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This paper illustrates the application of a certain class of time series
model to macroeconomics.¥ One motivation for this application is our
suspicion that existing large-scale macroeconometric models represent,
to an extent not admitted in the statistical theory applied to them,
“measurement without theory.”

In one sense, this idea is an extension of one put forward years ago
by Liu [82]5 when he argued that econometric models might, when only
really reliable a priori restrictions were applied to them, turn out most
often to be underidentified. Not only do we mistrust many of the zero-
restrictions on coefficients in these models, we also consider to be
unreliable both the restriction that their residuals be serially uncorrelated
and the a priori classification of variables into strictly exogenous and
endogenous categories. Thus, instead of Liu’s conclusion that one ought
to turn attention to direct estimation of reduced forms of these models,
we conclude that one ought to consider estimation of general represen-
tations of the variables in the models as vector stochastic processes.

In part, our intention to explore alternatives to conventional structural
macroeconometric models stems from our sympathy with Koopmans’
[76] judgments about the theoretical foundations of those models:

+Revised, January 1977. John Geweke adapted the maximum likelihood factor analysis
algorithm for application to the frequency domain factor model and wrote a computer program
for estimating and testing the one-index model. Paul Anderson extended that program to handle
k noises and performed all frequency domain calculations in this paper. Salih Neftci carried out
the calculations for the observable index model. John Geweke's contribution in developing the
factor analysis algorithm and in formulating the unobservable index model was enough for him
to qualify as a coauthor of this paper. Robert E. Lucas, Jr., made useful comments on an earlier
draft. some of which we have incorporated in this version.

4 The same-class of models we apply here may have other applications in economics and
has, at least in part, appeared in other disciplines as well. See Priestley, Rao, and Tong [123]).

§Numbersin[ | correspond to reference list, p- 219,
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In general the state of macroeconomic theory is unsatisfactory.
There are too many reasonable alternatives among which presently
available observations of aggregate time series cannot easily discrimi-
nate. A greater stock of relevant observations could be collected and
brought to bear if the basic assumptions of dynaric economics were
made about behavior of individual firms and consumers, and the
implications then traced through to the aggregates, a task involving
direct observation and model construction. There is also a need to
introduce explicitly the random elements which reduce the reliability

and degree of explicitness of prediction into the more distant future.

Now. just as when those words were written, very little of the a priori
theory embodied in macroeconometric models is based explicitly on
models of the behavior of individuals. Now, just as then, very little of the
theory embodied in such models is explicitly stochastic. There is generally
not even an attempt to justify the restrictions on serial correlation properties
of residuals imposed in estimating such models on the basis of explicit
economic theory. Many of the equations of such models, though formally
identified by zero-restrictionson their coefficients, are, in fact, little more
than attempts to-capture certain statistical regularities in the sample
period. The Phillips curve isa prime example of an empirical relationship
that was initially incorporated in macroeconometric models without there
first being a model of the ‘ndividual behavior giving rise to the relationship.
Another example is the common practice of using “capacity utilization”
indexes to adjust the measured capital stock before estimating an aggre-
gate Cobb-Douglas production function. This practice occurs in spite
of the fact that an optimizing firm with a Cobb-Douglas production
function always uses all of its capital and that no microtheory leading to
an aggregate production function with utilization-adjusted capital has
been put forward.

The fact that we question the assumptions ordinarily used in interpreting
large econometric models does not mean that we necessarily regard the
fitted equations themselves as useless. They probably do capture important
statistical regularities, and in the empirical work reported below we aim
at little more than this ourselves. The purpose of the kind of work we
will be presenting is to explore the possibility that important statistical
regularities are missed by existing large scale models,f and also to see

+The public’s expectations about future exogenous and endogenous variables are important
arguments in many macroeconomic schedulesincluding the Phillipscurve, consumption schedule,
investment schedule, and various asset demand schedules. In practice, most econometric models
have posited that the public’s expectations of a given variable are formed as distributed lags on
the own variable itself, thus invoking the identifying restriction that the public ignores other
variables in forming its forecasts. These restrictions are imposed in spite of the fact that the
models themselves contain complicated dynamic interactions among variables that a priori lead
one to suspect that it would be optimal to forecast a given variable by taking into account values
of many other endogenous and exogenous variables. The zero identifying restrictions imposed
on expectations generating mechanisms are thus not deduced from an appeal to optimizing
behavior or any other economic theory we are aware of. Neither are the “unit sum” identifying
restrictions that are usually imposed on expectations generators, as Lucas |86] has emphasized.

£ This seems pretty clear already, in fact, from the work by Nelson [102] and Cooper and
Nelson [16].
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whet'her a class of models having a small intersection with the class of
overidentified simultaneous equations models is capable of fitting the
Qata approximately as well. This latter result would suggest that a good
fit of standard models to the data should not be treated as strong evidence
for the overidentifying restrictions they embody.

The models we estimate are certainly not “unrestricted” models. Even
to explain the behavior of the main components of GNP, wages, prices
and _unemployment, a model needs about ten equations; and man);
existing _models contain several orders of magnitude more than that
cycllcal interactions among macroeconomic variables probably commonl);
involve lags of eight or more quarters. A ten-equation, tenth-order
autor’egressjon of general form (ten lags of each of ten variables in
each equation) leaves zero degrees of freedom, approximately, in U.S
postwar data. y -

R‘ather than reduce the dimensionality of our models by restricting
par_tlcula.r equations a priori, as in the standard methodology, we proceed
by imposing simplifying conditions which are symmetric in the variables
The intuition behind the particular restrictions we examine, leading t(;
what we call “index” models, seems to us close to the intuition underlying
the descriptive analysis of business cycles conducted by the National
Bureau of Economic Research (NBER) and described by Koopmans [74]
in his review of Burns and Mitchell as follows:

The notion of a reference cycle itself implies the assumption of an
essentially one-dimensional basic pattern of cyclical fluctuation, a back-
ground pattern around which the movements of individual variables are
arrqnged in a manner dependent on their specific nature as well as on
accidental circumstances. (There is a similarity here with Spearman’s
psychological hypothesis of a single mental factor common to all
abilities.) This “one-dimensional” hypothesis may be a good first ap-
proximation, in the same sense in which the assumption of circular
motion provides a good first approximation to the orbits of planets.
It must be regarded, however. as an assumption of the “Kepler stage.”
based on observation of many series without reference to the underlying
economic behavior of individuals.

We shall describe two related statistical models for representing the
one-index (and more generally k-index) notion described by Koopmans.
The first is an “unobservable index” model whichisa natural counterpart
of the standard factor analysis model alluded to by Koopmans in which
the upderlying factors are unobservable. The model is a frequency
domafn_version of the factor analysis model and can be implemented by
¢omb1nlng spectral analysis and factor analysis. The second model is an
“observable index™ model in which the underlying factors are observable.

. Their attractiveness as statistical devices for restricting the dimen-
sionality of vector time series models is not the only feature which draws
us toward experimenting with index models. Certain theoretical macro-
economic models can be cast in index-model form. These include a class
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of models pioneered by Lucas [90] as well as simple macroeconomic
models which seem to us to reflect the pattern of quantitative thinking
about the business cycle of many macroeconomists, “Keynesian” as well
as “monetarist.” Thus, it would be amistake to regard the techniques that
we describe as being useful solely’for pursuing measurement without
theory. Economic models leading to index-model forms are discussed in
more detail below.

The General Form of Index Models
Index models all satisfy an equation of the form

(N y=a*z T u
where y the vector of observed dependent variablesis n X1, u the vector

of residuals is nX 1, z the vector of indexes is k X 1 with k<<<n, and a the
vector of lag distributions relating z to y is therefore n Xk. In (1) all three

of y, z, and u are stochastic processes, and the notation “*" stands for -

convolution, defined by

We always take a “one-sided,” that is, a(s) =0 fors <0.

The kinds of economic theory which lead to index models do not in
general contain implications about the properties of the residuals u
other than that they should be small. Of course if there are no restrictions
on the properties of u, any vector time series y can be written in the form
(1) — and for arbitrary choice of z and a. The expression (1) can
simply be treated as the definition of u. However, by asserting that (1)
“fits well”— in the sense that the variance of each element u; of u is small
relative to the variance of the corresponding element y; of y, regardless of
how y; is differenced or filteredt — we obtain an hypothesis with content.

For empirical work, it is convenient to use still stronger hypotheses
about the properties of u. If z is some linear combination c*x of observable
variables x (which may include current and past y's), then'it is natural to
hypothesize that (x) contains only current values of y, lagged values of y,
and strictly exogenous variables, as is ordinarily assumed in modeling
simultaneous equation systems. By this assumption we mean that any
elements of the vector of observables x which are not lagged values of y
are uncorrelated with u at all leads and lags. Further, it is natural to

+This is equivalent to requiring that the i'th diagonal element of Sy be large relative to the
i’th diagonal element of S, at all frequencies, where S, and S, are the spectral densities of y and u.
Consideration of the effect of time aggregation suggests that this “good fit” criterion should not
be applied to the highest frequencies. We will not pursue this subtopic in this paper, though it
is important for application.
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assume that (1) is complete in the sense that it determines current y(¢)
uniquely from current and past values of x and u. Let us write x in two

pieces [3°] and divide ¢ correspondingly into Th ituti
¢*x for z in (1) we obtain P & (eoc: - Then substiruding

(2 (I—a*c))*y = a*cy*x, + u.

The requirements we have imposed to this point amount to asserting that
X anq u are uncorrelated at all leads and lags and that (/~a*c,) has a
one-sndeq inverse under convolution.t We call (2) or (1) undér these
assumptions an “observable index model.”

If z is not a function of observable x’s, it is natural to assume that z
ang 114 are &E.thogopal, that is, that z and u are uncorrelated at all leads
?r?dexaisc;del 1th this set of assumptions, we call (1) an “unobservable

Whether or not z is observable, identification requires further restrictions
We take as natural the one that individual elements u; and u, of the:
process u be orthogonal to one another, even though each u; m;y itself
pe autocorrelated. This amounts to requiring that dependelnce on the
indexes accounts for all the observed cross-relations among the series

Though the unobservable index and observable index specification;
are, in general, distinct models, when either one “fits well,” then both
must f!t well. This follows because as the variance of the résiduals u; in
(1) Sl‘ll:lnk.s relative to the variance of the index terms g;*z, both typels of
specnﬁcanon amount to asserting that y differs only slightly from a
singular process with rank equal to the length of the vector z.

To be more precise, suppose we write

(3) Sy=aS.a' +a$,; +S..a +8,

wher.e S, am_i S. are spectral density matrices, S, is the cross-spectral
density matrix of « with z, and a is the Fourier transform of a. Then if
Fhe rpodel “fits well” in the sense we have been giving that phrase, S, has
its dlagopal elements all small relative to the diagonal elements va Z;S a'.
But tt}ls implies that a$;, + S,,a’ has small diagonal elements relativ:: to
the diagonal elements of aS,a’ as well. Since in either type of index
modg:l we can normalize S, to be the identity, we can always match the
dominant @S.a’ term using either type of index model. The differences

o +The one-sided inverse for /—a*c follows from the assumption that (1) determines y(¢)
om current and past x, and u. Technically, the question of whether a one-sided inverse
exists depends on the domain of possible histories for x, and u to which (/—a*;)~"' will b

applied. If)_l, x,, and uare covariance-stationary processes and if y » g*y is taken als ama ine
from covariance-stationary y into covariance-stationary g*y, continuous under the covarliafnci
inner p_rqduct, then g~', if it exists, is unique (given by the inverse Fourier transform of g~'

where g is the Fourier transform .of g). The question of whether (/—a®c,)”" is one-sided fher;

becomes the same as the i is *
question of whether (2) is “stable” i j i
b, 2) in the usual jargon of econometric
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between the two models will be in the “small” terms.

As will be illustrated in the section to follow, economic theory does
not easily generate strict characterizations of the residuals in these
models. Economic theories may, however, suggest that an index model
with indexes of a certain nature should fit well. Because this kind of
assertion does not effectively distinguish observable from unobservable
index models, we will ourselves omit that distinction in the next section.

Economic Interpretation of Index Models
The NBER’s framework for analysis of business cycles is perhaps the
most prominent example of work in macroeconomics that fits comfortably
within the index model framework, but it is not the only such example. In
this section we give several examples of index models in macroeconomics.
To take the simplest example first, consider the following multiplier-
accelerator model for determining GNP (Y) and its major components,
consumption C, investment I, and government purchases, G

Y(=C T 1)+ G()
Clt) = b*Y (Y + (0
1) =m*Y() + u,(0)
G(o)=rY(t) +u o).

Here b, m, and rare one-sided (on the past and present), square summable
sequences, while w, (£), u,(¢), and u,(¢) are stochastic error processes.
In the model (4) any subset of these variables (Y, G, C, I) forms a one-
index model. (If all four variables are included, the presence of the
national income identity makes the process singular.)

Note that because we interpret these equations as asserting a “good
fit,” they are not, like the equations of a standard simultaneous equations
model, unaltered by changes in the choice of the left-hand-side variable.
Each equation is to be interpreted as implying that the left-hand-side
variable has substantially larger variance than the residual and that
interpretation may not remain viable if the equation is renormalized.

Any model which, like (4), has a relatively small number of lagged or
exogenous variables appearing in more than one equation is in the form
of an index model. By this standard many existing econometric business
cycle models may not be very far from the form of an observable index
model, if the number of indexes taken is fairly large (more than two
or three).t

+0f course, many econometric models do have a rich supply of strictly exogenous variables
— especially models of relatively small sectors of the economy. Such models might fall in the
form (2), with y being only one component of x, but if such a model is identified by exclusion
restrictions, without restrictions on lag length or serial correlation, it appears that it is unlikely
to fit the form (2). This is a relatively subtle question whose detailed treatment we leave to
another occasion.
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Now suppose we add to (4) a set of sectoral price equations,
(5 p=[PE MY T /=h..q
and a definition of the aggregate price index

q
(6) P= Z wjp,,

j=1

where v; are random error processes. The system formed by (5) and (6)
asserts that the pattern of movement of sectoral prices is well explained
by the history of aggregate output and an aggregate price index. The
system (4), (5), with (6) substituted into (5), forms a two-index rn.odel
Furtl_lermore, the subset of real variables explained by (4) involves onl);
one index. Only by adding prices to the system do we incur the need
for a second index.

Of course, in reality the aggregate price level may well feed back into
the determination of real variables. Let us examine what happens to this
simple system when we include explicitly supply and demand for money
and the possibility of interest rate effects on the real subsystem

M=k*P+ k,*Y + k;*R + ¢, (demand for money)
(7) M =s5*P+ s5,*Y + 5,*R * e, (supply of money)
I =m*Y + m,*R + u, (replacing investment equation of (4)).

Here the supply and demand for money equations are temporarily
normalized on M, but our interpretation will depend heavily on which
yarlable§ are in fact well explained by the money demand and supply
interaction.

There are several ways our original simple two-index system, with
one real and one nominal index, might be rationalized. If R (the interest
rate) does not enter the investment equation (m,=0), then supply and
demand for money are just a pair of equations for recursively determining
R and M and can be omitted from the system determining Y and P.
Alternatively, R might have very small variance, either because it is fixed
by the supply equation (a pegged interest rate policy) or because it is
fixed by the demand equation (a highly interest-elastic demand for money,
or liquidity trap). Either of these situations, in effect, makes money
supply passive relative to the real subsystem. In these cases, by merging
Fhe “small” term m,*R with u,, we will preserve the onereal, one nominal
index structure.

‘ In general, however, with m, non-zero the one real, one nominal
index structure will not hold. We might, for example, solve the demand
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and supply of money for R in terms of Y and P. If the resulting equation
fits well, we could use it to substitute an expression in terms of Y and P
for R in the investment equation. We would thereby generate a two-index
model with a real and a nominal index, but it would no longer be true that
the real sector of the model depended only on the real index. Another
possibility is that the supply equation fixes M, subject to relatively small
variance. If demand for money were interest-inelastic (k=0), the supply
and demand for money might then determine P as afunction of Y. In that
case we could substitute an expression in terms of Y for the nominal
index P and obtain a one-index model.

One final possibility to note is that the money supply rule might fix
the price level. Then P would effectively drop out of the system, but R
would remain as a second index. We would have a two-index model with
one index being R, the other Y. A single index would explain the price
vector, but two indexes would be required for the real subsystem.

This discussion could be elaborated further.” We will arrest it here,
observing what we have established so far: that simple Keynesian models
may take on an index-model form, that dichotomous models may take
on a “one-real, onexnominal index” form, and that Keynesian models
with interest-elastic favestment do not suggest that a two-index model
will show one real and one purely nominal index.

We now turn to models of the class constructed by Lucas, which fit
quite naturally into the index model framework and predict a one-real
index, one-nominal index pattern. Lucas’s model substantially improves
on the preceding models by providing an explicit behavioral interpreta-
tion of the model’s dynamics. His model is “Keynesian” in the sense that
it accounts for the presence of aggregate-demand induced inflation-
output or money-output correlations. but it is “classical” in its policy
implications and in the sense that it predicts the same onereal index, one
purely nominal index pattern that characterizes our dichotomous models.

In Lucass model, movements in aggregate demand interact with a
stable structure of industry or market supply schedules to produce
persistent fluctuations in real economic activity. These persistent fluctu-
ations occur even though suppliers respond only to perceived movements
in relative prices and form their perceptions rationally. The essential

thing in Lucas’s setup is the assumption that nominal aggregate demand
is not immediately observable, though agents are assumed to understand
its probability law. The notion that aggregate demand is not immediately
observable is what gives the model the capacity to generate persistent
(serially correlated) movements in real activity even where agents are
rational.

A version of Lucass model can be written

+We could, for example, add a system in which wage and price flexibility serve to make
output determined by the supply side. If we did so, it would not be hard to generate a “textbook
classical” model which, like the Keynesian model with interest-inelastic investment, implies that
a one-real, one-nominal index model should fit well.
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Yie = ci*(ny—n) + bitujy, =1
® 1 t t ! i yooo N
pie=d*n—n)tqn + h*uip, j=1,...M

Here Ci» b;, d;, and h; are each one-sided functions while g is a scalar.
The y;’s are measure! of real economic activity such as real output 0;
employment in particular industries or aggregates of industries. The p;,’s
are.prlces‘of particular commodities or aggregates of commodities Efile
variate n, is nominal aggregate demand, while 7, is the public’s exp'ecta-
tion of n formed as the linear least squares projection of n, on some
information set 8. According to the model, real variables resbond onl
to the unexpected part of n,; namely, n, — n,. A foreseen increase in rzy
causes only the price variables to respond, leaving real quantitie;
unaffectfad. The model thus incorporates the natural rate hypothesis
The variates u;,’s are second-order stationary random processes witl';
properties to be specified shortly.

To complete the model, we must specify the information set 8. We
assume that the public does not have current readings on the va.riate
n, t?ut does have readings on current and past values of a vector x, of
variates correlated with the n process. The vector x, may include n !for
5 greater than some minimal “perception delay” & = 1. Furthermo!r? th
public is assumed to know the cross-covariogram e

Eln, - x,_,} T7=0,£1,%*2,...,

it al§o knows Ehe first and second moments of the (n,x) process. The
public form? n, as the linear least squares projection of n, on the space
spanned by \x,, x,—, ,.- }. We have the decomposition

o0
9 n=X vx_,te=nte
j=0 '

where the v;’s are conformable to x, and where by construction
Fe,x,— i = 0 for all j = 0; that is, the residuals in the least squares
regressions are orthogonal to the regressors.

Notice that because x, does not in general contain all lagged n’s, the
least squares orthogonality condition does not imply that e is ser’ially
uncorrelated. Thus, e itself will in general be serially correlated, so that
the quel predicts aggregate-demand-induced, serially correlate,d move-
ments in the y;’s even where c;(s) = 0 for s % 0, all i.7

) 1Some economists have dismissed earlier versions of Lucas's natural rate-rational expecta-
tions models because they did not provide an endogenous explanation of how aggregate-demand-
induced fluctuations in output could persist (for example, Hall {80]). If n,_, for all s = 1 are
included in x,, the &'s that appear in (9) are serially uncorrelated. By making th; n's conte; oran-
eously unobservable, Lucas achieved the restriction on information sets necessary topmake
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The system (8) is evidently in the form of a two-index model. Further
if we take one index to be n, — A, the real subsystem is by itself a one-
index model. The second index is required only if we add prices to
the system.t : |

Now if we try to complete the spetification of the system (8) so that it
becomes exactly an «observable” or “unobservable” index model, we run into
some difficulties. Since the model dependson economic agents’ not being able
to observe i, an unobservable-index framework is perhaps most natural.
But recall that the restrictions imposed on this class of models include
that the stochastic processes u and z be uncorrelated with each other
(in the present use, Z includes n, and 7). In the spirit of a rational
expectations formulation, we ought to suppose that economic agents
can observe the variables y and p which enter our model and that these
variables form a sub-vector of the vector x on which 7, is based. If thisis
so, it requires strong and arbitrary side restrictions to avoid the conclusion
that 7, and u, should be correlated. To justify the strict form of unobserv-
able-index model which we fit below requires, in the context of Lucas’s
model, that u is a set of measurement errors bedeviling econometricians
but not the public.

To make (8) an observable-index model, we must assume that econ-
ometricians can directly measure n, even though the public cannot. To
justify this assumption we need to suppose either that the historical data
on which model-fitting is based are not contemporaneously available to
the public or that to the extent they are available the public doesnot find
it worthwhile to use them. These assumptions are of course as implausible
a priori as those required to justify the unobservable-index formulation.

Finally, in both specifications the requirement that the u;’s in (8) be
mutually uncorrelated has no foundation in Lucas’s theory.

Despite its explicit recognition of uncertainty in modeling behavior,
Lucas'’s theory actually generates behavioral equations without residuals.
As with most¥ macroeconomic theory then, we must tack on residuals to
obtain empirically usable models and the theory is silent about the nature
of the residuals.

serially correlated forecasting errors coexist with rational agents. Then nominal aggregate
demand can generate serially correlated movements in outputs even though it is only the public's
errors in forecasting nominal aggregate demand that cause outputs to respond.

+There is a possible exception worth noting. {t is possible that n,—n, and i, collapse to
a single index. This could occur not only if forecasts are perfect (7, =n,) but also if. for example,
forecasts of n, are based on lagged values of n, only.

+One class of exceptions that we are aware of occurs where an exact model with no errors
relates certain spot prices with forward prices. If the forward prices are “rational” linear least
squares projections of future prices on a (large) information set 0, but the economist models
those expectations as “rational” linear least squares forecasts based on an information set 0, that
is strictly included in 6. there emerges a set of strong orthogonality restrictions on the error in
the structural equation. Shiller’s work [131] on the term structure is the original example from
this class of setups: Fama's article [25] is another such example. Notice how the argument hinges
critically on having an exact theory to begin with.
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‘A!l.of the economic models that we have studied here take as a
primitive concept the notion of a one-dimensional “nominal aggregate
dem.and" (or “reference cycle phase” in the jargon of the NBER). This
section is intended to indicate how index models seem to be a néltural
statistical setting in which to study such macroeconomic models. However
none of the models studied here derives the existence of a o'ne-dimensionai
drlvu}g process for the business cycle from more primitive assumptions
At th1§ stage of development, the hypothesis thata low-order index modei
may fit the data well is thus in the category of an attractive empirical
working hypothesis, with support in tradition, if not in logic.

Alternative Characterizations of the Models

A vector stochastic process which is covariance-stationary can be given
the form of an unobservable-index model if and only if its spectral density
(a ma}rnx-valued function, the Fourier transform of the autocovariance
function) can be written in the form

(100 S =LL"+V

where Sy, L, and V are all matrix-valued functions of frequency (w) on
(_—n, m), with L, nXk, and V diagonal with positive elements on the
diagonal. That the unobservable-index-mode! form implies the repre-
sentation (10) is not hard to see. Equation (10) follows directly from (3)
from the assumption that u and z are orthogonal (so S, = 0) and frorr;
the fact that the positive definite matrix S; appearing in (3) can be
factored into the form S, = WW'. Thus, L = aWand V = §,. It is
apparent from (10) that the separate components a and W of Lu= aW
are not identified, so that to identify a we must make some arbitrary
normalization of S,. We take §; = I.

Showing that the existence of a representation in the form (10) implies
that y can be given an index-model representation is a somewhat subtler
task and will not be undertaken here. We cannot simply seta = L because
L may not be the Fourier transform of a one-sided function. Yet even if
L is not the Fourier transform of a one-sided function, under certain
regularity conditions a one-ided a exists such that aa’ = LL'. In fact,
there are in general several such a’s, and to identify a uniquely we require
a further identifying restriction: namely, that a*z be the moving-average
representation of the process x = a*zt

Thp foregoing identification or normalization problems create serious
practical difficulties in estimation of a. However, it is a great advantage

of the unobservable-index formulation that, by estimating LL' without

+1f x = a®z, then given any one-sided square summable k X k function b such thatl 612 =1
£ = a*b*b~'*z and b~ '*z has the identity as its spectral density matrix. By requiring thata(o)2 be
l.he vector of one-step-ahead forecast errors in x, we fix a uniquely up to multiplication by a
fixed unitary matrix, and a*z becomes “the” working average representation of x. See Rozanov
{126] for a rigorous discussion of these notions. .
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attempting to identify a, we can test the fit of the model without any
need to impose the complicated identifying normalizations. The equation
(10) is exactly the model of factor analysis, with the difference that the
equation is a decomposition of the spectral density-matrix at each
frequency instead of being adecomposition of asingle covariance matrix.
Since estimates of Sy over frequency bands which are far enough apart
are independent under their asymptotic distributions, we can apply the
factor analysis model independently at each frequency. Except for slight
complications arising from the fact that Sy is complex and conjugate-
symmetric, not real and symmetric, estimation methods and statistical
tests developed in the factor analysis literature carry over directly to the
unobservable-index model.

A covariance-stationary vector stochastic process y' has an observ-
able-index representation, with z = c*y for some ¢, if and only if its
moving average representation can be written in the form

an y=d-+ a*y)*D*e

where a and ' are sach one-sided n Xk matrix-valued functions and D is
a diagonal matrix-valued function. To see that (11) follows from our
original specification (2), recall that we are now considering the case of
no exogenous variables x, so that ¢, in (2) is empty and ¢, and c are the
same thing. We required that (/—a*c,) have a one-sided inverse under
convolution, so that we can write

(12) y=U—a%)" "*u

The vector process u itself has a moving average representation of the
form u = D*e, where e is a vector white noise process and D is adiagonal
matrix-valued function. Substituting this representation into (12) yields

(13 y= (I—a*c)”'*D*e

which is the moving average representation of y.F

Now the fact that (I—a*c) has a one-sided inverse implies
that (/—c*a) also has a one-sided inverse.S Then it is easy to verify
that U—a*c)”' =1 T a*(I—c*a)” '*c. Substituting this expression for

+Strictly speaking we are considering only linearly regular processes (that is, processes
with no deterministic component). See Rozanov [126] for a definition of linear regularity.

+For the purist this follows from the fact that current and pasty and current and past u span
the same Hilbertspace, under the covariance inner product and, hence, must have representations
in terms of the same fundamental white noise.

§One way to see this is to note that the existence of a one-sided inverse for a one-sided,
square-summable, matrix valued function can be shown to be equivalent to the condition that the
determinant of the Fourier transform of the function be bounded away from zero in the lower
half plane. Since [ — a¢ and I — Za have the same determinant, either both or neither has a
one-sided inverse.
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(I—a*c)™" in (13) gives us an expression exactly in the form (11), with
a= a and (I—c*a)”'"*c = 7' namely '

(14) y =+ a*I—c*a)”'*c)*D*e.
From (11) we find the spectral density of y to be given by
(15 S =1DI* + ayD+D'y'a’ +ayDD'y'a’.

Equation (15) asserts that y’s spectral density is the sum of a diagonal
matrix and a matrix of rank 2k. Could it be then that observable-index
models of rank k are equivalent to unobservable-index models of rank
2k? The answer is no. If D'y # a\, where A is scalar, the singular matrix
added to| DI in (15) will generally have negative roots as well as positive
roots. Even under the condition D'§' = @A, it can be shown that the
unobservable-index models which can be generated from (15) are a very
narrow class.¥

An interesting question for further research arises here: Is there an
attracttive index model specification which would generate the general
case o

(16) S=V+M

where V is diagonal with positive elements on the diagonal and Mis an
arbl‘trary (except for the requirement that Sy remain positive definite)
conjugate-symmetric matrix of rank k? Such a general specification
would probably allow use of the convenient factor-analytic-like methods
which apply to the unobservable-index model, would cover both observ-
able-index and unobservable-index models as special cases, and would
probably avoid the all too common result that estimation of the
unobservable-index model shows maximum likelihood at a point where
V is singular.

Causal Orderings in Index Models

In the degenerate case of u = 0 in (1) “causal orderings” in the sense of
Granger [43] can be characterized entirely in terms of the parameters a.
In .this case it is likely that many pairs of variables cannot be ordered.
It is known that “y does not cause x,” in Granger's sense, if and only if
the linear least squares projection of y, on x is a one-sided distributed

) +Where y does not have an autoregressive representation, (11) may hold without the
CXIs.tence of any regression of the form (2). Since such cases can in a sense be approximated
arbitrarily well by cases in which an equation like (2) does exist, it seems natural to include
these cases as observable-index models.

$Again, the reader must be referred elsewhere (Sims [142)) for the detailed arguments.
., —

The gist of this argument is that if D'y’ = G\, A scalar, then y*D is one-sided only under strong
side conditions.

57



lagt If & and a; both have one-sided inverses under convolution, then
yi = ai*a;" 'y, and y; = a*a~ "y Thus, each of the two variables is
exogenous in a (perfectly fitting) one-sided distributed lag regression
with the other variable on the left, and no one-way ordering is possible.
More generally g; and/or a; may not have one-sided inverses, in which
case orderings may exist.

When we add error terms to the model, with the properties natural
to the observable and unobservable cases, the a’s no longer characterize
causal orderings. The coefficients in the projection of y; on some subset
of variables Y included in the vector y are given by Ry~ '*Ryy;, where
Ry is the autocovariance function of Y and Ryy; is the cross-covariance
function of Y with y;, respectively. In the case of an unobservable index
model, under the identifying assumption that z and u are orthogonal,
one requires restrictions on the serial correlation properties of the u’s,
relating them to the a’s, in order to restrict Ry and Ryy enough to
generate a causal ordering. To the extent that the economics of the
model is embodied in its systematic component, economic characteristics
of the model cannot imply a causal ordering.¥

In the case of obsprvable-index models with no exogenous variables,
a certain limited class of causal orderings may be characterized by
restrictions on a and c. It is known that Granger causal orderings on
linearly regular covariance-stationary vector processes are characterized
by block triangularity conditions on the moving average representation.§
In particular, y, does not Granger-cause y, (; is causally prior to y, in
Granger's sense) if and only if in the joint moving average representation

yl All A|2
Y2 A, An

A,, can be chosen to be zero. Looking now at the expression (14) for the
moving average representation of an observable-index model, we see
that if y is partitioned into

+A process y does not cause x in Granger's sense if, given vatues of all other variables in

the system (including x) at times before ¢ knowliedge of values of y at times before ¢ cannot
improve our forecast of x(¢). This notion is discussed in more detail by Sims in this volume.

+Geweke [35] has given a condition for exogeneity of y, in an unobservable-index system
which. like the a, =0 condition on an observable-index system discussed below, implies that all
elements of ¥, are €xogenous in all other equations of the system, including the other equations

in the v,-block. Geweke's condition also implies that the residuals from regressions of y, on y, form
an unobservable-index model of the same order as the original model.

§The "¢, here is the first element of the partition of ¢ conformable to the partition of yinto

3]

not the “c,” which appeared earlier when we discussed models containing exogenous variable x.
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y:
Y2

and a and c are partitioned comformably, there are two simple conditions
on a and c generating block triangularity with A,, = 0:a, = 0 or
¢, = 0.t With a, = 0, the indexes do not affect y,, so that the elements
of y, are mutually orthogonal. Further, any subvector of y, is causally
prior to the remainder of the y vector, so that y, is causally prior as a
block, and each element of y, is separately causally prior. With ¢, =0,
none of the elements of y, enter any of the indexes, and y, can therefore
be regarded as “passive.” The elements of y, are related to each other
only through their common dependence on y,.

Some Further Comparative Properties of the Models

An unobservable-index model retains its form if a subset of elements of
y is used in place of y itself. In fact, invariance of estimated a’s and of fit
of the model to omission of variables from the system is a property which
might be used to test the unobservable-index specification. In an
observable-index model, on the other hand, only purely passive variables
(y;’s with ¢; = 0) can be omitted from the model without invalidating
the index-model specification.

An observable-index model of given order has twice as many inde-
pendently specified lag distributions as an unobservable-index model of
the same order, since the a parameters appear in corresponding positions
in both models while the ¢ parameters appear only in observable-index
models. This might at first appear to conflict with the limiting equivalence
of the two specifications, for the same order k, as perfect fit is approached.
However, the paradox only reflects the fact that in the limit, as a perfect
fit is approached, ¢ is no longer identified, as the same estimate of z can
be constructed from a variety of linear combinations of current and past
y. Where the fit of the model is in fact very tight, one should either use
the unobservable-index specification or impose a fixed form on c a priori.

If we estimate equation (2), passed through the filter D™' as a
constrained autoregression, we obviously have an autoregressive repre-
sentation of y immediately at hand. This is important for preparing
forecasts and in some kinds of model-testing. Estimating the unobservable-
index model does not lead directly to an autoregressive form and is in
this respect less convenient. Further, estimating (2) leads directly to
f:stimates of a and of historical values of z, which is important for
interpreting the model. Estimates of a and of historical z's are harder to
obtain with unobservable-index models. On the other hand, we have
already noted that it is possible with the unobservable-index model to
test the fit of the model without estimating a or z, and this is much

+See Sims [136].
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easier computationally than fitting the observable-index model of
corresponding order. :

Observable-index and unobservable-index models are equivalent only
in a narrow class of special cases. One case of this type is where some
component of the vector u in (12) is idéntically zero, z is scalar, and the
corresponding component of a has a one-sided inverse. Taking this special
component of y to be y,, we have then z = a,”'*y,, making the model
an observable-index model but at the same time a degenerate case of an
unobservable-index model. If u is a full rank process, the two kinds of
model coincide only in a narrow class of cases: for example, if
a;i(s) = Aia (s), all i,5,¢i(s) = Aic, (s), alli,s, and ¢, has a one-sided inverse.

Estimation and Testing for the Unobservable-Index Model

The unobservable-index model can be estimated and tested by using
suitable generalizations of the maximum likelihood method of estimating
the standard factor analysis model, described by Joreskog [67]and Lawley
and Maxwell [79]% Passing to the notation of Lawley and Maxwell, let

Sw) = C,a(w) = L,
S=C=LL'+V=aa+S5,

and remember that there is a 3-tuple (C, L, V) at each we{0,7]. Assuming
that the (nX1) y, process is normally distributed implies that y(w), the
finite-Fourier transform of y, evaluated at w, has a complex normal
probability distribution, asymptotically

1 ’
fy:C) =——-exp (—y(w) C™'y(w)).
=l Cl

Supposing that we have m independent observations on y(w) — say
3 (@),....ym(w) with common covariance matrix C— the likelihood

function is

m
L(Cljfw----ym):Tml—‘m—%p(— % jiw) C'piw)
7 1Cl =1

with log likelihood

+This result, together with some others characterizing the relation of index models to
standard simultaneous-equation models, is proved in Sims {142).

¥ Geweke |34} has shown how the computational techniques for the real factor analysis
model can be adapted for application to the frequency domain factor analysis model. The
computations reported below were made using Geweke's original one-index computer program
amended by Paul A. Anderson to handle k indexes. See Geweke [34] for a more detailed
discussion of the techniques described in the text.
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(A7) InL(C33yse.. Jpm) = —m(nina + InlC| + o SC-)

where

S=

M3

lf’i(w) yiw).

1
m .
R |

Maximization of the log likelihood function 17)

rae e 1s equivalent to minimi-

{=1ilCl + rSC.

V}\lhtlfl C unrestricted,. the maximum likelihood estimate of C is S. Under

L ed reqhuency gbr_nam factor analysis model, estimation is carried out
— !

nder the restriction C = LL" + V, so that the function minimized is

(18) &= Inl LL'+VI + or S(LL + V)~

where the minimization is with respectto L and V.

The null hypothesis that k factors can account for the covariation

of y at a given frequency (or band of fre i
yat _ uencies) can b i
a likelihood ratio test. The relevant statgtic is ) © tested by using

(19 R=20 —1,)

where / is the value attained b ikeli i
. : y the log-likelihood function unrestricted
zqddlz is thq Vfalue attained by the log likelihood function undeictge
-'”;1 ex ristrlc}lon. On the null hypothesis, R is distributed as chi-square
wit (n' k)* — n degrees of freedom. In practice a small sample
corIrechtlorlldsuggested by Bartlett” is used to adjust R
t should be remembered that the chi-s . i
I ¢ quare tests are asymptotical
\‘ljilld Ollly if there occur no boundary solutions in which ove); sc?moe ll()::nlé,
So(l(:::io— OCfor some vlarlable. We do encounter some such boundary
‘ ns. Consequently, the formal test isti i
with some cireumentt ! St statistics should be interpreted

In addition to the formal h i
ypothesis test of the k-ind it i
useful to construct the coherence ex model, itis

@) comle) = [L(w)L'(w) ]i[E Zz(m)c"z'((u))iiE Sy ()i—[Sy(w)]i

[Clw) it Sy (w)ir Sy ()i

which tells the proportion of the variance in Yi at frequency w that can

tSee, for example, Lawley and Maxwell {79, p. 23].
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be accounted for by the indexes. We also report the overall coherence
defined by

Talw)a' (w)if ‘ .

21)  Teok =—
.S, ()i
W

where both a(w) and Sy(w) have been recolored by multiplying by the
inverse Fourier transform of the filters used to whiten the variables. Itis
possible for the likelihood ratio test statistic (19) to call for rejection of a
k-index model and yet for the model to explain a large proportion of the
variance in some or all of the n y;'s. As we have noted, economic theories
leading to index models seem to assert only that a one-index model will
deliver “high” coherence for many interesting aggregate time series.

In practice, the tests of and summary statistics for the k-index model
were calculated as follows. First the n variables in y, were whitened by
computing univariate autoregressions with linear trends included.t The
residuals from these fegressions were taken as the whitened values of y. For
series of length 7, the Fourier transform of the (nX1) whitened vector y,

1 .
yw)=— E e 10t
T =1

was calculated at the frequencies

2mj T—1
o = IS IT2
T 2

where |x| means the greatest integer less than or equal to x. Then across
a band of mw;’s. the cross spectral matrix of the whitened y's was

estimated as

- T
(22) S":—r;l_ Zy(w,-) y ()

jeJ

where J is the set of j's included in the band. For purposes of the formal
likelihood ratio test of the k-index model, (22) was used to estimate
Sy across a number of disjoint frequency bands. For each band, the

+The procedure described here is asymptotically valid only if the order of the estimated
the first step is held fixed while the sample size increases. If the estimated
d, results are biased. Our prewhitening
arbitrarily chosen prewhitening

autoregression in
prewhitening autoregressions are richly parameterize
regressions were short, and re-estimates using standardized.
filters on all series did not alter results.
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maximum likelihood estimates of LL' and V' are obtained and
likelihood ratio test (19) and coherence (20) computed Wher::n e
oyerlappmg frequency bands are studied, the likelihO(;d ratios rtnol?-
gilfferent bands can be summed. Since it is the sum of r asym to? tlle
mdependf:nt x((n—k)> — n) variates, the sum is asymptotigall lcah'y
square with r{(n—k)*—n] degrees of freedom. This summar ty ietic
can be used to test the overall fit of the model. y statistie

By way of deriving a representation of the model in the time domai

;(h? vector autoregressive representation for the y process implied l;natll?e
t-mdfex model can be derived as follows. First, calculate the Foirier

ransform y(w) as above, and then smooth using a moving average a
frequencies to estimate the cross spectral matrix Sy at a nugmbcrosi
f;zq;:@ngy p01nés.l(Thi§ differs from the above procedure used in teiiir(l)g

-index model in that we now do not use nonoverlapping frequ
ll))::rrllcciis. Tll:'e ;symptoﬂc independence of the estimates (ffpS ygat d?ff:rneilyt
nds, which is important for hypothesis testing, is'lost at the gain of
Ez:tg :tblef; tg festxmate the cross spectral matrix at more frequegncies)
fext, at ;:m ;ﬁggzzgz [(:oal(;:[l)ltl:it: the maximum likelihood estimates of

k=10 +v.

The estimate S “ ” usi
y is then “recolored” using the tran ions impli
. . sfer functi
by the filters used to whiten each y;. tions implied
T(? qbtam the matrix of cross covariances of y under, the k-index
restriction, we calculate the inverse Fourier transform of S
y

R (s L % S —iw;s
y & Oy (w))e J
(nXn) JeJ (nxn)

yvhcrc Jindexes the set of frequencies at which the cross spectral matri
is cu'lculutcd. P is the number of elements in J and ﬁ"‘(f) is an d><m§
matrix of estimated covariances at lag s under the k-iﬁ\déx restric”tio”
Using the elements of Ry (s) as estimates of the population covari'lncer;'
the n vector uAuktoregression can be catculated by entering the appro( riaté
elements of R} (s) in the usual formula for the proiect:ion ofar pd
variable Z on a (1)) random vector X . aneen

PIZIX) = X|IEX' X))V EX'Z]
1Xbh bXb (hX 1)

We have not yet used this procedure to estimate vector autoregressions

under the k-index hypothesis. We intend to use such vector autoregressions
to generate forecasts and residuals. The procedure can be thought of as
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a way of estimating a vector autoregression under a restriction on the
dimensionality of the parameter space. Since vector autoregressions of
even low order typically have very many parameters, some such restriction

seems useful in order to proceed with estimation.
1 b

Some Sample Coherences ‘
By way of summarizing some of the raw facts we are seeking to account

for. Table 1T reports coherences® for pairs of variables among the
following 14 quarterly aggregates for the United States over the period
1950:1 — 1970:1V:
— Moody's Baa Index (RBAA). )
— The log of real GNP (GNP).
_ The rate on 91-day Treasury bills (RTB).
— The log of the GNP deflator (P).
— The log of a straight-time wage index in manufacturing (W).
— The log of the money supply as measured by currency plus
demand deposits (M1).
— The log of total federal and state and local government
purchases (G).
— Thefederal andstateand localgovernmentsurplus(GOV SURP).
— The civilian unemployment rate (UN).
— The log of residual construction (RESID CONST).
— The change in the log of the stock of inventories (CHANGE
INVENT).
— Plant and equipment investment (PL + EQPT).
— Total consumption (CONS).
— Corporate profits plus inventory valuation adjustment (CORP

PROF + IVA.S

fter completing the graphs of these coherences,
had used for consumption (two observations),
). We were abie to catch
he unobservable index

+See pp.76-10Y for tables referred toin text. A
we discovered errors in the data bank series we
residential construction (one observation), and wages (one observation
the errors in time to correct the calculations in Tables 5 through 14 fort
models. However, the graphs of the coherences are based on the faulty data.

£ The coherence between series ¢ and j at frequency w is defined as

[ Seiwy1?
Sy{w); Sy ((o),,
and is analogous to an R’ statistic, telling the proportion of the variance in series / that can be
accounted for by series j at the frequency o.

$The data for real GNP, the GNP deflator. government purchases, residential construction,
plant and equipment investment, consumption, corporate profits plus 1VA, money supply, and
government deficit are available in Business Statistics, 1973. All of the dollar series are in
constant (1958) dollars except the last three. Moody's Baa rate and the 91-day Treasury bill rate
are available in monthly issues of the Federal Reserve Bulletin. The unemployment rate is
formed as the ratio of quarterly averages of monthly unemployment and labor force data
available in Employment and Earnings (monthly issues), Tabie A-1. The wage series is “average
hourly earnings excluding overtime of production workers in manufacturing” (not seasonally
adjusted) available in Employment and Earnings in the United States 1909-1975. BLS Bulletin
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Eachlserles. was prewhitened by computing an autoregression with five
ol:vn ags w1tl.1 a linear trend and constant included. The residuals from
}[3 0se r?gresspns were then used to compute the cross spectra. We used

arzens algorithm for estimating the cross spectrum as the Fourier
:)rapsform of the cross covariogram. A Parzen window was used with 24

?lgg, the ma{(lmum.lag‘used in the cross covariograms. For a sample size
o anq this n}axnmal'lag, the use of the Parzen window implies the
gsxrmgltotzxc;l?nfldence intervals around the coherence as summarized
in Table 2. These were calculated using the meth i i
e g od described by Jenkins
f Many of the coherences in Table 1 are low, even at the business cycle
Cr;equ(f:nmes. For example, the coherence of the GNP deflator with real
3NP is low at the business cycle frequencies, never getting much above
-3 at the business cycle frequencies. The coherences with money are
interesting. In partl‘cylar, notice that the coherence of money with some
mgiseure[:; of real aﬁtlvnyhllke unemployment and real GNP are substantially

r than are the coherences of money with th
e o, y e GNP deflator or the
Table la records t.he coherences between pairs of various monthly
series we will be studying. Table 3 contains 95 percent confidence intervals
for the coherences for the monthly data.
| Ofverall, the coherences display some tendency to be highest at the
ofwh requency components, perhaps giving some support to the concept
of the business cycle as a set of correlated low frequency movements in
?1 variety of aggregate variables. On the other hand, the coherences
i lustrat.e agalanranger and Newbold's [43] point that once own serial
correction is eliminated, economic time seri i
, €

correction s are not all that highly

I}::'stimated Unobservable Index Models
or quarterly time series extending over the i
: ; : period 1950:1 — 1970:1V,
we havq fit the unol?servable-mdex model to several subsets of macro-
economic var]ables llstqd on page 64. Of these variables, the GNP deflator
and stralght-tlme'wage index are nominal quantities; the money supply is
ahpotentlgl contributor to variations in nominal aggregate demand: and
the remaining variables are all deflated and :
of real economic activity. are supposed to be medsures
The period consists of 84 quarterly observations of residuals of each
series .from a second order autoregression. The filtered series were filled
out with enough zeroes to bring the series up to 100 observations, so
tha_t th.e pe.rl_odogram ordinates were calculated at the 51 frequencies
w,;=2m/T. j=0.1,....50, where T=100. For the purpose of hypothesis

1312-10, p. 759. The stock of inventories is f i

¥ 7 ' ormed by cumulating nominal ch i

of mvfenton_es (from Bus:fxe:: Statistics. 1973) on the base numbger of th: vcaliggoefs tl:eus‘teo‘c,ih:;
manufacturing and trade inventories at the end of 1949 (from Business Statistics, 1973, page 24).
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testing,” the periodogram vector was averaged over the following four
nonoverlapping bands: w;=2mj/ T, j=1.... 1= 12,....23; j=27,....37:
and j=38.....48. These four bands are centered at periodicities of 16%3
quarters, 5.88 quarters, 3.125 quarters, and 2.33 quarters. respectively.
The first band ranges over periodicities of from 100 t0 9.09 quarters and, thus,
is the band in which the frequencies composing the business cycle lie.
We have omitted from the bands the seasonal periodicities of four and
two quarters and also one frequency on either side of the seasonal. This
accounts for the missing ordinates j=24.25. 26. and j=49. 50.
Unobservable index models were fit to the five sets of variables listed
in Table 4. Summaries of results are contained in Tables 5 through 14.
Set 1 includes six real variables plus the GNP deflator. Since there is only
one nominal variable, one might expect — according to Lucas’ theory —
that a one-index model would fit well. The summary statistics in Tables
5 and 6 show that a one-index model fits fairly well in terms of high
coherences of a single index with unemployment. real GNP, plant and
equipment investment, consumption. and profits. Low coherences with
the one-index are attained by the GNP deflator and residential construction.
However, according o the formal chi-square tests. a one-index model is
soundly rejected with a .024 marginal significance level in favor of more
than one index: the one-index hypothesis is even more soundly rejected
against the two-index hypothesis.¥ However. the formal chi-square tests
point to acceptance of the two-index hypothesis at sizable marginal
significance levels of 732 (two indexes versus greater than two) and 355
(two indexes versus three). Notice that the coherences of anumber of the
real variables with the indexes experience substantial increases with the
introduction of the second index. Thus. the second index cannot be
interpreted as a purely nominal one here. though its introduction does
help explain the GNP deflator somewhat.
Set 2 adds inventory investment to the seven variables in Set 1. A
one-index model delivers fairly high coherences for all variables except

+Over a band of m periodogram ordinates at frequencies w; = 2mj/ T, we form S, according
to (11); that is

s =T
n

S, = ; Tylw)y'(w)

where ylw,) is the (9x1) vector of periodogram ordinates of the whitened v's at ;. Since the
rank of y(w,)¥'(w;) is one. the rank of §, is at most m. Our computations require Sy to be
invertible, which requires taking m > 9. This consideration explains why we have used only
four nonoverlapping bands. since we have only 50 periodogram ordinates.

+The test of one index against two indexes is an ordinary likelihood ratio test. since the
one-index model is a restriction of the two-index model. In particular in the odd-numbered of
Tables 5-13 and the even-numbered of Tabies 16-20. the test statistic for k, indexes vs. k, indexes
can be obtained as the difference between the x* statistics reported in the “overall index™ row in
the k, index and the k, index columns. The degrees of freedom of the resulting statistic are given
by the difference between the degrees of freedom of the two statistics being differenced.

66

1nventory.investment, residential construction, and the GNP deflat

Inlrpductlon of the second and third indexes raises the coherences w'(z;;
the indexes Qf these three variables and the rest of the real variable l

well. Accor'dmg to the chi-square tests, the one-index model is re'ectseils
At conventional confidence levels, the two-index model is rejectedjver ;
more than two indexes at the important business cycle frequencies anfiu'S
rejected overall versus three indexes. On the other hand, the two-ind x
model fits well for most real variables. ’ orindex

The th}rd set adds the money wage index to the variables in Set 2
Her.e again, a one-index attains high coherences for all of the real
variables except residential construction and inventory investment
Introducthn of the second index generally raises across-the-board co:
he'ren_ces Wth the indexes. The most dramatic effect of introducing th
third index is to generate substantial increases in the coherencesgwitﬁ
thf: m_dexes attained by the GNP deflator and the wage index. giving the
third mdf:x some claim to be interpreted as the nominal inde); predlited
by Lycas theory. Modifying the interpretation of the third index as purel
nominal are the rises in coherences of inventory investment, unemplosmenz,
and' p.rofits that follow introduction of the third index. The chi-squar ’
statistics point to rejection of the one- and two-index models. Tatare

The fourth set includes the money supply along with the GNP deflator
and a set of our real variables. Again, a one-index model fits well for a
subset of our real variables. though it delivers low coherence with the
GNP deﬂat(?r. the money supply. and residential construction. Introducing
the second index raises the coherences attained by inventory inveslmenis
plant and equipment, and consumption as well as the GNP deflator anci
the money supply. The main effect of introducing the third index is to
produce substantial increases in the coherences attained by the mone
supply and the pricelevel. Thisis consistent with the existence of a purely
nominal index with which substantial portions of the variance in money
and _the GNP deflator are associated. As with the third set, howevez
this interpretation must be modified somewhat by the tendency of severai
of our real variables — notably inventory investment. residential con-
struction. and corporate profits — to experience moderate increases in
coherence with the introduction of the third index.

S.et 5 excludes inventory investment but includes money. Here, intro-
ducing the second index again is associated with higher coherences for
a number of real variables. And again, introduction of the third index
sees a sharp rise in coherences attained by money and the GNP deflator.
Fhougi} some real variables also experience some moderate increase;
in their c.oherences with the index: namely, residential construction
consumption, and unemployment. ’

It is noteworthy that a one-index model delivers generally high coherences
for unemployment, GNP, plant and equipment investment, consumption.
and corporate profits and that the coherence of residential construction
with the first index is not high. This finding is consistent with casual
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observations that residential construction behaved in a stabilizing or a-
cyclical fashion during much of the post-war period.

We have also estimated index models for sets of monthly data extending
over the period 1950:1 — 1970:12. Thble 15 shows three sets of variables
to be studied here. The data are average weekly hours. layoffs, manhours,
the overall unemployment rate, the industrial production index, retail
sales, net business formation, new orders for durables, an industrial
materials price index, the wholesale price index. and the money supply
(demand deposits plus currency).t Of these variables, two are price
indexes; one — the money supply —is a variate widely alleged to help
determine nominal aggregate demand; retail sales and new orders for
durables are undeflated and thus are nominal measures of activity: the
remaining variables are deflated and so correspond to measures of real
economic activity. The period consists of 252 filtered observations (residuals
from a fifth order autoregression) which we extended to 288 observations
by filling out with zeroes. We calculated the periodogram ordinates at
the 145 frequencies 2/ T,j=0, 1,....144. For the purpose of hypothesis.
testing the periodogram vector y(w) of the whitened vector y, was aver-
aged over the following six nonoverlapping bands: w;=2mj/T.j=1.... 22
j=26.....46: j=50.....70: J=T74,...94: j=98..... 18: j=122..... 142.
These six bands are centered at periodicities of 26.2,8.4.8.3.4.2.67 and
2.18 months, respectively. The first band ranges over frequencies from
288 months to 13.1 months and. thus, is the band composing the business
cycle. We have omitted the seasonal periodicities and also one ordinate
on each side of the seasonal periodicities. This accounts for the missing
ordinates j=23. 24, 25, 47. 48, 49. 71. 72, 73,95, 96.97, 119. 120. 121, 143.
and 144.

The results are summarized in Tables 16-21. Set | includes all the
variables except money. The one-index model bears very low marginal
significance levels. However. it delivers high coherences for all of the real
variables except business formation, moderate coherences for retail sales
and new orders, and low coherences for the price indexes. Adding a
second index raises the marginal significance levels, though they are
still quite low. But adding the second index results in high multiple
coherences for the two prices and retail sales and new orders as well.
The coherences for the other real variables remain about as they were
with one-index. This pattern of coherences, with most real variables
attaining high coherence with a single index, nominal variates attaining
high coherence with the addition of a second index, is roughly consistent
with the existence of neutral fluctuations in price level — non-zeron, — i,
in our version of the Lucas model.

+The money supply data are the most recent revision of M1 (not seasonally adjusted)
available from the Federal Reserve Bulletin. The other series are all published in Business
Conditions Digest (BCD). They are average weekly hours (BCD series #1), layoff rate (BCD #3),
manhours (48), unemployment rate (43), industrial production index (47), retail sales (54), index
of net business formation (12), new orders of durable goods (6), spot price of industrial materials
(23), and wholesale price index (58).
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Set 2 deletes the materials price index fr
results is identical with that of Sert L. om Set 1. The patem of

Set 3 gdds money to the variables in Set 1. The pattern of results is the
same as in Set 1, with money having low coherence with both the first
and second indexes. As before, the second factor seems to be a nominal
one, but one with which money is not highly correlated.

In summary, several features of these results are worth commenting
on. First, there is something of an anomaly between the quarterly and
mpnthly results in that the money supply does not appear to be tied in
with the second nominal index in the monthly data, although the GNP
de_:flator and money supply both experience large increases in coherence
with the introduction of the third index in Sets 4 and 5 of our quarterly
computations.

It seems fair to conclude that one index is not enough in any of our
experiments, though one-index models tend to fit well for an important
subset of real variables. Especially in the monthly data, but also to some
extent in the quarterly data, we have spotted a tendency for one index
to resemble a “neutral price level” index, as predicted by Lucas’ model
and also by some of the other models described earlier. The overall
impression left by our results is that low-order index models do fit well
though one index does not seem adequate. ’

Example of an application of observable-index models.

In thq example we are about to discuss, an observable-index model is fit

to a five-variable system of quarterly data on money (M), a price index

(P), a “demand-pressure” variable (C), the unemployment rate (U)

and wage index (W).t The sample period is 1949:111 — 1971:1V, deliber:

ately chosen to allow a substantial period of out-of-sample projections.
The equation actually estimated is obtained by inverting (13) to yield

(23) D '*(I—a*cY*y =e.

We have taken ¢(s) = 0 for s>2, D~ '(s) = 0 for s>2, and D~ "*a(s)=0
for s > 3. These are just limits on lengths of lag of the type necessary in
any dypamlc modeling. They make (23) a constrained fifth order auto-
regression. To keep the estimation process relatively simple, we take
a(0) Z'O, though as we shall see, the data seem not to support this
convenient assumption. We have used only one-index versions of the

TPrecisc definitions and sources for the data are as follows: M: Currency plus demand
deposits (Source: Business Statistics, 1973). P: Implicit deflator of non-farm business and house-
holq product calculated as a ratio of nominal to “real” values (Source: Tables 1.7 and 1.8 of the
Naupnal Income Accounts). C: Unfilled orders for durable goods/total shipments (Source:
Business Statistics, 1973). U: Unemployment rate (total) (Source: Business Statistics, 1973).
W: Employee compensation in non-farm business product (Source: Business Conditions Digest,
June, 1.972)_. The latter four series were originally chosen as rough approximations to four series
appearing in thg “price” and “wage” equations of the FRB model. Particularly in the case of C.
this approximation was even rougher than intended, as the corresponding variable in the FRB
model is unfilled orders of producers durables/shipments of producer’s durables.
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model. Obviously, ¢ and ¢ can be multiplied and divided by the same
constant without affecting the form of the autoregression. This problem
could be taken care of by normalizing ¢;(0) for some i. But if the order
of lags in a and ¢ were unconstrained, we would need to normalize the
whole function ¢; to obtain identification, because wé could replace
a and ¢ by a*g and g~ '*c for any scalar g with one-sided inverse without
disturbing (T). Since our constraints on lag length are arbitrary, we
normalize some ¢; to be of the form ¢;(0) = 1. ¢i(s) = 0, s 0. This
normalization is not innocuous; there is a non-trivial subclass of index
models which cannot be normalized this way. However, normalizations
which do not. like this one, bring in unwanted restrictions. are difficult
to implement.

Some of the conclusions developed in the model seem solid, in part
because they are non-controversial. For example, as one would have
expected on the basis of the work by Nelson [102]. and Cooper and
Nelson | 16]. but perhaps not on the basis of Pierce's recent work [119].%
there are significant cross-relations among these five series. and they are
of economically plausible form. Also. the restrictions implicit in the one-
dimensional unobservable-index form, which reduce the 125 parameters
of the S-variable genéral fifth order autoregression to 42. are not strongly
in conflict with the data.

On the other hand. the model appears without “coaching” in the form
of a priori constraints to generate conclusions with interesting economic
interpretations. Money is strictly exogenous relative to the rest of the
system. “Phillips curve” relations between wage or prices and unemploy-
ment arise larcely from the common response of these variables to
money. Money affects unemployment fairly promptly. and the effect
then decays over the course of two years. “Surprise” changes in prices
or wages reduce unemployment but only for about a year. Prices and
wages respond more slowly and permanently to money. These conclusions
have o monetarist ring. but the length of the lag in the response of real
variables in the svstem to innovations (“surprise changes™ in money appears
to leave more room for discretionary monetary policy than is implied by
some recent classical rational expectations macroeconomic models.§

+By requiring that there be a one-sided k < n ¢ such that g*a is the identity and that c*y be
serially uncorrelated. or equivalently, that a(o)c*y be the one-step-ahead forecast error (innova-

tion) in a*¢*y. we would fix ¢ and ¢ up to multiplication by a fixed k * k unitary matrix. This
normalization would avoid unwanted restrictions., but appears difficult to implement.

+ Nelson [102] and Cooper and Nelson [16] show that for some series. univariate auto-
regressions provide better out-of-sample projections than multivariate models of the standard
type, but there are some series for which standard multivariate models do provide better
out-of-sample projections. Pierce examines all possible bivariate relations among a group of
financial sector variables. Though there are significant relations among many of Pierce’s series,
he emphasizes that the number of pairings of series within this sector for which no statistically
significant relation 1s detectable is unexpectedly high

§ In particular. models which generate a Phillips curve entirely from “information delays,”
like the Lucas model discussed earlier in this paper, make such long lags in response to
M-innovations unlikely, if M indeed is tightly related to aggregate demand. It should be pointed

70

This latter set of conclusions is discussed in this paper only to show
that rqsults from “non-structural™ models of this type may be open to
some mtere;sting economic interpretations. They are illustrative of a
methofiologlczﬂ point and are not meant to be treated as firmly established
fempmcal results — for:several reasons. Most important of these reasons
is the fact that some obvious experiments on thelist of variables included
in the model have not been carried out. One might suspect. for example
that th‘e strong effects of money on real variables in this system. and
money's exogenfeity as well, might not persist in a system which included
GNP. A comparison (discussed below) of this five-variable system with an
obser_vable-index model which omits money from the system illustrates
how important the variable-list can be in interpreting results from
these systems.

. Another reason for not treating the empirical results as firmly estab-

lished is the fact that some tests for specification error of general form
accept the null hypothesis of correct specification only in the somewhat
u_ncomfortable 5-10 percent range of marginal significance levels. And
fmal!y. this system is estimated using seasonally adjusted data without
sp_ecml measures of the type we ordinarily employ® to take account of
this source of possible bias.

Table | displays the estimated D™ '*a. ¢, and D lag distributions for
(3), together with their asymptotic standard errors.¥

While it is difficult to tell much about the dynamics of the estimated
system from Table 22 directly. one can reach some conclusions by looking
_for'zeroes in the table. Thus. the strongly significant D(s) estimates
indicate that every residual in (23) is serially correlated. The fact that
some a and ¢ coefficients are more than twice their standard errors
indicates that there are statistically significant cross-variable effects in
the data. One can also make some inferences about which variables
would‘ be plausibly treated as exogenous in the system by looking for
statistically insignificant a's. From this table it would appear plausible
that money, unemployment. and demand pressure are all exogenous, in
.the. sense that feedback from other variables into them is statistically
insignificant. However. before reaching a conclusion on this it is important
to see (as we shall below) how much feedback into these variables from
others is implied by the point estimates.
out that models which introduce costs of adjustment may reproduce the policy conclusions of

the Lucus' model without the implication that response to aggregate demand innovations should
be short-lived. Also. money stock might not be a good index of aggregate demand.

+Note that for the unobservable-index models we have been able conveniendy to exclude
seasonal bands from the data. which should minimize seasonal bias.

?‘:ESF"T‘?‘CS were obtained by maximum likelihood. conditional on the observations on y for
the five initial periods 1948:11 — 1949:11. Though this is not strictly a maximum likelihood
procedurf—: (it ignores information about parameters available in the initial observations), it is
asymplotlcally equivalent to maximum likelihood. Natural logarithms were taken of all variables
and linear trends then removed by teast squares for each variable before the observable-index
model was fit.
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Variables for which the corresponding row of ¢ vanishes are “passive”
— they may be affected by other variables in the system, but their own
residuals do not feed back into the determination of other variables. It
appears from the table that a null, hypothesis of passivity might be
accepted for price and demand pressure.

The reasonableness and possible economic mechanisms of the model’s
dynamics can be assessed by examining the model’s response to
“innovations” in each of the five variables. The innovation in an element
of a vector stochastic process is the difference between the element’s
current value and the best forecast of the current value available last
period — the one-step ahead forecast error.” Thus Panel A of Table 23,
for example, displays the response of the estimated system to a unit
upward “surprise” in the money variable. Because the system implies that
residuals are serially correlated, the initial-period unit surprise in money
generates a sustained smooth rise and slow fall in money, rather than a
quick return to zero. One could of course trace out instead the system
response to a unit disturbance in money with an immediate return to
zero or with the disturbance fixed indefinitely at the unit level, but these
would give less reliable pictures of the dynamics. What Table 23 displays
are responses to typical patterns of deviation from trend for each
variable. For money it is clear that a unit deviation from trend followed
by immediate return to the trend value would be atypical. Since such a
pattern of behavior for money is rare or non-existent in the historical
period, the model's tracing of the effects of such a pattern is likely to
be unreliable.*

To pick out one interesting pattern of results, note that Panels B and
E of Table 23 show that surprise increases in price or wage generate a
response in unemployment of the type which might be predicted by a
rational expectations theory of the Phillips curve: an initial drop in
unemployment, followed a year later by a rise in unemployment above
trend of roughly the same order of magnitude. The year-long persistence
of the initial effect is perhaps greater than would be expected on the
basis of classical rational expectations models without costs of adjustment,
but it is certainly weaker than would be suggested by policy discussions
that assunie that the vertical Phillips curve is always five or more years
in the future. Furthermore, Panel D shows that an unemployment inno-
vation has no damping effect on prices or wages (what effect it has is
positive). This could mean thatsurprise changes in unemployment reflect

+The notion of an “innovation,” we should note. is tied to theory based only on first and
second moments or else to an assumption of normality. In general it is not true that the only
information about v, available from observing previous values of y, concerns the mean of y;:
thus. in a general stochastic system one could not do what we do here: discuss the response
to a “shock™ without reference to the initial state of the system.

£ This point is a special case of a generally applicable point: any kind of statistical model

can give unreliable projections for inputs of historically unprecedented form. The point has
been made before by others but bears repetition.
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supply-side influences not related to the standard Phillips curv i
z?r[ lo?:alml;))le, 1fmemploym€;nt innovations might reﬂectzhiftsri: 3?32;1?2;
of th in:uct)sr. orce or adjustment to downward shifts in supply of non-
Going back to Panel A, however, we see a pa iati
much more cpnsistent with the existence of an expﬁogizg?e%;ﬁﬁézzitrl\?n
An upward innovation in money generates a long-sustained dro 16;1-
unemployment accompanied by an even longer-sustained rise in rFi)ce
and wages, leaving the real wage roughly constant. At least ovepr thiS
sgmple period, the model suggests that expansionary monetary poli ,
d}d p_roduce sustained decreases in unemployment togéther with sus?aing()i/
rises in wages and prices. Of course any reasonable modeling of expectation-
formation is likely to suggest, as does the rational expectations formulation
thaF the form of the response to policy depends on the nature of th’
pollcy, S0 that Panel A might not be a reliable tool for policy projectior?
if policies e;nded up systematically different from what they were in th
sample perloq. Nonetheless, the persistent effect of money-innovationes:
in Panel A.defmitely implies either that expectations are not rational, that
there are important sources of lags other than information dela s”r o
thalilthe model estimated here is very mistaken. e
OW to cast the proper amount of doubt on these interpretati i

away, consider Table 24, which reports results analogc?u;:[tac;l(t)lrllgsrolaggg
Table 23. Panel E for a model fit to the same sample period but excluding
the money variable from the system. Comparing Table 24 with Panel I!g
of Table 23, we see that the deviation from trend in the wage itself
generated by a wage innovation is more rapidly damped in the five-variable
system, that the effect of the wage on C, the demand pressure variable
is mgch larger in the four-variable system, and that the “expectationai
Phillips curve™ behavior shown in Panel E is not present in Table 24.

- In fact, in results not displayed here. one can see that no innovation in

Fhe four variable model generates the kind of persistent negative covariation
in wage and unemployment which appears in Panel A of Table 23.
From the point of view of the larger model, it is easy to explain the
large differences between the two sets of results — the “innovations” in
the smaller model are not subject to the same economic interpretation
as tho's.e.m the larger model because a substantial part of the “forecast
errors” in the smaller model are predictable from knowledge of past
values of the money variable. (The sum of squared residuals for wage
for example, is 30 percent smaller for the five-variable system.) This i;
only an illustration of the theoretical point made earlier: that innovations
and the system’s typical responses to them will not remain fixed under
f:hanges in the list of variables unless all non-passive variables remain
in the system. Clearly in this case money is non-passive. However, it
seems quite likely that in a system which included some direct measm]re

o -ernd lbet us repeat hefe that if lags arise from costs of adjustment, rational expectations
els can be consistent with slow response of real variables to policy innovations.
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of aggregate current activity, such as GNP, that measure would not be
passive, and the results of Table 23 could undergo substantial changes.

To assess the amount of cross-dependence in the system, it is useful
to ask what proportion of the variance of k-step-ahead forecast errors
in one variable is accounted for by innovations in each of the other
variables, allowing k to take on different values. As k approaches infinity,
the variance of the k-step-ahead forecast error approaches the variance
of the series itself. Table 25 reports these computations.” Over aone-year
horizon. each variable is explained primarily by its own innovation, though
the wage has substantial contributions from prices and unemployment.
Over a four-year horizon, the bulk of the explanation for price and wage
movements has shifted to other variablies, the leading role being played
by money. though unemployment contributes non-negligible explanation
as well. The two real variables, unemployment and demand pressure, are
explained primarily by their own innovations over all horizons, with some
non-negligible explanatory power at time horizons greater than a year
attributed to other variables. Money at all time horizons is explained
almost entirely (more than 97 percent of variance) by its own innovations.
which is to say thatit is sharply causally prior in Granger's sense.

In light of Table 25, it might be interesting to test the hypotheses that
money is exogenous. that unemployment is exogenous, and that wages
and prices are passive. Only the first of these has been tested. The test
is executed by estimating the model subject to the constraint that the
row of a corresponding to money is zero, then using the computed
constrained likelihood maximum to generate a likelihood ratio test.
The test statistic, asymptotically distributed as x’(3).is .63, which corre-
sponds to a marginal significance level greater than .50.

It is also interesting to test the very strong constraint on the system
that all elements of a and ¢ be zero. In this form, the system becomes
a set of univariate third-order autoregressions, so that no cross-variable
effects are allowed. For this null hypothesis, the likelihood ratio statistic
is 44.34 and is asymptotically distributed as x*(27). The hypothesis is
therefore rejected at a marginal significance level between .0l and .02.

We might ask whether an unconstrained autoregression of the same
order as our equation (23) (fifth-order in this case) fits substantially
better than the index model. The likelihood ratio test statistic for this
hypothesis is 89.7 with 73 degrees of freedom. This allows rejection of
the index-model constraint at a marginal significance level of about .09.
This latter result probably should leave us willing to use the index-model
but should make us a little uncomfortable about doing so.t

The form of index-model we have fit requires that a(0) be zero. that s,

+The coefficients in Table 23 are the coefficients of the moving average representation
of y. The numbersin Table 25 are obtained by taking sums of squares of the coefficients in Table 23

over the relevant horizon. weighting each panel by the variance of the corresponding innovations.

$ Subsequent experiments with systems including GNP show that in such systems, one-
observable-index models are sharply rejected.
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that z have no contemporaneous effects on y, so that current innovations
are uncorrelated. The general form of index model makes no such
restriction and is only slightly more complicated to fit. Table 28 shows the
matrix of cross-correlations among the residuals from the fitted model.
Treating 90 times the sum of squares of off-diagonal elements in that
matrix as x*(10) yields a test statistic of 16.9, whose marginal significance
level is about 8 percent. However, the row of correlations corresponding
to the wage is clearly large, and the test statistic for that row alone would
be 14.17, which as a x*(4) statistic has a marginal significance level of less
than .0l. Since the non-zero covariances are concentrated in a single
row, there is some prospect that they have a form which could be accommo-
dated by a one-dimensional observable-index model with (0} == 0, but
it seems quite unlikely that the model actually fit to the data is correct in
assuming no contemporaneous correlations.

Three types of test for the stability of the model over time were
carried out. In one the sample was split between 1959 and 1960 and the
model fit separately to each half-sample. The likelihood-ratio test for the
null hypothesis that both halves of the sample were the same was 28.30.
which is asymptotically x*(42)." In another test the model was used to
predict the period immediately following the same period (that is. beginning
in 1972:1). It appears that 1972:1 was an unusual quarter, at least from this
model's perspective: the residual for the money supply was more than
six standard deviations, and that for the wage was 3.8 standard deviations.
Since. as we have seen. it appears that the model ought to allow positive
contemporaneous correlation in wage and money residuals. these two
bad residuals probably reflect the same phenomenon. a dramatic shift
in the pattern of behavior of money, which the model projects as a pure
autoregression. Whether or not the structure of the model conditional on
money shifted remains an open question.

[t is also of some interest to look at projections made far out of the
sample period. to see how badly the model behaves in the recent period
of recession. As can be seen from Table 26, the model predicts, using
data through 1975:1. an unemployment rate peaking at 9.2 percent in the
first quarter of 1976 and price deflation beginning in the first quarter o’
1976. Part of the reason for this forecast appears to be that money i
predicted to be expanded at only a 2 percent annual rate during 1975
Inserting actual data for money in the second quarter of 1975 (but no
for other variables) results in the projections in Table 27. Now the un
employment rate peaks at 9.1 percent in the 1975:11and l1. and the pricec
index remains roughly constant through 1977:1. Whether one regard
these projections as bad enough to cast doubt on the usefulness of model
of this type or instead as surprisingly reasonable for a model appliec
without refitting to a period so far outside of its sample period isa matte
of judgment. Probably that judgment ought to be reserved. in any casc

THou{ever, residual variances appear to be larger in the earlier part of the sample. whic
probably biases the sample-split test in favor of the null hypothesis.
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until similar exercises can be carried out with
some of the glaring omissions from this model’s list of variables.

a variable list correcting
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Graphs of Coherence of Economic Variables
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Table 1 (continued)
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Graphs of Coherence Of Economic Variables
(Monthly Data)
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Table 1a (continued)
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Ninety-
89 Observations and

Coherence

050
.100
.150
.200
250
.300
350
400
450
.500
.550
600
.650
700
750
.800
.850
.900
950

+Calculated for a Parzen window using the method described by J

Table 2

Lower Limit

000
000
.000
000
.000
.007
023
046
076
115

.16t

216
279
351
432
524
625
738
863

82

Upper Limit

408
482
.539
.586
.628
.665
.699
731
760
788
813
838
861
8384
905
925
945
964
982

Five Percent Confidence Intervals with
24‘Frequency Points’

Width

408
482
.539
.586
.627
.658
677
.685
.684
673
.652
.622
.582
533
473
.402
320
226
420

enkins and Watts [66].

Coherence

050
.100
150
.200
.250
.300
350
.400
.450
.500
.550
.600
.650
700
750
.800
.850
.900
950

Table 3

Ninety-Five Percent Confidence Intervals with
267 Observations and 24 Frequency Points'

Lower Limit

.000
001
011
.030
057
.090
128
A71
219
270
326
386
449
516
588
662
741
824
910

Upper Limit

237
313
376
431
481
527
.570
612
.651

.688
724
158
7792
824
.855
.886
916
944
973

t+Calculated for a Parzen window using the method described by Jenkins and Wauts [66].

Table 4

Quarterly Sets

CORP
RESID CHANGE PROF -
Set UN' GNP P CONST PL - EQPT INVENT CONS IVA W Ml
1 X X X X X X X
2 X X X X X X X X
3 X X X X X X X X X
4 X X X X X X X X X
5 X X X X X X X X
+Abbreviations defined p. 69.
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Marginal
Level
483
155
.678
.899

Significance

Three-Index Test
Statistic
x99
8.514
5.851
4.691
6.611
x2(36) = 25.67

Marginal
Significance
Level
137
173
774
.789
732
355

Two-Index Test
Statistic
x2(18)
24.587
13.304
13.284
13.043
x%(72) = 64.22
Two Index
Versus Three
x2(36) = 38.55

Table 5: Set 1

Marginal
Level
.006
.264
.207
.494
.024
.000

Significance

Statistic
x%(29)
51.349
33.355
34.938
28.455
X2(116) = 148.10
One Index
Versus Two

One-Index Test
x%(44) = 83.88

1-11
12-23
27-37
38-48

Overall Test

Bands {j)
(k index vs.
greater than

0]
NN

Table 6: Set |

PROP OF VAR EXPLAINED BY 1 COMMON FACTOR

VAR. NO. |
FREQUENCY UNEMP RT

.1200PI1 .78370
.3500P1 .48613
.6400PI1 35152
.8600P1 .11436
OVERALL .77624
VAR. NO. 6
FREQUENCY LCONS
.1200P!1 76149
.3500P1 62166
.6400P1 -96406E—01
.8600PI1 .16994
OVERALL .72462

PROP OF VAR EXPLAINED BY 2 COMMON FACTORS

VAR. NO. 1
FREQUENCY UNEMP RT

.1200P1 -98485
.3500P1 71306
.6400PI .78268
.8600P!1 10115
OVERALL 97780
VAR. NO. 6
FREQUENCY LCONS
.1200PI 93970
.3500P1 .65630
.6400P!1 15075
.8600P1 46621

OVERALL .89795

PROP OF VAR EXPLAINED BY 3 COMMON FACTORS

VAR. NO. 1
FREQUENCY UNEMP RT

-1200P1 93353
.3500P1 .89822
.6400P[ 78151
.8600PI 32139

OVERALL 93189

VAR. NO. 6
FREQUENCY LCONS

.1200P1 1.0000
.3500P1 .69967
.6400P1 47878
.8600P!1 .36340
OVERALL 96248

VAR.NO.2  VAR.NO.3 VAR.NO.4  VAR.NO.5
LREALGNP  LGNPDEFL  LRES CONST LPL + EQPT
91934 29332 32758 78776
.85538 .36786E—01 11309 .63614
78301 32358 12967E-02 27107
21531 .26897 .66787E—~01 1.0000
91386 .28471 31648 77093
VAR. NO. 7
LCORP + IVA
.88873
.95026
69800
.20270
88524
VAR.NO.2  VAR.NO.3 VAR.NO.4  VAR.NO.5
LREALGNP  LGNPDEFL  LRESCONST LPL + EQPT
93673 47619 .53780 93073
99295 35624 12585 70144
94215 .84598 A43643E—01 .62936
1.0000 1.0000 22811 46020
93887 47808 51779 91057
VAR. NO. 7
LCORP + [VA
.84712
1.0000
.80157
43703
85239
VAR.NO.2  VAR.NO.3 VAR.NO.4  VAR.NO.S
LREALGNP  LGNPDEFL  LRES CONST LPL + EQPT
1.0000 .60865 65944 89664
94376 1.0000 22058 78552
.88912 1.0000 .85556E—01 1.0000
93518 83527 1.0000 74006
99715 62672 64112 .89227
VAR. NO. 7
LCORP + IVA
1.0000
1.0000
.84016
43643
.99424
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Marginal
Significance
Level
.076
994
.882
862
.905

Three-Index Test
Statistic
x2(17)
25.939

5.936
10.491
10.896

x%(68) = 53.26

Marginal
Significance
Level
012
976
.141
.833
.295

0165

e

119.55

Statistic
x2(28)
47.436
15.234
36.068
20.809
x3(112) =

Two Index
Versus Three

Two-Index Test
x2(44) = 66.29

Table 7: Set 2

704
026
.203
.001

.000

Marginal
Level
.000

Significance

226.54

One-Index Test
Statistic
x%(41)
82.120
35.727
60.420
48.270

x%(164)
One Index
Versus Two
x2(52) = 106.99

Bands (j)
1-11
12-23
27-37
38-48
Overall Test
(k index vs.

greater than
k)

x©
=)

Table 8: Set 2

PROP OF VAR EXPLAINED BY 1 COMMON FACTOR

VAR. NO. | VAR. NO. 2 VAR. NO. 3 VAR.NO.4  VAR.NO.§
FREQUENCY ~ UNEMPRT  LREALGNP  LGNPDEFL  LRES CONST DLINVENT
.1200P1 76601 91670 29764 33776 42573
.3500PI1 48986 .83661 24663E—01 11179 .60096
.6400P1 .43802 .89141 32919 .48048E—02 40113
.8600P1 .24035E—01  .13436 .50143 7T0938E—01 1.0000
OVERALL .75875 91115 .28961 32614 47138
VAR. NO. 6 VAR. NO. 7 VAR. NO. 8
FREQUENCY  LPL + EQPT LCONS LCORP + 1va
.[200P1 79820 .76008 .89265
.3500P1 .62085 .62343 96922
.6400P1 .19302 SI726E-01 70238
.8600P1 92081E—01  .69577 S8472E-01
OVERALL .77325 74097 .88900
PROP OF VAR EXPLAINED BY 2 COMMON FACTORS
VAR. NO. | VAR. NO. 2 VAR. NO. 3 VAR.NO.4  VAR.NO.5
FREQUENCY ~ UNEMPRT  LREALGNP  LGNPDEFL  LRES CONST DLINVENT
.1200P1 90148 .98622 .53336 41444 70812
.3500P1 72646 98258 36105 12690 .62017
.6400P!1 48313 .58630 .85875 .39676E—01 1.0000
.8600P1 16151 97643 .58492 18413 1.0000
OVERALL .89620 98341 .53070 .40031 .74099
VAR. NO. 6 VAR. NO. 7 VAR. NO. 8
FREQUENCY  LPL +~ EQPT LCONS LCORP + VA
.1200P1 86414 1.0000 .84484
.3500P1 71062 .66002 1.0000
.6400P! 94446 .34664 .45260
.8600P1 42993 .88588 .34648
OVERALL 85365 96974 .84551
PROP OF VAR EXPLAINED BY 3 COMMON FACTORS
VAR. NO. 1 VAR. NO. 2 VAR. NO. 3 VAR.NO.4  VAR.NO.5
FREQUENCY  UNEMPRT  LREALGNP  LGNPDEFL  LRESCONST DLINVENT
.1200P1 94304 1.0000 71075 .63642 92059
.3500P1 94512 93671 1.0000 22718 .68709
.6400P1 77025 87281 1.0000 -89276E—-01 1.0000
.8600P1 .24052 87975 1.0000 21154 1.0000
OVERALL 94403 99662 72483 .61634 92146
VAR. NO. 6 VAR. NO. 7 VAR. NO. 8
FREQUENCY  LPL - EQPT LCONS LCORP + VA
.1200P1 92071 .94336 .93438
.3500P!1 76661 70179 1.0000
.6400P1 87011 67373 .87538
.8600P1 53951 92296 .62440
OVERALL .90986 92678 93526
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Marginal .
Significance
Level
151
994
.635
937

Three-Index Test
Statistic
x227)
34.547
12.028
23.920
16.761
x%(108) = 87.25

Marginal
Significance

- Level
.004
952
137
.833
201

.

Two-Index Test
Statistic
x2(40)
67.249
26.350
49.817
31.374

Table 9: Set 3

Marginal
Significance
Level
000
.540
016
.242
.000

One-Index Test
Statistic
x2(55)
105.748
53.307
79.989
61.948
X%(220) = 300.99

1-11
12-23
27-37
38-48

Bands ()

)

= 174.79

x2(160)

Overall Test
(k index vs.

©
[e.¢]

.0015

Two Index
Versus Three

000 Xx4(52) = 87.54

One Index
Versus Two

X2(60) = 126.2

greater than

Table 10: Set 3

PROP OF VAR EXPLAINED BY | COMMON FACTOR

VAR. NO. | VAR. NO. 2 VAR. NO. 3 VAR. NO. 4 VAR.NO. 5
FREQUENCY UNEMPRT  LREALGNP  LGNPDEFL LSTWAGE ~ LRES CONST
J1200P1 77509 91810 31796 51271 32743
3500PT 48011 82021 J18614E—~01  .15817 10979
.6400P1 39204 95734 .32833 36641 -69882E~02
-8600PI  .24042E~01 .13453 .50131 -32692E-01  .70899E~(|
OVERALL .76731 91238 .30874 49270 31624
VAR. NO. 6 VAR. NO. 7 VAR. NO. 8 VAR, NO. 9
FREQUENCY DLINVENT  LPL + EQPT LCONS LCORP +1vA
J1200PT 42085 79826 76624 .88046
3500PI  .59669 -60896 62216 98639
-6400PI 39099 17932 S1302E-01 65501
8600PI  1.0000 -92006E—-01  .69573 -58472E-01
OVERALL .46658 77244 74642 .87813
PROP OF VAR EXPLAINED BY 2 COMMON FACTORS
VAR. NO. | VAR. NO. 2 VAR. NO. 3 VAR. NO. 4 VAR.NO. 5
FREQUENCY UNEMPRT  LREALGNP  LGNPDEFL LSTWAGE ~ LRES CONST
-1200P1  .90258 .99045 -53649 -59266 41248
3500P1 56502 92241 82019 72116 25914
-6400P1 92375 13190 1.0000 70701 -10859
-8600P1 17274 .90935 .58970 29112 16818
OVERALL .89471 98616 .55068 .59857 40405
VAR. NO. 6 VAR. NO. 7 VAR. NO. 8 VAR. NO. 9
FREQUENCY DLINVENT  LPL + EQPT LCONS LCORP +]VA
-1200PI 69996 -86090 1.0000 83757
3500PI 66302 .64583 69701 .96479
-6400P1 43803 .63052 17149 .59106
8600PT  1.0000 47318 89077 40514
OVERALL .70537 .84334 96927 .83886
PROP OF VAR EXPLAINED BY 3 COMMON FACTORS
VAR. NO. | VAR. NO. 2 VAR. NO. 3 VAR-NO.4  VAR.NO.3
FREQUENCY UNEMPRT  LREALGNP  LGNPDEFL LSTWAGE ~ LRES CONST
J1200P1 97059 98539 -84627 94573 51575
3500P1 93166 93932 1.0000 .65799 .22795
.6400P1 84175 .88231 1.0000 .62999 -10795
8600PI 16102 1.0000 74163 .52856 19687
OVERALL .96873 .98321 .85240 .92703 50110
VAR. NO. 6 VAR. NO. 7 VAR. NO. 8 VAR. NO. 9
FREQUENCY DLINVENT  LPL + EQPT LCONS LCORP + 1vA
J1200P1  .94892 -89270 -93608 .93845
.3500P1 68584 716947 70169 1.0000
-6400P1  1.0000 88109 .60435 79084
-8600P1  1.0000 .57359 -88381 1.0000
OVERALL .94514 .88452 91781
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Marginal
Level
.04
.86
.93
.36
531

Significance

Three-Index Test
Statistic
X227
40.90
19.30
17.00
29.02
x2(108) = 106.21

Marginal
Significance
Level
.003
.684
422
.077

0078

i~

Statistic
x2(40)
68.62
35.26
41.11
41.09

x%(160) = 186.08
Two Index
Versus Three

Two-Index Test
x2(52) = 79.87

Table 11: Set 4

Marginal
Significance
Level
.000
370
077
.069
.000
.000

307.18

121.1

x2(55)
57.86

70.57
71.32

Statistic
107.44
x2(220)
One Index
Versus Two

One-Index Test
x%(60)

1-11
12-23
27-37
38-48

greater than

Overall Test
(k index vs.
k)

Bands (j)

D
(=]

Table 12: Set 4

PROP OF VAR EXPLAINED BY | COMMON FACTOR

VAR. NO. | VAR. NO. 2 VAR. NO. 3 VAR. NO. 4 VAR.NO. 5
FREQUENCY UNEMPRT LREALGNP LGNPDEFL

LMI LRES CONST
.1200P1 85058 .98066 .22702 .34549 .23737
3500PY 49263 84227 27239E~01  .57904E—01 11352
.6400PI 46517 85877 32817 S3318IE—01  41388E—02
-8600P1  .24038E—01 .13452 50132 -21303E-01  .70898E—0|
OVERALL .84138 97229 .22249 33470 -23074
VAR. NO. 6 VAR.NO.7 VAR. NO. 8 VAR.NO. 9
FREQUENCY DLINVENT  LPL + EQPT LCONS LCORP + IVA
-1200P1 41389 69981 70199 .84779
J500P1  .59968 62410 62456 .96326
-6400P1 39382 .20973 53695E—01 71988
-8600P1 1.0000 92012E-01  .69574 .58467E—01
OVERALL .46103 .68283 .68868 84738
PROP OF VAR EXPLAINED BY 2 COMMON FACTORS
VAR. NO. 1 VAR. NO. 2 VAR. NO. 3 VAR. NO. 4 VAR, NO. 5
FREQUENCY UNEMPRT  LREALGNP  LGNPDEFL LMI LRES CONST
.1200P1 88981 .99999 .56145 46378 41987
J500P1 73488 97531 .36832 10377 12980
6400P1 43944 .58195 .83439 41961 .37539E~-01
-8600P1  .15923 1.0000 .58271 11885 19138
OVERALL .88491 .99638 55745 45136 -40562
VAR. NO. 6 VAR. NO. 7 VAR. NO. 8 VAR. NO. 9
FREQUENCY DLINVENT  LPL + EQPT LCONS LCORP + VA
-1200P1 70553 87438 97352 83620
3500P1 62288 71709 65945 1.0000
-6400P1  1.0000 1.0000 30773 .44017
-8600P1 1.0000 41199 88181 -33356
OVERALL .73893 .86646 94515 83729
PROP OF VAR EXPLAINED BY 3 COMMON FACTORS
VAR. NO. | VAR. NO. 2 VAR. NO. 3 VAR. NO. 4 VAR.NO. 5
FREQUENCY UNEMPRT  LREALGNP  LGNPDEFL LMI LRES CONST
-1200P1  .93690 97131 1.0000 .86550 .54657
J3500PT .62183 96391 62914 1.0000 -48613
6400P1 76218 85858 1.0000 -83803 91575E~-01
8600P1  .19543 71340 -99999 .21482 19182
OVERALL 92912 .96942 -98733 86757 -54101
VAR. NO. 6 VAR. NO. 7 VAR. NO. 8 VAR. NO. 9
FREQUENCY DLINVENT  LPL + EQPT LCONS LCORP +1vaA
-1200P1 87060 91411 92537 .92358
3500P1  .69266 71995 -93086 -94505
-6400P1 1.0000 87121 67674 89143
-8600P1  .99999 .60531 -99999 .55203
OVERALL .87982 90125 92466 92186
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Table 13: Set 5

Two-Index Test Three-Index Test

One-Index Test

Marginal Ma_rginal
Statistic Significance Statistic Significance

Marginal

Significance

Statistic

Level

x*(17)

19.836
18.754
10.097
14.594

X268) = 63.28

_— Level

x(28)
40.203
33.932

Level

x2(41)
72.53
55.86
45.04
41.90

Xx%(164) = 215.32

Bands (j)

.283
343
900

.063
.203
7188
789
335

.002

1-11
12-23
27-37
38-48

Overall Test

.061

21.845
21.823

XA(112) = 117.80

307
.432
.004

.624
.639

O
[\

(k index vs.

greater than

k)

Two Index
Versus Three

One Index
Versus Two

133

X2(44) = 54.52

.000

X3(52) = 97.52

Table 14: Set 5

PROP OF VAR EXPLAINED BY 1| COMMON FACTOR

VAR. NO. |

VAR. NO. 2 VAR. NO. 3
FREQUENCY UNEMP RT LREALGNP LGNPDEFL
-1200P1 85010 .97048 .23594
.3500P1 .48956 .86637 -43978E—01
.6400PI1 .68190 51511 .46185
-.8600PI .11436 .21530 .26895
OVERALL -84136 .96135 .23161
VAR.NO.6 VAR.NO.?7 VAR. NO. §
FREQUENCY LPL + EQPT LCONS LCORP + |va
.1200P1 71162 71438 .85393
.3500P1 .64120 .62013 93742
.6400PI .53642 .14979 47507
.8600PI 1.0000 -16995 .20269
OVERALL 70614 -68285 .84968

VAR. NO. 4
M1
33794
71444E-01
17092
-29069E—~01
.32828

PROP OF VAR EXPLAINED BY 2 COMMON FACTORS

VAR. NO. 1

VAR. NO. 4
LMI
.60333
-97337E~-01
28116
-18821
.58521

VAR. NO. 4
LMI
1.0000
1.0000
-40040
39833

99749

VAR.NO.2  VAR.NO.3
FREQUENCY UNEMPRT LREALGNP  LGNPDEFL
-1200P1 -89962 98351 47841
-3500P1 72415 .98382 .36395
.6400P1 73178 1.0000 .80006
.8600PI 10115 1.0000 1.0000
OVERALL .89478 -98369 -48004
VAR.NO.6  VAR.NO.7  VAR.NO.§
FREQUENCY LPL + EQPT  LCONS  LCORP + iva
-1200P1 -97433 87922 .86467
-3500P1 .70994 65778 1.0000
-6400P1 72188 15309 74197
.8600P1 .46028 46612 .43710
OVERALL 95315 -84355 .86792
PROP OF VAR EXPLAINED BY 3 COMMON FACTORS
VAR.NO.1 VAR.NO.2  VAR.NO.3
FREQUENCY UNEMPRT LREALGNP  LGNPDEFL
-1200P1 1.0000 -92989 -78964
-3500P1 57760 98153 -59028
-6400P!1 78147 -89676 1.0000
.8600P1 1.0000 1.0000 1.0000
OVERALL -9%053 93164 78580
VAR.NO.6  VAR.NO.7  VAR.NO.8§
FREQUENCY LPL + EQPT LCONS  LCORP + va
-1200PI1 .95340 -96486 83952
-3500P1 71879 1.0000 91379
-6400PI 1.0000 47824 .83022
.8600P1 .52151 -49946 44240
OVERALL 94017 -94364 .84088

93

VAR.NO. 5
LRES CONST
.25060
11526
21383E—03
-66790E—-01

.24337

VAR. NO. 5
LRES CONST
.52520
12753
23332E~-01
22814

.50581

VAR. NO. 5
LRES CONST
70192
.49644
-84878E—01
.36537

.68994




Table 15: Monthly Sets

New Ord. Ind. Mat.
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Table 16: Set 1
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Marginal
Significance
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o
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S
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e
gm
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Marginal
Significance

One-Index Test
Statistic

9

Level

x2(39)
51.01
35.80

xA71) Level x54) Level
83.85
42.69

155.47

Bands ()

4

.094
.617
316

.604

006

.000
017
.003

119

1-22
26-46
50-10

273
.151
282
357

59.82

98.63
107.37

64.71

36.08
38.67

59.50
57.22

45.16

85.24
79.17

7494

485
.853

237
657

98-118
122-142

29.89

799

65.67

Qverall

x2(234) = 234.13 485

x2(324) = 370.26 .039

.000

= 591.55

X*426)

Test

144,

2mj/T, T = 288, j = 0, L, ..y

ngular frequencies w; =

Periodogram ordinates were calculated at the a

tted from bands

| frequencies and adjacent frequencies were omil

Periodicity of j** frequency = T/j months. Seasona

used to compile test statistics.

Table 17: Set 1

PROP OF VAR EXPLAINED BY | COMMON FACTOR

VAR. NO. | VAR. NO. 2
AVGWKLY LAYOFF VAR. NO. 3 VAR. NO. 4 VAR. NO. 5
FREQUENCY HRS RATE MANHOURS UNEMPL RT  INDPRODIDX
0799P1 .84084 92115 .87804 .79208 95075
.2500P1 .54534 67273 .80993 37793 87106
.4167P1 .27818 42267 .49796 .29283 71040
.5833P1 35461 36574 62279 JB091E-01 62251
.7500P1 .25605 .28431 .26279 86679E—-01  .50029
9167P1 11727 19518 70478 59106 49724
OVERALL .76038 .83151 86415 76713 94093
VAR. NO. 6 VAR. NO.7 VAR. NO. § VAR.NO. Y VAR. NO. 10
FREQUENCY RETAILSALS NETBUSFORM NEWORD DUR IND MAT PR WHOL PRICE
07991 .56149 143804 73588 .20288 20778
.2500P1 J13298E-01  .16990 15677 .42414E—-01  .93317E-01
.4167P1 17470 J13971E-01  .50803E—01 .48740E—01 .12402
.5833P! 17354 .20400 13774 .54436E—-01  .12262E—01
.7500P1 90212E-02  .23898 88067E—01  .10440E-01 20011
9167P1 19984 .25637E—01  .25597 .B4551E-02 .78097E-01
OVERALL .41007 .42085 62755 19754 .20480
PROP OF VAR EXPLAINED BY 2 COMMON FACTORS
VAR. NO. | VAR. NO. 2
AVGWKLY LAYOFF VAR.NO. 3} VAR. NO. 4 VAR.NO._ 3
FREQUENCY HRS RATE MANHOURS UNEMPURT  INDPRODIDX
.0799P] 84778 93287 90928 .86701 95451
.2500P1 .56387 70221 .79531 .39395 91993
.4167P1 .57626 .41694 .56098 36478 .64525
.5833PI 39773 45217 .64597 87558E—-01 61257
.7500PI1 74976 .21916 48542 T7607E-01 38445
9167PI .18657 19844 72515 .59566 .36530
OVERALL .79180 84435 89529 .83931 94583 .
VAR.NO. 6 VAR.NO. 7 VAR. NO. 8 VAR. NO.9 VAR. NO. 10
FREQUENCY RETAILSALS NETBUSFORM NEWORD DUR INDMATPR WHOL PRICE
0799P1 68993 47217 90096 70500 71223
.2500P1 1.0000 .20347 45111 .26889 .23549
4167P1 45196 79283E- 01 47126 .22688 80563
.5833P1 37838 20470 17796 .22693 1.0000
T500P1 AMSME-OL 16080 1.0000 14985 13073
9167P1 .23527 31954 37487 .63944 19831
OVERALL 68117 45621 83246 69037 70532
PROP OF VAR EXPLAINED BY 3 COMMON FACTORS
VAR. NO. | VAR. NO. 2
AVGWKLY LAYOFF VAR. NO. 3 VAR. NO. 4 VAR.NO. 5
FREQUENCY HRS RATE MANHOURS UNEMPLRT  INDPRODIDX
.0799P1 .86120 92984 93413 1.0000 1.0000
.2500P1 1.0000 74209 78968 43510 1.0000
4167P1 1.0000 63172 .56055 53894 61128
.5833P1 43223 38252 .70497 .26008 65369
.7500P! 1.0000 40153 .44502 1.0000 53264
9167P1 57799 .26623 90323 73873 54401
OVERALL .85657 86424 .92046 97761 99218
VAR NO. 6 VAR. NO. 7 VAR. NO. ¥ VAR. NO. Y VAR. NO. 10
FREQUENCY RETAILSALS NETBUSFORM NEWORD DUR IND MAT PR WHOL PRICE
0799P1 13751 .55744 91797 66440 66336
.2500P1 1.0000 .26053 .48750 30011 .30394
.4167P1 52789 .20319 .48930 .34376 79969
.5833P1 .39341 .29311 1.0000 .32502 .83810
.7500P1 J0482E-01 29394 .51081 .18846 .24610
9167P1 .26043 .49894 45211 .46293 .18806
OVERALL .72280 .54210 .85759 65268 65867
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., 144,

Marginal
Significance
Level
.260
.592
.27
779
570
.678
.611
tted from bands

156.33
288, = 0, 1, ..

x*27)
31.26

24.68
31.01

Statistic
21.16
25.08
23.14

Threé—lndex Test

x%(162)
2m/T, T

Marginal
Significance
Level
.011
195
.108
1.00
339
.622
336
alculated at the angular frequencies w; = . '
frequencies and adjacent frequencies were omi

Table 18: Set 2
Two-Index Test
Statistic
x2(40)
63.12
47.45
51.35
7.06
43.13
36.64
x2(240) = 248.74

Marginal
Significance
Level
.000
.021
002
.265
.198
.611
.000

x*(35)

One-Index Test
Statistic
113.56

78.38
89.10
61.14
63.65
51.46

X(330) = 457.30

Bands (/)
1-22
26-46
50-10
74-94
98-118
122-142
Overall
Test

Periodicity of j* frequency = T/j months. Seasonal

Periodogram ordinates were ¢
used to compile test statistics.

Table 19: Set 2

PROP OF VAR EXPLAINED BY 1 COMMON FACTOR

VAR. NO. | VAR. NO. 2
AVGWKLY LAYOFF VAR. NO. 3 VAR.NO. 4 VAR. NO. 5
FREQUENCY HRS . RATE MANHOURS UNEMPL RT INDPRODIDX
.0799P1 .83919 92051 .87924 79357 95342
.2500P1 .53807 67297 80762 38013 .87675
4167P1 30254 .41493 .51683 .28485 70426
.5833P1 37571 35343 .63846 34376E—-01 .60317
7500P1 .24252 28759 .24583 87233E—-01 52391
9167P1 11429 19774 69574 .58649 50712
OVERALL .75982 .83045 .86545 76847 .54358
VAR. NO. 6 VAR.NO.7 VAR.NO. & VAR.NO. 9
FREQUENCY RETAILSALS NETBUSFORM NEWORD DUR WHOL PRICE
.0799pP1 .35766 .43916 72904 .20570
.2500P1 J14164E—-01 16938 .15545 .89879E—-01
.4167P1 .16995 J14729E—-01  .44337E-01  .11022
.5833P1 17526 .21282 13145 75342E-02
.7500P1 85097E—-02 .23298 .10265 19476
.9167P1 19823 \28618E—-01  .2630t .78817E—-01
OVERALL .40709 42195 62201 .20258
PROP OF VAR EXPLAINED BY 2 COMMON FACTORS
. VAR. NO. | VAR. NO. 2
AVGWKLY LAYOFF VAR.NO. 3 VAR.NO. 4 VAR.NO. §
FREQUENCY HRS RATE MANHOURS UNEMPLRT INDPRODIDX
0799P1 .84741 93069 92033 .84196 96345
.2500P!1 .55849 70170 79331 .39571 92394
.4167P1 .55675 .42691 .57869 36793 64409
.5833P1 .44522 1.0000 1.0000 .53329E--01 45393
7500P1 1.0000 .28605 .41580 17896 .53230
.9167P1 35972 33981 92394 .54995 .58327
OVERALL 80126 .86342 91123 .81602 95377

VAR.NO. 6 VAR.NO.7 VAR.NO. 4

VAR. NO. 9
FREQUENCY RETAILSALS NETBUSFORM NEWORD DUR WHOL PRICE
0799P1 70112 .46290 .93489 61144
.2500P1 1.0000 .20252 45153 23336
4167P1 AT115 .89872E—01  .44379 80101
.5833P1 14279 .24988 32664 14227
.7500P1 J14221E-01 17711 .44500 20732
9167P1 19320 A49193E—-01 41256 .69289E—-01
OVERALL .68529 .44621 .84437 .60603
PROP OF VAR EXPLAINED BY 3 COMMON FACTORS
VAR. NO. | VAR. NO. 2
AVGWKLY LAYOFF VAR.NO. 3 VAR.NO.4  VAR.NO.5
FREQUENCY HRS RATE MANHOURS ~ UNEMPLRT INDPRODIDX
0799P1 86312 93413 293502 1.0000 1.0000
2500P1 77346 81923 78211 .43054 1.0000
A4167P1 82740 42766 62933 1.0000 .56959
.5833P1  .50105 .59893 13146 .26128 63056
.7500P1 1.0000 1.0000 .52620 .39024 46598
.9167P1 .38689 .40224 1.0000 .58161 .62708
OVERALL .83823 .88263 92349 97517 99172
VAR.NO.6  VAR.NO.7  VAR.NO.H VAR.NO. 9
FREQUENCY RETAILSALS NETBUSFORM NEWORD DUR WHOL PRICE
.0799P1 74117 .56151 92969 .59560
.2500P1 76654 .23756 .66047 48396
.4167P1 45220 42352 31170 .70023
.5833P1 40465 .28474 1.0000 68921
J7500P1 .15381 .29087 .38523 .33586
9167P1 17891 1.0000 .45655 17214
OVERALL .68432 .55106 87480 .59435
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Table 20: Set 3

argi - Test Marginal Three-Index Test Ma_r'ginal
S R —— .Signifi%ance Significance
Level Level

Significance
Level

One-Index Test

Statistic
x453)

Statistic
x%(70)

x*(89)
181.07

Statistic
109.39

Bands (j)

.004

84.17

117.45

.000
070
007
.399
.584
558

1-22
26-46
50-10

777
324

44.94
57.14

448
.145
578

70.87

82.55
67.05

63.35

124.92

40.30

91.76
85.55

74-94

42.67
43.03

700

98-118
122-142

691

63.64

86.40

98

Qverall

580

064 x%318) = 312.26

= 46491

X2(420)

.000

X4534) = 679.08

Test

., 144,

2mj/T, T = 288, j = 0, 1,

Periodicity of j* frequency = T/j months. Seasonal frequencies and adjacent frequencies were omitted from bands

used to compile test statistics.

Periodogram ordinates were calculated at the angular frequencies o;

PROP OF VAR EXPLAINED BY 1 COMMON FACTOR

FREQUENCY
-0799P1
. 2500P1
.4167P1
.5833P1
.7500P1
.9167P1

OVERALL

FREQUENCY
0799p1
-2500P1
.4167p]
-3833P1
.7500PI
.9167P1

OVERALL

VAR. NO. |
AVG WKLY
HRS

.84699

54235

27908

3632

-35480

.11452
.76559

VAR. NO. 7

NETBUS

FORM
43863
16976
-14240E—01
20789
24065
-29637E—01
42148

VAR. NO. 2
LAYOFF
RATE
9243 ¢
67239
42474
38437
.28320
.29200
.83473

VAR, NO. 8
NEWORD
DUR
79652
14234
S2622E—-01
14379
-54044E—-0)
.26835
67058

VAR.NO. 3
MANHOURS
86869
-80862
.49871
62052
25867
69576

85525

VAR.NO.9
IND MAT PR
19825
41340E—01
5093501
.49386E —01
-89100E—02
.80927E—02
19305

PROP OF VAR EXPLAINED BY 2 COMMON FACTORS

FREQUENCY
0799P1
.2500P1
.4167P1
-5833P1
.7500P1
9167P1

OVERALL

FREQUENCY
.0799P1
.2500P1
4167pP1
.3833PI
L750P1
9167P1

OVERALL

VAR. NO. |
AVG WKLY
HRS
83415
.36809
.38190
41270
80474
(16684
.79894

VAR. NO.7
NETBUS
FORM

47480
19958
80562E -0t
.21142
16768
-28032
45833

VAR. NO. 2
LAYOFF
RATE
93753
71072
42280
47347
22969
.20702
85081

VAR. NO. 8
NEWORD
DUR
.87410
40381
45527
18823
10000
30053
86361

VAR. NO. 3
MANHOURS
.89353
79775
55967
64640
45577
.71203

88029

VAR. NO. 9
IND MAT PR
.74948
33245
23372
. 22445
14328
74201
.73482

PROP OF VAR EXPLAINED BY 3 COMMON FACTORS

VAR. NO. | VAR.NO.2
AVG WKLY LAYOFF
FREQUENCY HRS RATE
.0799P1 87835 94121
L2500P1 71384 84021
.4167PI 96614 38411
.5833P1 50390 LOOOO
7500P1 1.0000 17254
9167P1 .20225 1.0000
OVERALL 84890 89311
VAR. NO. 7 VAR. NO. 8
NETBUS NEWORD
FREQUENCY FORM DUR
.0799P1 -39718 86444
.2500P1 19866 62579
.4167P1 34968 57848
.5833P1 39311 42674
.7500P) 17530 L0000
9167PL .29792 37185
OVERALL 57794 82290

72805

VAR. NO. 3
MANHOURS
91762
.76522
56395
1.0000
S1311
76859
90688

VAR. NO. 9
IND MAT PR
.73827
40279
31047
L0000
.24583
-87106
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Table 21: Set 3

VAR. NO. 4
UNEMPL RT
79473
37339
271942
37782E~01
88498E~01

.58044
.76935

VAR. NO. 10
WHOL PRICE
.2 681
91877E-01
12423

.1 318E—01
.19598
7T7531E—01
.20384

VAR.NO. 4
UNEMPL RT
.88268
38462

.36295
87963E 01
78704E—01
59067

85391

VAR. NO. 10
WHOL PRICE

69874

.22966

76333

97773

11658

- 18490
69170

VAR.NO. 4
UNEMPL RT
1.0000
44692
1.0000
12741
L0000
60691
298042

VAR. NO. 10
WHOL PRICE
72176

34741

64552

27215

- 20040

20119

71653

YAR.NO. 5
INDPRODIDX

.94920

87723

.71479

60169

.50674

-50871
.93970

VAR. NO. 11
LMi

17228
52386E—01
.25 43E-01
44401E-01
44346E-02
.34414E 01
15700

VAR. NO. 5
INDPRODIDX

94847

91159

64894

58710

41759

56736
93987

VAR.NO. 11
LM)
.20612
.53586E—0 |
H4204E-01
A45883E—0 L
AHBB4E—)
TIWIE-0 L
.20026

VAR. NO. 5
INDPRODID X

97234

99289

.55892

48134

37518

.59208
96416

VAR. NO. 11
M1
41342
.16225
.20228
97719E-01
S0482E 01

34412
40311

VAR. NO. 6
RETAIL
SALS

58041
13343E-01
17808
15792

VAR. NO. 6
RETAIL

69273
1.0000
46517
33732

-20948E —01
.22277

-68602

VAR. NO. 6
RETAIL
SALS

69571
80535
.38603
.14624
-33542E—01

20183

65527



Estimated Coefficients for Observable-Index Model

Table 22

il
1

!

1

D(s) (diagonal elements)
2

3

M —1.866
(.114)
p — .871
(.211)
c —1310
(.113)
U —1.532
(.114)
w - .766
(.194)

NOTE: Standard errors in paren_theses'(
this section, M is money, P is price, Cisd

1.124
(.208)

021
(.272)
.181
(.193)
.768
(.195)

.209
(.185)

— .247
(.115)

- .076
(.158)

218
(.108)

— .138
(.115)

- 311
(.229)

For precise definitions see footnote on page 69 in the text.

100

Cs) D~"*als)
s 1 2 3 0 1 2
M 10000 [ 00 0.0 (:g(:éz)s ('.8333 ('_8(1)33
P e | e | | |
¢ (:}g(g))s (:223)7 —(:igg)s (:%2? _(5%‘ ('.(gz)s
Y (31335)1 ) (31’?33)1 (:ﬁ?){; —(%22? (3(2)2)5 (:%%&9
v || | gl

from asymptotic distribution). Here, as in all tfxblcs of
emand pressure, U is unemployment, and W is wage.

M

1.00000
1.86756
2.37377
2.59924
2.67452
2.69110
2.69315
2.69438
2.69410
2.68821
2.67409
2.65162
2.62269
2.58990
2.55571
2.52178
2.48889
2.45702
2.42570
2.39431
2.36230
2.32933
2.29534
2.26047
2.22502
2.18930
2.15360
2.11812
2.08301
2.04829
2.01397
1.97999
1.94634
1.91298
1.87992
1.84716
1.81475
1.78271
1.75108
1.71990
1.68918

Panel A: Response to M-Innovation

P

0
.552243E-01
169601
.339065
.542271
748299
936546
1.09315
1.21354
1.30078
1.36164
1.40449
1.43672
1.46356
1.48781
1.51014
1.52988
1.54581
1.55679
1.56218
1.56198
1.55670
1.54725
1.53461
1.51973
1.50331
1.48587
1.46766
1.44878
1.42926
1.40908
1.38825
1.36682
1.34490
1.32261
1.30010
1.27748
1.25490
1.23243
1.21014
1.18809

Table 23

C

276326
.829494
1.67842
2.67947
3.64837
4.43647
4.93866
5.12586
5.02904
4.71810
4.28048
3.79826
3.33538
2.93167
2.60363
2.34993
2.15839
2.01279
1.89787
1.80217
1.71881
1.64481
1.57971
1.52403
1.47814
1.44154
1.41282
1.38983
1.37015
1.35153
1.33225
1.31124
1.28813
1.26308
1.23662
1.20942
1.18216
1.15537
1.12943
1.10455

101

U

—.354558
—1.25084
—2.53859
—3.86706
—4.80432
—35.08681
—4.68149
—3.74081
—2.52148
— 1.28489
—.231861
.527468
972899
1.15092
1.14372
1.03972
912223
808672
749441
733274
745905
768707
785351
785535
765908
.728899
.680466
627654
.576652
531641
.494471
.464978
441663
422456
405363
.388885
372177
.355015
337615
320427

w

{

" .561099E—0

.201376
-400492
625785
.844017
1.02987
1.17304
1.27179
1.33282
1.36652
1.38337
1.39202
1.39792
1.40345
1.40863
1.41214
1.41229
1.40777
1.39798
1.38312
1.36399
1.34171
1.31743
1.29217
1.26662
1.24119
1.21604
1.19114
1.16642
1.14178
1.11717
1.09261
1.06818
1.04398
1.02013

.996721
.973848
951559
929879
908811



M

0
L791559E—02
.606155E—01
.108296
.138470
.140922
113161
J703096E—01
.220393E—01

—.226576E—01
—.578414E-01
—.821944E—01
—.965659E—01
—.103666
—.106680
—.108297
—.110371
—.113718
—.118317
—.123629
—.128912
—.133501
—.136960
—.139131
—.140101
—.140112
~.139470
—.138459
—.137294
—.136098
—.134914
—.133724
—.132483
—.131141
—.129663
—.128034
. 126263
—.124373
—.122397
—.120368
—.118315

Table 23

Panel B: Response to P-Innovation

P

1.00000
1.11485
1.08097
1.05291
968710
.800668
639412
489348
359928
.264621
196772
151696
121295
975331E~01
756044E—01
.525280E—01
.278297E—01
.254803E—02
—.217231E-01
—.433738E—-01
—.613375E-01
~.752298E-01
—.852801E-01
—.921527E-01
—.966928E~01
—.997172E—01
—.101872
—.103569
—.105000
—.106187
—.107061
—-.107525
—.107508
—.106986
—.105990
—-.104591
~.102882
—.100958
—.989019E—01
—.967784E-01
—.946291E-01

C

1.219%9
1.63405
1.82783
1.49446
685554
~ 154905
—.972026
~1.58694
—1.93006
-2.02508
—-1.90911
~1.66223
-1.35948
- 1.06003
—.804160
—.607836
— 470287
—.380013
—.321277
—.279734
—.245048
—.211830
— 178915
—.147782
—.120913
—.100434
—.873483E—01
—.813380E—01
— 810007E—01
—.843266E—01
—892156E—01
—.938938E—01
—971562E—~01
—.984274E-01
~.976776E—01
—.952556E—01
— 916985E—01
— 875662E—01
—.833281E-01
—793077E—~01

102

U

—1.56487
—~2.91981
—~2.67637
—1.32761
706975
2.49400
3.48942
3.67236
3.16522
2.25569
1.23720
331784
—.322769
—.689424
—~.803430
~.741111
—~.590334
—.425531
~.295881
—.222694
—.204215
—.224444
—.262150
~.298133
—.319492
~.320879
~.303494
—.272769
—.235777
~.199057
—.167260
—.142669
—.125428
~—.114191
—. 106908
—.101520
—.964211E—01
—.906675E—01
—.839600E—01
—.764834E—01

w

.247646
477195
392896
.286463
159812
.402123E—-02
—.117350
—.210211
—.267149
—.291058
—.294861
—.286692
—.275759
—.267501
—.263753
—.264349
—.267320
—.270367
—.271569
—.269743
—.264618
—.256623
—.246616
—.235579
—.224374
—.213605
—.203583
—.194362
—.185826
—.177782
—.170039
—.162459
—.154977
—.147593
—.140357
—.133339
—.126607
—.120212
—.114183
—.108524

M

0
321870E—03
.297275E—02
-871385E~02
.163247E—-01
-248720E—01
-324084E—01
-379340E—01
.409484E—01
-414764E—01
-400349E-01
.372892E—-01

-339308E—01
.305283E—-01
.274524E—01
.248838E—01
.228436E—01
-212530E-01
.199917E-01
-189418E—01
.180150E-01
171614E—01
.163650E—01
-156313E—01
-149746E—01
-144066E—01
.139304E—01
-135386E—01
.132154E-01
.129405E-01
-126934E—01
.124569E—01
J122190E—01
-119736E—01
.117195E-01
.114591E—01
.111964E-01
.109360E~01
.106817E—-01
.104363E—01
.102011E-01

Table 23

Panel C: Response to C-Innovation

P

0
991105E—02
.296066E—01
.493503E—01
.696378E—01
837810E—01
913948E-01
928746E—01
887169E—01
810265E—01
T14771E-01
615941E—01
525013E—01
447212E-01
J384078E~01
.334084E—01
.294299E~0]
261713E—01
.233866E—01
209242E~01
.187189E~01
.167645E~0]

-150824E—01

-136922E—01

-125939E—-01
-117626E—01
-111518E—01
-107030E—01

-103568E—01

-100618E—01
978031E—02
-949035E—02
918382E—02
-886292E—02
-853581E—02
821262E—02
-790254E—02
S761212E—02
-734485E—-02
T10150E—02
-688090E—02

C

1.00000
1.35926
1.67924
1.79947
1.82072
1.72056
1.53831
1.29402
1.01554
731576
464634
.232670
.461379E—01
—.915946E—01
—.182624
—.233186
—.251550
—.246440
—.225874
—.196448
—.163133
—.129369
—.973427E-01
—.683322E—01
—.430110E—01
—.216775E—01
—.439884E—02
891726E—02
.184927E—01
.246677E—01
.278871E—01
.286759E—01
.276024E—01
.252354E—01
.221020E—01
.186539E—01
-152463E—-01
-121306E—01
.946020E—02
730431E-02
.566782E—02

103

U

. 0
—.636321E-01

—.219148
—.379318
—.484600
—.487868
—.382980
—.208662
—.805685E—02
175040
.310086
384104
-398479
365734
.303437
-229163
157116
.963207E—01
-S506326E—01
-198031E—-01
-104356E—02
—.939927E—02
—.150492E—01
—.185052E—01
—.212324E—01
—.237139E—-01
—.257914E—-01
—.270433E—01
—.270904E—01
—.257750E-01
—.232112E-01
—.197363E- 01
—.158074E—01
—.118889E—-01
—.836135E—02
—.546965E—02
—.331214E-02
—.186171E—02
—.100556E—02
—.589829E—-03
—.458132E—03

w

0
.100700E~-01
352959E~01
.597527E~-01
.786313E~01
925300E~01
.972032E-01
9491 12E-01
871062E-01
758169E—01
.634851E~01
S16170E—~01
413023E—-01
329734E-01
.2635530E—~01
.217288E-01
.180642E—01
151652E—01
127481E—-01
.106512E~01
.881976E—02
.726159E—02
.600603E—02
507185E—02
444946E—02
409874E—-02
395684E—02
J395126E—02
4O1313E—02
.408715E—-02
413667E—02
414399E—-02
410706E—02
.403434E-02
.393934E—02
J83604E—02

-373593E—02
-364659E—02
357165E—02
351158E-02
.346486E—02



M

0
.543538E—03
416858E—02
.784493E—02
.126645E—01
.175277E—01
.221675E—01
.264796E—01
.299020E—01
.322605E—01
.334738E—01
.336437E—01
330373E-01
319391E—01
.J06219E—-01
.292888E—01
.280562E—01
.269678E-01
.260120E—01
.251492E—01
.243346E—01
.235332E—01
227266E—01
.219133E—01

.211038E—01
.203140E—01
.195600E—01
.188532E—01
.181991E—01
175971E—01
.170423E—01
.165272E—01
.160443E—01
.155870E—01
.151506E—01
.147325E—-01
.143316E—01
.139477E—01
135812E—01
.132324E-01
.129011E—01

Table 23

Panel D: Response to U-Innovation

P
0

.167367E—01
.237779E—01
.356234E—01
.467067TE—~01
.557450E—~01
.646178E—~01
.700831E—~01
.725649E—~01
J723510E—01

698156E—~01
.659700E—~01
.614615E—~01
.568769E—-01
.525940E~01
.487443E~01
.453402E~01
.422935E-01
.394908E~01
.368390E~01
.342800E~01
317985E~01
.294113E~01
271511E~-01
.250524E—01
.231399E~01
.214234E~01
.198974E~01
.185448E—01
.173417E—01
.162631E—01
.152869E—01
.143957E~01
.135774E—01
.128249E-01
.121343E—01
.115030E—01
.109292E-01
.104101E—01
.994236E—02
.952167E—02

« C
: 0
.837454E—01

113177
182321
226381
261836
285918
285921
267111
230079
180720
126756
TJ41729E—01
.283543E—01
—.772480E—02
—.331409E—01
—.485053E—01
—.555785E—01
—.565239E—01
—.534657E—01
—.481770E—01
—.419281E—01
—.355123E—01
—.293396E—01
—.235711E—01
—.182446E—01
—.133622E—01
—.893961E—02
—.501759E—02
—.164991E—02
A11773E—02
.326735E—02
[481968E—02
.583452E—02
.640219E—02
.662966E—02
.662557TE—02
.648752E—02
.629376E—02
.609965E—-02
.593845E—02

104

U «

1.00000
1.42485
1.37782
1.12510
.830604
.597658
430310
332310
.293678
.292541
.309450
.325643
329213
315725
.286307
246112
201571
.158528
121123
.913430E—01
.692929E—-01
.53777T1E—01
429866E—01
.351016E—01
.286823E—01
.228383E—01
.172089E—-01
.118223E—01
.691228E—02
.274897E—02
—.478399E—03
—.271613E—02
—.404541E—02
—.464484E—02
—.473760E—02
—.454129E-02
—.423194E-02
—.392666E-02
—.368340E—02
—.351269E-02
—.339513E-02

W
0

.170051E-01
.329648E—01
.386304E—01
.514356E—01
.612729E-01
.684775E—01
.730793E-01
.734332E—01

.710233E—01

.664646E—01

.60705SE—01
.547280E—01
490285E—-01
.439649E—-01
396153E—-01
358911E—01
.J26491E—-01
.297262E—01
.270030E—01
.244161E—01
.219518E—01
.196332E—01
.174975E-01
.155784E—01
.138953E-01
.124483E—01
.112206E—01
.101834E—01
.930329E—02
.854797E—02
.789047E~02
L731095E—02
.679661E—02
.634013E—02
.593768E—02
.558695E—02
.528558E—02
.S03044E—-02
.481729E—02
464112E-02

M

0
955277E—-02
S7197787E—01
179014
.241897
.277055
279746
.258503
227554
.194738
167669
-149400
-139709
136770

137581
-1393%94
-140212
-138983
-135593
-130539
124619
118632
113183
-108594
-104919
.102013

996314E—01
.975147E—01
.954551E—01
-933261E-01
.910846E—01
-887519E—-01
.863869E—01
.840583E—-01
-818245E—-01
797225E—01
TTT649E—01
759444E—01
.742413E~01
-726313E—01
.7T10915E—01

Table 23

Panel E: Response to W-Innovation

P

.294150
.618521
.639203
.646158
.602542
.505729
.418936
337783
.278914
.244717
.227668
.223060
222715
.221182
.215637
.205097
-190670
174213
157715
.142786
130312
120505
113037
.107280
.102542

982381E—01
.939832E—01
-896085E~01
.851214E-01
.806391E—01
.763176E—01
.722965E—01
.686661E—01
.654569E—01
.626479E—01
.601838E—01
.579952E—01
.560154E—01
.541913E-01
.524877E-01

o A ———ma e

C

1.47184
2.99295
3.20041
3.24748
263519
1.75280
871346
623034E~01
~.506431
~.828145
~.930560
~.865494
—.710760
~.526438
—.357694
~.228790
~.144207
—.970100E—01
~.740322E—01
—.619202E—01
—.507636E—01
~.352815E~01
—.146489E—01
.893782E—02
319614E-01
.510590E—01
\640093E—01
T00976E—01
.699895E—01
652907E—01
.579960E—01
.499978E—01
427514E—01
371276E-01
334304E—01
-315254E—01
310161E—01
314137E-01
322673E—01
332384E—01

105

U

0
—1.88853
—4.83368
—5.19508
—3.48007
—1.15073
1.17706
2.76746
3.46577
3.39026
2.75846
1.88350
1.01703
330424
—.977540E—-01
—.276532
—.265809
—.147849
—.259799E~03
121175
.187636
195113
156717
935117E-01
266111E—01
—.281616E—0|
—.625037E-01
—.753016E—01
—.706653E—-01
—.553272E-01
—.362516E—01
—.189544E—01
—.670207E—02
—.497575E—03
402849E--03
—.226506E—02
—.651010E—02
—.106371E-01
—.135453E-01
—.147870E—-01
—.144533E—-01

w

1.00000
1.06502
1.16093
1.23821
1.10951
-994578
-839809
-688323
572524
482717
426733
-393854
373508
.358437
341474
320138
.294319
.265578
-236462
-209204
-185393
165717
150030
137643
127617
-119038
111197
-103668
962908E—~01

-891029E—-01
.822492E-01
-758959E—01
-701706E—01
651323E—-01
-607685E—01
-.570116E—-01
.537630E—01
-509182E-01
-483845E—01
460920E—-01
.439949E—01



Table 24

Four-Variable System: Response to W-Innovation

P

277556
765403
1.16946
1.45628
1.62536
1.72778
1.78190
1.80251
1.79030
1.74982
1.68415
1.59878
1.49795
1.38586
1.26562
1.14006
1.01149
.882048
753550
627643
.505754
389138
.278870
175865
.808708E—01
—.552364E-02
—.828915E—01
—.150964
—.209627
—.258912
—.298990
—.330156
—.352817
—.367476
—.374718
—.375190
—.369584
~.358624
~.343047
—.323592

C

159455
5.81136
8.40311
10.1786
10.2403
9.56666
8.19065
6.58246
478742
3.01139
1.31001
~.207673
—1.50608
—2.54764
—3.33498
—3.87705
~4.20057
44.33475
~4.31399
—4.17114
—3.93788
—3.64191
~3.30707
~2.95260
—2.59354
—2.24095
~1.90254
—1.58324
~1.28587
~1.01164
— 760702
~.532528
—.326243
~ 140837

U

0
.615850

—.692737E—01
—.937248E—01

.246844E—01

171224
299562
410369
.504231
.581700

106

.539820
1.87452
3.27649
4.47926
5.27552
5.70824
5.82468
5.71546
5.43651
5.04375
4.57475
4.06416
3.53632
3.01081
2.50031
2.01367
1.55603
1.13057
738854
381620
.590121E-01
—.229123
—.483163
~—.703617
—.891142
—1.04654
—1.17081
—1.26515
—1.33098
—1.36996
—1.38399
—1.37515
—1.34572
~1.29809
—1.23476
~1.15826
—1.07112

w

1.00000
1.20865
1.42941
1.64529
1.87622
2.01863
2.08155
2.06479
2.00027
1.89941
1.77658
1.63665
1.48652
1.33026
1.17260
1.01658
.864914
719247
.580891
450663
329185
.216855
113960
.206745E—01
—.628988E—01
—.136733
—.200868
—.255417
—.300567
—.336589
—.363833
—.3827314
—.393793
—.397595
—.394775
—.386018
—.372041
—.353581
—.331382
—.306179
—.278685

Table 25

Proportion. of Variance of k-Period Ahead Forecast
Explained by Innovation in Row Variable

M P c v w
g 997 021 017 007 053
w LW 854 024 022 159
c .000 021 915 007 057
A 052 022 943 133
001 052 022 021 598

1;{ 984 171 067 060 277

o L0 530 015 035 058
c o 080 840 024 125
DA 165 059 860 258

003 053 019 022 282

11\.{ 973 452 154 066 520

wo Do 240 034 054 044
c '8(1)3 069 725 039 075

. 211 071 814 '

w002 028 016 028 :32

1}: .8(7)3 606 171 068 637

o L2 158 034 054 045
1005 047 709 039 053

VL‘// 018 168 071 812 178

002 021 015 027 087

107



1975:11
111
v

1976:1
11
111
v

1977:1

1975:11
11
v

1976:1
11
111
1V

1977:1

Table 26

Projections from 1975:1 Initial Conditions

M

285.4
287.0
288.7
290.1
291.2
292.0
292.8
293.6

L
4

Projections from 1975:11 Initial Conditions for M,
1975:1 Initial Conditions for Other Variables

M

290.4
296.6
301.0
303.7
305.2
306.2
307.0
307.8

P

173.2
173.8
173.7
1733
172.7
172.2
171.8
171.6

Table 27

P

173.2
173.9
174.1
174.0
173.8
173.7
173.7
173.9

108

C

1.638
1.634
1.595
1.533
1.466
1.411
1.371
1.346

c

1.638
1.644
1.626
1.594
1.561
1.538
1.522
1.512

177.7
179.5
180.0
180.5
181.0
181.6
182.5
183.5

177.7
179.7
180.9
182.1
183.6
185.2
186.9
188.6

T

1.0
.103
—.051
—.099
157

Table 28
Correlations Among Residuals

1.0
035
.009
218

109

1.0
.076 1.0
—~.186 —225 1.0



