK Consumer Price Level and Inflation
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27



0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.01

0.02

0.03

0.04

0.05

0.06

σ
r
,σ

q

 

 

Prior
Posterior σ

r

Posterior σ
q

−1 −0.5 0 0.5 1
0

0.01

0.02

0.03

0.04

0.05

0.06

Correlation

 

 

Prior
Posterior
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Figure 4: Posteriors of hidden states (conditioned on sample 1791-2011).
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Figure 7: Smoothed deflation probabilities 5 and 10 years ahead
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Figure 10: Posteriors of hidden states (conditioned on sample 1791-2011) (strongly informa-
tive prior)
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Figure 11: Posterior median and interquartile range for σ(pt+h − pt|ωt,W ) (strongly infor-
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Figure 12: Posterior median and interquartile range for crms (strongly informative prior)
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Figure 13: Smoothed deflation probabilities 5 and 10 years ahead (strongly informative prior)
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Table 1: Relative Conditional Standard Deviations
1800 1890 1920

5 years 10 years 5 years 10 years 5 years 10 years

1955
0.365 0.313
(0.971) (0.987)

1.983 1.909
(0.117) (0.107)

0.740 0.622
(0.727) (0.819)

1976
1.211 0.993
(0.432) (0.555)

6.576 6.060
(0.002) (0.001)

2.453 1.974
(0.090) (0.147)

2005
0.442 0.358
(0.935) (0.974)

2.400 2.183
(0.099) (0.110)

0.895 0.711
(0.578) (0.716)

2011
0.482 0.393
(0.899) (0.950)

2.617 2.397
(0.104) (0.110)

0.976 0.781
(0.553) (0.677)

Note: The top entry in each panel is the ratio of the postwar mean smoothed conditional standard

deviation relative to that in the prewar base year. Entries in parentheses record the proportion of

sample paths on which conditional standard deviations are lower in the postwar year.
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Table 2: Relative Conditional Root-Mean-Square Statistics

1800 1890 1920
5 years 10 years 5 years 10 years 5 years 10 years

1955
0.575 0.676
(0.915) (0.832)

2.846 3.405
(0.011) (0.005)

1.036 1.119
(0.433) (0.351)

1976
2.028 2.424
(0.066) (0.034)

10.03 12.20
(0.000) (0.000)

3.652 4.009
(0.009) (0.005)

2005
0.565 0.595
(0.910) (0.908)

2.796 2.997
(0.018) (0.009)

1.018 0.985
(0.453) (0.458)

2011
0.616 0.646
(0.862) (0.852)

3.046 3.234
(0.018) (0.009)

1.109 1.069
(0.407) (0.400)

Note: The top entry in each panel is the ratio of mean smoothed cmrs relative to that in the prewar

base year. Entries in parentheses record the proportion of sample paths on which cmrs statistics

are lower in the postwar year.
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Table 3: Relative Deflation Probabilities
1884 1911 1922

5 years 10 years 5 years 10 years 5 years 10 years

1974
0.010 0.015
(0.989) (0.982)

0.031 0.051
(0.968) (0.938)

0.025 0.042
(0.982) (0.960)

2001
0.175 0.228
(0.941) (0.916)

0.531 0.760
(0.694) (0.567)

0.421 0.616
(0.784) (0.656)

2006
0.035 0.069
(0.981) (0.967)

0.107 0.229
(0.910) (0.817)

0.085 0.186
(0.947) (0.875)

2011
0.079 0.118
(0.970) (0.951)

0.240 0.392
(0.839) (0.744)

0.190 0.318
(0.894) (0.808)

Note: The top entry in each panel is the ratio of the postwar mean probability of deflation relative

to that in the prewar base year. Entries in parentheses record the proportion of sample paths on

which the probability of deflation was lower in the postwar year.
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Table 4: Relative Conditional Standard Deviations (Strongly Informative Prior)

1800 1890 1921
5 years 10 years 5 years 10 years 5 years 10 years

1955
0.324 0.277
(0.982) (0.994)

2.093 2.024
(0.109) (0.094)

0.789 0.667
(0.671) (0.749)

1976
1.091 0.893
(0.508) (0.634)

7.039 6.520
(0.005) (0.001)

2.655 2.149
(0.078) (0.123)

2005
0.396 0.318
(0.963) (0.989)

2.557 2.325
(0.100) (0.105)

0.965 0.766
(0.529) (0.654)

2011
0.432 0.349
(0.933) (0.972)

2.787 2.552
(0.101) (0.100)

1.051 0.841
(0.508) (0.619)

Note: The top entry in each panel is the ratio of the postwar mean smoothed conditional standard

deviation relative to that in the prewar base year. Entries in parentheses record the proportion of

sample paths on which conditional standard deviations are lower in the postwar year.
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Table 5: Relative Conditional Root-Mean-Square Statistics (Strongly Informative Prior)

1800 1890 1921
5 years 10 years 5 years 10 years 5 years 10 years

1955
0.528 0.623
(0.953) (0.901)

2.862 3.298
(0.010) (0.005)

1.133 1.235
(0.364) (0.283)

1976
1.845 2.204
(0.110) (0.065)

10.01 11.66
(0.000) (0.000)

3.960 4.366
(0.008) (0.005)

2005
0.512 0.554
(0.950) (0.956)

2.829 2.931
(0.015) (0.010)

1.120 1.098
(0.381) (0.375)

2011
0.567 0.600
(0.910) (0.914)

3.076 3.174
(0.015) (0.010)

1.218 1.189
(0.344) (0.326)

Note: The top entry in each panel is the ratio of mean smoothed crms relative to that in the prewar

base year. Entries in parentheses record the proportion of sample paths on which crms statistics

are lower in the postwar year.
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Table 6: Relative Deflation Probabilities (Strongly Informative Prior)

1820 1910 1922
5 years 10 years 5 years 10 years 5 years 10 years

1975
0.021 0.019
(0.998) (0.998)

0.061 0.061
(0.918) (0.893)

0.046 0.047
(0.948) (0.935)

2001
0.186 0.238
(0.981) (0.963)

0.548 0.782
(0.649) (0.533)

0.407 0.600
(0.771) (0.651)

2011
0.084 0.122
(0.996) (0.987)

0.247 0.401
(0.785) (0.689)

0.183 0.308
(0.883) (0.795)

Note: The top entry in each panel is the ratio of the postwar mean probability of deflation relative

to that in the prewar base year. Entries in parentheses record the proportion of sample paths on

which the probability of deflation was lower in the postwar year.
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