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Abstract

A decision maker fears that data are generated by a statistical perturbation of an
approximating model that is either a controlled diffusion or a controlled measure over
continuous functions of time. A perturbation is constrained in terms of its relative
entropy. Several different two-player zero-sum games that yield robust decision rules
and are related to one another, to the max-min expected utility theory of Gilboa and
Schmeidler (1989), and to the recursive risk-sensitivity criterion described in discrete
time by Hansen and Sargent (1995). To represent perturbed models, we use martin-
gales on the probability space associated with the approximating model. Alternative
sequential and non-sequential versions of robust control theory imply identical robust
decision rules that are dynamically consistent in a useful sense.

Key words: Model uncertainty, entropy, robustness, risk-sensitivity, commitment, time
inconsistency, martingale.

1 Introduction

A decision maker consists of (i) a utility function that is maximized subject to (ii) a model.
Classical decision and control theory assume that a decision maker has complete confidence
in his model. Robust control theory presents alternative formulations of a decision maker
who doubts his model. To capture the idea that the decision maker views his model as an
approximation, these formulations alter items (i) and (ii) by (1) surrounding the decision
maker’s approximating model with a cloud of models that are difficult to distinguish with
finite data, and (2) adding a malevolent second agent. The malevolent agent promotes
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Piskorski, Michael Allen Rierson, Aldo Rustichini, Jose Scheinkman, Christopher Sims, Nizar Touzi, and
especially Costis Skiadas for valuable comments on an earlier draft. Sherwin Rosen encouraged us to write
this paper.
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robustness by causing the decision maker to explore the fragility of candidate decision rules
to departures of the data from the approximating model. Finding a rule that is robust
to model misspecification entails computing lower bounds on a rule’s performance. The
minimizing agent constructs those lower bounds.

Different parts of robust control theory uses alternative mathematical formalisms. While
all of them have versions of items (1) and (2), they differ in many important mathematical
details including the probability spaces on which they are defined; their ways of representing
alternative models; their restrictions on sets of alternative models; and their protocols about
the timing of choices by the maximizing and minimizing decision makers. Nevertheless, com-
mon outcomes and representations emerge from all of these alternative formulations. Equiv-
alent concerns about model misspecification can be represented by either (a) altering the
decision maker’s preferences to enhance risk-sensitivity, or (b) leaving his preferences alone
but slanting his expectations relative to his approximating model in a particular context-
specific way, or (c) adding a set of perturbed models and a malevolent agent. This paper
exhibits these unifying connections and stresses how they can be exploited in applications.

Robust control theory shares with both the Bayesian paradigm and the rational expecta-
tions model the feature that the decision maker brings to the table one fully specified model.
In robust control theory it is called either his reference model or his approximating model.
Although the decision maker does not explicitly specify alternative models, he evaluates a
decision rule under a set of incompletely articulated models that are formed by perturbing
his approximating model. Robust control theory contributes thoughtful ways to surround
a single approximating model with a cloud of other models. We give technical conditions
that allow us to regard that set of models as the multiple priors that appear in the max-min
expected utility theory of Gilboa and Schmeidler (1989). Some technical conditions allow us
to represent the approximating model and perturbations to it. Other technical conditions
reconcile the equilibrium outcomes of several two-player zero-sum games that have differ-
ent timing protocols, providing a way of interpreting robust control in terms of a recursive
version of max-min expected utility theory.

This paper starts with two alternative ways of representing an approximating model in
continuous time – either (1) as a diffusion or (2) as a measure over continuous functions of
time that are induced by the diffusion. We consider different ways of perturbing each such
representation of the approximating model. These lead to alternative formulations of robust
control problems. In all of our problems, we use a definition of relative entropy (an expected
log likelihood ratio) to constrain the gap between the approximating model and a statistical
perturbation to it. We take the maximum value of that gap as a parameter that measures
the set of perturbations against which the decision maker seeks robustness. Requiring that
entropy be finite restricts the form that model misspecification can take. In particular,
finiteness of entropy implies that admissible perturbations of the approximating model must
be absolutely continuous with respect to it over finite intervals. For a diffusion, absolute
continuity over finite intervals implies that allowable perturbations can alter the drift but
not the volatility. Restricting ourselves to perturbations that are absolutely continuous over
finite intervals is therefore tantamount to considering perturbed models that are in principle

2



statistically difficult to distinguish from the approximating model, an idea exploited by
Anderson, Hansen, and Sargent (2003) to calibrate a plausible amount of fear of model
misspecification in a study of market prices of risk.

The work of Araujo and Sandroni (1999) and Sandroni (2000) emphasizes that absolute
continuity of models implies that decision makers’ beliefs eventually merge with the model
that generates the data. But in infinite horizon economies, absolute continuity over finite
intervals does not imply absolute continuity. By allowing perturbations that are not ab-
solutely continuous, we arrest the merging of models and thereby create a setting in which
a decision maker’s fear of model misspecification endures. Perturbations that are absolutely
continuous over finite intervals but still not absolutely continuous can be difficult to detect
from a continuous record of finite length, though they could be detected from a continuous
data record of infinite length. We discuss how this modeling choice interacts with the way
that the decision maker discounts the future.

We also consider a variety of technical issues about timing protocols that underlie inter-
connections among various expressions of robust control theory. A Bellman-Isaacs condition
allows us to exchange orders of minimization and maximization and validates several useful
results, including the existence of a Bayesian interpretation of a robust decision rule.

Counterparts to many of the issues treated in this paper occur in discrete time robust
control theory. Many of these issues surface in nonstochastic versions of the theory, for
example, in Başar and Bernhard (1995). The continuous time stochastic setting of this
paper allows sharper analytical results in several cases.

1.1 Language

We call a problem nonsequential if, at an initial time 0, a decision maker chooses an entire
history-contingent sequence. We call a problem sequential or recursive if, at each time t ≥ 0,
a decision maker chooses the time t component of his action process as a function of his time
t information.

1.2 Organization of paper

The technical nature of interrelated material inspires us to present it in two exposures con-
sisting first of section 2, then of the remaining sections. Section 2 sets aside a variety of
complications and compiles our main results by displaying Hamilton-Jacobi-Bellman (HJB)
equations for various games and decision problems and asserting without proof the key re-
lationships among them. The remaining sections lay things out in detail. Section 3 sets
the stage by describing both sequential and nonsequential versions of an ordinary control
problem under a known model. These problems form benchmarks against which to judge
subsequent problems in which the decision maker distrusts his model. Section 3 also in-
troduces a risk-sensitive control problem that alters the decision maker’s objective function
but leaves unchallenged his trust in his model. Section 4 discusses alternative ways of rep-
resenting fear of model misspecification. Section 5 introduces entropy and its relationship
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to a concept of absolute continuity over finite intervals, then formulates two nonsequential
zero-sum two-player games, called penalty and constraint games, that induce robust deci-
sion rules. The games in section 5 are both cast in terms of sets of probability measures.
In section 6, we cast counterparts to these games on a fixed probability measure by repre-
senting perturbations to an approximating model in terms of martingales defined on a fixed
probability space. Section 7 gives a sequential formulation of a penalty game. By taking con-
tinuation entropy as an endogenous state variable, section 8 gives a sequential formulation
of a constraint game. This formulation sets the stage for our discussion in section 9 of the
dynamic consistency issues raised by Epstein and Schneider (2004). Section 10 concludes.
Appendix A presents the cast of characters that records the objects and concepts that occur
throughout the paper. Four additional appendixes deliver proofs.

2 Overview

One Hamilton-Jacobi-Bellman (HJB) equation is worth a thousand words. This section
concisely summarizes our main results by displaying HJB equations for various two-player
zero-sum continuous time games that are defined in terms of a Markov diffusion with state
x and Brownian motion B, together with the value functions for some related nonsequential
games. Our story is encoded in state variables, drifts, and diffusion terms that occur in
HJB equations for several optimum problems and dynamic games. This telegraphic section
is intended for readers who glean everything from HJB equations and as a summary of key
findings. Readers who prefer a more deliberate presentation from the beginning should skip
to section 3.

2.1 Sequential control problems and games

Benchmark control problem:

We take as a benchmark an ordinary control problem with value function

J(x0) = max
c∈C

E

[
∫ ∞

0

exp(−δt)U(ct, xt)dt

]

where the maximization is subject to dxt = µ(ct, xt)dt+σ(ct, xt)dBt and where x0 is a given
initial condition. The HJB equation for the benchmark problem is

δJ(x̌) = max
č∈Č

U(č, x̌) + µ(č, x̌) · Jx(x̌) +
1

2
trace [σ(č, x̌)′Jxx(x̌)σ(č, x̌)] . (1)

The notation ·̌ is used to denote a potentially realized value of a control or a state. Similarly,
Č is the set of admissible values for the control. Subscripts on value functions denote the
respective derivatives. We provide more detail about the benchmark problem in section 3.1.

In the benchmark problem, the decision maker trusts his model. We want to study com-
parable problems where the decision maker distrusts his model. Several superficially different
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devices can be used to promote robustness to misspecification of the diffusion associated with
(1). These add either a free parameter θ > 0 or a state variable ř ≥ 0 or a state vector X
and produce recursive problems with one of the following HJB equations:

Risk sensitive control problem:

δS(x̌) = max
č∈Č

U(č, x̌) + µ(č, x̌) · Sx(x̌) +
1

2
trace [σ(č, x̌)′Sxx(x̌)σ(č, x̌)]

−
1

2θ
Sx(x̌)

′σ(č, x̌)σ(č, x̌)′Sx(x̌) (2)

HJB equation (2) alters the right side of the value function recursion (1) by deducting 1
2θ

times the local variation of the continuation value. The optimal decision rule for the risk-
sensitive problem (2) is a policy function

ct = αc(xt)

where the dependence on θ is understood. In control theory, −1/θ is called the risk-sensitivity
parameter; in the recursive utility literature, it is called the variance multiplier. Section 3.2
below provides more details about the risk-sensitive problem.

Penalty robust control problem:

A two-player zero-sum game has a value function M that satisfies

M(x̌, ž) = žV (x̌)

where zt is another state variable that changes the probability distribution and V satisfies
the HJB equation:

δV (x̌) = max
č∈Č

min
ȟ
U(č, x̌) +

θ

2
ȟ · ȟ+

[

µ(č, x̌) + σ(č, x̌)ȟ
]

· Vx(x̌)

+
1

2
trace [σ(č, x̌)′Vxx(x̌)σ(č, x̌)] . (3)

The process z = {zt : t ≥ 0} is a martingale with initial condition z0 = 1 and evolution
dzt = ht ·dBt. The minimizing agent in (3) chooses an ȟ to alter the probability distribution;
θ > 0 is a parameter that penalizes the minimizing agent for distorting the drift. Optimizing
over ȟ shows that V from (3) solves the same partial differential equation (2). The penalty
robust control problem is discussed in more detail in sections 6.4 and 7.

Constraint robust control problem:

A two-player zero-sum game has a value function žK(x̌, ř), where K satisfies the HJB equa-
tion
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δK(x̌, ř) = max
č∈Č

min
ȟ,ǧ

U(č, x̌) +
[

µ(č, x̌) + σ(č, x̌)ȟ
]

·Kx(x̌, ř) +

(

δř −
ȟ · ȟ

2

)

·Kr(x̌, ř)

+
1

2
trace

(

[

σ(č, x̌)′ ǧ
]

[

Kxx(x̌, ř) Kxr(x̌, ř)
Krx(x̌, ř) Krr(x̌, ř)

] [

σ(č, x̌)
ǧ′

])

. (4)

Equation (4) shares with (3) that the minimizing agent chooses an ȟ that alters the prob-
ability distribution, but unlike (3), there is no penalty parameter θ. Instead, in (4), the
minimizing agent’s choice of ht affects a new state variable rt that we call continuation en-
tropy. The minimizing player also controls another decision variable ǧ that determines how
increments in the continuation value are related to the underlying Brownian motion. The
right side of the HJB equation for the constraint control problem (4) is attained by decision
rules

ct = φc(xt, rt), ht = φh(xt, rt), gt = φg(xt, rt).

We can solve the equation ∂
∂r
K(xt, rt) = −θ to express rt as a time invariant function of xt:

rt = φr(xt).

Therefore, along an equilibrium path of game (4), we have ct = φc[xt, φr(xt)], ht = φh[xt, φr(xt)],
gt = φg[xt, φr(xt)]. More detail on the constraint problem is given in section 8.

A problem with a Bayesian interpretation:

A single agent optimization problem has a value function žW (x̌, X̌) where W satisfies the
HJB equation:

δW (x̌, X̌) = max
č∈Č

U(č, x̌) + µ(č, x̌) ·Wx(x̌, X̌) + µ∗(x̌) ·WX(x̌, X̌)

+
1

2
trace

(

[

σ(č, x̌)′ σ∗(X̌)′
]

[

Wxx(x̌, X̌) WxX(x̌, X̌)
WXx(x̌, X̌) WXX(x̌, X̌)

] [

σ(č, x̌)
σ∗(X̌)

])

+αh(X̌) · σ(č, x̌)′Wx(x̌, X̌) + αh(X̌) · σ∗(X̌)′WX(x̌, X̌) (5)

where µ∗(X̌) = µ[αc(X̌), X̌] and σ∗(X̌) = σ[αc(X̌), X̌]. The functionW (x̌, X̌) in (5) depends
on an additional component of the state vector X̌ that is comparable in dimension with x̌ and
that is to be initialized from the common value X̌0 = x̌0 = x0. We shall show in appendix
E that equation (5) is the HJB equation for an ordinary (i.e., single agent) control problem
with discounted objective:

z0W (x̌, X̌) = E

∫ ∞

0

exp(−δt)ztU(ct, xt)dt

and state evolution:

dxt = µ(ct, xt)dt+ σ(ct, xt)dBt

dzt = ztαh(Xt)dBt

dXt = µ∗(Xt)dt+ σ∗(Xt)dBt
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with z0 = 1, x0 = x̌, and X0 = X̌.
This problem alters the benchmark control problem by changing the probabilities assigned

to the shock process {Bt : t ≥ 0}. It differs from the penalty robust control problem (3)
because the process z used to change probabilities does not depend on state variables that
are endogenous to the control problem.

In appendix E, we verify that under the optimal c and the prescribed choices of µ∗, σ∗, αh,
the ‘big X’ component of the state vector equals the ‘little x’ component, provided that
X̌0 = x̌0. Equation (5) is therefore the HJB equation for an ordinary control problem
that justifies a robust decision rule under a fixed probability model that differs from the
approximating model. As the presence of zt as a preference shock suggests, this problem
reinterprets the equilibrium of the two-player zero-sum game portrayed in the penalty robust
control problem (3). For a given θ that gets embedded in σ∗, µ∗, the right side of the HJB
equation (5) is attained by č = γc(x̌, X̌).

2.2 Different ways to attain robustness

Relative to (1), HJB equations (2), (3), (4), and (5) can all be interpreted as devices that
in different ways promote robustness to misspecification of the diffusion. HJB equations
(2) and (5) are for ordinary control problems: only the maximization operator appears on
the right side, so that there is no minimizing player to promote robustness. Problem (2)
promotes robustness by enhancing the maximizing player’s sensitivity to risk, while problem
(5) promotes robustness by attributing to the maximizing player a belief about the state
transition law that is distorted in a pessimistic way relative to his approximating model.
The HJB equations in (3) and (4) describe two-player zero-sum dynamic games in which a
minimizing player promotes robustness.

2.3 Nonsequential problems

We also study two nonsequential two-player zero-sum games that are defined in terms of
perturbations q ∈ Q to the measure q0 over continuous functions of time that is induced
by the Brownian motion B in the diffusion for x. Let qt be the restriction of q to events
measurable with respect to time t histories of observations. We define discounted relative
entropy as

R̃(q)
.
= δ

∫ ∞

0

exp(−δt)

(
∫

log

(

dqt
dq0

t

)

dqt

)

dt

and use it to restrict the size of perturbations q to q0. Leaving the dependence on B implicit,
we define a utility process υt(c) = U(ct, xt) and pose the following two problems:

Nonsequential penalty control problem:

Ṽ (θ) = max
c∈C

min
q∈Q

∫ ∞

0

exp(−δt)

(
∫

υt(c)dqt

)

dt+ θR̃(q). (6)
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Nonsequential constraint control problem:

K̃(η) = max
c∈C

min
q∈Q(η)

∫ ∞

0

exp(−δt)

(
∫

υt(c)dqt

)

dt (7)

where Q(η) = {q ∈ Q : R̃(q) ≤ η}.
Problem (7) fits the max-min expected utility model of Gilboa and Schmeidler (1989),

where Q(η) is a set of multiple priors. The axiomatic treatment of Gilboa and Schmeidler
views this set of priors as an expression of the decision maker’s preferences and does not
cast them as perturbations of an approximating model.1 We are free to think of problem (7)
as providing a way to use a single approximating model q0 to generate Gilboa-Schmeidler’s
set of priors as all those unspecified models that satisfy the restriction on relative entropy,
Q(η) = {q ∈ Q : R̃(q) ≤ η}. In section 5 we provide more detail on the nonsequential
problems.

The objective functions for these two nonsequential optimization problems (6) and (7)
are related via the Legendre transform pair:

Ṽ (θ) = min
η≥0

K̃(η) + θη (8)

K̃(η) = max
θ≥0

Ṽ (θ) − ηθ. (9)

2.4 Connections

An association between robust control and the framework of Gilboa and Schmeidler (1989)
extends beyond problem (7) because the equilibrium value functions and decision rules for
all of our problems are intimately related. Where V is the value function in (3) and K is
the value function in (4), the recursive counterpart to (8) is:

V (x̌) = min
ř≥0

K(x̌, ř) + θř

with the implied first-order condition

∂

∂r
K(x̌, ř) = −θ.

This first-order condition implicitly defines ř as a function of x̌ for a given θ, which implies
that ř is a redundant state variable. The penalty formulation avoids this redundancy.2

The nonsequential value function Ṽ is related to the other value functions via:

Ṽ (θ) = M(x0, 1) = 1 · V (x0) = W (x0, x0) = S(x0)

1Similarly, Savage’s framework does not purport to describe the process by which the Bayesian decision
maker constructs his unique prior.

2There is also a recursive analog to (9) that uses the fact that the function V depends implicitly on θ.
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where x0 is the common initial value and θ is held fixed across the different problems. Though
these problems have different decision rules, we shall show that for a fixed θ and comparable
initial conditions, they have identical equilibrium outcomes and identical recursive represen-
tations of those outcomes. In particular, the following relations prevail across the equilibrium
decision rules for our different problems:

αc(x̌) = γc(x̌, x̌) = φc[x̌, φr(x̌)].

2.5 Who cares?

We care about the equivalence of these control problems and games because some of the
problems are easier to solve and others are easier to interpret.

These problems came from literatures that approached the problem of decision making
in the presence of model misspecification from different angles. The recursive version of the
penalty problem (3) emerged from a literature on robust control that also considered the
risk-sensitive problem (2). The nonsequential constraint problem (7) is an example of the
min-max expected utility theory of Gilboa and Schmeidler (1989) with a particular set of
priors. By modifying the set of priors over time, constraint problem (4) states a recursive
version of that nonsequential constraint problem. The Lagrange multiplier theorem supplies
an interpretation of the penalty parameter θ.

A potentially troublesome feature of multiple priors models for applied work is that they
impute a set of models to the decision maker.3 How should that set be specified? Robust
control theory gives a convenient way to specify and measure a set of priors surrounding a
single approximating model.

3 Three ordinary control problems

By describing three ordinary control problems, this section begins describing the technical
conditions that underlie the broad claims made in section 2. In each problem, a single
decision maker chooses a stochastic process to maximize an intertemporal return function.
The first two are different representations of the same underlying problem. They are cast
on different probability spaces and express different timing protocols. The third, called the
risk-sensitive control problem, alters the objective function of the decision maker to induce
more aversion to risk.

3.1 Benchmark problem

We start with two versions of a benchmark stochastic optimal control problem. The first
formulation is defined in terms of a state vector x, an underlying probability space (Ω,F , P ),
a d-dimensional, standard Brownian motion {Bt : t ≥ 0} defined on that space, and {Ft :

3For applied work, an attractive feature of rational expectations is that by equating the equilibrium of
the model itself to the decision maker’s prior, decision makers’ beliefs contribute no free parameters.
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t ≥ 0}, the completion of the filtration generated by the Brownian motion B. For any
stochastic process {at : t ≥ 0}, we use a or {at} to denote the process and at to denote the
time t-component of that process. The random vector at maps Ω into a set Ǎ; ǎ denotes
an element in Ǎ. Actions of the decision-maker form a progressively measurable stochastic
process {ct : t ≥ 0}, which means that the time t component ct is Ft measurable.4 Let U be
an instantaneous utility function and C be the set of admissible control processes.

Definition 3.1. The benchmark control problem is:

J(x0) = sup
c∈C

E

[
∫ ∞

0

exp(−δt)U(ct, xt)dt

]

(10)

where the maximization is subject to

dxt = µ(ct, xt)dt+ σ(ct, xt)dBt (11)

and where x0 is a given initial condition.

The parameter δ is a subjective discount rate, µ is the drift coefficient and σσ ′ is the diffusion
matrix. We restrict µ and σ so that any progressively measurable control c in C implies a
progressively measurable state vector process x and maintain

Assumption 3.2. J(x0) is finite.

We shall refer to the law of motion (11) or the probability measure over sequences that
it induces as the decision maker’s approximating model . The benchmark control problem
treats the approximating model as correct.

3.1.1 A nonsequential version of the benchmark problem

It is useful to restate the benchmark problem in terms of the probability space that the
Brownian motion induces over continuous functions of time, thereby converting it into a
nonsequential problem that pushes the state x into the background. At the same time,
it puts the induced probability distribution in the foreground and features the linearity of
the objective in the induced probability distribution. For similar constructions and further
discussions of induced distributions, see Elliott (1982) and Liptser and Shiryaev (2000),
chapter 7.

The d-dimensional Brownian motion B induces a multivariate Wiener measure q0 on a
canonical space (Ω∗,F∗), where Ω∗ is the space of continuous functions f : [0,+∞) → R

d

and F∗
t is the Borel sigma algebra for the restriction of the continuous functions f to [0, t].

Define open sets using the sup-norm over each interval. Notice that ιs(f)
.
= f(s) is F∗

t

4Progressive measurability requires that we view c
.
= {ct : t ≥ 0} as a function of (t, ω). For any t ≥ 0,

c : [0, t] × Ω must be measurable with respect to Bt × Ft, where Bt is a collection of Borel subsets of [0, t].
See Karatzas and Shreve (1991) pages 4 and 5 for a discussion.
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measurable for each 0 ≤ s ≤ t. Let F ∗ be the smallest sigma algebra containing F ∗
t for

t ≥ 0. An event in F ∗
t restricts continuous functions on the finite interval [0, t]. For any

probability measure q on (Ω∗,F∗), let qt denote the restriction to Ft
∗. In particular, q0

t is
the multivariate Wiener measure over the event collection Ft

∗.
Given a progressively measurable control c, solve the stochastic differential equation (11)

to obtain a progressively measurable utility process

U(ct, xt) = υt(c, B)

where υ(c, ·) is a progressively measurable family defined on (Ω∗,F∗). This notation accounts
for but conceals the evolution of the state vector xt. A realization of the Brownian motion is
a continuous function. Putting a probability measure q0 on the space of continuous functions
allows us to evaluate expectations. We leave implicit the dependence on B and represent
the decision maker’s objective as

∫ ∞

0
exp(−δt)

(∫

υt(c)dq
0
t

)

dt.

Definition 3.3. A nonsequential benchmark control problem is

J̃(x0) = sup
c∈C

∫ ∞

0

exp(−δt)

(
∫

υt(c)dq
0
t

)

dt.

3.1.2 Recursive version of the benchmark problem

The problem in definition 3.1 asks the decision maker once and for all at time 0 to choose
an entire process c ∈ C. To transform the problem into one in which the decision maker
chooses sequentially, we impose additional structure on the choice set C by restricting č to be
in some set Č that is common for all dates. This is for notational simplicity, since we could
easily incorporate control constraints of the form Č(t, x̌). With this specification of controls,
we make the problem recursive by asking the decision maker to choose č as a function of the
state x at each date.

Definition 3.4. The HJB equation for the benchmark problem is

δJ(x̌) = sup
č∈Č

U(č, x̌) + µ(č, x̌) · Jx(x̌) +
1

2
trace [σ(č, x̌)′Jxx(x̌)σ(č, x̌)] . (12)

The recursive version of the benchmark problem (12) puts the state xt front and center. A
decision rule ct = ζc(xt) attains the right side of the HJB equation (12).

Although the nonsequential and recursive versions of the benchmark control problem
yield identical formulas for (c, x) as a function of the Brownian motion B, they differ in
how they represent the same approximating model: as a probability distribution in the
nonsequential problem as a stochastic differential equation in the recursive problem. Both
versions of the benchmark problem treat the decision maker’s approximating model as true.5

5As we discuss more in section 7, an additional argument is generally needed to show that an appropriate
solution of (12) is equal to the value of the original problem (10).
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3.2 Risk-sensitive control

Let ρ be an intertemporal return or utility function. Instead of maximizing Eρ (where
E continues to mean mathematical expectation), risk-sensitive control theory maximizes
−θ logE[exp(−ρ/θ)], where 1/θ is a risk-sensitivity parameter. As the name suggests, the
exponentiation inside the expectation makes this objective more sensitive to risky outcomes.
Jacobson (1973) and Whittle (1981) initiated risk sensitive optimal control in the context
of discrete-time linear-quadratic decision problems. Jacobson and Whittle showed that the
risk-sensitive control law can be computed by solving a robust penalty problem of the type
we have studied here.

A risk-sensitive control problem treats the decision maker’s approximating model as true
but alters preferences by appending an additional term to the right side of the HJB equation
(12):

δS(x̌) = sup
č∈Č

U(č, x̌) + µ(č, x̌) · Sx(x̌) +
1

2
trace [σ(č, x̌)′Sxx(x̌)σ(č, x̌)]

−
1

2θ
Sx(x̌)

′σ(č, x̌)σ(č, x̌)′Sx(x̌), (13)

where θ > 0. The term

µ(č, x̌) · Sx(x̌) +
1

2
trace [σ(č, x̌)′Sxx(x̌)σ(č, x̌)]

in HJB equation (13) is the local mean or dt contribution to the continuation value process
{S(xt) : t ≥ 0}. Thus, (13) adds − 1

2θ
Sx(x̌)

′σ(č, x̌)σ(č, x̌)′Sx(x̌) to the right side of the
HJB equation for the benchmark control problem (10), (11). Notice that Sx(xt)

′σ(ct, xt)dBt

gives the local Brownian contribution to the value function process {S(xt) : t ≥ 0}. The
additional term in the HJB equation is the negative of the local variance of the continuation
value weighted by 1

2θ
. Relative to our discussion above, we can view this as the Ito’s lemma

correction term for the evolution of instantaneous expected utility that comes from the
concavity of the exponentiation in the risk sensitive objective. When θ = +∞, this collapses
to the benchmark control problem. When θ <∞, we call it a risk-sensitive control problem
with −1

θ
being the risk-sensitivity parameter. A solution of the risk-sensitive control problem

is attained by a policy function
ct = αc(xt) (14)

whose dependence on θ is understood.
James (1992) studied a continuous-time, nonlinear diffusion formulation of a risk-sensitive

control problem. Risk-sensitive control theory typically focuses on the case in which the
discount rate δ is zero. Hansen and Sargent (1995) showed how to introduce discounting
and still preserve much of the mathematical structure for the linear-quadratic, Gaussian
risk-sensitive control problem. They applied the recursive utility framework developed by
Epstein and Zin (1989) in which the risk-sensitive adjustment is applied recursively to the
continuation values. Recursive formulation (13) gives the continuous-time counterpart for
Markov diffusion processes. Duffie and Epstein (1992) characterized the preferences that
underlie this specification.
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4 Fear of model misspecification

For a given θ, the optimal risk-sensitive decision rule emerges from other problems in which
the decision maker’s objective function remains that in the benchmark problem (10) and in
which the adjustment to the continuation value in (13) reflects not altered preferences but
distrust of the model (11). Moreover, just as we formulated the benchmark problem either
as a nonsequential problem with induced distributions or as a recursive problem, there are
also nonsequential and recursive representations of robust control problems.

Each of our decision problems for promoting robustness to model misspecification is a
zero-sum, two-player game in which a maximizing player (‘the decision maker’) chooses a
best response to a malevolent player (‘nature’) who can alter the stochastic process within
prescribed limits. The minimizing player’s malevolence is the maximizing player’s tool for
analyzing the fragility of alternative decision rules. Each game uses a Nash equilibrium con-
cept. We portray games that differ from one another in three dimensions: (1) the protocols
that govern the timing of players’ decisions, (2) the constraints on the malevolent player’s
choice of models; and (3) the mathematical spaces in terms of which the games are posed.
Because the state spaces and probability spaces on which they are defined differ, the recur-
sive versions of these problems yield decision rules that differ from (14). Despite that, all of
the formulations give rise to identical decision processes for c, all of which in turn are equal
to those that apply the optimal risk sensitive decision rule (14) to the transition equation
(11).

The equivalence of their outcomes provides interesting alternative perspectives from
which to understand the decision maker’s response to possible model misspecification.6 That
outcomes are identical for these different games means that when all is said and done, the
timing protocols don’t matter. Because some of the timing protocols correspond to nonse-
quential or ‘static’ games while others enable sequential choices, equivalence of equilibrium
outcomes implies a form of dynamic consistency.

Jacobson (1973) and Whittle (1981) first showed that the risk-sensitive control law can be
computed by solving a robust penalty problem of the type we have studied here, but without
discounting. Subsequent research reconfirmed this link in nonsequential and undiscounted
problems, typically posed in nonstochastic environments. Petersen, James, and Dupuis
(2000) explicitly considered an environment with randomness, but did not make the link to
recursive risk-sensitivity.

5 Two robust control problems defined on sets of prob-

ability measures

We formalize the connection between two problems that are robust counterparts to the
nonsequential version of the benchmark control problem (3.3). These problems do not fix an
induced probability distribution qo. Instead they express alternative models as alternative

6See section 9 of Anderson, Hansen, and Sargent (2003) for an application.

13



induced probability distributions and add a player who chooses a probability distribution
to minimize the objective. This leads to a pair of two-player zero-sum games. One of
the two games falls naturally into the framework of Gilboa and Schmeidler (1989) and the
other is closely linked to risk-sensitive control. An advantage of working with the induced
distributions is that a convexity property that helps to establish the connection between the
two games is easy to demonstrate.

5.1 Entropy and absolute continuity over finite intervals

We use a notion of absolute continuity of one infinite-time stochastic process with respect to
another that is weaker than what is implied by the standard definition of absolute continuity.
The standard notion characterizes two stochastic processes as being absolutely continuous
with respect to each other if they agree about “tail events”. Roughly speaking, the weaker
concept requires that the two measures being compared both put positive probability on all
of the same events, except tail events. This weaker notion of absolute continuity is interesting
for applied work because of what it implies about how quickly it is possible statistically to
distinguish one model from another.

Recall that the Brownian motion B induces a multivariate Wiener measure on (Ω∗,F∗)
that we have denoted q0. For any probability measure q on (Ω∗,F∗), we have let qt denote
the restriction to Ft

∗. In particular, q0
t is the multivariate Wiener measure over the events

Ft
∗.

Definition 5.1. A distribution q is said to be absolutely continuous over finite intervals with
respect to q0 if qt is absolutely continuous with respect to q0

t for all t <∞.7

Let Q be the set of all distributions that are absolutely continuous with respect to q0 over
finite intervals. The set Q is convex. Absolute continuity over finite intervals captures
the idea that two models are difficult to distinguish given samples of finite length. If q is
absolutely continuous with respect to q0 over finite intervals, we can construct likelihood
ratios for finite histories at any calendar date t. To measure the discrepancy between models
over an infinite horizon, we use a discounted measure of relative entropy:

R̃(q)
.
= δ

∫ ∞

0

exp(−δt)

(
∫

log

(

dqt
dq0

t

)

dqt

)

dt, (15)

where dqt

dq0
t

is the Radon-Nikodym derivative of qt with respect to q0
t . In appendix B (claim

B.1), we show that this discrepancy measure is convex in q.
The distribution q is absolutely continuous with respect to q0 when

∫

log

(

dq

dq0

)

dq < +∞.

7Kabanov, Lipcer, and Sirjaev (1979) refer to this concept as local absolute continuity. Although Kabanov,
Lipcer, and Sirjaev (1979) define local absolute continuity through the use of stopping times, they argue
that their definition is equivalent to this “simpler one”.
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In this case a law of large numbers that applies under q0 must also apply under q, so that
discrepancies between them are at most ‘temporary’. We introduce discounting in part to
provide an alternative interpretation of the recursive formulation of risk-sensitive control as
expressing a fear of model misspecification rather than extra aversion to well understood
risks. By restricting the discounted entropy (15) to be finite, we allow

∫

log

(

dq

dq0

)

dq = +∞. (16)

Time series averages of functions that converge almost surely under q0 can converge to a
different limit under q, or they may not converge at all. That would allow a statistician
to distinguish q from q0 with a continuous record of data on an infinite interval.8 But we
want these alternative models to be close enough to the approximating model that they are
statistically difficult to distinguish from it after having observed a continuous data record of
only finite length N on the state. We implement this requirement by requiring R̃(q) < +∞,
where R̃(q) is defined in (15).

The presence of discounting in (15) and its absence from (16) are significant. With
alternative models that satisfy (16), the decision maker seeks robustness against models
that can be distinguished from the approximating model with an infinite data record; but
because the models satisfy (15), it is difficult to distinguish them from a finite data record.
Thus, we have in mind settings of δ for which impatience outweighs the decision maker’s
ability eventually to learn specifications that give superior fits, prompting him to focus on
designing a robust decision rule.

We now have the vocabulary to state two nonsequential robust control problems that use
Q as a family of distortions to the probability distribution q0 in the benchmark problem:

Definition 5.2. A nonsequential penalty robust control problem is

Ṽ (θ) = sup
c∈C

inf
q∈Q

∫ ∞

0

exp(−δt)

(
∫

υt(c)dqt

)

dt+ θR̃(q).

Definition 5.3. A nonsequential constraint robust control problem is

K̃(η) = sup
c∈C

inf
q∈Q(η)

∫ ∞

0

exp(−δt)

(
∫

υt(c)dqt

)

dt

where Q(η) = {q ∈ Q : R̃(q) ≤ η}.

The first problem is closely linked to the risk sensitive control problem. The second problem
fits into the max-min expected utility or multiple priors model advocated by Gilboa and
Schmeidler (1989), the set of priors being Q(η). We use θ to index a family of penalty robust
control problems and η to index a family of constraint robust control problems. The two
types of problems are linked by the Lagrange multiplier theorem, as we show next.

8Our specification allows Q measures to put different probabilities on tail events, which prevents the
conditional measures from merging, as Blackwell and Dubins (1962) show will occur under absolute continu-
ity. See Kalai and Lerner (1993) and Jackson, Kalai, and Smordoninsky (1999) for implications of absolute
continuity for learning.
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5.2 Relation between the constraint and penalty problems

In this subsection we establish two important things about the two nonsequential multiple
priors problems 5.2 and 5.3: (1) we show that we can interpret the robustness parameter
θ in problem 5.2 as a Lagrange multiplier on the specification-error constraint R̃(q) ≤ η in
problem 5.3;9 (2) we display technical conditions that make the solutions of the two problems
equivalent to one another. We shall exploit both of these results in later sections.

The simultaneous maximization and minimization means that the link between the
penalty and constraint problem is not a direct implication of the Lagrange multiplier The-
orem. The following treatment exploits convexity of R̃ in Q. The analysis follows Petersen,
James, and Dupuis (2000), although our measure of entropy differs.10 As in Petersen, James,
and Dupuis (2000), we use tools of convex analysis contained in Luenberger (1969) to estab-
lish the connection between the two problems.

Assumption 3.2 makes the optimized objectives for both the penalty and constraint robust
control problems less than +∞. They can be −∞, depending on the magnitudes of θ and η.

Given an η∗ > 0, add −θη∗ to the objective in problem 5.2. For given θ, doing this has
no impact on the control law.11 For a given c, the objective of the constraint robust control
problem is linear in q and the entropy measure R̃ in the constraint is convex in q. Moreover,
the family of admissible probability distributions Q is itself convex. Thus, we formulate the
constraint version of the robust control problem (problem 5.3) as a Lagrangian:

sup
c∈C

inf
q∈Q

sup
θ≥0

∫ ∞

0

exp(−δt)

(
∫

υt(c)dqt

)

dt+ θ
[

R̃(q) − η
]

.

For many choices of q, The optimizing multiplier θ is degenerate: it is infinite if q violates
the constraint and zero if the constraint is slack. Therefore, we include θ = +∞ in the choice
set for θ. Exchanging the order of maxθ and minq attains the same value of q. The Lagrange
multiplier theorem allows us to study:

sup
c∈C

sup
θ≥0

inf
q∈Q

∫ ∞

0

exp(−δt)

(
∫

υt(c)dqt

)

dt+ θ
[

R̃(q) − η
]

. (17)

A complication arises at this point because the maximizing θ in (17) depends on the
choice of c. In solving a robust control problem, we are most interested in the c that solves
the constraint robust control problem. We can find the appropriate choice of θ by changing
the order of maxc and maxθ to obtain:

sup
θ≥0

sup
c∈C

inf
q∈Q

∫ ∞

0

exp(−δt)

(
∫

υt(c)dqt

)

dt+ θ
[

R̃(q) − η∗
]

= max
θ≥0

Ṽ (θ) − θη∗,

9This connection is regarded as self-evident throughout the literature on robust control. It has been
explored in the context of a linear-quadratic control problem, informally by Hansen, Sargent, and Tallarini
(1999), and formally by Hansen and Sargent (2006).

10To accommodate discounting in the recursive, risk sensitive control problem, we include discounting in
our measure of entropy. See appendix B.

11However, it will alter which θ results in the highest objective.
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since for a given θ the term −θη∗ does not effect the extremizing choices of (c, q).

Claim 5.4. For η∗ > 0, suppose that c∗ and q∗ solve the constraint robust control problem
for K̃(η∗) > −∞. Then there exists a θ∗ > 0 such that the corresponding penalty robust
control problem has the same solution. Moreover,

K̃(η∗) = max
θ≥0

Ṽ (θ) − θη∗.

Proof. This result is essentially the same as Theorem 2.1 of Petersen, James, and Dupuis
(2000) and follows directly from Luenberger (1969).

This claim gives K̃ as the Legendre transform of Ṽ . Moreover, by adapting an argument
of Luenberger (1969), we can show that K̃ is decreasing and convex in η.12 We are interested
in recovering Ṽ from K̃ as the inverse Legendre transform via:

Ṽ (θ∗) = min
η≥0

K̃(η) + θ∗η. (18)

It remains to justify this recovery formula.
We call admissible those nonnegative values of θ for which it is feasible to make the

objective function greater than −∞. If θ̂ is admissible, values of θ larger than θ̂ are also
admissible, since these values only make the objective larger. Let θ denote the greatest lower
bound for admissible values of θ. Consider a value θ∗ > θ. Our aim is to find a constraint
associated with this choice of θ.

It follows from claim 5.4 that

Ṽ (θ∗) ≤ K̃(η) + θ∗η

for any η > 0 and hence
Ṽ (θ∗) ≤ min

η≥0
K̃(η) + θ∗η.

Moreover,

K̃(η) ≤ inf
q∈Q(η)

sup
c∈C

∫ ∞

0

exp(−δt)

(
∫

υt(c)dqt

)

dt,

since maximizing after minimizing (rather than vice versa) cannot decrease the resulting
value of the objective. Thus,

Ṽ (θ∗) ≤ min
η≥0

[

inf
q∈Q(η)

sup
c∈C

∫ ∞

0

exp(−δt)

(
∫

υt(c)dqt

)

dt+ θ∗η

]

= min
η≥0

[

inf
q∈Q(η)

sup
c∈C

∫ ∞

0

exp(−δt)

(
∫

υt(c)dqt

)

dt+ θ∗R̃(q)

]

= inf
q∈Q

sup
c∈C

∫ ∞

0

exp(−δt)

(
∫

υt(c)dqt

)

dt+ θ∗R̃(q).

12This follows because we may view K̃ as the maximum over convex functions indexed by alternative
consumption processes.
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For the first equality, the minimization over η is important. Given some η̂ we may lower the
objective by substituting R̃(q) for η̂ when the constraint R̃(q) ≤ η̂ is imposed in the inner
minimization problem. Thus the minimized choice of q for η̂ may have entropy η̃ < η̂. More
generally, there may exist a sequence {qj : j = 1, 2, ...} that approximates the inf for which
{R̃(qj) : j = 1, 2, ...} is bounded away from η̂. In this case we may extract a subsequence of
R(qj) : j = 1, 2, ...} that converges to η̃ < η̂. Therefore, we would obtain the same objective
by imposing an entropy constraint R̃(q) ≤ η̃ at the outset:

inf
q∈Q(η̃)

[

sup
c∈C

∫ ∞

0

exp(−δt)

(
∫

υt(c)dqt

)

dt+ θ∗η̃

]

= inf
q∈Q(η̃)

[

sup
c∈C

∫ ∞

0

exp(−δt)

(
∫

υt(c)dqt

)

dt+ θ∗R̃(q)

]

.

Since the objective is minimized by choice η there is no further reduction in the optimized
objective by substituting R̃(q) for η.

Notice that the last equality gives a min−max analogue to the nonsequential penalty
problem (5.2), but with the order of minimization and maximization reversed. If the resulting
value continues to be Ṽ (θ∗), we have verified (18).

We shall invoke the following assumption:

Assumption 5.5. For θ > θ

Ṽ (θ) = max
c∈C

min
q∈Q

∫ ∞

0

exp(−δt)

(
∫

υt(c)dqt

)

dt+ θR̃(q)

= min
q∈Q

max
c∈C

∫ ∞

0

exp(−δt)

(
∫

υt(c)dqt

)

dt+ θR̃(q).

Both equalities assume that the maximum and minimum are attained. Because minimization
occurs first, without the assumption the second equality would have to be replaced by a less
than or equal sign ( ≤). In much of what follows, we presume that inf’s and sup’s are
attained in the control problems, and thus we will replace inf with min and sup with max.

Claim 5.6. Suppose that Assumption 5.5 is satisfied and that for θ∗ > θ, c∗ is the maximizing
choice of c for the penalty robust control problem 5.2. Then that c∗ also solves the constraint
robust control problem 5.3 for η∗ = R̃(q∗) where η∗ solves

Ṽ (θ∗) = min
η≥0

K̃(η) + θ∗η.

Since K̃ is decreasing and convex, Ṽ is increasing and concave in θ. The Legendre and
inverse Legendre transforms given in claims 5.4 and 5.6 fully describe the mapping between
the constraint index η∗ and the penalty parameter θ∗. However, given η∗, they do not imply
that the associated θ∗ is unique, nor for a given θ∗ > θ do they imply that the associated η∗

is unique.
While claim 5.6 maintains assumption 5.5, claim 5.4 does not. Without assumption 5.5,

we do not have a proof that Ṽ is concave. Moreover, for some values of θ∗ and a solution pair
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(c∗, q∗) of the penalty problem, we may not be able to produce a corresponding constraint
problem. Nevertheless, the family of penalty problems indexed by θ continues to embed the
solutions to the constraint problems indexed by η as justified by claim 5.4. We are primarily
interested in problems for which assumption 5.5 is satisfied and in section 7 and appendix
D provide some sufficient conditions for this assumption. One reason for interest in this
assumption is given in the next subsection.

5.3 Preference Orderings

We now define two preference orderings associated with the constraint and penalty control
problems. One preference ordering uses the value function:

K̂(c; η) = inf
R̃(q)≤η

∫ ∞

0

exp(−δt)

(
∫

υt(c)dqt

)

dt.

Definition 5.7. (Constraint preference ordering) For any two progressively measurable c
and c∗, c∗ �η c if

K̂(c∗; η) ≥ K̂(c; η).

The other preference ordering uses the value function:

V̂ (c; θ) = inf
q

∫ ∞

0

exp(−δt)

(
∫

υt(c)dqt

)

dt+ θR̃(q)

Definition 5.8. (Penalty preference ordering) For any two progressively measurable c and
c∗, c∗ �θ c if

Ṽ (c∗; θ) ≥ Ṽ (c; θ).

The first preference order has the multiple-priors form justified by Gilboa and Schmeidler
(1989). The second is commonly used to compute robust decision rules and is closest to
recursive utility theory. The two preference orderings differ. Furthermore, given η, there
exists no θ that makes the two preference orderings agree. However, the Lagrange Multi-
plier Theorem delivers a weaker result that is very useful to us. While they differ globally,
indifference curves passing through a given point c∗ in the consumption set are tangent for
the two preference orderings. For asset pricing, a particularly interesting point c∗ would be
one that solves an optimal resource allocation problem.

Use the Lagrange Multiplier Theorem to write K̂ as

K̂(c∗; η∗) = max
θ≥0

inf
q

∫ ∞

0

exp(−δt)

(
∫

υt(c
∗)dqt

)

dt+ θ
[

R̃(q) − η∗
]

,

and let θ∗ denote the maximizing value of θ, which we assume to be strictly positive. Suppose
that c∗ �η∗ c. Then

V̂ (c; θ∗) − θ∗η∗ ≤ K̂(c; η∗) ≤ K̂(c∗; η∗) = V̂ (c∗; θ∗) − θ∗η∗.
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Thus, c∗ �θ∗ c. The observational equivalence results from Claims 5.4 and 5.6 apply to
decision profile c∗. The indifference curves touch but do not cross at this point.

Although the preferences differ, the penalty preferences are of interest in their own right.
See Wang (2001) for an axiomatic development of entropy-based preference orders and Mac-
cheroni, Marinacci, and Rustichini (2004) for an axiomatic treatment of preferences specified
using convex penalization.

5.4 Bayesian interpretation of outcome of nonsequential game

A widespread device for interpreting a statistical decision rule is to find a probability distrib-
ution for which the decision rule is optimal. Here we seek an induced probability distribution
for B such that the solution for c from either the constraint or penalty robust decision prob-
lem is optimal for a counterpart to the benchmark problem. When we can produce such a
distribution, we say that we have a Bayesian interpretation for the robust decision rule. (See
Blackwell and Girshick (1954) and Chamberlain (2000) for related discussions.)

The freedom to exchange orders of maximization and minimization in problem 5.2 (As-
sumption 5.5) justifies such a Bayesian interpretation of the decision process c ∈ C. Let
(c∗, q∗) be the equilibrium of game 5.2. Given the worst case model q∗, consider the control
problem:

max
c∈C

∫ ∞

0

exp(−δt)

(
∫

υt(c)dq
∗
t

)

dt. (19)

Problem (19) is a version of our nonsequential benchmark problem 3.3 with a fixed model q∗

that is distorted relative to the approximating model q0. The optimal choice of a progressively
measurable c takes q∗ as exogenous. The optimal decision c∗ is not altered by adding θR̃(q∗)
to the objective. Therefore, being able to exchange orders of extremization in 5.2 allows
us to support a solution to the penalty problem by a particular distortion in the Wiener
measure. The implied least favorable q∗ assigns a different (induced) probability measure
for the exogenous stochastic process {Bt : t ≥ 0}. Given that distribution, c∗ is the ordinary
(non robust) optimal control process.

Having connected the penalty and the constraint problem, in what follows we will focus
primarily on the penalty problem. For notational simplicity, we will simply fix a value of θ
and not formally index a family of problems by this parameter value.

6 Games on fixed probability spaces

This section describes important technical details that are involved in moving from the
nonsequential to the recursive versions of the multiple probability games 5.2 and 5.3. It is
convenient to represent alternative model specifications as martingale ‘preference shocks’ on
a common probability space. This allows us to formulate two-player zero-sum differential
games and to use existing results for such games. Thus, instead of working with multiple
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distributions on the measurable space (Ω∗,F∗), we now use the original probability space
(Ω,F , P ) in conjunction with nonnegative martingales.

We present a convenient way to parameterize the martingales and issue a caveat about
this parameterization.

6.1 Martingales and finite interval absolute continuity

For any continuous function f in Ω∗, let

κt(f) =

(

dqt
dq0

t

)

(f)

zt = κt(B) (20)

where κt is the Radon-Nikodym derivative of qt with respect to q0
t .

Claim 6.1. Suppose that for all t ≥ 0, qt is absolutely continuous with respect to q0
t . The

process {zt : t ≥ 0} defined via (20) on (Ω,F , P ) is a nonnegative martingale adapted to the
filtration {Ft : t ≥ 0} with Ezt = 1. Moreover,

∫

φtdqt = E [ztφt(B)] (21)

for any bounded and F ∗
t measurable function φt. Conversely, if {zt : t ≥ 0} is a nonnegative

progressively measurable martingale with Ezt = 1, then the probability measure q defined via
(21) is absolutely continuous with respect to q0 over finite intervals.

Proof. The first part of this claim follows directly from the proof of theorem 7.5 in Liptser
and Shiryaev (2000). Their proof is essentially a direct application of the Law of Iterated
Expectations and the fact that probability distributions necessarily integrate to one. Con-
versely, suppose that z is a nonnegative martingale on (Ω,F , P ) with unit expectation. Let
φt be any nonnegative, bounded and F ∗

t measurable function. Then (21) defines a measure
because indicator functions are nonnegative, bounded functions. Clearly

∫

φtdqt = 0 when-
ever Eφt(B) = 0. Thus, qt is absolutely continuous with respect to q0

t , the measure induced
by Brownian motion restricted to [0, t]. Setting φt = 1 shows that qt is in fact a probability
measure for any t.

Claim 6.1 is important because it allows us to integrate over (Ω∗,F∗, q) by instead inte-
grating against a martingale z on the original probability space (Ω,F , P ).

6.2 Representing martingales

By exploiting the Brownian motion information structure, we can attain a convenient rep-
resentation of a martingale. Any martingale z with a unit expectation can be portrayed
as

zt = 1 +

∫ t

0

kudBu
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where k is a progressively measurable d-dimensional process that satisfies:

P

{
∫ t

0

|ku|
2du <∞

}

= 1

for any finite t (see Revuz and Yor (1994), Theorem V.3.4). Define:

ht =

{

kt/zt if zt > 0
0 if zt = 0.

(22)

Then z solves the integral equation

zt = 1 +

∫ t

0

zuhudBu (23)

and its differential counterpart
dzt = zthtdBt (24)

with initial condition z0 = 1, where for t > 0

P

{
∫ t

0

(zu)
2|hu|

2du <∞

}

= 1. (25)

The scaling by (zu)
2 permits

∫ t

0

|hu|
2du = ∞

provided that zt = 0 on the probability one event in (25).
In reformulating the nonsequential penalty problem 5.2, we parameterize nonnegative

martingales by progressively measurable processes h. We introduce a new state zt initialized
at one, and take h to be under the control of the minimizing agent.

6.3 Representing likelihood ratios

We are now equipped to fill in some important details associated with using martingales
to represent likelihood ratios for dynamic models. Before addressing these issues, we use a
simple static example to exhibit an important idea.

6.3.1 A static example

The static example is designed to illustrate two alternative ways to represent the expected
value of a likelihood ratio by changing the measure with respect to which it is evaluated.
Consider two models of a vector y. In the first, y is normally distributed with mean ν and
covariance matrix I. In the second, y is normally distributed with mean zero and covariance
matrix I. The logarithm of the ratio of the first density to the second is:

`(y) =

(

ν · y −
1

2
ν · ν

)

.
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Let E1 denote the expectation under model one and E2 under model two. Properties of the
log-normal distribution imply that

E1 exp [`(y)] = 1.

Under the second model

E2`(y) = E1`(y) exp[`(y)] =
1

2
ν · ν,

which is relative entropy.

6.3.2 The dynamic counterpart

We now consider a dynamic counterpart to the static example by showing two ways to
represent likelihood ratios, one under the original Brownian motion model and another under
the model associated with a nonnegative martingale z. First we consider the likelihood ratio
under the Brownian motion model for B. As noted above, the solution to (24) can be
represented as an exponential:

zt = exp

(
∫ t

0

hu · dBu −
1

2

∫ t

0

|hu|
2du

)

. (26)

We allow
∫ t

0
|hu|

2du to be infinite with positive probability and adopt the convention that

the exponential is zero when this event happens. In the event that
∫ t

0
|hu|

2du < ∞, we can

define the stochastic integral
∫ t

0
hudBu as an appropriate probability limit (see Lemma 6.2

of Liptser and Shiryaev (2000)).
When z is a martingale, we can interpret the right side of (26) as a formula for the

likelihood ratio of two models evaluated under the Brownian motion specification for B.
Taking logarithms, we find that

`t =

∫ t

0

hu · dBu −
1

2

∫ t

0

|hu|
2du.

Since h is progressively measurable, we can write:

ht = ψt(B).

Changing the distribution of B in accordance with q gives another characterization of
the likelihood ratio. The Girsanov Theorem implies

Claim 6.2. If for all t ≥ 0, qt is absolutely continuous with respect to q0
t , then q is the

induced distribution for a (possibly weak) solution B to a stochastic differential equation
defined on a probability space (Ω,F , P̃ ):

dBt = ψt(B)dt+ dB̃t
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for some progressively measurable ψ defined on (Ω∗,F∗) and some Brownian motion B̃ that
is adapted to {Ft : t ≥ 0}. Moreover, for each t

P̃

[
∫ t

0

|ψu(B)|2du <∞

]

= 1.

Proof. From Lemma 6.1 there is a nonnegative martingale z associated with the Radon-
Nikodym derivative of qt with respect to q0

t . This martingale has expectation unity for all t.
The conclusion follows from a generalization of the Girsanov Theorem (e.g. see Liptser and
Shiryaev (2000) Theorem 6.2).

The ψt(B) is the same as that used to represent ht defined by (22). Under the distribution
P̃ ,

Bt =

∫ t

0

hudu+ B̃t

where B̃t is a Brownian motion with respect to the filtration {Ft : t ≥ 0}. In other words,
we obtain perturbed models by replacing the Brownian motion model for a shock process
with a Brownian motion with a drift.

Using this representation, we can write the logarithm of the likelihood ratio as:

˜̀
t =

∫ t

0

ψu(B) · dB̃u +
1

2

∫ t

0

|ψu(B)|2du.

Claim 6.3. For q ∈ Q, let z be the nonnegative martingale associated with q and let h be
the progressively measurable process satisfying (23). Then

R̃(q) =
1

2
E

[
∫ ∞

0

exp(−δt)zt|ht|
2dt

]

.

Proof. See appendix B.

This claim leads us to define a discounted entropy measure for nonnegative martingales:

R∗(z)
.
=

1

2
E

[
∫ ∞

0

exp(−δt)zt|ht|
2dt

]

. (27)

6.4 A martingale version of a robust control problem

Modeling alternative probability distributions as preference shocks that are martingales on a
common probability space is mathematically convenient because it allows us to reformulate
the penalty robust control problem (problem 5.2) as:

Definition 6.4. A nonsequential martingale robust control problem is

max
c∈C

min
h∈H

E

(
∫ ∞

0

exp(−δt)zt

[

U(ct, xt) +
θ

2
|ht|

2

]

d t

)

(28)
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subject to:

dxt = µ(ct, xt)dt+ σ(ct, xt)dBt

dzt = ztht · dBt. (29)

But there is potentially a technical problem with this formulation. There may exist
control process h and corresponding processes z such that z is a nonnegative local martingale
for which R∗(z) < ∞, yet z is not a martingale. We have not ruled out nonnegative
supermartingales that happen to be local martingales. This means that even though z is a
local martingale, it might satisfy only the inequality

E (zt|Fs) ≤ zs

for 0 < s ≤ t. Even when we initialize z0 to one, zt may have a mean less than one and the
corresponding measure will not be a probability measure. Then we would have given the
minimizing agent more options than we intend.

For this not to cause difficulty, at the very least we have to show that the minimizing
player’s choice of h in problem 6.4 is associated with a z that is a martingale and not just a
supermartingale.13 More generally, we have to verify that enlarging the set of processes z as
we have done does not alter the equilibrium of the two-player zero-sum game. In particular,
consider the second problem in assumption 5.5. It suffices to show that the minimizing h
implies a z that is a martingale. If we assume that condition 5.5 is satisfied, then it suffices
to check this for the following timing protocol:

min
h∈H

max
c∈C

E

(
∫ ∞

0

exp(−δt)zt

[

U(ct, xt) +
θ

2
|ht|

2

]

d t

)

subject to (29), z0 = 1, and an initial condition x0 for x.14 In appendix C, we show how to
establish that the solution is indeed a martingale.

13Alternatively, we might interpret the supermartingale as allowing for an escape to a terminal absorbing
state with a terminal value function equal to zero. The expectation of zt gives the probability that an escape
has not happened as of date t. The existence of such terminal state is not, however, entertained in our
formulation of 5.2.

14To see this let H∗ ⊆ H be the set of controls h for which z is a martingale and let obj(h, c) be the
objective as a function of the controls. Then under Assumption 5.5 we have

min
h∈H∗

max
c∈C

obj(h, c) ≥ min
h∈H

max
c∈C

obj(h, c) = max
c∈C

min
h∈H

obj(h, c) ≤ max
c∈C

min
h∈H∗

obj(h, c). (30)

If we demonstrate, the first inequality ≥ in (30) is an equality, it follows that

min
h∈H∗

max
c∈C

obj(h, c) ≤ max
c∈C

min
h∈H∗

obj(h, c).

Since the reverse inequality is always satisfied provided that the extrema are attained, this inequality can be
replaced by an equality. It follows that the second inequality ≤ in (30) must in fact be an equality as well.
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7 Sequential timing protocol for a penalty formulation

The martingale problem 6.4 assumes that at time zero both decision makers commit to
decision processes whose time t components are measurable functions of Ft. The minimizing
decision maker who chooses distorted beliefs h takes c as given; and the maximizing decision
maker who chooses c takes h as given. Assumption 5.5 asserts that the order in which the
two decision makers choose does not matter.

This section studies a two-player zero-sum game with a protocol that makes both players
choose sequentially. We set forth conditions that imply that with sequential choices we
obtain the same time zero value function and the same outcome path that would prevail were
both players to choose once and for all at time 0. The sequential formulation is convenient
computationally and also gives a way to justify the exchange of orders of extremization
stipulated by assumption 5.5.

We have used c to denote the control process and č ∈ Č to denote the value of a control
at a particular date. We let ȟ ∈ Ȟ denote the realized martingale control at any particular
date. We can think of ȟ as a vector in R

d. Similarly, we think of x̌ and ž as being realized
states.

To analyze outcomes under a sequential timing protocol, we think of varying the initial
state and define a value function M(x0, z0) as the optimized objective function (28) for the
martingale problem. By appealing to results of Fleming and Souganidis (1989), we can verify
that Ṽ (θ) = M(x̌, ž) = žV (x̌), provided that x̌ = x0 and ž = 1. Under a sequential timing
protocol, this same value function gives the continuation value for evaluating states reached
at subsequent time periods.

Fleming and Souganidis (1989) show that a Bellman-Isaacs condition renders equilibrium
outcomes under two-sided commitment at date zero identical with outcomes of a Markov
perfect equilibrium in which the decision rules of both agents are chosen sequentially, each
as a function of the state vector xt.

15 The HJB equation for the infinite-horizon zero-sum
two-player martingale game is:

δžV (x̌) = max
č∈Č

min
ȟ
žU(č, x̌) + ž

θ

2
ȟ · ȟ+ µ(č, x̌) · Vx(x̌)ž

+ž
1

2
trace [σ(č, x̌)′Vxx(x̌)σ(č, x̌)] + žȟ · σ(č, x̌)′Vx(x̌) (31)

where Vx is the vector of partial derivatives of V with respect to x̌ and Vxx is the matrix of
second derivatives.16 The diffusion specification makes this HJB equation a partial differen-
tial equation that has multiple solutions that correspond to different boundary conditions.

15Fleming and Souganidis (1989) impose as restrictions that µ, σ and U are bounded, uniformly continuous
and Lipschitz continuous with respect to x̌ uniformly in č. They also require that the controls č and ȟ reside in
compact sets. While these restrictions are imposed to obtain general existence results, they are not satisfied
for some important examples. Presumably existence in these examples will require special arguments. These
issues are beyond the scope of this paper.

16In general the value functions associated with stochastic control problems will not be twice differentiable,
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To find the true value function and to justify the associated control laws requires that we
apply a Verification Theorem (e.g. see Theorem 5.1 of Fleming and Soner (1993)).

The scaling of partial differential equation (31) by ž verifies our guess that the value
function is linear in z. This allows us to study the alternative HJB equation:

δV (x̌) = max
č∈Č

min
ȟ
U(č, x̌) +

θ

2
ȟ · ȟ+

[

µ(č, x̌) + σ(č, x̌)ȟ
]

· Vx(x̌)

+
1

2
trace [σ(č, x̌)′Vxx(x̌)σ(č, x̌)] , (32)

which involves only the x̌ component of the state vector and not ž.17

A Bellman-Isaacs condition renders inconsequential the order of action taken in the re-
cursive game. The Bellman-Isaacs condition requires:

Assumption 7.1. The value function V satisfies

δV (x̌) = max
č∈Č

min
ȟ
U(č, x̌) +

θ

2
ȟ · ȟ+

[

µ(č, x̌) + σ(č, x̌)ȟ
]

· Vx(x̌)

+
1

2
trace [σ(č, x̌)′Vxx(x̌)σ(č, x̌)]

= min
ȟ

max
č∈Č

U(č, x̌) +
θ

2
ȟ · ȟ+

[

µ(č, x̌) + σ(č, x̌)ȟ
]

· Vx(x̌)

+
1

2
trace [σ(č, x̌)′Vxx(x̌)σ(č, x̌)]

Appendix D describes three ways to verify this Bellman-Isaacs condition. The infinite-
horizon counterpart to the result of Fleming and Souganidis (1989) asserts that the Bellman-
Isaacs condition implies assumption 5.5 and hence Ṽ (θ) = V (x0) because z is initialized at
unity.

as would be required for the HJB equation in (32) below to possess classical solutions. However Fleming
and Souganidis (1989) prove that the value function satisfies the HJB equation in a weaker viscosity sense.
Viscosity solutions are often needed when it is feasible and sometimes desirable to set the control č so that
σ(č, x̌) has lower rank than d, which is the dimension of the Brownian motion.

17We can construct another differential game for which V is the value function replacing dBt by htdt+dBt

in the evolution equation instead of introducing a martingale. In this way we would perturb the process
rather than the probability distribution. While this approach can be motivated using Girsanov’s Theorem,
some subtle differences between the resulting perturbation game and the martingale game arise because the
history of B̂t =

∫ t

0
hudu + Bt can generate either a smaller or a larger filtration than that of the Brownian

motion B. When it generates a smaller sigma algebra, we would be compelled to solve a combined control
and filtering problem if we think of B̂ as the generating the information available to the decision maker.
If B̂ generates a larger information set, then we are compelled to consider weak solutions to the stochastic
differential equations that underlie the decision problem. Instead of extensively developing this alternative
interpretation of V (as we did in an earlier draft), we simply think of the partial differential equation (32)
as a means of simplifying the solution to the martingale problem.
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7.1 A representation of z∗

One way to represent the worst-case martingale z∗ in the recursive penalty game opens a
natural transition to the risk-sensitive ordinary control problem whose HJB equation is (13).
The minimizing player’s decision rule is ȟ = αh(x̌), where

αh(x̌) = −
1

θ
σ∗(x̌)′Vx(x̌) (33)

and σ∗(x̌) ≡ σ∗(αc(x̌), x̌). Suppose that V (x̌) is twice continuously differentiable. Applying
the formula on page 226 of Revuz and Yor (1994), form the martingale:

z∗t = exp

(

−
1

θ
[V (xt) − V (x0)] −

∫ t

0

w(xu)du

)

,

where w is constructed to ensure that z∗ has a zero drift. The worst case distribution assigns
more weight to bad states as measured by an exponential adjustment to the value function.
This representation leads directly to the risk-sensitive control problem that we take up in
the next subsection.

7.2 Risk sensitivity revisited

The HJB equation for the recursive, risk-sensitive control problem is obtained by substituting
the solution (33) for h into the partial differential equation (32):

δV (x̌) = max
č∈Č

min
ȟ
U(č, x̌) +

θ

2
ȟ · ȟ+

[

µ(č, x̌) + σ(č, x̌)ȟ
]

· Vx(x̌)

+
1

2
trace [σ(č, x̌)′Vxx(x̌)σ(č, x̌)]

= max
č∈Č

U(č, x̌) + µ(č, x̌) · Vx(x̌) (34)

+
1

2
trace [σ(č, x̌)′Vxx(x̌)σ(č, x̌)]

−
1

2θ
Vx(x̌)

′σ(č, x̌)σ(č, x̌)′Vx(x̌)

The value function V for the robust penalty problem is also the value function for the risk
sensitive control problem of section 3.2. The risk sensitive interpretation excludes worries
about misspecified dynamics and instead enhances the control objective with aversion to risk
in a way captured by the local variance of the continuation value. While mathematically
related to the situation discussed in James (1992) (see pages 403 and 404), the presence of
discounting in our setup compels us to use a recursive representation of the objective of the
decision-maker.

It light of this connection between robust control and risk-sensitive control, it is not
surprising that the penalty preference ordering that we developed in section 5.3 is equivalent
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to a risk-sensitive version of the stochastic differential utility studied by Duffie and Epstein
(1992). Using results from Schroder and Skiadas (1999), Skiadas (2001) has shown this
formally.

The equivalence of the robustness-penalty preference order with one coming from a risk-
adjustment of the continuation value obviously provides no guidance about which interpre-
tation we should prefer. That a given preference order can be motivated in two ways does
not inform us about which of them is more attractive. But in an application to asset pricing,
Anderson, Hansen, and Sargent (2003) have shown how the robustness motivation would
lead a calibrator to think differently about the parameter θ than the risk motivation.18

8 Sequential timing protocol for a constraint formula-

tion

Section 7 showed how to make penalty problem 5.2 recursive by adopting a sequential timing
protocol. Now we show how to make the constraint problem 5.3 recursive. Because the value
of the date zero constraint problem depends on the magnitude of the entropy constraint, we
add the continuation value of entropy as a state variable. Instead of a value function V that
depends only on the state x, we use a value function K that also depends on continuation
entropy, denoted r.

8.1 An HJB equation for a constraint game

Our strategy is to use the link between the value functions for the penalty and constraint
problems asserted in claims 5.4 and 5.6, then to deduce from the HJB equation (31) a partial
differential equation that can be interpreted as the HJB equation for another zero-sum two-
player game with additional states and controls. By construction, the new game has a
sequential timing protocol and will have the same equilibrium outcome and representation
as game (31). Until now, we have suppressed the dependence of V on θ in our notation for
the value function V . Because this dependence is central, we now denote it explicitly.

8.2 Another value function

Claim 5.4 showed how to construct the date zero value function for the constraint problem
from the penalty problem via Legendre transform. We use this same transform over time to
construct a new value function K:

K(x̌, ř) = max
θ≥0

V (x̌, θ) − řθ (35)

18The link between the preference orders would vanish if we limited the concerns about model misspec-
ification to some components of the vector Brownian motion. In Wang (2001)’s axiomatic treatment, the
preferences are defined over both the approximating model and the family of perturbed models. Both can
vary. By limiting the family of perturbed models, we can break the link with recursive utility theory.
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that is related to K̃ by
K̃(ř) = K(x̌, ř)

provided that x̌ is equal to the date zero state x0, ř is used for the initial entropy constraint,
and ž = 1. We also assume that the Bellman-Isaacs condition is satisfied, so that the inverse
Legendre transform can be applied:

V (x̌, θ) = min
ř≥0

K(x̌, ř) + řθ. (36)

When K and V are related by the Legendre transforms (35) and (36), their derivatives
are closely related, if they exist. We presume the smoothness needed to compute derivatives.

The HJB equation (31) that we derived for V held for each value of θ. We consider the
consequences of varying the pair (x̌, θ), as in the construction of V , or we consider varying
the pair (x̌, ř), as in the construction of K. We have

Kr = −θ or Vθ = r̂.

For a fixed x̌, we can vary ř by changing θ, or conversely we can vary θ by changing ř. To
construct a partial differential equation for K from (31), we will compute derivatives with
respect to ř that respect the constraint linking ř and θ.

For the optimized value of ř, we have

δV = δ(K + θř) = δK − δřKr, (37)

and

−θ

(

ȟ · ȟ

2

)

= Kr

(

ȟ · ȟ

2

)

. (38)

By the implicit function theorem, holding θ fixed:

∂ř

∂x
= −

Kxr

Krr

.

Next we compute the derivatives of V that enter the partial differential equation (31) for
V :

Vx = Kx

Vxx = Kxx +Krx

∂ř

∂x

= Kxx −
KrxKxr

Krr

. (39)

Notice that

1
2
trace [σ(č, x̌)′Vxx(x̌)σ(č, x̌)] =

min
ǧ

1
2
trace

(

[

σ(č, x̌)′ ǧ
]

[

Kxx(x̌, ř) Kxr(x̌, ř)
Krx(x̌, ř) Krr(x̌, ř)

] [

σ(č, x̌)
ǧ′

])

(40)
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where ǧ is a column vector with the same dimension d as the Brownian motion. Substituting
equations (37), (38), (39), and (40) into the partial differential equation (32) gives:

δK(x̌, ř) = max
č∈Č

min
ȟ,ǧ

U(č, x̌) +
[

µ(č, x̌) + σ(č, x̌)ȟ
]

·Kx(x̌, ř) +

(

δř −
ȟ · ȟ

2

)

·Kr(x̌, ř)

+
1

2
trace

(

[

σ(č, x̌)′ ǧ
]

[

Kxx(x̌, ř) Kxr(x̌, ř)
Krx(x̌, ř) Krr(x̌, ř)

] [

σ(č, x̌)
ǧ′

])

. (41)

The remainder of this section interprets žK(x̌, ř) as a value function for a recursive game
in which θ = θ∗ > θ is fixed over time. We have already seen how to characterize the state
evolution for the recursive penalty differential game associated with a fixed θ. The first-order
condition for the maximization problem on the right side of (35) is

ř = Vθ(x̌, θ
∗). (42)

We view this first-order condition as determining ř for a given θ∗ and x̌. Then formula (42)
implies that the evolution of r is fully determined by the equilibrium evolution of x. We
refer to r as continuation entropy.

We denote the state evolution for the θ∗ differential game as:

dxt = µ∗(xt, θ
∗)dt+ σ∗(xt, θ

∗)dBt

8.3 Continuation entropy

We want to show that r evolves like continuation entropy. Recall formula (27) for the relative
entropy of a nonnegative martingale:

R∗(z)
.
= E

∫ ∞

0

exp(−δt)zt

|ht|
2

2
dt.

Define a date t conditional counterpart as follows:

R∗
t (z) = E

[
∫ ∞

0

exp(−δu)

(

zt+u

zt

)

|ht+u|
2

2
du

∣

∣

∣
Ft

]

,

provided that zt > 0 and define R∗
t (z) to be zero otherwise. This family of random variables

induces the following recursion for ε > 0:

ztR
∗
t (z) = exp(−δε)E

[

zt+εR
∗
t+ε(z)

∣

∣

∣
Ft

]

+ E

[
∫ ε

0

exp(−δu)zt+u

|ht+u|
2

2
du

∣

∣

∣
Ft

]

.

Since ztR
∗
t (z) is in the form of a risk neutral value of an asset with future dividend

zt+u
ht+u·ht+u

2
, its local mean or drift has the familiar formula:

δztR
∗
t (z) − zt

|ht|
2

2
.
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To defend an interpretation of rt as continuation entropy, we need to verify that this drift
restriction is satisfied for rt = R∗

t (z). Write the evolution for rt as:

drt = µr(xt)dt+ σr(xt) · dBt,

and recall that
dzt = ztht · dBt.

Using Ito’s formula for the drift of ztrt, the restriction that we want to verify is:

žµr(x̌) + žσr(x̌) · ȟ = δžř − ž
|ȟ|2

2
. (43)

Given formula (42) and Ito’s differential formula for a smooth function of a diffusion
process, we have

µr(x̌) = Vθx(x̌, θ
∗) · µ∗(x̌, θ∗) +

1

2
trace [σ(č, x̌)′Vθxx(x̌)σ(č, x̌)]

and
σr(x̌) = Vθx(x̌, θ

∗)σ∗(x̌, θ∗).

Recall that the worst case ht is given by

ht = −
1

θ∗
σ∗(xt, θ

∗)′Vx(xt, θ
∗)

and thus
|ht|

2

2
=

(

1

2θ∗2

)

Vx(x̌)
′σ(č, x̌)σ(č, x̌)′Vx(x̌).

Restriction (43) can be verified by substituting our formulas for rt, ht, µr and σr. The
resulting equation is equivalent to that obtained by differentiating the HJB equation (34)
with respect to θ, justifying our interpretation of rt as a continuation entropy.

8.4 Minimizing continuation entropy

Having defended a specific construction of continuation entropy that supports a constant
value of θ, we now describe a differential game that makes entropy an endogenous state
variable. To formulate that game, we consider the inverse Legendre transform (36) from
which we construct V from K by minimizing ř. In the recursive version of the constraint
game, the state variable rt is the continuation entropy that at t remains available to allocate
across states at future dates. At date t, continuation entropy is allocated via the minimization
suggested by the inverse Legendre transform. We restrict the minimizing player to allocate
future rt across states that can be realized with positive probability, conditional on date t
information.
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8.4.1 Two state example

Before presenting the continuous-time formulation, consider a two-period example. Suppose
that two states can be realized at date t+ 1, namely ω1 and ω2. Each state has probability
one-half under an approximating model. The minimizing agent distorts these probabilities by
assigning probability pt to state ω1. The contribution to entropy coming from the distortion

of the probabilities is the discrete state analogue of
∫

log
(

dqt

dq0
t

)

dqt, namely,

I(pt) = pt log pt + (1 − pt) log(1 − pt) + log 2.

The minimizing player also chooses continuation entropies for each of the two states that
can be realized next period. Continuation entropies are discounted and averaged according
to the distorted probabilities, so that we have:

rt = I(pt) + exp(−δ) [ptrt+1(ω1) + (1 − pt)rt+1(ω2)] . (44)

Let Ut denote the current period utility for an exogenously given process for ct, and
let Vt+1(ω, θ) denote the next period value given state ω. This function is concave in θ.
Construct Vt via backward induction:

Vt(θ) = min
0≤pt+1≤1

Ut + θIt(pt)

+ exp(−δ) [ptVt+1(ω1, θ) + (1 − pt)Vt+1(ω2, θ)] (45)

Compute the Legendre transforms:

Kt(ř) = max
θ≥0

Vt(θ) − θř

Kt+1(ř, ω) = max
θ≥0

Vt+1(θ, ω) − θř

for ω = ω1, ω2. Given θ∗, let rt be the solution to the inverse Legendre transform:

Vt(θ
∗) = min

ř≥0
Kt(ř) + θ∗ř.

Similarly, let rt+1(ω) be the solution to

Vt+1(ω, θ
∗) = min

ř≥0
Kt+1(ω, ř) + θ∗ř.

Substitute the inverse Legendre transforms into the simplified HJB equation (45):

Vt(θ
∗) = min

0≤pt≤1
Ut + θ∗It(pt)

+ exp(−δ)

(

pt

[

min
ř1≥0

Kt+1(ω1, ř1) + θ∗ř1

]

+ (1 − pt)

[

min
ř2≥0

Kt+1(ω2, ř2) + θ∗ř2

])

= min
0≤pt≤1,ř1≥0,ř2≥0

Ut + θ∗ (It(pt) + exp(−δ) [ptř1 + (1 − pt)ř2])
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+ exp(−δ) [ptKt+1(ω1, ř1) + (1 − pt)Kt+1(ω2, ř2)] .

Thus,

Kt(rt) = Vt(θ
∗) − θ∗rt

= min
0≤pt≤1,ř1≥0,ř2≥0

max
θ≥0

Ut + θ (It(pt) + exp(−δ) [ptř1 + (1 − pt)ř2] − rt)

+ exp(−δ) [ptKt+1(ω1, ř1) + (1 − pt)Kt+1(ω2, ř2)] .

Since the solution is θ = θ∗ > 0, at this value of θ the entropy constraint (44) must be
satisfied and

Kt(rt) = min
0≤pt≤1,ř1≥0,ř2≥0

Ut + exp(−δ) [ptKt+1(ω1, ř1) + (1 − pt)Kt+1(ω2, ř2)] .

By construction, the solution for řj is rt+1(ωj) defined earlier. The recursive implementation
presumes that the continuation entropies rt+1(ωj) are chosen at date t prior to the realization
of ω.

When we allow the decision maker to choose the control ct, this construction requires that
we can freely change orders of maximization and minimization as in our previous analysis.

8.4.2 Continuous-time formulation

In a continuous-time formulation, we allocate the stochastic differential of entropy subject
to the constraint that the current entropy is rt. The increment to r is determined via the
stochastic differential equation:19

drt =

(

δrt −
|ht|

2

2
− gt · ht

)

dt+ gt · dBt.

This evolution for r implies that

d(ztrt) =

(

δztrt − zt

|ht|
2

2

)

dt+ zt(rtht + gt)dBt

which has the requisite drift to interpret rt as continuation entropy.
The minimizing agent not only picks ht but also chooses gt to allocate entropy over the

next instant. The process g thus becomes a control vector for allocating continuation entropy
across the various future states. In formulating the continuous-time game, we thus add a
state rt and a control gt. With these added states, the differential game has a value function
ẑK(x̂, r̂), where K satisfies the HJB equation (41).

We have deduced this new partial differential equation partly to help us understand
senses in which the constrained problem is or is not time consistent. Since rt evolves as an
exact function of xt, it is more efficient to compute V and to use this value function to infer
the optimal control law and the implied state evolution. In the next section, however, we
use the recursive constraint formulation to address some interesting issues raised by Epstein
and Schneider (2004).

19The process is stopped if rt hits the zero boundary. Once zero is hit, the continuation entropy remains
at zero. In many circumstances, the zero boundary will never be hit.
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9 A recursive multiple priors formulation

Taking continuation entropy as a state variable is a convenient way to restrict the models
entertained at time t by the minimizing player in the recursive version of constraint game.
Suppose instead that at date t the decision maker retains the date zero family of probability
models without imposing additional restrictions or freezing a state variable like continuation
entropy. That would allow the minimizing decision maker at date t to reassign probabili-
ties of events that have already been realized and events that cannot possibly be realized
given current information. The minimizing decision maker would take advantage of that
opportunity to alter the worst-case probability distribution at date t in a way that makes
the specification of prior probability distributions of section 5 induce dynamic inconsistency
in a sense formalized by Epstein and Schneider (2004). They characterize families of prior
distributions that satisfy a rectangularity criterion that shields the decision maker from what
they call “dynamic inconsistency”. In this section, we discuss how Epstein and Schneider’s
notion of dynamic inconsistency would apply to our setting, show that their proposal for
attaining consistency by minimally enlarging an original set of priors to be rectangular will
not work for us, then propose our own way of making priors rectangular in a way that leaves
the rest of our analysis intact.

Consider the martingale formulation of the date zero entropy constraint:

E

∫ ∞

0

exp(−δu)zu

|hu|
2

2
du ≤ η (46)

where
dzt = ztht · dBt.

The component of entropy that constrains our date t decision-maker is:

rt =
1

zt

E

(
∫ ∞

0

zt+u

|ht+u|
2

2
du|Ft

)

in states in which zt > 0. We rewrite (46) as:

E

∫ t

0

exp(−δu)zu

|hu|
2

2
du+ exp(−δt)Eztrt ≤ η.

To illuminate the nature of dynamic inconsistency, we begin by noting that the time 0
constraint imposes essentially no restriction on rt. Consider a date t event that has probabil-
ity strictly less than one conditioned on date zero information. Let y be a random variable
that is equal to zero on the event and equal to the reciprocal of the probability on the com-
plement of the event. Thus, y is a nonnegative, bounded random variable with expectation
equal to unity. Construct a zu = E(y|Fu). Then z is a bounded nonnegative martingale
with finite entropy and zu = y for u ≥ t. In particular zt is zero on the date t event used to
construct y. By shrinking the date t event to have arbitrarily small probability, we can bring
the bound arbitrarily close to unity and entropy arbitrarily close to zero. Thus, for date
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t events with sufficiently small probability, the entropy constraint can be satisfied without
restricting the magnitude of rt on these events. This exercise isolates a justification for using
continuation entropy as a state variable inherited at date t: fixing it eliminates any gains
from readjusting distortions of probabilities assigned to uncertainties that were resolved in
previous time periods

9.1 Epstein and Schneider’s proposal works poorly for us

If we insist on withdrawing an endogenous state variable like rt, dynamic consistency can
still be obtained by imposing restrictions on ht for alternative dates and states. For instance,
we could impose prior restrictions in the separable form

|ht|
2

2
≤ ft

for each event realization and date t. Such a restriction is rectangular in the sense of Epstein
and Schneider (2004). To preserve a subjective notion of prior distributions, Epstein and
Schneider (2004) advocate making an original set of priors rectangular by enlarging it to
the least extent possible. They suggest this approach in conjunction with entropy measures
of the type used here, as well as other possible specifications. However, an ft specified on
any event that occurs with probability less than one is essentially unrestricted by the date
zero entropy constraint. In continuous time, this follows because zero measure is assigned
to any calendar date, but it also carries over to discrete time because continuation entropy
remains unrestricted if we can adjust earlier distortions. Thus, for our application Epstein
and Schneider’s way of achieving a rectangular specification through the mechanism fails to
restrict prior distributions in an interesting way.20

9.2 A better way to impose rectangularity

There is an alternative way to make the priors rectangular that has trivial consequences
for our analysis. The basic idea is to separate the choice of ft from the choice of ht, while

imposing |ht|2

2
≤ ft. We then imagine that the process {ft : t ≥ 0} is chosen ex ante

and adhered to. Conditioned on that commitment, the resulting problem has the recursive
structure advocated by Epstein and Schneider (2004). The ability to exchange maximization
and minimization is central to our construction.

From section 5, recall that

K̃(ř) = max
θ≥0

Ṽ (θ) − θř.

We now rewrite the inner problem on the right side for a fixed θ. Take the Bellman-Isaacs
condition

zV (x) = min
h∈H

max
c∈C

E

∫ ∞

0

exp(−δt)

[

ztU(ct, xt) + θzt

|ht|
2

2

]

dt

20While Epstein and Schneider (2004) advocate rectangularization even for entropy-based constraints, they
do not claim that it always gives rise to interesting restrictions.
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with the evolution equations

dxt = µ(ct, xt)dt+ σ(ct, xt)dBt

dzt = ztht · dBt. (47)

Decompose the entropy constraint as:

η = E

∫ ∞

0

exp(−δt)ztftdt

where

ft =
|ht|

2

2
.

Rewrite the objective of the optimization problem as

min
f∈F

min
h∈H,

|ht|
2

2
≤ft

max
c∈C

E

∫ ∞

0

exp(−δt) [ztU(ct, xt) + θztft] dt

subject to (47). In this formulation, F is the set of progressively measurable scalar processes
that are nonnegative. We entertain the inequality

|ht|
2

2
≤ ft

but in fact this constraint will always bind for the a priori optimized choice of f . The inner
problem can now be written as:

min
h∈H,

|ht|
2

2
≤ft

max
c∈C

E

∫ ∞

0

exp(−δt)ztU(ct, xt)dt

subject to (47). Provided that we can change orders of the min and max, this inner problem
will have a rectangular specification of alternative models and be dynamically consistent in
the sense of Epstein and Schneider (2004).

Although this construction avoids introducing continuation entropy as an endogenous
state variable, it assumes a commitment to a process f that is computed ex ante by solving
what is essentially a static optimization problem. That is, f is chosen by exploring its
consequences for a dynamic implementation of the form envisioned by Epstein and Schneider
(2004) and is not simply part of the exogenously ex ante given set of beliefs of the decision
maker.21 We can, however, imagine that at date zero, the decision maker accepts the sequence
{ft : t ≥ 0} as part of a conditional preference formulation. This decision maker then has
preferences of a type envisioned by Epstein and Schneider (2004).

While their concern about dynamic consistency leads Epstein and Schneider to express
doubts about commitments to a constraint based on continuation entropy, they do not

21Notice that the Bayesian interpretation is also a trivial special case of a recursive multiple priors model.
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examine what could lead a decision-maker to commit to a particular rectangular set of beliefs
embodied in a specification of f .22 If multiple priors truly are a statement of a decision
maker’s subjective beliefs, we think it is not appropriate to dismiss such beliefs on the
grounds of dynamic inconsistency. Repairing that inconsistency through the enlargements
necessary to induce rectangularity reduces the content of the original set of prior beliefs. In
our context, this enlargement is immense, too immense to be interesting to us.

The reservations that we have expressed about the substantive importance of rectangular-
ity notwithstanding, we agree that Epstein and Schneider’s discussion of dynamic consistency
opens up a useful discussion of the alternative possible forms of commitment that allow us
to create dynamic models with multiple priors.23

10 Concluding remarks

Empirical studies in macroeconomics and finance typically assume a unique and explicitly
specified dynamic statistical model. Concerns about model misspecification recognize that
an unknown member of a set of alternative models might govern the data. But how should
one specify those alternative models? With one parameter that measures the size of the
set, robust control theory parsimoniously stipulates a set of alternative models with rich
dynamics.24 Robust control theory leaves those models only vaguely specified and obtains
them by perturbing the decision maker’s approximating model to let shocks feed back on
state variables arbitrarily. Among other possibilities, this allows the approximating model to
miss the serial correlation of exogenous variables and the dynamics of how those exogenous
variables impinge on endogenous state variables.

We have delineated some formal connections that exist between various formulations of
robust control theory and the max-min expected utility theory of Gilboa and Schmeidler
(1989). Their theory deduces a set of models from a decision maker’s underlying preferences
over risky outcomes. In their theory, none of the decision maker’s models has the special
status that the approximating model has in robust control theory. To put Gilboa and
Schmeidler’s theory to work, an applied economist would have to impute a set of models
to the decision makers in his model (unlike the situation in rational expectations models,
where the decision maker’s model would be an equilibrium outcome). A practical attraction
of robust control theory is the way it allows an economist to take a single approximating
model and from it manufacture a set of models that express a decision maker’s ambiguity.

22Furthermore, an analogous skeptical observation about commitment pertains to Bayesian decision theory,
where the decision maker commits to a specific prior distribution.

23In the second to last paragraph of their page 16, Epstein and Schneider (2004) seem also to express
reservations about their enlargement procedure.

24Other formulations of robust control put more structure on the class of alternative models and this can
have important consequences for decisions. See Onatski and Williams (2003) for one more structured formu-
lation and Hansen and Sargent (2005b) for another. By including a hidden state vector and appropriately
decomposing the density of next period’s observables conditional on a history of signals, Hansen and Sargent
(2005b) extend the approach of this paper to allow a decision maker to have multiple models and to seek
robustness to the specification of a prior over them.

38



Hansen and Sargent (2003) exploit this feature of robust control to construct a multiple
agent model in which a common approximating model plays the role that an equilibrium
common model does in a rational expectations model.

We have used a particular notion of discounted entropy as a statistical measure of the
discrepancy between models. It directs our decision maker’s attention to models that are
absolutely continuous with respect to his approximating model over finite intervals, but
not absolutely continuous with respect to it over an infinite interval. This specification
keeps the decision maker concerned about models that can be difficult to distinguish from
the approximating model from a continuous record of observations on the state vector of a
finite length. Via statistical detection error probabilities, Anderson, Hansen, and Sargent
(2003) show how the penalty parameter or the constraint parameter in the robust control
problems can be used to identify a set of perturbed models that are difficult to distinguish
statistically from the approximating model in light of a continuous record of finite length T
of observations on xt.

Finally, we have made extensive use of martingales to represent perturbed models.
Hansen and Sargent (2005a) and Hansen and Sargent (2005b) use such martingales to pose
robust control and estimation problems in Markov decision problems where some of the state
variables are hidden.
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A Cast of characters

This appendix sets out the following list of objects and conventions that make repeated
appearances in our analysis.

1. Probability spaces

(a) A probability space associated with a Brownian motion B that is used to define
an approximating model and a set of alternative models.

(b) A probability space over continuous functions of time induced by history of the
Brownian motion B in part 1a and used to define an approximating model.

(c) A set of alternative probability distributions induced by B and used to define a
set alternative models.

2. Ordinary (single-agent) control problems

(a) A benchmark optimal control problem defined on space 1a.

(b) A benchmark decision problem defined on the probability space induced by B.

(c) A risk-sensitive problem defined on space 1a.

(d) Alternative Bayesian (benchmark problems) defined on the spaces in 1c.

3. Representations of alternative models

(a) As nonnegative martingales with unit expectation the probability space 1a.

(b) As alternative induced distributions as in 1c.

4. Restrictions on sets of alternative models

(a) An implicit restriction embedded in a nonnegative penalty parameter θ.

(b) A constraint on relative entropy, a measure of model discrepancy.

5. Representations of relative entropy

(a) Time 0 (nonsequential): discounted expected log likelihood ratio of an approxi-
mating model q0 to an alternative model q drawn from the set 1c.

(b) Time 0 (nonsequential): a function of a martingale defined on the probability
space 1a.

(c) Recursive: as a solution of either of a differential equations defined in terms of B.

6. Timing protocols for zero-sum two-player games

(a) Exchange of order of choice for maximizing and minimizing players.

(b) Under two-sided commitment at t = 0, both players choose processes for all time
t ≥ 0.

(c) With lack of commitment on two sides, both players choose sequentially.
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B Discounted entropy

Let Q be the set of all distributions that are absolutely continuous with respect to q0 over
finite intervals. This set is convex. For q ∈ Q, let

R̃(q)
.
= δ

∫ ∞

0

exp(−δt)

[
∫

log

(

dqt
dq0

t

)

dqt

]

dt,

which may be infinite for some q ∈ Q.

Claim B.1. R̃ is convex on Q.

Proof. Since q ∈ Q is absolutely continuous with respect to q0 over finite intervals, we can
construct likelihood ratios for finite histories at any calendar date t. Form Ω̃ = Ω∗ × R

+

where R
+ is the nonnegative real line. Form the corresponding sigma algebra F̃ as the

smallest sigma algebra containing F ∗
t ⊗ Bt for any t where Bt is the collection of Borel sets

in [0, t]; and form q̃ as the product measure q with an exponential distribution with density
δ exp(−δt) for any q ∈ Q. Notice that q̃ is a probability distribution and R̃(q) is the relative
entropy of q̃ with respect to q̃0:

R̃(q) =

∫

log

(

dq̃

dq̃0

)

dq̃.

Form two measures q̃1 and q̃2 as the product of q1 and q2 with an exponential distribution
with parameter δ. Then a convex combination of q̃1 and q̃2 is given by the product of
the corresponding convex combination of q1 and q2 with the same exponential distribution.
Relative entropy is well known to be convex in the probability measure q̃ (e.g. see Dupuis
and Ellis (1997)), and hence R̃ is convex in q.

Recall that associated with any probability measure q that is absolutely continuous with
respect to q0 over finite intervals is a nonnegative martingale z defined on (Ω,F , P ) with a
unit expectation. This martingale satisfies the integral equation:

zt = 1 +

∫ t

0

zuhudBu. (48)

Claim B.2. Suppose that qt is absolutely continuous with respect to q0
t for all 0 < t < ∞.

Let z be the corresponding nonnegative martingale on (Ω,F , P ). Then

Ezt1{
�

t

0
|hs|2ds<∞} = 1.

Moreover,
∫

log
dqt
dq0

t

dqt =
1

2
E

∫ t

0

zs|hs|
2ds.
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Proof. Consider first the claim that

Ezt1{
�

t

0
|hs|2ds<∞} = 1,

The martingale z satisfies the stochastic differential equation:

dzt = zthtdBt

with initial condition z0 = 1. Construct an increasing sequence of stopping times {τn : n ≥ 1}
where τn

.
= inf{t : zt = 1

n
} and let τ = limn τn. The limiting stopping time can be infinite.

Then zt = 0 for t ≥ τ and
zt = zt∧τ

Form:
zn

t = zt∧τn

which is nonnegative martingale satisfying:

dzn
t = zn

t h
n
t dBt

where hn
t = ht if 0 < t < τn and hn

t = 0 if t ≥ τn. Then

P

{
∫ t

0

|hn
s |

2(zn
s )2ds <∞

}

= 1

and hence

P

{
∫ t

0

|hn
s |

2ds <∞

}

= P

{
∫ t∧τn

0

|hs|
2ds <∞

}

= 1.

Taking limits as n gets large,

P

{
∫ t∧τ

0

|hs|
2ds <∞

}

= 1.

While it is possible that τ <∞ with positive P probability, as argued by Kabanov, Lipcer,
and Sirjaev (1979)

∫

zt1{τ<∞}dP =

∫

{zt=0, t<∞}

ztdP = 0.

Therefore,

Ezt1{
�

t

0
|hs|2ds<∞} = Ezt1{

�
t∧τ

0
|hs|2ds<∞,τ=∞} + Ezt1{

�
t

0
|hs|2ds<∞,τ<∞} = 1.

Consider next the claim that
∫

log
dqt
dq0

t

dqt = E

∫ t

0

zs|hs|
2ds.
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We first suppose that

E

∫ t

0

zs|hs|
2ds <∞. (49)

We will subsequently show that this condition is satisfied when R̃(q) < ∞. Use the mar-
tingale z to construct a new probability measure P̃ on (Ω,F). Then from the Girsanov
Theorem [see Theorem 6.2 of Liptser and Shiryaev (2000)]

B̃t = Bt −

∫ t

0

hsds

is a Brownian motion with respect to the filtration {Ft : t ≥ 0}. Moreover,

Ẽ

∫ t

0

|hs|
2ds = E

∫ t

0

zs|hs|
2ds.

Write

log zt =

∫ t

0

hs · dBs −
1

2

∫ t

0

|hs|
2ds =

∫ t

0

hs · dB̃s +
1

2

∫ t

0

|hs|
2ds.

which is well defined under the P̃ probability. Moreover,

Ẽ

∫ t

0

hs · dB̃s = 0

and hence

Ẽ log zt =
1

2
Ẽ

∫ t

0

|hs|
2ds =

1

2
E

∫ t

0

zs|hs|
2ds,

which is the desired equality. In particular, we have proved that
∫

log dqt

dq0
t

dqt is finite.

Next we suppose that
∫

log
dqt
dq0

t

dqt <∞,

which will hold when R̃(q) <∞. Then Lemma 2.6 from Föllmer (1985) insures that

1

2
Ẽ

∫ t

0

|hs|
2ds ≤

∫

log
dqt
dq0

t

dqt.

Föllmer’s result is directly applicable because
∫

log dqt

dq0
t

dqt is the same as the relative entropy

of P̃t with respect to Pt where P̃t is the restriction of P̃ to events in Ft and Pt is defined
similarly. As a consequence, (49) is satisfied and the desired equality follows from our
previous argument.

Finally, notice that 1
2
Ẽ

∫ t

0
|hs|

2ds is infinite if, and only if
∫

log dqt

dq0
t

dqt is infinite.
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Claim B.3. For q ∈ Q, let z be the nonnegative martingale associated with q and let h be
the progressively measurable process satisfying (48). Then

R̃(q) =
1

2
E

[
∫ ∞

0

exp(−δt)zt|ht|
2dt

]

Proof. The conclusion follows from:

R̃(q) = δ

∫ ∞

0

exp(−δt)

∫

log

(

dqt
dq0

t

)

dqtdt

=
δ

2
E

[
∫ ∞

0

exp(−δt)

∫ t

0

zu|hu|
2dudt

]

=
1

2
E

[
∫ ∞

0

exp(−δt)zt|ht|
2dt

]

where the second equality follows from B.2 and the third from integrating by parts.

This justifies our definition of entropy for nonnegative martingales:

R(z) =
1

2
E

[
∫ ∞

0

exp(−δt)zt|ht|
2dt

]

.

C Absolute continuity of solutions

In this appendix we show how to verify that the solution for z from the martingale robust
control problem is in a fact a martingale and not just a local martingale. Our approach
to studying absolute continuity and verifying that the Markov perfect equilibrium z is a
martingale differs from the perhaps more familiar use of a Novikov or Kazamaki condition.25

Consider two distinct stochastic differential equations. One is the Markov solution to the
penalty robust control problem.

dx∗t = µ∗(x∗t )dt+ σ∗(x∗t )dBt

dz∗t = z∗tαh(x
∗
t )dBt. (50)

where µ∗(x̌) = µ(αc(x̌), x̌), σ
∗(x̌) = σ(αc(x̌), x̌) and where αc and αh are the solutions from

the penalty robust control problem. Notice that the equation for the evolution of x∗
t is

autonomous (it does not depend on z∗t ). Let a strong solution to this equation system be:

x∗t = Φ∗
t (B).

Consider a second stochastic differential equation:

dx̂t = µ∗(x̂t)dt+ σ∗(x̂t)
[

αh(x̂t)dt+ dB̂t

]

(51)

25We construct two well defined Markov processes and verify absolute continuity. Application of the
Novikov or Kazamaki conditions entails imposing extra moment conditions on the objects used to construct
the local martingale z.
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In verifying that this state equation has a solution, we are free to examine weak solutions
provided that F̂t is generated by current and past x̂t and B̂ does not generate a larger
filtration than x̂.

The equilibrium outcomes x∗ and x̂ for the two stochastic differential equations thus
induce two distributions for x. We next study how these distributions are related. We
will discuss how to check for absolute continuity along finite intervals for induced distribu-
tions associated with these models. When the models satisfy absolute continuity over finite
intervals, it will automatically follow that the equilibrium process z∗ is a martingale.

C.1 Comparing models of B

We propose the following method to transform a strong solution to (50) into a possibly
weak solution to (51). Begin with a Brownian motion B̂ defined on a probability space with
probability measure P̂ . Consider the recursive solution:

x̂t = Φ∗
t (B)

Bt = B̂t +

∫ t

0

αh(x̂u)du.

We look for solutions in which Ft is generated by current and past values of B (not B̂).
We call this a recursion because B is itself constructed from past values of B and B̂. The
stochastic differential equation associated with this recursion is (51).

To establish the absolute continuity of the distribution induced by B with respect to
Weiner measure q0 it suffices to verify that for each t

Ê

∫ t

0

|αh(x̂u)|
2du <∞

and hence

P̂

{
∫ t

0

|αh(x̂u)|
2du <∞

}

= 1. (52)

It follows from Theorem 7.5 of Liptser and Shiryaev (2000) that the probability distribution
induced by B under the solution to the perturbed problem is absolutely continuous with
respect to Wiener measure q0. To explore directly the weaker relation (52) further, recall
that

αh(x̌) = −
1

θ
σ∗(x̌)′Vx(x̌).

Provided that σ∗ and Vx are continuous in x̌ and that x does not explode in finite time, this
relation follows immediately.

C.2 Comparing generators

Another strategy for checking absolute continuity is to follow the approach of Kunita (1969),
who provides characterizations of absolute continuity and equivalence of Markov models
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through restrictions on the generators of the processes. Since the models for x∗ and x̂ are
Markov diffusion processes, we can apply these characterizations provided that we include
B as part of the state vector. Abstracting from boundary behavior, Kunita (1969) requires
a common diffusion matrix, which can be singular. The differences in the drift vector are
restricted to be in the range of the common diffusion matrix. These restrictions are satisfied
in our application.

C.3 Verifying z∗ is a martingale

We apply our demonstration of absolute continuity to reconsider the super martingale z∗.
Let κt denote the Radon-Nikodym derivative for the two models of B. Conjecture that

z∗t = κt(B).

By construction, z∗ is a nonnegative martingale defined on (Ω,F , P ). Moreover, it is the
unique solution to the stochastic differential equation (50) subject to the initial condition
z∗0 = 1. See Theorem 7.6 of Liptser and Shiryaev (2000).

D Three ways to verify the Bellman-Isaacs condition

This appendix describes three alternative conditions that are sufficient to verify the Bellman-
Isaacs condition embraced in Assumption 7.1.26 The ability to exchange orders of extremiza-
tion in the recursive game implies that the orders of extremization can also be exchanged in
the nonsequential game, as required in Assumption 5.5. As we shall now see, the exchange
of order of extremization asserted in Assumption 7.1 can often be verified without knowing
the value function S.

D.1 No binding inequality restrictions

Suppose that there are no binding inequality restrictions on c. Then a justification for
Assumption 7.1 can emerge from the first-order conditions for č and ȟ. Define

χ(č, ȟ, x̌)
.
= U(č, x̌) +

θ

2
ȟ · ȟ +

[

µ(č, x̌) + σ(č, x̌)ȟ
]

· Sx(x̌)

+
1

2
trace [σ(č, x̌)′Sxx(x̌)σ(č, x̌)] , (53)

26Fleming and Souganidis (1989) show that the freedom to exchange orders of maximization and mini-
mization guarantees that equilibria of the nonsequential (i.e., choices under mutual commitment at date 0)
and the recursive games (i.e., sequential choices by both agents) coincide.
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and suppose that χ is continuously differentiable in č. First, find a Markov perfect equilib-
rium by solving:

∂χ

∂c
(č∗, ȟ∗, x̌) = 0

∂χ

∂h
(č∗, ȟ∗, x̌) = 0.

In particular, the first-order conditions for ȟ are:

∂χ

∂h
(č∗, ȟ∗, x̌) = θȟ∗ + σ(č∗, x̌)′Sx(x̌) = 0.

If a unique solution exists and if it suffices for extremization, the Bellman-Isaacs condition
is satisfied. This follows from the “chain rule.” Thus, suppose that the minimizing player
goes first and computes ȟ as a function of x̌ and č:

ȟ∗ = −
1

θ
σ(č, x̌)′Sx(x̌) (54)

Then the first-order conditions for the max player selecting č as a function of x̌ are:

∂χ

∂c
+
∂h

∂c

′∂χ

∂h
= 0

where ∂h
∂c

can be computed from the reaction function (54). Notice that the first-order
conditions for the maximizing player are satisfied at the Markov perfect equilibrium. A
similar argument can be made if the maximizing player chooses first.

D.2 Separability

Consider next the case in which σ does not depend on the control. In this case the decision
problems for č and ȟ separate. For instance, from (54), we see that ȟ does not react to č in the
minimization of ȟ conditioned on č. Even with binding constraints on č, the Bellman-Isaacs
condition (Assumption 7.1) is satisfied, provided that a solution exists for č.

D.3 Convexity

A third approach that uses results of Fan (1952) and Fan (1953) is based on the global shape
properties of the objective. When we can reduce the choice set C to be a compact subset
of a linear space, Fan (1952) can apply. Fan (1952) also requires that the set of conditional
minimizers and maximizers be convex. We know from formula (54) that the minimizers of
χ(č, ·, x̌) form a singleton set, which is convex for each č and x̌.27 Suppose also that the

27Notice that provided Č is compact, we can use (54) to specify a compact set that contains the entire
family of minimizers for each č in Č and a given x̌.
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set of maximizers of χ(·, ȟ, x̌) is non-empty and convex for each ȟ and x̌.28 Then again the
Bellman-Isaacs condition (Assumption 7.1) is satisfied. Finally Fan (1953) does not require
that the set Č be a subset of a linear space, but instead requires that χ(·, ȟ, x̌) be concave.
By relaxing the linear space structure we can achieve compactness by adding points (say
the point ∞) to the control set, provided that we can extend χ(·, ȟ, x̌) to be upper semi-
continuous. The extended control space must be a compact Hausdorff space. Provided that
the additional points are not attained in optimization, we can apply Fan (1953) to verify
Assumption 7.1.29

E Recursive version of Stackelberg game and a Bayesian

problem

E.1 Recursive version of a Stackelberg game

We first change the timing protocol for decision-making, moving from the Markov perfect
equilibrium that gives rise to a value function V to a date zero Stackelberg equilibrium with
value function N . In the matrix manipulations that follow, state vectors and gradient vectors
are treated as column vectors when they are pre-multiplied by matrices.

The value function V solves:

δV (x̌) = max
č∈Č

min
ȟ
U(č, x̌) +

θ

2
ȟ · ȟ+

[

µ(č, x̌) + σ(č, x̌)ȟ
]

· Vx(x̌)

+
1

2
trace [σ(č, x̌)′Vxx(x̌)σ(č, x̌)]

Associated with this value function are the first-order conditions for the controls:

θȟ+ σ(č, x̌)′ · Vx(x̌) = 0
∂

∂č

(

U(č, x̌) +
[

µ(č, x̌) + σ(č, x̌)ȟ
]

· Vx(x̌) +
1

2
trace [σ(č, x̌)′Vxx(x̌)σ(č, x̌)]

)

= 0.

Solving these first-order conditions gives the control laws ht = α(xt) and ct = αc(xt). Define
µ∗ and σ∗ such that the states evolve according to

dxt = µ∗(xt)dt+ σ∗(xt)dBt

after the two optimal controls are imposed. Associated with this recursive representation
are processes h and c that can also be depicted as functions of the history of the underlying
Brownian motion B.

28See Ekeland and Turnbull (1983) for a discussion of continuous time, deterministic control problems
when the set of minimizers is not convex. They show that sometimes it is optimal to chatter between
different controls as a way to imitate convexification in continuous time.

29Apply Theorem 2 of Fan (1953) to −χ(·, ·, x̌). This theorem does not require compactness of the choice
set for ȟ, only of the choice set for č. The theorem also does not require attainment when optimization is
over the noncompact choice set. In our application, we can verify attainment directly.
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When the Bellman-Isaacs condition is satisfied, Fleming and Souganidis (1989) provide a
formal justification for an equivalent date zero Stackelberg solution in which the minimizing
agent announces a decision process {ht : t ≥ 0} and the maximizing agent reacts by maxi-
mizing with respect to {ct : t ≥ 0}. We seek a recursive representation of this solution by
using a big X, little x formulation. Posit a worst-case process for Xt of the form:

dXt = µ∗(Xt)dt+ σ∗(Xt) [αh(Xt)dt+ dBt] .

This big X process is designed so that it produces the same process for ht = αh(Xt) that
is implied by the Markov perfect equilibrium associated with the value function V when
X0 = x0.

The big X process cannot be influenced by the maximizing agent, but little x can:

dxt = µ(ct, xt)dt+ σ(ct, xt) [αh(Xt)dt+ dBt] .

Combining the two state evolution equations, we have a Markov control problem faced by
the maximizing agent. It gives rise to a value function N satisfying a HJB equation:

δN(x̌, X̌) = max
č∈Č

U(č, x̌) + µ(č, x̌) ·Nx(x̌, X̌) + µ∗(x̌) ·NX(X̌, X̌)

+
1

2
trace

(

[

σ(č, x̌)′ σ∗(X̌)′
]

[

Nxx(x̌, X̌) NxX(x̌, X̌)
NXx(x̌, X̌) NXX(x̌, X̌)

] [

σ(č, x̌)
σ∗(X̌)

])

(55)

+αh(X̌) · σ(č, x̌)′Nx(x̌, X̌) + αh(X̌) · σ∗(X̌)′NX(x̌, X̌)

+
θ

2
αh(X̌) · αh(X̌).

We want the outcome of this optimization problem to produce the same stochastic process
for c (ct as a function of current and past values of the Brownian motion Bt) provided
that X0 = x0. For this to happen, the value functions V and N must be closely related.
Specifically,

Nx(x̌, X̌)|X̌=x̌ = Vx(x̌)
NX(x̌, X̌)|X̌=x̌ = 0. (56)

The first restriction equates the co-state on little x with the implied co-state from the Markov
perfect equilibrium along the equilibrium trajectory. The second restriction implies that the
co-state vector for big X is zero along this same trajectory.

These restrictions on the first derivative, imply restrictions on the second derivative.
Consider a perturbation of the form:

x̌+ rν, X̌ + rν

for some scalar r and some direction ν. The directions that interest us are those in the range
of σ∗(X̌), which are the directions that the Brownian motion can move the state to. Since
(56) holds,

Nxx(x̌, X̌)ν +NxX(x̌, X̌)ν|X̌=x̌ = Vxx(x̌)ν
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NXx(x̌, X̌)ν +NXX(x̌, X̌)ν|X̌=x̌ = 0.

From HJB (55), we could find a control law that expresses č as a function of x̌ and X̌.
We are only concerned, however, with č evaluated in the restricted domain x̌ = X̌. Given
the presumed restrictions on the first derivative and the derived restrictions on the second
derivative, we can show that č = αc(x̌) satisfies the first-order conditions for č provided on
this restricted domain.

E.2 Changing the objective

The value function for a Bayesian problem does not include a penalty term. In the recursive
representation of the date zero Stackelberg problem, the penalty term is expressed completely
in terms of big X. We now show how to adjust the value function L by solving a Lyapunov
equation.

The function that we wish to compute solves:

L(X̌) =
θ

2
E

∫ ∞

0

exp(−δt)|αh(Xt)|
2dt

subject to
dXt = µ∗(Xt)dt+ σ∗(Xt) [αh(Xt)dt+ dBt] .

where X0 = X̌.
The value function L for this problem solves:

δL(X̌) =
θ

2
αh(X̌) · αh(X̌) + µ∗(X̌) · LX(X̌)

+
1

2
trace

[

σ∗(X̌)′LXX(X̌)σ∗(X̌)
]

+ αh(X̌) · σ∗(X̌)′Lx(X̌). (57)

E.3 Bayesian value function

To construct a Bayesian value function we form:

W (x̌, X̌) = N(x̌, X̌) − L(X̌).

Given equations (55) and (57), the separable structure of W implies that it satisfies the HJB
equation:

δW (x̌, X̌) = max
č∈Č

U(č, x̌) + µ(č, x̌) ·Wx(x̌, X̌) + µ∗(x̌) ·WX(X̌, X̌)

+
1

2
trace

(

[

σ(č, x̌)′ σ∗(X̌)′
]

[

Wxx(x̌, X̌) WxX(x̌, X̌)
WXx(x̌, X̌) WXX(x̌, X̌)

] [

σ(č, x̌)
σ∗(X̌)

])

+αh(X̌) · σ(č, x̌)′Wx(x̌, X̌) + αh(X̌) · σ∗(X̌)′WX(x̌, X̌)
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Then žW (x̌, X̌) the value function for the stochastic control problem:

žW (x̌, X̌) = E

∫ ∞

0

exp(−δt)ztU(ct, xt)dt

and evolution:

dxt = µ(ct, xt)dt+ σ(ct, xt)dBt

dzt = ztαh(Xt)dBt

dXt = µ∗(Xt)dt+ σ∗(Xt)dBt

where z0 = ž, x0 = x̌ and X0 = X̌. To interpret the nonnegative z as inducing a change in
probability, we initialize z0 at unity.

Also, W (x̌, X̌, θ) is the value function for a control problem with discounted objective:

W (x̌, X̌) = max
c∈C

E

∫ ∞

0

exp(−δt)U(ct, xt)dt

and evolution:

dxt = µ(ct, xt)dt+ σ(ct, xt)
[

αh(Xt)dt+ dB̃t

]

dXt = µ∗(Xt)dt+ σ∗(Xt)
[

αh(Xt)dt+ dB̃t

]

.

This value function is constructed using a perturbed specification where a Brownian incre-
ment dBt is replaced by an increment αh(Xt)dt + dB̃t with a drift distortion that depends
only on the uncontrollable state X. This perturbation is justified via the Girsanov Theorem,
provided that we entertain a weak solution to the stochastic differential equation governing
the state evolution equation.
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