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Abstract

Investors face uncertainty over models when they do not know which member of

a set of well-defined “structured models” is best. They face uncertainty about mod-

els when they suspect that all of the structured models might be misspecified. We

refer to worries about the first type of ignorance as ambiguity concerns and worries

about the second type as misspecification concerns. These two types of ignorance

about probability distributions of risks add what we call uncertainty components to

equilibrium prices of those risks. A quantitative example highlights a representa-

tive investor’s uncertainties about the size and persistence of macroeconomic growth

rates. Our model of preferences under concerns about model ambiguity and misspec-

ification puts nonlinearities into marginal valuations that induce time variations in

market prices of uncertainty. These reflect the representative investor’s fears of high

persistence of low growth rate states and low persistence of high growth rate states.
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1 Introduction

This paper describes prices of macroeconomic uncertainty that depend on how investors

evaluate consequences of alternative specifications of state dynamics. We construct a quan-

titative example in which a representative investor who is uncertain about prospective

macroeconomic growth rates impersonates “the market.” Adverse consequences for dis-

counted expected utilities make the representative investor fear high persistence of macroe-

conomic growth rates in times of weak growth and low persistence in times of strong growth,

fears that induce variations in values of assets.

Our representative investor has a family of structured models with possibly time-varying

parameters that we represent with a recursive structure for continuous time models with

Brownian motion information flows suggested by Chen and Epstein (2002). We say that

the investor experiences model ambiguity concerns because he does not know which model

is best. Since the investor distrusts his structured models, he also cares about all un-

structured models that reside within a statistical neighborhood of the set of structured

models.1 We formalize the investor’s concerns about model misspecification by entertaining

unstructured statistical models with similar observable implications and represent them

with the preferences proposed by Hansen and Sargent (2020), a continuous-time version of

the dynamic variational preferences of Maccheroni et al. (2006).2

Shadow prices that reflect aspects of model specifications that most concern the repre-

sentative investor equal uncertainty prices that clear competitive securities markets. Multi-

plying an endogenously determined vector of worst-case drift distortions by minus one gives

a vector of local prices that are increments to expected returns associated with exposures to

alternative shocks over an instant of time that compensate the representative investor for

bearing model uncertainty.3 A representative investor’s concerns about the persistence of

macroeconomic growth rates make uncertainty prices vary over time because they depend

on the state of the economy. These findings extend earlier quantitative results that had

indicated how investors’ responses to modest amounts of model ambiguity can replace the

implausibly large risk aversions during economic downturns that are required to explain

1By “structured” we mean more or less tightly parameterized statistical models. Thus, “structured
models” aren’t what econometricians working in the tradition either of the Cowles commission or of rational
expectations econometrics would call “structural” models.

2Hansen and Sargent (2020) extends models of Hansen and Sargent (2001) and Hansen et al. (2006)
that surround a single structured baseline probability model with an infinite dimensional family of difficult-
to-discriminate unstructured models.

3This object also played a central role in the analysis of Hansen and Sargent (2010).
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observed market prices of risk.

Section 2 specifies an investor’s baseline probability model and perturbations to it, both

cast in continuous time for analytical convenience. We exploit the technical result that pos-

itive martingales with means equal to unity represent likelihood ratios that alter baseline

probabilities. To express his model ambiguity, a representative investor uses a restricted set

of such martingales that describe what we call structured models. To express his suspicion

that all of his structured models are misspecified, a representative investor uses a substan-

tially larger family of positive, mean one, martingales to describe what we call unstructured

models. Section 3 describes a statistical measure of discrepancy between martingales called

discounted relative entropy and derives a counterpart to it for the divergence between a

given probability and a set of probabilities associated with the structured models. When

used in conjunction with the set of unstructured models, this divergence concept provides a

convenient way for a decision maker to explore the consequences of potential misspecifica-

tions of the structured models. In section 4, we apply this set-based divergence to positive

martingale to formulate a robust decision problem that incorporates both model ambiguity

and model misspecification concerns.

Section 5 describes and compares relative entropy and Chernoff entropy, each of which

measures statistical divergence from a set of martingales. We show how to use these dis-

crepancies 1) to assess plausibility of worst-case models as recommended by Good (1952),

and 2) to calibrate a penalty parameter that we use to represent the investor’s preferences.

By extending the approach of Hansen et al. (2008), section 6 calculates key objects in a

quantitative version of a baseline model together with worst-case probabilities associated

with a convex set of alternative models that concern both a robust investor and a ro-

bust planner. Section 7 constructs a recursive representation of competitive equilibrium

quantities and prices for an economy with a representative robust investor. Then it links

worst-case probabilities that emerge from a robust planning problem to uncertainty com-

pensations that the representative investor receives in competitive equilibrium. Section 8

offers concluding remarks.

2 Martingales and probabilities

This section describes convenient mathematical representations of positive martingales that

alter a baseline probability model. For the decision makers within our economic model,

these martingales are Radon-Nikodym derivatives, i.e., likelihood ratios, between two mea-
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sures, just as they are for statisticians and econometricians. Starting from a decision

maker’s baseline probability measure, we use martingales to represent probabilities that

are on a decision maker’s radar as plausible alternative models, and we use them to ex-

plore the consequences of misspecification. In section 3, we formalize these two uses of

martingales and the distinct roles that they play in confronting uncertainty.

For concreteness, we use the following baseline model of a stochastic process Z
.
“ tZt :

t ě 0u that governs the exogenous dynamics.4

dZt “ pµpZtqdt` σpZtqdWt, (1)

where W is a multivariate standard Brownian motion.5 We also study endogenous state

dynamics that can be altered by the actions of a fictitious planner. With this in mind, a plan

is a tCt : t ě 0u that is a progressively measurable process with respect to the filtration

F “ tFt : t ě 0u associated with the Brownian motion W augmented by information

available at date zero. The date t component Ct is measurable with respect to Ft.
A decision maker, who in this paper is an investor, entertains alternative models that

are represented as likelihood ratios, which in our setting are positive martingales having

unit expectations. Within this continuous-time Brownian information environment, these

martingales have a well known and convenient characterization, courtesy of the Girsonov

Theorem and related results from probability theory. Using these, we can describe a like-

lihood ratio such as MU with its evolution with respect to a baseline Brownian motion

specification

dMU
t “MU

t Ut ¨ dWt (2)

or

d logMU
t “ Ut ¨ dWt ´

1

2
|Ut|

2dt, (3)

where U is progressively measurable with respect to the filtration F . In the event that

ż t

0

|Uτ |
2dτ ă 8 (4)

with probability one, the stochastic integral
şt

0
Uτ ¨ dWτ is an appropriate probability limit.

4We let Z denote a stochastic process, Zt the process at time t, and z a realized value of the process.
5Although applications typically use a Markov formulation, this restriction is not essential. Our for-

mulation could be generalized to allow other stochastic processes constructed as functions of a Brownian
motion information structure.
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Imposing the initial condition MU
0 “ 1, we express the solution of stochastic differential

equation (2) as a so-called stochastic exponential

MU
t “ exp

ˆ
ż t

0

Uτ ¨ dWτ ´
1

2

ż t

0

|Uτ |
2dτ

˙

. (5)

As specified so far, MU
t is a local martingale, but not necessarily a martingale.6

Definition 2.1. M denotes the set of all martingales MU constructed as stochastic expo-

nentials via representation (5) with a U that satisfies (4) and is progressively measurable

with respect to F “ tFt : t ě 0u.

In what follows, we use the processes U to represent alternative martingales of interest.

We describe probabilities implicitly by delineating the family of conditional expectations

associated with each such U process, namely,

EU
pBt|F0q “ E

`

MU
t Bt|F0

˘

for any t ě 0 and any bounded Ft-measurable random variable Bt. This representation uses

the positive random variable MU
t as a Radon-Nikodym derivative for the date t conditional

expectation operator EU p ¨ | F0q . The martingale property for MU assures that the Law

of Iterated Expectations applies to the constructed probability measures. In what follows,

we will refer to this probability measure as being affiliated with the martingale MU .

Under baseline model (1), W is a standard Brownian motion; but under the alternative

U model, it follows from the Girsanov Theorem that it has increments

dWt “ Utdt` dW
U
t , (6)

where WU is now a standard Brownian motion. Furthermore, under the MU probability

measure,
şt

0
|Uτ |

2dτ is finite with probability one for each t. In light of (6), we can write

model (1) as:

dZt “ pµpZtqdt` σpZtq ¨ Utdt` σpZtqdW
U
t .

While (3) expresses the evolution of logMU in terms of increment dW , the evolution in

6It is inconvenient here to impose sufficient conditions for the stochastic exponential to be a martingale
like Kazamaki’s or Novikov’s. Instead, we will verify that an extremum of a pertinent optimization problem
does indeed result in a martingale.
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terms of dWU is

d logMU
t “ Ut ¨ dW

U
t `

1

2
|Ut|

2dt. (7)

An important property for us is that the drift of the log-likelihood under this alternative

measure is the quadratic term: |Ut|
2{2. Under the MU implied probability, for each t ě 0,

the rate at which the log-likelihood grows locally is the squared norm of the drift Ut.

In summary, the Brownian information structure leads us to explore probabilities that

include drift processes U in the specification of W . Our investor is particularly interested

in U processes that represent history-dependent changes in the local mean of the Brownian

increments.7

3 Statistical discrepancies

As an example of the decision theory developed in Hansen and Sargent (2020), an investor

in our model evaluates decisions in light of a family of what we call structured probability

models. Each such model is represented by a process S used to construct a martingale

MS. An investor also acknowledges that each structured model could be misspecified by

introducing statistically nearby unstructured models that also concern her. In this section,

we provide convenient ways to represent these two components of uncertainty that confront

decision makers in our model.

3.1 Relative entropy divergence

To model formally how the investor acknowledges misspecification of each structured prob-

ability model, we introduce a relative entropy divergence that measures the discrepancy

between a structured probability affiliated with a martingale, MS, and another probability

affiliated with a martingale MU . Specifically, for horizon t the divergence is

E
“

MU
t

`

logMU
t ´ logMS

t

˘

| F0

‰

ě 0,

which is the expected log likelihood ratio computed using the probability measure that is

affiliated with martingale MU . Using a counterpart to formula (7), from formulas (3) and

7Here we maintain absolute continuity in the probability measures over finite time intervals. We discuss
possible extensions later.
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(6) it follows that

d logMU
t ´ d logMS

t “ pUt ´ Stq ¨ dWt ´
1

2

`

|Ut|
2
´ |St|

2
˘

“ pUt ´ Stq ¨ dW
U
t `

1

2

`

|Ut ´ St|
2
˘

.

From this evolution equation, it follows that

E
“

MU
t

`

logMU
t ´ logMS

t

˘

| F0

‰

“
1

2
E

ˆ
ż t

0

MU
τ |Uτ ´ Sτ |

2dτ | F0

˙

which is one half of an average norm squared deviation between drift processes U and S,

where the average is computed under the probability affiliated with the martingale MU .

This illustrates a simplification that occurs in our continuous-time formulation. To repre-

sent model specification concerns, we focus on conditional mean distortions in Brownian

increments and measure these distortions using a weighted integral of |U ´ S|2.

We entertain potential model misspecification using relative entropy as in the robust

control theory contributions of Jacobson (1973), Whittle (1981), James (1992), Hansen

and Sargent (2001) and many others. The decision-maker/investor in that literature uses

relative entropy to penalize probability deviations from a single baseline probability mea-

sure. Here we extend this approach by entertaining a set of models of particular interest

to the decision maker. We will elaborate on this point later. While expanding the collec-

tion of structured models relative to that earlier work, the approach here retains relative

entropy penalties as a way to represent concerns that structured probability models are

misspecified.

We study decision problems with infinite horizon objectives. We follow a standard

practice in dynamic programming by assuming a time-discounted objective function. This

is convenient analytically and has the material benefit of assuring dynamic consistency of

preferences. To preserve these features under potential misspecifications of the decision

maker’s set of structured models, we also introduce discounting into the relative entropy

that we shall penalize:

∆
`

MU ;MS
| F0

˘

“
δ

2
E

ˆ
ż 8

0

expp´δτqMU
τ |Uτ ´ Sτ |

2dτ | F0

˙

as in Hansen and Sargent (1995), Hansen and Sargent (2001), and Hansen et al. (2006).

The scaling by δ makes this an exponentially weighted average of expectations of 1
2
|Uτ´Sτ |

2
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over time.

3.2 A family Mo of structured models

In contrast to the earlier literature on robust control cited above, we start from a closed (in

the sense of the relative entropy divergence) convex set of structured models that we rep-

resent as martingales MS PMo. Structured models inMo are well articulated alternative

specifications that particularly interest a decision maker. For a real number θ ą 0, define

a scaled discrepancy of martingale MU from a set of martingales Mo as

ΘpMU
|F0q “ θ inf

MSPMo
∆
`

MU ;MS
| F0

˘

. (8)

Scaled discrepancy ΘpMU |F0q equals zero for MU in Mo and is positive for MU not in

Mo. We use discrepancy ΘpMU |F0q to define a set of unstructured models that are near

the setMo; our decision maker wants to know utility consequences of these nearby models

too. The scaling parameter θ measures how an expected utility maximizing decision maker

penalizes an expected utility minimizing agent for distorting probabilities relative to models

in Mo.

Although, unlike us, Chen and Epstein (2002) do not explore potential model specifica-

tion using a likelihood-based discrepancy measure, we begin by following their lead when

building a family of structured models. Formally,

Mo
“
 

MS
PM such that St P Ξt for all t ě 0

(

(9)

where Ξ is a process of convex and compact sets adapted to the filtration F .8 A convenient

consequence of forming a set of structured models according to formula (9) is that the

associated set of probabilities satisfies a property that Epstein and Schneider (2003) call

rectangularity. This property of Mo ensures that a dynamic version of a Gilboa and

Schmeidler (1989) max-min decision maker using this as the set of probabilities would have

preferences over plans that are dynamically consistent.

We add concerns about misspecification of the family of structured models associated

with Mo in a way that preserves dynamic consistency of preferences. To understand how,

8Anderson et al. (1998) also explored consequences of a constraint like (9) but without the state depen-
dence in Ξ. Allowing for state dependence is important in the applications featured in this paper.
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we revisit (8) and note that

ΘpMU
|F0q “ θ inf

MSPMo
∆
`

MU ;MS
| F0

˘

“
θδ

2

ż 8

0

expp´δtqE
“

MU
t ξtpUtq | F0

‰

dt (10)

where

ξtpUtq “ inf
StPΞt

|Ut ´ St|
2.

Equation (10) provides a particularly tractable representation of a relative entropy diver-

gence between the probability affiliated with MU and the family of structured modelsMo.

Representation (10) exploits the separability over time of the constraints in (9) that are

used to construct Mo. It extends the entropy penalty used in the previously referenced

robust control papers that assume a single structured model expressed as a single drift

distortion S.9

Before describing how we specify the set of structured models, we make two general

remarks about the restrictions embedded in (9).

Remark 3.1. In general, sets of particular structured models that are of interest to a

decision maker will not be represented as in (9) with a process of restrictions on the local

mean processes S characterizing those models. To rescue dynamic consistency, Epstein

and Schneider (2003) suggest embedding such a set of models into a larger set that can be

represented for example as in (9). Hansen and Sargent (2020) discuss the tension between

dynamic consistency obtained in this way and using the statistical concept of admissibility

to subject a worst-case model to the plausibility test recommended by Good (1952). These

considerations lead us to justify (9) as containing the set of structured models of interest

instead of as the outcome of a non-degenerate rectangular embedding.

Remark 3.2. We choose not to capture potential model misspecification by restricting lo-

cal means to be in sets of the form (9). For us, such an approach is far too constraining

because we want to acknowledge possible misspecifications of the structured models using

relative entropy. As Hansen and Sargent (2020) show formally, embedding relative entropy

neighborhoods within a rectangular set of probabilities compels a decision maker to entertain

virtually all alternative probabilities that can be represented by positive martingales with unit

9Earlier models based on robust control correspond to the special case in which the set of martingales
Mo defined in equation (9) is a singleton.
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expectations, a vast set of models that includes ones with arbitrarily large relative entropy

discrepancies. To avoid this extreme outcome, we move beyond the max-min preference

specifications of Gilboa and Schmeidler (1989) and Epstein and Schneider (2003) and use

penalties (10) to explore the consequences of ambiguity about models within the set of struc-

tured models Mo as well as specification doubts about all models with that set of structured

models. In section 4, we show that the resulting preferences fit within a continuous-time

counterpart of the dynamic variational preference specification of Maccheroni et al. (2006).

3.3 Using relative entropy to restrict structured models

In this subsection, we use a function ρpzq to construct a rectangular set of structured

probability models that we regard as a refinement of the set of models that satisfies a

relative entropy constraint. It is a refinement in the sense that it excludes many other

models that also satisfy the relative entropy constraint, models that we want to exclude for

reasons discussed in detail in Hansen and Sargent (2020). We construct our rectangular

set of probability models by restricting the time derivative of the conditional expectation

of relative entropy.10 Formally, we restrict the drift (i.e, the local mean) of relative entropy

via a Feynman-Kac relation. We use the resulting derivative constraint to build a family

of structured models. In doing this we could discount as in discrepancy (10). However,

constraining a set of structured models, we find it simplest not to discount. Nevertheless,

remark 3.3 below provides a discounted version of the calculations that follow.11

The (undiscounted) entropy for a stochastic process MS relative to the baseline model

is:

εpMS
q
.
“ lim

tÑ8

1

2t

ż t

0

E
´

MS
τ |Sτ |

2
ˇ

ˇ

ˇ
F0

¯

dτ.

Evidently εpMSq is the limit as tÑ `8 of a process of mathematical expectations of time

series averages
1

2t

ż t

0

|Sτ |
2dτ

under the probability measure implied by MS. Suppose that MS is defined by the drift

distortion process S “ ηpZq, where Z is the Markov process governed by (1) with transition

probabilities that converge to a unique well-defined stationary distribution Q under the MS

10Restricting a derivative of a function at every instant is in general far more constraining than restricting
the magnitude of a function itself.

11For the small discount rates that we use in applications including ones studied in this paper, impacts
of discounting in this part of the analysis are quantitatively very small.
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probability. In this case, we can use Q to evaluate relative entropy by computing:

1

2

ż

|η|2dQ.

We represent the local evolution of a Markov process with an instantaneous generator

that is the local counterpart to the one-period transition distribution depicted as a con-

ditional expectation operator. We construct the generator by differentiating a family of

conditional expectation operators with respect to an elapsed time gap. For a diffusion,

the infinitesimal generator Aη of transitions under the MS probability is the second-order

differential operator:

Aηρ “ Bρ
Bz
¨ ppµ` σηq `

1

2
trace

ˆ

σ1
B2ρ

BzBz1
σ

˙

“ A0ρ`
Bρ

Bz
¨ pσηq

for St “ ηpZtq, where the test function ρ resides in an appropriately defined domain of the

generator Aη. For such a test function:

ż

AηρdQ “ 0, (11)

which follows from a local counterpart to Law of Iterated Expectations or the Kolomogorov

forward equation for a diffusion. Thus, by finding a function ρ and a corresponding q such

that

Aηρ “ q2

2
´
|η|2

2
, (12)

it follows from (11) that12

εpMS
q “

1

2

ż

|η|2dQ “
q2

2
.

The positive number q is a mean-square measure of the size of the corresponding drift

discrepancy. A function ρ that satisfies (12) allows us to impose a long-horizon refinement

of the relative entropy constraint in the sense that

ρpzq ´

ż

ρdQ “ lim
tÑ8

1

2

ż t

0

E
`

MS
τ |Sτ |

2
´ q2

| Z0 “ z
˘

.

12The test function ρ stated here is evidently defined only up to translation by a constant.
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To help appreciate distinct roles of q and ρ, we start by computing discounted relative

entropy:

εpMS; δq
.
“
δ

2
E

ˆ
ż 8

0

expp´δτqMS
τ |Sτ |

2dτ | F0

˙

for arbitrarily small discount rates. With discounting, we solve the counterpart to (12)

Aηρ “ δρ´
|η|2

2
(13)

for a function ρ that depends implicitly on δ. For each δ this is a Feynman-Kac par-

tial differential equation. One way to compute εpMSq is to take a limit of a discounted

counterpart

εpMS
q “ lim

δÓ0
εpMS; δq.

In Feynman-Kac partial differential equations indexed by a discount rate δ, δρ usually has

a well defined limit as δ tends to zero; for us this is the relative entropy limit q2{2. The

fact that Bρ
Bz

but not δ Bρ
Bz

typically has a well defined limit as δ tends to zero explains why

there is a sharp distinction between the roles of q and Bρ
Bz

in the δ “ 0 limiting case.

Having described how we compute relative entropy, q2{2, and a corresponding function,

ρpzq, that gives a refined characterization of relative entropy, we move on to tell how we

restrict a family of potential structured models. In addition to specifying q2{2, we now also

specify ρ a priori up to a translation term. For reasons discussed in Hansen and Sargent

(2020), restricting q alone is insufficient to allow us to get a set of martingales expressible

in the form (9). To bring us a representation of the form (9), we require that the S process

belong to the sequence of sets

Ξt “

"

s : A0ρpZtq `
Bρ

Bz
pZtq ¨ rσpZtqss ď

q2

2
´
|s|2

2

*

(14)

for a given choice of pq, ρq. The boundary of a set Ξt defined in this way includes models

having the same long-horizon relative entropy q2{2 and also the same refinement ρpzq´
ş

ρdQ

of relative entropy. For a given sequence of sets Ξt defined by (14), there exist many S

processes that have relative entropy εpMSq less than or equal to q2{2 but that violate

the inequality on the right side of definition (14). This is the sense in which, by using

the pre-specified function ρpzq and the sequence of sets Ξ defined by equation (14) to

form the set of probabilities defined in (9), we are refining (i.e., strengthening) a relative

entropy constraint: many processes satisfy the relative entropy constraint but violate the
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rectangularity constraint incorporated in definition (14).

Remark 3.3. Had we discounted at rate δ ą 0, we would have been led to specify a function

ρ satisfying

Ξt “

"

s : A0ρpZtq `
Bρ

Bz
pZtq ¨ rσpZtqss ď δρpZtq ´

|s|2

2

*

.

A stochastic process ηpZq “ S on the boundary of Ξ has a function ρ that satisfies a

Feynman-Kac equation of the form:

A0ρ`
Bρ

Bz
¨ pσηq ´ δρ`

|η|2

2
“ 0.

Absent discounting, ρ is well defined only up to a translation, but then q comes into play.

With discounting, the function ρ alone determines the set Ξt and a counterpart to q is

captured by the level of the function.

When we solve a robust planner’s problem in section 4.2.2, it will turn out to be straight-

forward to characterize the set Ξt because it is constructed by constraining a quadratic

function of s given Zt. The set of possible s’s is a disc with state-dependent center ´σ1 Bρ
Bz

and radius q2{2´A0ρ. As mentioned above, if our decision maker were interested only in

the set of models defined by (9) and (14), we could stop here and use a dynamic version of

the min-max preferences of Gilboa and Schmeidler (1989). That way of proceeding could

indeed lead to interesting applications and is worth pursuing. But the investor to be stud-

ied in this paper wants also to investigate the utility consequences of models not in the set

defined by (9) because he understands that all of his structured models are best interpreted

as misspecified statistical approximations.

4 Recursive Representations of Preferences and De-

cisions

This section prepares the way for the section 6 quantitative application by describing a

set of structured models and a continuation value process over consumption plans. A

scalar continuation value stochastic process ranks alternative consumption plans. Date t

continuation values tell a decision maker’s date t ranking. Continuation value processes

have a recursive structure that makes preferences be dynamically consistent. For Markovian
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decision problems, a Hamilton-Jacobi-Bellman (HJB) equation describes the evolution of

continuation values.

4.1 Continuation values

For a consumption plan tCt : t ě 0u, the continuation value process tVt : t ě 0u is

Vt “ min
tUτ :tďτă8u

E

ˆ
ż 8

0

expp´δτq

ˆ

MU
t`τ

MU
t

˙„

ψpCt`τ q `

ˆ

θδ

2

˙

ξt`τ pUt`τ q



dτ | Ft
˙

(15)

where ψ is an instantaneous utility function and ξtpUtq “ infStPΞt |Ut´St|
2 . For tractability,

we set ψ “ log in computations below. While logarithmic utility is indeed special, it is an

enlightening specification in this and other settings. Equation (15) builds in a recursive

structure that can be expressed as

Vt “ min
tUτ :tďτăt`εu

"

E

„
ż ε

0

expp´δτq

ˆ

MU
t`τ

MU
t

˙„

ψpCt`τ q `

ˆ

θδ

2

˙

ξt`τ pUt`τ q



dτ | Ft


` expp´δεqE

„ˆ

MU
t`ε

MU
t

˙

Vt`ε | Ft
*

(16)

for ε ą 0. Heuristically, we can “differentiate” the right-hand side of (16) with respect to ε

to obtain an instantaneous counterpart to a Bellman equation. Viewing the continuation

value process tVtu as an Ito process, write:

dVt “ νtdt` ςt ¨ dWt.

A local counterpart to (16) is

0 “ min
Ut

„

ψpCtq `
θδ

2
ξtpUtq ´ δVt ` Ut ¨ ςt ` νt



, (17)

where Ut is restricted to be Ft measurable. The term Ut ¨ ςt comes from an Ito adjustment

to the local covariance between
dMU

t

MU
t

and dVt. It is an adjustment to the drift νt of dVt

that is induced by using martingale MU to change the probability measure. Preferences

ranked by continuation value processes Vt are continuous-time counterparts to the dynamic

variational preferences of Maccheroni et al. (2006).
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4.2 Markovian decision problem

By ranking consumption processes with continuation value processes satisfying (17), a

decision maker evaluates utility consequences of a set of models that includes unstructured

models that our relative entropy measure asserts are difficult to distinguish from members

of the set of structured modelsMo. In particular, to construct a set of models, the decision

maker:

1) Begins with a Markovian baseline model (1).

2) Creates from the baseline model a set Mo of structured models by naming a sequence

of closed convex sets tΞtu that satisfy (14) and associated drift distortion processes tStu

that satisfy structured model constraint (9).

3) Augments Mo with additional unstructured models that violate (9) but according to

discrepancy measure (8) are statistically close to models that do satisfy it.

We now describe how to implement some of these steps for the section 6 quantitative

model. We begin by describing the baseline model used by a key decision maker in our

application, a robust planner. For step 1, the planner uses a particular instance of the

diffusion (1) as a Markovian baseline model. Step 2 adds other Markovian models. Step 3

includes statistically similar models that are not necessarily Markovian.

4.2.1 Step 1

For the decision maker’s baseline model, we use a single capital version of an Eberly and

Wang (2011) model with a long-term risk state z. The decision maker is a robust planner

who faces an AK model subject to adjustment costs with capital evolution:

dKt “ Kt

ˆ„

pαk ` pβkZt `
It
Kt

´ φ

ˆ

It
Kt

˙

dt` σk ¨ dWt

˙

,

where φ is convex with φp0q “ 0, Kt is the capital stock, It is investment, and W is a 2ˆ 1

Brownian motion. It is convenient to use logK as the endogenous state variable process.

By Ito’s formula it follows that

d logKt “

„

pαk ` pβkZt `
It
Kt

´ φ

ˆ

It
Kt

˙

´
|σk|

2

2



dt` σk ¨ dWt.

14



Consumption is restricted by

Ct “ κKt ´ It.

The process Z evolves according to

dZt “
´

pαz ´ pβzZt

¯

dt` σz ¨ dWt,

which implies that a stationary distribution for Z is normal with mean z̄ “ pαz{pβz and

variance |σz|
2{p2pβzq. Let

X “

«

logK

Z

ff

and stack the two state evolution equations as follows:

d logKt “

„

pαk ` pβkZt `
It
Kt

´ φ

ˆ

It
Kt

˙

´
|σk|

2

2



dt` σk ¨ dWt

dZt “
´

pαz ´ pβzZt

¯

dt` σz ¨ dWt. (18)

4.2.2 Step 2

A planner forms the following collection of structured parametric models:

d logKt “

„

αk ` βkZt `
It
Kt

´ φ

ˆ

It
Kt

˙

´
|σk|

2

2



dt` σk ¨ dW
S
t

dZt “ pαz ´ βzZtq dt` σz ¨ dW
S
t , (19)

where parameters pαk, βk, αz, βzq distinguish structured models (19) from the baseline

model, pσk, σzq are parameters common to model (18) and all models (19), W S is a 2 ˆ 1

Brownian motion, and the Brownian motions W and W S are related by

dWt “ Stdt` dW
S
t , (20)

where St is the drift distortion implied by parameter values pαk, βk, αz, βzq. Collection (19)

nests baseline model (18).

We represent members of a parametric class defined by (19) in terms of our section 2

structure with drift distortions S of the form

St “ ηpZtq ” η0 ` η1pZt ´ z̄q,
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then use (1), (19), and (20) to deduce the following restrictions on η1:

ση1 “

«

βk ´ pβk
pβz ´ βz

ff

,

where

σ “

«

pσkq
1

pσzq
1

ff

.

To compute relative entropy q2{2 and the function ρpzq, we apply the method of unde-

termined coefficients to solve the following instance of differential equation (12):

dρ

dz
pzqr´pβzpz ´ z̄q ` σz ¨ ηpzqs `

|σz|
2

2

d2ρ

dz2
pzq ´

q2

2
`
|ηpzq|2

2
“ 0. (21)

Under parametric alternatives (19), ρ is quadratic in z ´ z̄:

ρpzq “ ρ1pz ´ z̄q `
1

2
ρ2pz ´ z̄q

2.

We first compute ρ1 and ρ2 by matching coefficients on the terms pz ´ z̄q and pz ´ z̄q2,

respectively. Matching constant terms then implies q2{2.

We assume that the robust planner’s instantaneous utility function is logarithmic. Then

guess that the value function takes the additively separable form Ψpxq “ log k ` pΨpzq,

where pk, zq are potential realizations of the state vector pKt, Ztq. If misspecifications of

the structured models were not of concern, we would be led to solve the following Hamilton-

Jacobi-Bellman (HJB) equation:

0 “max
i

min
s

!

δ logpκ´ iq ´ δpΨpzq ` pαk ` pβkz ` i´ φpiq ` σk ¨ s

` r´pβzpz ´ z̄q ` σz ¨ ss
dpΨ

dz
pzq `

1

2
|σz|

2d
2
pΨ

dz2
pzq

+

, (22)

where i is a potential choice of the investment-capital ratio and s is a potential choice of

the structured drift distortion and where s satisfies restriction (14), which we rewrite as:

rρ1 ` ρ2pz ´ z̄qs
”

´pβzpz ´ z̄q ` σz ¨ s
ı

`
|σz|

2

2
ρ2 ´

q2

2
`
s ¨ s

2
ď 0, (23)

an inequality implied by our quadratic ρpzq function.
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By fixing pρ1, ρ2, qq, we can trace out a one-dimensional family of parametric models

having the same relative entropy. For example, given pρ1, ρ2, qq, we can first solve equation

(21) for η0 and η1. By matching a constant, a linear term, and a quadratic term in z ´ z̄,

we obtain three equations in four unknowns that imply a one dimensional curve for η0 and

η1 that imply nonlinear St’s as functions of z. In this way, nonlinear structured models are

included in the set of structured models near the baseline model as measured by relative

entropy. These nonlinear models also have relative entropy q2{2. We can represent the

resulting nonlinear model as a time-varying coefficient model by solving

rrpzq “ σ rη0 ` η1pz ´ z̄qs

for η0 and η1, z by z, along the one-dimensional curve in η0 and η1. We provide the following

example upon which we shall base calculations to be discussed at length later in this paper.

Illustration 4.1. In order to focus structured uncertainty on how drifts for pK,Zq respond

to the state variable Z, suppose that the decision maker sets

ηpzq “ η1pz ´ z̄q,

In this case, ρ1 “ 0 and formula (21) becomes

´
q2

2
`
|σz|

2

2
ρ2 “ 0

or equivalently,

ρ2 “
q2

|σz|2
.

Notice that restriction (23) implies that

s “ 0

when z “ z̄. Also given |σz|
2, the value of ρ2 is determined by q. More generally, q and ρ

cannot be specified independently.

To connect to a time-varying parameter specification, first construct the convex set of

η1’s that satisfy
1

2
η1 ¨ η1 `

ˆ

q2

|σz|2

˙

´

´pβz ` σz ¨ η1

¯

ď 0. (24)
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Next form the boundary of the convex set of alternative parameter configurations constrained

by (24)

ση1 “

«

βk ´ pβk
pβz ´ βz

ff

for pβk, βzq associated with alternative choices of η1.

For a given pΨ and state realization z, the component of the objective for the HJB

equation (22) that depends on s is the inner product

”

1 dpΨ
dz
pzq

ı

σs.

It is pedagogically convenient to set r “ σs. The two distinct entries of r “ σs alter

evolution equations for the state variables k and z, both of which appear in the objective

function on the right side of HJB equation (22). Evidently, from HJB equation (22), the

first entry, r1, shifts the log capital evolution equation and the second entry, r2, shifts the

evolution equation for the exogenous state z. The criterion appearing in HJB equation (22)

remains linear in r with a translation; linearity pushes the minimizing r to an ellipse that

is the boundary of the convex constraint set for each z. Under calibrated parameters for

the baseline model that we present in section 6, figure 1 shows ellipsoids associated with

two alternative values of z.

Notations for q’s: The caption of figure 1 indicates values for two versions of q, a quantity

qs,0 that indicates entropy of a structured model to the baseline model that we denote model

0; and a quantity qu,s that denotes entropy of an unstructured model relative to a structured

model. Subsection 5.1 describes how we define and compute qu,s. Later we also use qu,0 to

denote entropy of an unstructured model to the baseline model.

For every feasible choice of r2, two choices of r1 satisfy the implied quadratic equation

for the ellipse mentioned above. Provided that dpΨ
dz
pzq ą 0, which is true in our calculations,

we take the lower of the two solutions for r1 because the objective has positive weights on

the two entries of r. The minimizing solution occurs at a point on the lower left of the

ellipse where dr1
dr2
“ ´dpΨ

dz
pzq and depends on z, as Figure 1 indicates.
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Figure 1: Two ellipsoids associated with alternative values of z. We used the same numerical
values of parameters as in figure 3 from section 6 to the construct this diagram. The
figure displays parameter contours for pr1, r2q, holding relative entropies fixed at qs,0 “ .1
and qu,s “ .2. The upper right contour, depicted with red dots, is for z equal to the .1
quantile of its stationary distribution under the baseline model and the lower left contour,
depicted with blue dashes, is for z at the .9 quantile. The dot depicts the pr1, r2q “ p0, 0q
point corresponding to the baseline model. Tangency points denote worst-case structured
models.

4.2.3 Step 3

We now alter the HJB equation in a way that acknowledges the decision maker’s fear that

all of his structured models are misspecified. He does this by adding unstructured models

via a penalized entropy term. This results in the modified version of HJB equation (22):

0 “max
i

min
u,s

!

δ logpκ´ iq ´ δpΨpzq ` pαk ` pβkz ` i´ φpiq ` σk ¨ us

` r´pβzpz ´ z̄q ` σz ¨ us
dpΨ

dz
pzq `

1

2
|σz|

2d
2
pΨ

dz2
pzq `

θ

2
|u´ s|2

+

(25)
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where s is constrained by (23). Consider minimizing with respect to u. First-order condi-

tions imply that

u “ s´
1

θ
σ1

«

1
dpΨ
dz
pzq

ff

.

Substituting this choice of u into HJB equation (25) leads us to

Problem 4.2. Robust planning problem

0 “max
i

min
s

!

δ logpκ´ iq ´ δpΨpzq ` pαk ` pβkz ` i´ φpiq ` σk ¨ s

` r´pβzpz ´ z̄q ` σz ¨ ss
dpΨ

dz
pzq `

1

2
|σz|

2d
2
pΨ

dz2
pzq ´

1

2θ

”

1 dpΨ
dz
pzq

ı

σσ1

«

1
dpΨ
dz
pzq

ff+

where maximization and minimization are both subject to

rρ1 ` ρ2pz ´ z̄qs
”

´pβzpz ´ z̄q ` σz ¨ s
ı

`
|σz|

2

2
ρ2 ´

q2

2
`
s ¨ s

2
ď 0.

Notice that in the HJB equation in Problem 4.2, the objective is additively separable

in i and s. This implies that the order of extremization is inconsequential, confirming a

Bellman-Isaacs condition. Moreover, for this particular economic environment, the maxi-

mizing solution i˚ for i is state independent, since the first-order conditions are:

1´ φ1piq “
δ

κ´ i
.

Thus, the consumption-capital ratio is constant and logarithms of consumption and capital

share a common evolution equation under the baseline model, namely,

d logCt “ .01
”´

pαc ` pβcZt

¯

dt` σc ¨ dWt

ı

where the .01 scaling is used so that the implied parameters are represented as growth

rates,

.01pαc “ pαk ` i
˚
´ φpi˚q ´

|σk|
2

2
,

.01pβc “ pβk, and .01σc “ σk. This model illustrates again a finding of Hansen et al. (1999)

and Tallarini (2000) for economies with a single capital stock, namely, that effects of con-

cerns about robustness operate mostly on asset prices, not on allocations.13

13This outcome does not occur in environments with multiple capital stocks having different exposures
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5 Alternative entropy measures

Preference orderings described in section 4 use the penalty parameter θ in conjunction with

relative entropy to restrict a set of unstructured models that express the decision maker’s

fear that all of the structured models are misspecified. Good (1952) recommended that

users of a max-min expected utility approach verify that a worst-case model is plausible.14

We implement Good’s suggestion here by characterizing both a worst-case structured model

and a worst-case unstructured model and also exploring how the planner’s θ in Problem 4.2

affects the implied relative entropy of the worst-case unstructured model. In calibrating

θ in actual decision problems, we find it informative also to measure the magnitude of a

worst-case adjustment for misspecifications of the structured models. Finally, although we

use relative entropy in formulating the decision problems, we find it helpful also to consult

another measure of statistical discrepancy called Chernoff entropy.

Let logarithms of two martingales MS and MU evolve according to appropriate versions

of (7), namely,

d logMS
t “ ´

1

2
|St|

2dt` St ¨ dWt

d logMU
t “ ´

1

2
|Ut|

2dt` Ut ¨ dWt.

Think of a pairwise model selection problem that statistically compares a structured model

generated by a martingale MS with an unstructured model generated by a martingale

MU . For a given value of θ in HJB equation (25), we compute worst-case structured and

unstructured models with the drift distortions

St “ ηspZtq

Ut “ ηupZtq

implied for example by the minimization that appears in the problem on the right side of

equation (25).

to uncertainty. For a multiple capital stock example with a different specification of model ambiguity, see
Hansen et al. (2018)

14See Berger (1994) and Chamberlain (2000) for related discussions.
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5.1 Relative entropy

A gauge of divergence between two probability distributions is the following expected log

likelihood ratio called relative entropy:

ΛpMU ,MS
q “ lim

tÑ8

1

t
E
“

MU
t

`

logMU
t ´ logMS

t

˘

|F0

‰

.

Since the worst-case structured and unstructured probability models are both Markovian,

we can compute ΛpMU ,MSq using the same procedures that we applied in section 3.3 to

compute entropy relative to the baseline model. In particular, instead of solving equation

(21), we now solve

dρ

dz
pzq

´

pαz ´ pβzz ` σηu

¯

`
1

2
|σz|

2d
2ρ

dz2
`
|ηu ´ ηs|

2

2
ď

q2

2

for q2{2 and for ρ, up to a constant of translation. We denote the solution for q as qu,s

to emphasize that it is relative entropy of an unstructured model relative to a structured

model. In the application below, we report

qu,s “
a

2ΛpMU ,MSq.

as a convenient measure of the magnitude of the drift distortion of a worst-case model u

relative to a worst-case model s.

Appendix A.2 describes our computational approach. Entropy concept ΛpMU ,MSq is

typically independent of date zero conditioning information when the Markov process is

asymptotically stationary.

5.2 Chernoff entropy

A dynamic version of an idea of Chernoff (1952) provides an alternative concept of dis-

crepancies between probability measures. Chernoff entropy emerges from studying how, by

disguising distortions of a baseline probability model, Brownian motions make it challeng-

ing to distinguish models statistically. Although Chernoff entropy’s explicit connection to

a statistical decision problem makes it attractive, it is less tractable than relative entropy.

To address this intractability, Anderson et al. (2003) used Chernoff entropy measured as a

local rate to make direct connections between magnitudes of market prices of uncertainty,

on the one hand, and statistical discrimination between two models, on the other hand.
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That local rate is state-dependent and for diffusion models is proportional to the local drift

in relative entropy. We follow Newman and Stuck (1979) and proceed to characterize a

long-run version of Chernoff entropy and show how to compute it. There are important

quantitative differences when we measure Chernoff entropy globally instead of locally as in

the approach of Anderson et al. (2003).15

Think of a pairwise model selection problem that statistically compares a structured

model generated by a martingaleMS with an unstructured model generated by a martingale

MU . Consider a statistical model selection rule based on a data history of length t that

checks whether logMU
t ´ logMS

t ě h. This selection rule sometimes incorrectly chooses

the unstructured model when the structured model governs the data. We can bound the

probability of this incorrect selection outcome by using an argument from large deviations

theory based on the inequalities

1tlogMU
t ´logMS

t ěhu
“ 1tγp´h`logMU

t ´logMS
t qě0u

“ 1texpp´γhqpMU
t q

γpMS
t q

´γě1u

ď expp´γhqpMU
t q

γ
pMS

t q
´γ,

for 0 ă γ ă 1. Under the structured model, the mathematical expectation of the term on

the left side multiplied by MS
t equals the probability of mistakenly selecting the alternative

model when data are a sample of size t generated under the structured model. We can

bound this mistake probability for large t by following Donsker and Varadhan (1976) and

Newman and Stuck (1979) and studying

lim
tÑ8

1

t
logE

”

expp´γhq
`

MU
t

˘γ `
MS

t

˘1´γ
|F0

ı

“ lim
tÑ8

1

t

”

p´γhq ` logE
”

`

MU
t

˘γ `
MS

t

˘1´γ
|F0

ıı

“ lim
tÑ8

1

t
logE

”

`

MU
t

˘γ `
MS

t

˘1´γ
|F0

ı

for alternative choices of γ. Notice that the limiting rate does not depend on the choice of

the threshold h, as is evident from the way that the first equality is established by bringing

expp´γhq into play. Furthermore, the limit is often independent of the initial conditioning

information. We apply these calculations for given specifications of U and S, checking that

15The local measure is more closely aligned with local uncertainty prices, a connection that Anderson
et al. (2003) feature.

23



the limits are well defined.

To get the best bound, we compute

inf
0ăγă1

lim
tÑ8

1

t
logE

”

`

MU
t

˘γ `
MS

t

˘1´γ
|F0

ı

,

which is typically negative because mistake probabilities decay with sample size. Chernoff

entropy is then

ΓpMU ,MS
q “ ´ inf

0ďγď1
lim inf
tÑ8

1

t
logE

”

`

MU
t

˘γ `
MS

t

˘1´γ
|F0

ı

.

Setting ΓpMU ,MSq “ 0 would include only those alternative models MU that can-

not be distinguished from MS on the basis of histories of infinite length.16 Because we

want to include more possible alternative models than that, we entertain positive values of

ΓpMU ,MSq.

To interpret ΓpMU ,MSq, note that if the decay rate of mistake probabilities were con-

stant, say d, then mistake probabilities for two sample sizes Ti, i “ 1, 2, would be

mistake probabilityi “
1

2
exp p´Tidu,sq

for du,s “ ΓpMU ,MSq. We define a half-life as an increase in sample size T2 ´ T1 ą 0 that

multiplies a mistake probability by a factor of one half:

1

2
“

mistake probability2

mistake probability1

“
exp p´T2dq

exp p´T1dq
,

so the half-life is approximately

T2 ´ T1 “
log 2

d
.

The bound on the decay rate should be interpreted cautiously because the actual decay

rate is not constant. Furthermore, the pairwise comparison understates the challenge truly

confronting the decision maker, which is statistically to discriminate among multiple models.

A symmetrical calculation reverses the roles of the two models and instead conditions

16That is what is done in extensions of the rational expectations equilibrium concept to self-confirming
equilibria that allow probability models to be wrong, but only off equilibrium paths, i.e., for events that
in equilibrium do not occur infinitely often. See Fudenberg and Levine (1993, 2009) and Sargent (1999).
Our decision theory differs from that used in most of the literature on self-confirming equilibria because
our decision maker acknowledges model uncertainty and wants to adjust decisions accordingly. But see
Battigalli et al. (2015).
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on the perturbed model implied by martingale MU . The limiting rate remains the same.

Thus, when we select a model by comparing a log likelihood ratio to a constant threshold,

the two types of mistakes share the same asymptotic decay rate.

To implement Chernoff entropy, we follow an approach suggested by Newman and Stuck

(1979). Because our worst-case models are Markovian, in appendix A.1 we can use Perron-

Frobenius theory to characterize

lim
tÑ8

1

t
logE

”

`

MU
t

˘γ `
MS

t

˘1´γ
|F0

ı

for a given γ P p0, 1q as a dominant eigenvalue of a semigroup of linear operators. This

limit does not depend on the initial state x and is characterized as a dominant eigenvalue

associated with an eigenfunction that is strictly positive.17

6 Quantitative example

Our example builds on the physical technology and continuation value process described in

section 4 and features a representative investor who wants to explore utility consequences of

alternative models portrayed by sets of tMU
t u and tMS

t u processes. Some models included in

these sets have troublesome but difficult to detect predictable components of consumption

growth.18

6.1 Baseline model

We think of capital broadly and base our quantitative application on an empirical cali-

bration of the consumption dynamics. Our example blends elements of Bansal and Yaron

(2004) and Hansen et al. (2008). Because we want to focus exclusively on fluctuations in

uncertainty prices that are induced by a representative investor’s specification concerns, we

assume no stochastic volatility, in contrast to Bansal and Yaron (2004). We use a vector

autoregression (VAR) to construct a quantitative version of a baseline model like (18) that

approximates responses of consumption to permanent shocks. Our VAR follows Hansen

et al. (2008) in using several macroeconomic time series to infer information about long-term

17Appendix A describes how we evaluate both Chernoff entropy and relative entropy numerically for the
nonlinear Markov specifications that we use in subsequent sections.

18While we appreciate the value of a more comprehensive empirical investigation with multiple macroe-
conomic time series, here our aim is to illustrate a mechanism within the context of relatively simple time
series models of predictable consumption growth.
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consumption growth. We deduce a calibration of our baseline model (18) from a trivariate

VAR for the first difference of log consumption, the difference between logs of business

income and consumption, and the difference between logs of personal dividend income

and consumption. This specification makes levels of logarithms of consumption, business

income, and personal dividend income be cointegrated additive functionals that share a

single common martingale component that can be extracted using a method described by

Hansen (2012). In Appendix B we describe our data and our method for estimating the

discrete-time VAR that we use to deduce the following parameters for the baseline model

(18):19

pαc “ .484 pβc “ 1

pαz “ 0 pβz “ .014

pσcq
1
“

”

.477 0
ı

pσzq
1
“

”

.011 .025
ı

(26)

We suppose that δ “ .002. Under this model, the standard deviation of the Z process in

the implied stationary distribution is .163.

6.2 Structured models and a robust plan

We solve HJB equation (22) for two different configurations of structured models. We

describe our numerical implementation in Appendix C.

6.2.1 Uncertain growth rate responses

We compute a solution by first focusing on an Illustration 4.1 specification in which ρ1 “ 0

and ρ2 satisfies:

ρ2 “
q2

|σz|2

where here we use q as a synonym for qs,0. When η is restricted to be η1pz ´ z̄q, a given

value of q imposes a restriction on η1 and implicitly on pβc, βkq. Figure 2 plots iso-entropy

contours for pβc, βzq associated with qs,0 “ .1 and qs,0 “ .05, respectively.

19We remind the reader that we set .01pβc “ pβk, and .01σc “ σk.
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Figure 2: Parameter contours for pβc, βzq holding relative entropy qs,0 fixed. The outer
curve is for qs,0 “ .1 and the inner curve is for qs,0 “ .05. The small diamond depicts the
baseline model.

While Figure 2 displays contours of time-invariant parameters with the same relative

entropy, the robust planner actually chooses a two-dimensional vector of drift distortions

r “ σs for a structured model in a more flexible way. As happens when there is uncertainty

about pβc, βzq, sets of possible r’s differ depending on the state z. As we remarked earlier

in subsection 4.2 when we discussed Illustration 4.1, when z “ 0 the only feasible r is

r “ 0. Figure 1 also reported iso-entropy contours when z is at the .1 and .9 quantile of

the stationary distribution under the baseline model. The larger value of z results in a

downward shift of the contour relative to the smaller value of z. The points of tangency

in Figure 1 are worst-case structured models. A tangency point occurs at a lower drift
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distortion for the .9 quantile than for the .1 quantile.

Consider next the adjustment for model misspecification. Since

σpu˚ ´ s˚q “ ´
1

θ
σσ1

«

1
dpΨ
dz

ff

and entries of σσ1 are positive, the adjustment for model misspecification is smaller in

magnitude for larger values of the state z. Taken together, the vector of drift distortions

is:

σu˚ “ σpu˚ ´ s˚q ` r˚.

The first term on the right is smaller in magnitude for a larger z and conversely, the second

term is larger in magnitude for smaller z.

Under the restrictions on structured models that ρ1 “ 0, ρ2 “ q2{|σz|
2, and ηpzq “

η1pz ´ z̄q, the first derivative of the value function is not differentiable at z “ z̄. We

can compute the value function and the worst-case models by solving two coupled HJB

equations, one for z ă z̄ and another for z ą z̄. We obtain two second-order differential

equations in value functions and their derivatives; these value functions coincide at z “ 0,

as do their first derivatives.

Figure 3: Worst-case structured model growth rate drifts. Left panel: larger structured
entropy (qs,0 “ .1). Right panel: smaller structured entropy (qs,0 “ .05). The penalty
parameter θ was reset to hit two different targeted values of qu,s. Black solid: baseline
model; red dotted: worst-case structured model; blue dashed: qu,s “ .1; and green
dot-dashed: qu,s “ .2.
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Figure 3 shows adjustments of the drifts due to aversion to not knowing which structured

model is best and to concerns about misspecifications of the structured models. Setting

θ “ 8 silences concerns about misspecification of the structured models, all of which

are expressed through minimization over s. When we set θ “ 8, the implied worst-case

structured model has state dynamics that take the form of a threshold autoregression with

a kink at zero. The distorted drifts in z again show less persistence than does the baseline

model for negative values of z and more persistence for larger values of z. We activate a

concern for misspecification of the structured models by setting θ to attain targeted values

of qu,s computed using the structured and unstructured worst-case models. This adjustment

shifts the implied worst-case drift as a function of the state downwards, more for negative

values of z than for positive ones. The impact of the drift for log k or equivalently log c is

much more modest.

qs,0 qu,s du,s half life u, s qu,0 du,0 half life u, 0

.10 .10 .0010 668 .33 .0035 198

.10 .20 .0049 142 .62 .0116 60

.05 .10 .0011 631 .19 .0024 289

.05 .20 .0048 144 .36 .0082 84

Table 1: Entropies and half lives. q2{2 measures relative entropy and d measures Chernoff
entropy. The subscripts denote the probability models used in performing the computa-
tions.

Table 1 reports Chernoff and relative entropies implied by structured and unstructured

worst-case models. The first two columns report relative entropy magnitudes that we

imposed by adjusting the value of θ. The remaining columns report other measures of

entropy as implied by these settings. Recall that the q’s measure magnitudes of the drift

distortions under associated distorted measures. Thus, qu,0 measures how large the drift

distortion is relative to the baseline model. As expected, increasing the targeted values of

qs,0 and qu,s increases the implied values qu,0. There is one peculiar finding. From Table 1,

we see that

qu,s ` qs,0 ă qu,0,

which does not satisfy a Triangle Inequality. This happens because qu,s and qu,0 are com-

puted under the stationary probability measure implied by the worst-case unstructured
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model induced by U , while qs,0 is computed under the measure implied by worst-case

structured model.

Table 1 also reports Chernoff entropies and their implied half lives. These numbers

indicate that statistical discrimination is challenging for all four pqs,0, qu,sq configurations.

The half lives associated with the qu,s’s that quantify potential model misspecification

exceed 140 quarters. Even the smallest half-life associated with the qu,0 that expresses

the overall discrepancy from the benchmark model equals 60 quarters. Discrimination

is especially challenging when we limit the extent of model misspecification by setting

qu,s “ .1.

How are the entropy measures related? We know of no formula that transforms relative

entropy into long-run Chernoff entropy, but a formula from Anderson et al. (2003) is valid

locally and leads us to expect that
q2

2
« 4d,

an approximation that becomes exact when relative drift distortions are constant. It is

evidently a good approximation for computed qu,s and du,s, but not for qu,0 and du,0. As

we have seen, the composite drift distortions show substantial state dependence via the

worst-case structured model.
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Figure 4: Distribution of logCt´ logC0, the growth rate of consumption expressed in terms
of logarithms, under the baseline model and worst-case model for qs,0 “ .1 and qu,s “ .2.
The gray shaded area between the dashed lines depicts the interval between the .1 and
.9 deciles for every choice of the horizon under the baseline model. The red shaded area
between the dotted lines gives the region within the .1 and .9 deciles under the worst-case
model.

Figure 4 portrays effects of the drift distortion on distributions of future consumption

growth over alternative horizons. It shows how the consumption growth distribution ad-

justed for not knowing the best structured model and for distrusting all of the structured

models tilts down relative to the baseline distribution.

6.2.2 Altering the scope of uncertainty

Until now, we have imposed that the alternative structured models have no drift distortions

for Z at Zt “ z̄ by setting

ρ2 “
q2

|σz|2
.

We now alter this restriction by cutting the value of ρ2 in half. Consequences of this change

are depicted in the right panel of Figure 5. For sake of comparison, this figure includes the
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previous specification in the left panel. The worst-case structured drifts no longer coincide

with the baseline drift at z “ z̄ and now vary smoothly in the vicinity of z “ z̄.

Figure 5: Distorted growth rate drift for Z. Relative entropy qs,0 “ .1. Left panel:

ρ2 “
p.01q
|σz |2

. Right panel: ρ2 “
p.01q

2|σz |2
. Black solid: baseline model; red dotted: worst-case

structured model; blue dashed: qu,s “ .1; and green dot-dashed: qu,s “ .2.

Adding the restriction that ρ2 “ 0 makes the robust planner’s value function become

linear and makes the minimizing s and u become constant and therefore independent of z.

Specifically,

dpΦ

dz
“ .01

pβ

δ ` pβz
,

and

s˚9´ σ1

«

.01
.01

δ`pβz

ff

u˚ ´ s˚ “ ´
1

θ
σ1

«

.01
.01

δ`pβz

ff

.

The constant of proportionality for s˚ is determined by the constraint |s˚| “ q. So setting

ρ1 and ρ2 to zero results in parallel downward shifts of worst-case drifts for both Y and Z.

This amounts to changing the coefficients αy and αz in ways that are time invariant and

that leave βy “ pβy and βz “ pβz.
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7 Uncertainty prices

In this section, we construct equilibrium prices that a representative investor having model

ambiguity and misspecification concerns receives for bearing risks. A representative investor

cares about expected values of a discounted stream of future logarithms of consumption

and chooses an instantaneous risk-free investment rate together with a portfolio of instant-

by-instant exposures to dWt by solving a continuous-time Merton portfolio problem. In

equilibrium, the market compensates the investor for bearing exposure to the uncertain

increment dWt because the representative investor is averse to his ambiguity about his

structured models and also to possible misspecifications of each of them. In equilibrium,

these attitudes are embedded in market prices. We deduce equilibrium prices from the

first-order conditions from the representative investor’s portfolio problem together with

restrictions on quantities that come from solving a robust planner’s problem. In Appendix

D we show that equilibrium market prices equal shadow prices for the robust planner’s

problem that we studied in section 4.

7.1 Local prices and stochastic discount factor evolution

Local prices are state dependent and compound across investment horizons in economically

interesting ways. To capture these impacts, we price hypothetical cash flows over alterna-

tive investment horizons using equilibrium cumulative discount factors. Equilibrium local

prices determine the local evolution of the stochastic discount factor process. Thus, the

equilibrium stochastic discount factor process Sdf for our robust representative investor

economy evolves as:

d logSdft “ ´δdt´ .01
´

pαc ` pβcZt

¯

dt´ .01σc ¨ dWt ` η
˚
pZtq ¨ dWt ´

1

2
|η˚pZtq|

2dt

where the instantaneous risk-free interest rate is:

δ ` .01
´

pαc ` pβcZt

¯

`
1

2
|.01σc|

2
` .01σc ¨ η

˚
pZtq

and U˚t “ η˚pZtq is the implied worst-case drift. The local compensation vector ω˚ for

being exposed to aggregate shocks equals minus the local exposure to the increment dWt:

ω˚pZtq “ p.01qσc ´ η
˚
pZtq.
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Thus, the instantaneous expected return compensation is the dot product of ω˚ with the

return exposure.20 The components of ω˚ are usually interpreted as local “risk prices,” but

the decomposition

local price vector “ .01σc ´U˚t ,

risk price uncertainty price
(27)

motivates us to think of .01σc as “risk prices” that are induced by the curvature of log

utility and ´U˚t as “uncertainty prices” that are induced by the representative investor’s

aversion to model ambiguity and misspecification.21 Here the uncertainty price vector ´U˚t

is state dependent. Appendix D describes in detail how we use competitive markets to

implement the allocation chosen by a robust planner. While local prices ´U˚t are large

in both good and bad macroeconomic growth states, the prices of uncertainty at longer

horizons display more complicated responses to shocks to the macro growth state that we

now proceed to characterize.

7.2 Uncertainty prices across investment horizons

In this subsection, we deduce horizon-dependent counterparts to the local uncertainty price

vector. We do so by studying how an expected return as of today varies as we alter exposures

to shocks τ ą 0 periods into the future. Formally, we construct “shock price elasticities”

that tell how state dependencies in exposures to future shocks affect expected returns today

of payoffs that materialize at different different investment horizons t. We shall show that

in addition to being intrinsically interesting, “shock price elasticities” defined in this way

link uncertainty prices to relative entropy.

We start by considering a hypothetical payoff that equals future equilibrium consump-

tion. The logarithm of the expected return from a consumption payoff at date t has two

components, namely,

logE

ˆ

Ct
C0

| Z0 “ z

˙

´ logE

„

Sdft

ˆ

Ct
C0

˙

| Z0 “ z



. (28)

The first component is an expected payoff and the second is the cost of purchasing that

20Please see equation (D.8) for derivation of this formula for ω˚pzq.
21In this decompostion, we evaluate risk and uncertainty prices relative to the baseline model (1), which

we regard as approximating the data well. The planner’s and the representative investor’s doubts about
that model are reflected in the computed compensations.
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payoff. The unitary elasticity of substitution for preferences that are logarithmic in con-

sumption implies that

Sdft

ˆ

Ct
C0

˙

“MU˚

t .

Thus, the second term in (28) is the date t component of the martingale MU˚

that is shaped

by the representative investor’s concern that he does not know which member of his set of

structured models is correct and also by his concern that each of his structured models is

misspecified.

To deduce prices, we change localized exposures to the Brownian increment dWt at

date t in a way that lets us define and compute a “shock-price elasticity”. Formally, a

shock-price elasticity quantifies the local change in an expected return that results from

a local change in the exposure of consumption to the underlying Brownian motion. We

use Malliavin derivatives to make a local martingale perturbation at date t in continuous

time. Changing an exposure to the payoff alters both the expected payoff and its price.

We analyze small changes by computing derivatives.22 The derivative of the logarithm of

the expected return given in (28) is

E rDtCt | F0s

E rCt | F0s
´ E

”

DtMU˚

t | F0

ı

,

where DtCt and DtMU˚

t denote two-dimensional vectors of Malliavin derivatives with re-

spect to the two-dimensional Brownian increment dWt for consumption and the worst-case

martingale, respectively.

A formula familiar from other notions of differentiation implies

DtCt “ Ct pDt logCtq

DtMU˚

t “MU˚

t

´

Dt logMU˚

t

¯

.

The Malliavin derivative of logCt is the vector .01σc, which equals both the exposure

vector of logCt to the increment dWt and also the local risk price vector. Similarly, the

Malliavin derivative of logMU˚

t is the vector U˚t , which equals the exposure of logMU˚

t to

22See Borovička et al. (2014) for more about how Malliavin derivatives can be used in some related
computations.
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the increment dWt and also the negative of the local uncertainty price vector. Thus,

E pDtCt | F0q

E pCt|F0q
“ .01σc

E
`

DtMU˚

t |F0

˘

E pCt | F0q
“ E

´

MU˚

t U˚t | F0

¯

.

We summarize these computations in the following proposition.

Proposition 7.1. Shock price elasticity vectors equal

υtpzq
.
“ .01σc ´ E

´

MU˚

t U˚t | Z0 “ z
¯

and depend on both the horizon t and the initial state z.

This proposition provides a term-structure counterpart to the local price decomposition

(27). The first component .01σc of the price vector υtpzq is invariant over time. As in for-

mula (27), we interpret this as the risk price component. It is very small for our example

economy. The second component reflects uncertainty depends on the state and the invest-

ment horizon t and takes center stage in the computations that follow. The shock price

elasticity vector υtpzq has a well defined limit as tÑ `8. Specifically, E
`

MU˚

t U˚t | Z0 “ z
˘

converges to the unconditional expectation of U˚t under the limiting distorted distribution

induced by U˚.

Because of how ambiguity about the structured models and concerns about misspec-

ification of all of the structured models contribute to the U˚ process, we find a further

decomposition to be enlightening:

´E
`

MU˚

t U˚t | Z0 “ z
˘

“ ´E
`

MU˚

t S˚t |Z0 “ z
˘

´E
“

MU˚

t pU˚t ´ S
˚
t q | Z0 “ z

‰

.

uncertainty price ambiguity price misspecification price

elasticity elasticity elasticity

(29)

We interpret the first term on the right side as coming from not knowing the best structured

model and the second term as coming from concerns that each of the structured models

might be misspecified.

Remark 7.2. These shock elasticities fit within a framework proposed by Borovička et al.

(2011) and are related to distinct objects computed by Borovička et al. (2014). Borovička

et al. (2014) use a typical impulse response timing convention by reporting elasticities that
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tell how changing exposures to a shock next period affects the expected return today of an

asset that pays off t periods into the future. In contrast, here we shift the date of an asset’s

exposure to a shock t time periods into the future, which is also when the asset will pays

out.

7.3 Shock price elasticities for our example economy

Dependency of the term structure of shock elasticities on the economic growth state encodes

an interesting asymmetry in valuations and their sources. We use two figures to bring out

how nonlinearities in valuation dynamics play out across investment horizons. Figure 6

shows shock price elasticities for our section 6 economy, while figure 7 plots the separate

components of these elasticities defined by the right-hand side of equation (29). We feature

the case in which qu,s “ .2. Each of the two Brownian increments in our baseline model

has its own term structure of elasticities. To generate these figures, we used the model

specification from section 6, including the specific structure described in section 6.2.1.
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Figure 6: Uncertainty components of the shock price elasticities as measured by
´E

`

MU˚

t U˚t | Z0 “ z
˘

. The figures reports the median and deciles for the section 6 spec-
ification with pβc, βzq structured uncertainty. Black solid: median of the Z stationary
distribution red dotted: .1 decile; and blue dashed: .9 decile.
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Figure 7: Contributions to shock price elasticities across investment horizons. Panels in the
left-hand side column plot the ambiguity component ´E

`

MU˚

t S˚t |Z0 “ z
˘

. Panels in the

right-hand side column plot the misspecification component ´E
“

MU˚

t pU˚t ´ S
˚
t q | Z0 “ z

‰

.
In both panels qs,0 “ .1. The figure reports the median and deciles for the section 6
specification with pβc, βzq structured uncertainty. Black solid: median of the Z stationary
distribution red dotted: .1 decile; and blue dashed: .9 decile.

Notice from Figure 6 that although the price elasticity is initially smaller for the me-

dian specification of z than for the .9 quantile, this inequality is eventually reversed as

the horizon increases. Figure 7 reveals a similar pattern for the instantaneous ambiguity

prices. Especially for the second shock, instantaneous uncertainty prices are high for the .1
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and .9 quantiles of the z distribution relative to the median growth state; but over longer

investment horizons, elasticities diminish for the .9 quantiles to magnitudes that are even-

tually lower than the median elasticities for the same investment horizons. (The blue and

black curves cross.) Notice that the misspecification components plotted in Figure 7 are

ordered according to quantile, with the lowest quantile making the highest contribution.

In contrast, the contribution from ambiguity about the structured models is substantially

higher for the .9 quantile than for the other two, with median contributions starting at zero.

Contributions from misspecification are thus important for understanding the magnitudes

of the uncertainty price elasticities as well as their initial orderings and their subsequent

reversals.

The model ambiguity components of the elasticities and hence the elasticities themselves

diminish with horizon because the probability measure implied by the martingale MU˚

has

reduced persistence for positive growth states. Under the MU˚

probability, the growth

rate state variable is expected to spend less time in the positive region. This is reflected

in smaller ambiguity components of price elasticities at the .9 quantile than at the median

over longer investment horizons. For longer investment horizons, but not necessarily for

very short ones, an endogenous nonlinearity that is induced by the representative agent’s

min-max preferences makes uncertainty prices larger for negative than for positive values

of z. In summary, horizon dependence of shock price elasticities is an important avenue

through which aversion to ambiguity over the structured models and concerns about their

misspecifications influence valuations of assets.

7.3.1 Uncertainty prices and relative entropy

There is a fascinating connection between relative entropy and the long-horizon limit of the

uncertainty component of the elasticities defined in proposition 7.1. While the uncertainty

price trajectories do not converge over the time span reported in Figure 6, well defined lim-

iting uncertainty prices do emerge over longer time horizons.23 As we reported earlier, these

limits equal ´E
`

MU˚

t U˚t
˘

, i.e., the unconditional expectation of the corresponding drift

distortion vector computed under the worst-case stationary probability measure. Table 2

also reports ´E
“

MU˚

t pU˚t ´ S
˚
t q
‰

, which we interpret as the misspecification component of

the price vector. Uncertainty prices of the second shock are about fifty percent larger than

those of the first. Misspecification concerns contribute to both of these prices, roughly one

23Hansen and Scheinkman (2012) study a limiting growth rate risk price that is based on a different
conceptual experiment but leads to a similar characterization.
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third when qs,0 “ .10 and roughly one half when qs,0 “ .05. Using Table 2 information, we

compare these limit prices to the relative entropy divergences, qu,s and qu,0 that are square

roots of twice the expected square of the absolute value of the vector of the uncertainty price

vectors computed under worst-case stationary probability measures. That mean contribu-

tions as reflected in uncertainty prices account for most of the relative entropy measures

can be seen from comparing the squares of the number in the second column of Table 2

to the sum of the squares in the fourth and fifth columns. Thus, the square root of twice

relative entropy provides a good approximation to the magnitude of long-run uncertainty

prices.

qs,0 qu,s qu,0 shock 1 price shock 2 price

.10 .10 .33 .17 (.05) .26 (.09)

.10 .20 .62 .33 (.10) .51 (.17)

.05 .10 .19 .10 (.05) .15 (.08)

.05 .20 .36 .20 (.11) .30 (.17)

Table 2: Entropies and limit prices. q2{2 denotes relative entropy. The limiting long-
horizon prices are the expectations of ´U˚p´U˚`S˚q under the probability model implied
by U˚.

We offer a final word about how we constructed our quantitative example. We de-

signed it to illustrate a particular mechanism that causes statistically plausible amounts

of uncertainty to generate fluctuations in uncertainty prices. We intentionally inferred pa-

rameters of the baseline model for these examples solely from time series of macroeconomic

quantities and in doing so completely ignored asset prices and returns and so did not im-

pose the cross-equation and cross-frequency restrictions on the consumption process that

our asset pricing theory implies. We proceeded in this way in order to respect concerns

that Hansen (2007) and Chen et al. (2015) expressed about using asset market data to

calibrate macro-finance models that assign a special role to investors’ beliefs about future

asset prices.24

24Hansen (2007) and Chen et al. (2015) describe situations in which it is the behavior of expected rates
of return on assets that, through the cross-equation restrictions, lead an econometrician to make inferences
about the behavior of macroeconomic quantities like consumption that are much more confident than can
be made from the quantity data alone. How could investors put those cross-equation restrictions from
returns into quantity processes before they had observed returns?
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8 Concluding remarks

This paper formulates and applies a tractable model of the effects of macroeconomic uncer-

tainties on equilibrium prices. We quantify investors’ concerns about model ambiguity and

potential misspecification in terms of the consequences of alternative statistically plausible

models for discounted expected utilities. We characterize the effects of such concerns on

the part of individual investors as shadow prices for a planner’s problem.

To illustrate our approach, we have focused on the growth rate uncertainty featured

in the “long-run risk” literature initiated by Bansal and Yaron (2004). Further applica-

tions seem natural. For example, the tools developed here could shed light on a recent

public debate between two groups of macroeconomists and economic historians, one proph-

esying secular stagnation because of technology growth slowdowns, the other discounting

those pessimistic forecasts.25 The tools that we describe can be used, first, to quantify

how challenging it is to infer persistent changes in growth rates, and, second, to guide

macroeconomic policy in light of evidence.

Specifically, we have produced a model of a log stochastic discount factor whose uncer-

tainty prices reflect a robust planner’s worst-case drift distortions U˚ and have shown that

these drift distortions can be interpreted as prices of model uncertainty. The dependence

of uncertainty prices U˚ on the growth state z is shaped partly by how our robust investor

responds to the presence of alternative parametric models among a huge set of unspecified

alternative models that also concern him.

It is worthwhile comparing this paper’s way of inducing time-varying prices of risk with

three other macro/finance models that also get them. Campbell and Cochrane (1999) pro-

ceed under the rational expectations assumption of a single-known-probability-model and

so exclude ambiguity about alternative models and fears of their misspecification from the

mind of their representative investor. Campbell and Cochrane construct a utility function

in which the history of consumption expresses an externality that makes the investor’s lo-

cal risk aversion respond in a countercyclical way to the economy’s growth state. Ang and

Piazzesi (2003) use an exponential-quadratic stochastic discount factor in a no-arbitrage

statistical model as a vehicle for exploring links between the term structure of interest

rates and other macroeconomic variables. Their approach allows movements in risk prices

to be consistent with historical evidence without specifying all components of a general

equilibrium model. A third approach introduces stochastic volatility into the macroecon-

25See Gordon and Mokyr (2016).
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omy by positing that the volatilities of shocks driving consumption growth are themselves

stochastic processes. A stochastic volatility model induces time variation in risk prices via

exogenous movements in the conditional volatilities of shocks that impinge on macroeco-

nomic variables. A related approach is implemented by Ulrich (2013) and Ilut and Schneider

(2014), who use exogenous stochastic fluctuations in ambiguity concerns to induce addi-

tional macroeconomic fluctuations.

In Hansen and Sargent (2010), we used a representative investor’s robust model averag-

ing to drive countercyclical uncertainty prices. The investor carries along two difficult-to-

distinguish models of consumption growth, one with substantial growth rate persistence, the

other with little such persistence. The investor uses observations on consumption growth

to update a Bayesian posterior over these models and expresses his specification distrust

by pessimistically and exponentially twisting that posterior distribution. That leads the

investor to act as if good news is temporary and bad news is persistent, an outcome that is

qualitatively similar to what we have found here. Collin-Dufresne et al. (2016) and Andrei

et al. (2019) showed that a comparable outcome emerges with a risk-based, recursive utility

formulation with Bayesian learning in which investors have full confidence in the subjective

probabilities and are not concerned about model misspecification. Learning occurs in the

settings of these papers because the parameterized structured models are time invariant,

which makes historical evidence valuable to the decision maker.

In this paper, we propose a different way to make uncertainty prices vary. We exclude

learning by including alternative models with parameters whose prospective variations can-

not be inferred from historical data. These time-varying parameter models differ from the

decision maker’s baseline model, a fixed parameter model whose parameters can be well

estimated from historical data. The alternative models include ones that allow parameters

persistently to deviate from those of the baseline model in statistically subtle and time-

varying ways. In addition to this parametric class of alternative models, a robust planner

and a representative investor both worry about many other specifications. A robust plan-

ner’s worst-case model responds to these forms of model uncertainty partly by having more

persistence in bad states and less persistence in good states.

Adverse shifts in a worst-case shock distribution that increase the absolute magnitudes

of uncertainty prices were also present in some of our earlier work (for example, see Hansen

et al. (1999) and Anderson et al. (2003)). But in this paper, we induce state dependence

in uncertainty prices in a new way, namely, by specifying a set of alternative models that

captures concerns about the baseline model’s specification of persistence in consumption
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growth.

Our continuous-time formulation (17) exploits mathematically convenient properties of

a Brownian information structure. There exists a discrete-time version of our formulation

that starts from a baseline model cast in terms of a nonlinear stochastic difference equation

and in which counterparts to structured and unstructured models play the roles that they

do here. Furthermore, preference orderings defined in terms of continuation values are

dynamically consistent.

While our example used entropy measures to restrict the decision maker’s set of struc-

tured models, two other approaches could be explored. One would use a more direct imple-

mentation of a robust Bayesian approach; the other would refrain from imposing absolute

continuity when constructing a family of structured models. We conclude by discussing

these in turn.

A robust Bayesian could start with a set of structured models with time-invariant pa-

rameters and a convex set of priors over those parameters. A model-by-model Bayesian

approach might be tractable if the implied set of posteriors could be characterized and

computed date-by-date through the use of conjugate priors. The resulting family of proba-

bilities would not be rectangular. But if we were to augment the set of probabilities to make

it rectangular as recommended by Epstein and Schneider (2003), the worst-case structured

model coming from the rectangular set may not come from applying Bayes’ rule to a single

prior. That outcome would disable Good’s recommendation for assessing the plausibility

of max-min choice theory.

Another promising approach would be to abandon the absolute continuity that we have

built in when we assumed that the structured model probabilities can be represented as

martingales with respect to a baseline model. Peng (2004) uses a theory of stochastic

differential equations under a broad notion of model ambiguity that is rich enough to allow

uncertainty about the conditional volatility of Brownian increments. In Peng’s setting,

alternative probability specifications fail to be absolutely continuous, so standard likelihood

ratio analysis doesn’t apply. If we could construct bounds on uncertainty under a non-

degenerate rectangular embedding, we could then modify how we would construct worst-

case structured models and still restrain relative entropy as a way to limit a decision maker’s

set of unstructured models.26

In this paper, we have chosen to apply the tractable Hansen and Sargent (2020) decision

26See Epstein and Ji (2014) for an application of the Peng analysis to asset pricing that does not use
relative entropy.
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theoretic way of representing and distinguishing structured and unstructered uncertainties

to a quantitative version of a stochastic investment model in the spirit of Eberly and Wang

(2011). Replacing the single baseline model typically used in robust control theory with a

set of structured models has the attractive feature that it allows us naturally to articulate

the decision maker’s ambiguity aversion over a targeted set of alternative models while

retaining relative entropy neighborhoods to express less completely articulated misspec-

ification concerns. Although the Hansen and Sargent (2020) decision theory adds some

computational complexity, it adds no state variables. Additional computational complex-

ity comes only in the minimization step. We extended the Eberly and Wang framework

to include a richer stochastic structure and used it as our quantitative laboratory because

we view the resulting model as an excellent environment for endogenizing and analyzing

sources of shocks with long-run consequences that complicate the choices facing investors.

In our application, this attractive bundle of “behavioral assumptions” turns out to yield

sharp and quantitatively plausible implications about state-dependent countercyclical con-

tributions to market prices of uncertainty. But perhaps more important, we believe that

the way of modeling and quantifying two distinct sources of model uncertainty that we

use here is a promising way to improve a broad range of quantitative dynamic stochastic

models in macroeconomics, public finance, and applied welfare economics. In each of these

fields, quantitative fits, operating characteristics, and responses to hypothetical alterations

in government policies and regulations all depend on versions of the same inter-temporal

margins that are at the heart of our analysis. The approach we have illustrated here pro-

vides a tractable set of tools for thinking creatively about how to improve quantitative

models along those margins.
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Appendices

A Computing Chernoff and relative entropy

We show how to compute Chernoff and relative entropies for Markov specifications where

the associated S’s and U ’s take the forms

Ut “ ηupZtq

St “ ηspZtq.

A.1 Chernoff entropy

The Markov structure of both models allows us to compute Chernoff entropy by using an

eigenvalue approach of Donsker and Varadhan (1976) and Newman and Stuck (1979). We

start by computing the drift of
`

MU
t

˘γ `
MS

t

˘1´γ
gpZtq for 0 ď γ ď 1 at t “ 0:

rGpγqgspzq .“´
γp1´ γq

2
|ηupzq ´ ηspzq|

2gpzq ` gpzq1σ ¨ rγηupzq ` p1´ γqηspzqs

` g1pzq
´

pαz ´ pβzz
¯

`
g2pzq

2
|σz|

2,

where rGpγqgspzq is the drift given that Z0 “ z. Next we solve the eigenvalue problem

rGpγqsepz, γq “ ´λpγqepz, γq.

We seek the eigenvalue for which expr´λpγqs is largest in magnitude; the associated eigen-

function is positive.

We compute Chernoff entropy by solving

ΓpMH ,MS
q “ max

γPr0,1s
λpγq,

where we compute λpγq numerically using a finite-difference approach. For a pre-specified γ,

we evaluate rGpγqsg at each of n grid points and replace derivatives by two-sided symmetric

differences except at the edges, where we use corresponding one-sided differences. This

procedure yields a linear transformation of g evaluated at the n grid points. The outcome

of this calculation is an n by n matrix applied to a vector containing the entries of g
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evaluated at the n grid points. The eigenvalue of the resulting matrix that has the largest

exponential equals ´ηpγq. We we use a grid for z over the interval r´2.5, 2.5s with grid

increments equal to .01, choices that imply that n “ 501.

A.2 Relative entropy

We solve

q2

2
´
dρ

dz
pzqrpαz ´ pβzz ` σz ¨ ηupzqs ´

|σz|
2

2

d2ρ

dz2
pzq “

|ηupzq ´ ηspzq|
2

2
(A.1)

for q numerically using a finite difference approach like that described in section A.1. Notice

that the left-hand side of (A.1) is linear in pρ, q2{2q. We evaluate equation (A.1) at the

n grid points for z and use a finite difference approximation for the derivatives. We write

the resulting left-hand side equations as a matrix times a vector containing q2{2 and ρ

evaluated at n´ 1 grid points omitting z “ 0 because we set ρp0q “ 0 for convenience. We

write the right-hand side as a vector evaluated at the n grid points and solve the resulting

equation system via matrix inversion.

B Statistical calibration

B.1 Calibrating the baseline model

We set pαz “ 0 and pβc “ 1. For other parameters we:

i) Let

Yt`1 “

»

—

–

logCt`1 ´ logCt

logGt`1 ´ logCt`1

logDt`1 ´ logCt`1

fi

ffi

fl

,

pYt “

«

logGt ´ logCt

logDt ´ logCt

ff

where as described in the body of this paper, Ct is consumption, Gt is business income,

and Dt is personal dividend income. Business income is measured as proprietor’s in-

come plus corporate profits per capita. Dividends are personal dividend income per
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capita. The time series are quarterly data from 1948 Q1 to 2018 Q3. Our con-

sumption measure is nondurables plus services consumption per capita. The nominal

consumption data come from BEA’s NIPA Table 1.1.5 and their deflators from BEA’s

NIPA Table 1.1.4. The business income data with IVA and CCadj are from BEA’s

NIPA Table 1.12. Personal dividend income data were obtained from from FRED’s

B703RC1Q027SBEA. Population data comes from FRED’s CNP16OV. By including

proprietors’ income in addition to corporate profits, we use a broader measure of busi-

ness income than Hansen et al. (2008) who used only corporate profits. Hansen et al.

(2008) did not include personal dividends in their VAR analysis.

ii) Let Xt “

»

—

—

—

—

—

—

–

Yt

Yt´1

Yt´2

Yt´3

pYt´4

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. Express a vector autoregression in the stacked form

Xt`1 “ H ` AXt `BWt`1

where A is a stable matrix (i.e., its eigenvalues are all bounded in modulus below

unity) and BB1 is the innovation covariance matrix. Let selector matrix J verify

Yt`1 “ JXt`1. The level variables logCt, logGt, logDt are cointegrated. Each of

logCt, logGt, logDt is an additive functional in the sense of Hansen (2012). Each has an

additive decomposition into trend, martingale, and stationary components that can be

constructed using a method described in Hansen (2012). The martingale components

of the three series are identical. The innovation to this martingale process is identified

as the only shock having long-term consequences. We identify B by assuming that the

square matrix JB is lower triangular.

iii) Compute the implied mean µ of the stationary distribution for X from

µ “ pI ´ Aq´1H

and the associated covariance matrix Σ that solves a discrete Lyapunov equation

Σ “ AΣA1 `BB1
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that can be solved by a doubling algorithm.

iv) Compute the implied mean for logCt`1´logCt “ u1µ and set it to .01pαc; here u1 selects

the consumption growth rate from the vector Xt`1.

v) Compute the state-dependent component of the expected long-term growth rate by

evaluating:

Zp
t “ lim

jÑ8
E plogCt`j ´ logCt ´ jpαc|Ftq “ u1pI ´ Aq´1

“

Xt ´ pI ´ Aq
´1H

‰

implied by the VAR estimates. The analogue to Zp
t for the continuous time version of

the model is

Zp
t “ lim

jÑ8
E plogCt`j ´ logCt ´ jpαc|Ztq “

.01

pβz
Zt.

vi) Compute the implied autoregressive coefficient for the analogous limit logCp
t in the

discrete-time specification using the VAR parameter estimates and equate it to 1´ pβz:

1´ pβz “
u1ApI ´ Aq´1AΣpI ´ A1q´1A1u

u1ApI ´ Aq´1ΣpI ´ A1q´1A1u
.

vii) Compute the VAR implied covariance matrix for the one-step-ahead forecast error

for the limit logCp
t and form the covariance matrix for the growth rate process for

consumption and for Zp
t`1.

«

u1BB1u u1BB1pI ´ A1q´1A1u

u1ApI ´ Aq´1BB1u u1ApI ´ Aq´1BB1pI ´ A1q´1A1u

ff

“ .0001

«

pσcq
1

1
pβ z
pσzq

1

ff

”

pσcq
1
pβ z
pσzq

ı

.

We identify σz and σc by imposing a zero restriction on the second entry of σc and

positive signs on the first coefficient of σc and on the second coefficient of σz.

B.2 Estimation and inference

Consider the VAR

Xt`1 “ H ` AXt `BWt`1,

where A is a stable matrix, Wt`1 is a multivariate standard normal, and data are available

for X0, X1, ...., XN . We use importance sampling to construct medians and deciles for the

parameters of interest by using formulas in appendix B.1.
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i) Construct a “posterior” for the coefficients of the VAR by using a special case of a

method described by Zha (1999). Following Zha, we exploit the lower triangularity of

JB by first transforming the equation system to make the implied population residuals

be uncorrelated. We impose conjugate priors on the transformed system and initialize

them at a “non-informative” prior. This method conditions on X0. We use Monte

Carlo simulation to produce a sequence tθj :“ 1, 2, ...., Nu where N is the sample size

of the simulated data. We use this simulation to form a synthetic empirical distribution

that assigns probability 1
N

to each θj, rejecting all draws that do not imply a stationary

VAR.

ii) Let fp¨ | µ,Σq be the multivariate normal density and assign weight

fpX0 | µj,Σjq
řN
j“1 fpX0 | µj,Σjq

to outcome θj where µj and Σj are the mean vector and covariance matrix for the

stationary distribution implied by θj. This weighting scheme adjusts the empirical

distribution for the contribution to the likelihood function from the random initial

state X0. We construct medians and deciles from this discrete distribution.

In our computations, we set N “ 10, 000, 000. The resulting medians and .1 and .9

deciles are:

Parameter 10th percentile 50th percentile 90th percentile

αc .321 .484 .646
βz .005 .014 .037
σ1
c .452 .477 .501
σ1
z .003 .011 .029
σ2
z .013 .025 .039

We used medians in computations underlying figures and tables in the text.

C Solving the ODE’s

For large |z|, the value function and minimizing worst-case r are approximately linear in

the state variable. The linear approximations differ depending on whether z is greater or
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less than z̄. The linear approximations provide good Neumann boundary conditions to use

in an approximation that restricts z to be in a compact interval that includes z “ z̄.

Recall the constraint:

1

2
r1
`

σ´1
˘1
σ´1r ` rρ1 ` ρ2pz ´ z̄qs

”

´pβzpz ´ z̄q ` r2

ı

`
|σz|

2

2
ρ2 ´

q2

2
ď 0.

where Λ “ pσ´1q
1
σ´1. Let d denote a vector of approximate slopes for a minimizing r.

Since the quadratic terms in z dominate the constraint, impose the following restriction on

d:
1

2
d1Λd´ ρ2

pβz ` ρ2d2 “ 0 (C.2)

where d2 is the second coordinate of d. From the HJB equation:

p´δ ´ pβz ` d2qψ ` .01ppβk ` d1q “ 0

Λd`

«

0

ρ2

ff

9

«

.01

ψ

ff

(C.3)

where ψ is the approximate slope of value function. The first equation in equation (C.3)

is the derivative of the value function for constant coefficients, putting minimization aside.

The second block in (C.3) consists of two equations derived as the large z approximation to

the first-order conditions implied by (25). After taking ratios of these two latter equations

we can cancel the constant of proportionality (the multiplier on the constraint) leaving

us with one equation that emerges from the second block. Thus we are left solving three

equations in the three unknowns d and ψ.

Depending on which boundary we target, minimization will result in different choices

of d. We let d´ be the approximate solution for the left boundary with a corresponding

value function derivative ψ´. We define d` and ψ` analogously. Combining equation

(C.2) and the two equations that emerge from (C.3), we are left with three equations

that determine pd´1 , d
´
2 , ψ

´q and pd`1 , d
`
2 , ψ

`q, where ψ´ and ψ` are the two approximate

boundary conditions for the derivative of the value function. We used bvp4c in Matlab to

solve the ode’s over the two intervals r´2.5, 0s and r0, 2.5s, where z “ 0.
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D Decentralization

D.1 Robust investor portfolio problem

A representative investor solves a continuous-time Merton portfolio problem in which indi-

vidual wealth A evolves as

dAt “ ´Ctdt` AtιpZtqdt` AtFt ¨ dWt ` AtωpZtq ¨Dtdt, (D.4)

where Ft “ f is a vector of chosen risk exposures, ιpzq is an instantaneous risk-free rate,

and ωpzq is a vector of risk prices evaluated at state Zt “ z. Initial wealth is A0. The

investor discounts the logarithm of consumption and distrusts his probability model.

Key inputs to a representative investor’s robust portfolio problem are the baseline model

(1), the wealth evolution equation (D.4), the vector of risk prices ωpzq, and the quadratic

function ρ and relative entropy q2{2 that define alternative structured models.

Under a guess that the value function takes the form rΨpzq ` log a ` log δ, the HJB

equation for the robust portfolio allocation problem is

0 “ max
c,f

min
u,s
´δrΨpzq ´ δ log a´ δ log δ ` δ log c´

c

k
` ιpzq

` ωpzq ¨ f ` f ¨ u´
|f |2

2
`
drΨ

dz
pzq

”

´pβzpz ´ z̄q ` σz ¨ u
ı

`
1

2
|σz|

2d
2
rΨ

dz2
pzq `

θ

2
|u´ s|2 (D.5)

where extremization is subject to

|s|2

2
`
dρ

dz
pzqr´pβzpz ´ z̄q ` σz ¨ ss `

|σz|
2

2

d2ρ

dz2
pzq ´

q2

2
“ 0. (D.6)

The first-order condition for consumption is

δ

c˚
“

1

a
,

which implies that c˚ “ δa, an implication that follows from the unitary elasticity of

intertemporal substitution associated with the logarithmic instantaneous utility function.
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First-order conditions for a and u are

ωpzq ` u˚ ´ f˚ “ 0 (D.7a)

f˚ ` θpu˚ ´ s˚q `
drΨ

dz
pzqσz “ 0. (D.7b)

These two equations determine a˚ and u˚ ´ s˚ as functions of ωpzq and the value function
rΨ. We determine s˚ as a function of u˚ by solving

min
s

θ

2
|u´ s|2

subject to (D.6). Taken together, these determine pf˚, u˚, s˚q. We can appeal to arguments

like those of Hansen and Sargent (2008, ch. 7) to justify stacking first-order conditions as

a way to collect equilibrium conditions for the two-person zero-sum game that the robust

portfolio problem solves.27

D.2 Competitive equilibrium prices

We show that the drift distortion η˚ that emerges from a robust planner’s problem de-

termines prices that a competitive equilibrium awards for bearing model uncertainty. In

particular, we compute a vector ωpxq of competitive equilibrium risk prices by finding a ro-

bust planner’s marginal valuations of exposures to the W shocks. We decompose that price

vector into separate compensations for bearing risk and for accepting model uncertainty.

We verify that the plan for logC that emerges from the robust planner’s problem coincides

with the plan for consumption that solves the portfolio problem of a robust investor who

takes those prices as given.

Noting from the robust planning problem that the shock exposure vectors for logA and

logC must coincide implies

f˚ “ p.01qσcx.

From (D.7b) and the solution for s˚

u˚ “ η˚pzq,

27An alternative timing protocol that allows the maximizing player to take account of the impact of its
decisions on the minimizing agent implies the same equilibrium decision rules described in the text. See
Hansen and Sargent (2008, ch. 5).
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where η˚ can be shown to be the worst-case drift from the robust planning problem if we

can show that rΨ “ pΨ, where pΨ is the value function for the robust planning problem.

Thus, from (D.7a), ω “ ω˚, where

ω˚pzq “ p.01qσc ´ η
˚
pzq. (D.8)

Similarly, in the problem faced by a representative investor within a competitive equi-

librium, the drifts for logA and logC coincide:

´δ ` ιpzq ` rp.01qσc ´ η
˚
pzqs ¨ a˚ ´

.0001

2
σc ¨ σc “ p.01qppαc ` pβczq,

so that ι “ ι˚, where

ι˚pzq “ δ ` .01ppαc ` pβczq ` .01σy ¨ η
˚
pzq ´

.0001

2
σc ¨ σc. (D.9)

By setting rΨ “ pΨ, we use these formulas for equilibrium prices to construct a solution to

the HJB equation of a representative investor in a competitive equilibrium.
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