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1. Introduction

A self-con�rming equilibrium is the answer to the following question: what are the pos-
sible limiting outcomes of purposeful interactions among a collection of adaptive agents,
each of whom averages past data to approximate moments of the conditional probability
distributions of interest? If outcomes converge, a Law of Large Numbers implies that
agents' beliefs about conditional moments become correct on events that are observed
su�ciently often. Beliefs are not necessarily correct about events that are infrequently
observed. Where beliefs are correct, a self-con�rming equilibrium is like a rational expec-
tations equilibrium. But there can be interesting gaps between self-con�rming and rational
expectations equilibria where beliefs of some important decision makers are incorrect.

Self-con�rming equilibria interest macroeconomists because they connect to an inuen-
tial 1970s argument made by Christopher Sims that advocated rational expectations as
a sensible equilibrium concept. This argument defended rational expectations equilibria
against the criticism that they require that agents `know too much' by showing that we
do not have to assume that agents start out `knowing the model'. If agents simply average
past data, perhaps conditioning by grouping observations, their forecasts will eventually
become unimprovable.

Research on adaptive learning has shown that that the glass is `half-full' and `half-empty'
for this clever 1970s argument. On the one hand, the argument is correct when applied
to competitive or in�nitesimal agents: by using naive adaptive learning schemes (various
versions of recursive least squares), agents can learn every conditional distribution that
they require to play best responses within an equilibrium. On the other hand, large agents
(e.g., governments in macro models) who can inuence the market outcome cannot expect
to learn everything that they need to know to make good decisions: in a self-con�rming
equilibrium, large agents may base their decisions on conjectures about o�-equilibrium-
path behaviors which turn out to be incorrect. Thus, a rational expectations equilibrium
is a self-con�rming equilibrium, but not vice versa.

While agents' beliefs can be incorrect o� the equilibrium path, the self-con�rming equi-
librium path still restricts them in interesting ways. For macroeconomic applications,
the government's model must be such that its o�-equilibrium path beliefs rationalize the
decisions (its Ramsey policy or Phelps policy, in the language of [16]) that are revealed
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along the equilibrium path. The restrictions on government beliefs required to sustain
self-con�rming equilibria have only begun to be explored in macroeconomics, mainly in
the context of some examples like those in [16]. Analogous restrictions have been more
thoroughly analyzed in the context of games [10].

The freedom to specify beliefs o� the equilibrium path makes the set of self-con�rming
equilibria generally be larger than the set of Nash equilibria, which often admit unintuitive
outcomes in extensive form games [11]. A widely used idea of re�ning self-con�rming
equilibrium is to embed the decision making problem within a learning process in which
decision makers estimate unknown parameters through repeated interactions, and then to
identify a stable stationary point of the learning dynamics (e.g., [8, 7, 6]).

The gap between a self-con�rming equilibrium and a rational expectations equilibrium
can be vital for a government designing a Ramsey plan, for example, because its calcula-
tions necessarily involve projecting outcomes of counterfactual experiments. For macro-
economists, an especially interesting feature of self-con�rming equilibria is that because a
government can have a model that is wrong o� the equilibrium path, policy that it thinks
is optimal can very well be far from optimal. Even if a policy model �ts the historical
data correctly and is unimprovable, one cannot conclude that the policy is optimal. As a
result, it requires an entirely a priori theoretical argument to diminish the inuence of a
good �tting macroeconomic model on public policy [16].

2. Formal Definitions

An agent i is endowed with strategy space Ai and state space Xi. Generic elements of
Ai and Xi are called a strategy and a state, respectively. A probability distribution Pi over
Ai�Xi describes how actions and states are related. A utility function is ui : Ai�Xi ! R.
Let �i(� : ai) be a probability distribution over Xi, which represents i's belief about the
state conditioned on action ai. Agent i's decision problem is to solve

(2.1) max
ai2Ai

Z
xi

ui(ai; xi)d�i(xi : ai):

2.1. Single Person Decision Problems. Here a self-con�rming equilibrium is a simply
a pair (a�

i
; ��

i
) satisfying

a�i 2 arg max
ai2Ai

Z
xi

ui(ai; xi)d�
�

i (xi : ai)(2.2)

��i (xi : a
�

i ) = Pi(xi : a
�

i ):(2.3)

(2.2) implies that the choice must be optimal given his subjective belief ��
i
, while (2.3)

says that the belief must be con�rmed, conditioned on his equilibrium action a�
i
. Self-

con�rming equilibrium has the two key ingredients of rational expectations equilibrium:
optimization and self-ful�lling property. The key di�erence is (2.3), which imposes a self-
con�rming property conditioned only on equilibrium action a�

i
. The decision maker can

entertain �i(� : ai) 6= P(� : ai), conditioned on ai 6= a�
i
. In this sense, the agent can have

multiple beliefs about the state conditioned on his own action.
If we strengthen things to require

(2.4) �i(� : ai) = P(� : ai) 8ai;
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then we attain a rational expectations equilibrium. As will be shown later, (2.4) is called
the unitary belief condition [10], which is one of the three key features that distinguishes a
self-con�rming equilibrium from a rational expectations equilibrium or Nash equilibrium.

2.2. Multi-person Decision Problems. If we interpret the state space as the set of the
strategies of the other playersXi = A�i, we can naturally extend the basic de�nition to the
situation where more than one person is making a decision. A self-con�rming equilibrium
is a pro�le of actions and beliefs, f(a�1; �

�

1); : : : ; (a
�

n; �
�

n)g such that (2.2) and (2.3) hold
for every i = 1; : : : ; n. As we move from single person to multi-person decision problems,
however, (2.3) di�ers three ways from a Nash equilibrium, in addition to the unitary belief
condition (2.4). (1) If there are more than two players, the belief of player i 6= j; k about
player k's strategy can be di�erent from player j's belief about player k's strategy (failure of
consistency). (2) Similarly, player i can entertain the possibility that player j and player k
correlate their strategies according to an un-modeled randomization mechanism, leading
to correlated beliefs. (3) If we require that a self-con�rming equilibrium should admit
unitary and consistent beliefs, while excluding correlated beliefs, then the self-con�rming
equilibrium is a Nash equilibrium [10].

2.3. Dynamic Decision Problems. Suppose that player i solves (2.1) repeatedly. The
�rst step to embed self-con�rming equilibria in dynamic contexts is to spell out learning
rules that specify how beliefs respond to new observations. We de�ne a learning rule as a
mapping that updates belief �i into a new belief when new data arrive. De�ne Zi � Xi as
a subspace of Xi that is observed by a decision maker. Let Mi be the set of probability
distributions over Zi�Ai. These represent player i's belief about the state, i.e., the model
entertained by player i. A learning rule is de�ned as

Ti :Mi � Zi !Mi:

A belief ��
i
2Mi is a steady state of the learning dynamics if

a�i 2 arg max
ai2Ai

Z
xi

ui(ai; xi)d�
�

i (xi : ai)(2.5)

��i = Ti(�
�

i ; zi)(2.6)

for every zi in the support of Pi(xi : a
�

i
).

The steady state of learning dynamics is a self-con�rming equilibrium for a broad class
of recursive learning dynamics including Bayesian [10] and least square learning algorithms
[16, 6] are self-con�rming equilibria.

2.4. Re�nements. We can study the salience of the self-con�rming equilibrium by exam-
ining the stability of the associated steady states. The stability property provides a useful
foundation for selecting a sensible self-con�rming equilibrium [2, 12, 17, 6]. With a possible
exception of the Bayesian learning algorithm, most ad hoc learning rules are motivated
by the simplicity of some updating scheme as well as its ability to support su�ciently
sophisticated behavior in the limit. By exploiting the convergence properties of learning
dynamics, we can often devise a recursive algorithm to calculate a self-con�rming equilib-
rium, i.e., a �xed point of the Ti. This approach to computing equilibria has occasionally
proved fruitful to compute equilibria in macroeconomics (e.g., [1]).
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In principle, a player need not know the other player's payo� in order to play a self-
con�rming equilibrium. Self-con�rming equilibria allow a player to entertain any belief
conditioned on actions not used in the equilibrium. This is one of the main sources of
multiplicity. In the game theoretic context, a player can delineate the set of possible
actions of the other players, even if he does not have perfect foresight. If each player
knows the payo� of the other players, and if it is common knowledge that every player
is rational, then a player can eliminate the actions of the other players that cannot be
rationalized. By exploiting the idea of sophisticated learning of [13, 14, 5] restricted the
set of possible beliefs o� the equilibrium path to eliminate evidently unreasonable self-
con�rming equilibrium.

3. Applications

Self-con�rming equilibria and recursive learning algorithms are powerful tools to in-
vestigate a number of important dynamic economic problems such as (1) the limiting
behavior of learning systems [6, 9]; (2) the selection of plausible equilibria in games and
dynamic macroeconomic models [12, 11]; (3) the incidence and distribution of rare events
that occasionally arise as large deviations from self-con�rming equilibria [4, 16]; and (4)
formulating plausible models of how agents respond to model uncertainty [3].

Remarkably, related mathematics tie together all of these applications. The mean dy-
namics that propel the learning algorithms to self-con�rming equilibria (in item 1) are
described by ordinary di�erential equations (ODE) derived through an elegant stochastic
approximation algorithm (e.g., [9, 17, 12]). Because the stationary point of the ODE is
a self-con�rming equilibrium, the stability of the ODE determines the selection criterion
used to make statements about item 2 [9, 6]. Remarkably, by adding an adverse deter-
ministic shock to that same ODE, we obtain a key object that appears in a deterministic

control problem that identi�es the large-deviation excursions in item 3 away from a self-
con�rming equilibrium [4]. Finally, that same large deviations mathematics is associated
with robust control ideas that use entropy to model how agents cope with model uncer-
tainty [15].
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