
A p Theory of Taxes and Debt Management∗

Wei Jiang Thomas J. Sargent Neng Wang Jinqiang Yang †

July 27, 2025

Abstract

Distortions induce a benevolent government that must finance an exogenous expen-

diture process to smooth taxes. An optimal fiscal plan determines the marginal cost

´p1 of servicing government debt and makes government debt risk-free. A convenience

yield tilts debts forward and taxes backward. The government’s option to default de-

termines debt capacity. Debt-GDP ratio dynamics are driven by 1) a primary deficit,

2) interest payments, 3) GDP growth, and 4) hedging costs. We provide quantita-

tive comparative dynamic statements about debt capacity, debt-GDP ratio transition

dynamics, and time to exhaust debt capacity.
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1 Introduction

What opportunities and constraints determine a government’s maximum sustainable debt-

to-GDP ratio? At what rate should a government approach it? How costly is it for a

government to service its debt and how do today’s costs depend on today’s debt-GDP ratio?

Should a government borrow more when, as until recently has been true for the U.S., interest

rates on government debt are lower than prospective GDP growth rates? Under an optimal

policy, how much will tax rates eventually have to rise as the debt-GDP ratio gradually

approaches its limit?

To answer these questions, we analyze contending forces that shape a country’s debt/GDP

dynamics in a normative model of taxes and government debt management that combines

Arrow’s one-period-ahead securities and/or the GDP insurance advocated by Shiller (1994),

Barro’s (1979) tax-smoothing motives and impediments, Credit constraints induced by de-

fault options like those in Eaton and Gersovitz (1981), and extra Discounting due coming

from a convenience yield on risk-free government debt like Krishnamurthy and Vissing-

Jorgensen (2012). We can solve our ABCD model mostly by hand. To explain how it

works, we activate its four components sequentially.

We start by describing sources of randomness and an exogenous stochastic discount factor

process that determines risk-return tradeoffs and prices a complete set of Arrow securities.

Our model A incorporates risk and risk premia in a setting with Ricardian equivalence.

Model AB incorporates Barro’s (1979) tax-distortion deadweight cost, versions of which

Calvo (1978) and Chang (1998) adopted, into model A.1 We derive the loss function that

Barro imputed to the government from the indirect utility functional of a benevolent plan-

ner who maximizes the welfare of a representative household with standard preferences aug-

mented by deadweight losses from taxing.

By allowing the government to default in the tradition of Eaton and Gersovitz (1981),

Worrall (1990), Kehoe and Levine (1993), Kocherlakota (1996), Zhang (1997),2 model ABC

adds credit restrictions. That our government’s primary surplus process exhibits geometric

growth leads to an upper bound on the government’s debt/GDP ratio that we call its debt

capacity. Exercising an option to default sends the government into period-by-period primary

budget balance, a consequence that pins down its debt capacity.

1In model AB, we retain a constant exogenous risk-free interest rate, thereby preventing the government
from being able to manipulate bond prices, a principal focus of Lucas and Stokey (1983), Zhu (1992), Chari
et al. (1994), and others, and continue to assume that GDP growth and government expenditure growth are
geometric as in Barro (1979).

2Alvarez and Jermann (2000, 2001) study the quantitative effects of limited enforcement on asset prices.
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Finally, our ABCD model follows Krishnamurthy and Vissing-Jorgensen (2012) by in-

corporating extra discounting associated with a “convenience yield” on the government’s

risk-free debt. Introducing a convenience yield makes the debt-GDP ratio bt approach its

limit from below, in contrast to the time-invariant debt-GDP ratio prescribed by Barro

(1979) that is shared by our model ABC .

Working in continuous time lets us characterize debt dynamics explicitly. Two conditions

determine a maximum sustainable risk-free debt-to-GDP ratio b: 1.) the default option

induces an indifference condition between defaulting and servicing debt, and 2.) a Gordon

growth valuation formula at a steady state b implies a zero-drift condition for bt at debt

capacity b. If we withhold the component C default option, we retrieve a stochastic version

of Barro’s 1979 model that shares his commitment-to-repay assumption. This model predicts

debt capacities that seem implausibly high, e.g., 10-15 times GDP.

Four forces drive optimal debt-GDP ratio dynamics in our ABCD model:

change of bt “ primary deficit ` interest cost ´ growth effect ` hedging cost. (1)

Blanchard (2019) and Mehrotra and Sergeyev (2021) discuss the first three components. A

fourth term appears in (1) because the government optimally hedges its GDP process in a

way that ends up making b evolve deterministically, and has to pay for doing that. Hedging

costs equal b times the risk premium on an asset whose payoff is GDP.

The presence of a convenience yield generates a backloaded tax schedule that prescribes

a tax rate that increases over time. Fiscal deficits scaled by GDP decrease over time and

eventually turn into surpluses. The debt-GDP ratio bt approaches a steady state that attains

a maximum sustainable level b. If a government starts with small enough debt, it immediately

issues enough debt to reach a lower bound b ą 0 on the debt-GDP ration at which the

marginal cost of servicing debt equals one. Such a one-time jump in debt looks like a

Blanchard (2019) “debt is cheap” response on steroids. Thus, optimal debt-GDP dynamics

reside in three disjoint regions: 1.) a lump-sum debt issuance and payout region in which

b ă b, which we refer to as a Blanchard region; 2.) a default region in which debt is

unsustainable (b ą b); and 3.) an interior region in which b P rb, bs. In the b P rb, bs

interval, Barro tax-smoothing prevails. When b ą b, the government defaults immediately

and thereafter balances its budget period by period.

An optimal policy is described by 1) a nonlinear first-order ordinary differential equation

(ODE) for the government’s (scaled) value ppbq; 2) a first-order condition for the optimal

tax rate τpbq; 3) a zero-drift condition and an indifference condition between defaulting and
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not defaulting that characterize a steady state at which debt is at the maximum sustainable

level b; 4) value-matching and smooth-pasting conditions that characterize the lump-sum

debt issuance and payout boundary b. The upper debt-capacity boundary b is an absorbing

state and the lower lump-sum debt issuance boundary b is a reflecting barrier. These two

boundaries embody economic forces on the government’s maximum sustainable debt and a

rule for an initial lumpy debt-financed payout to the representative household. We charac-

terize the two boundaries in ways that highlight how our continuous-time setting allows us

to represent underlying economic forces concisely. We believe that we are the first to derive

a zero-drift condition that pins down an endogenous debt capacity.

In calling it a p theory of taxes and government debt, we invoke an analogy with a q theory

of investment. A convex tax distortion cost from Barro (1979) serves as a counterpart to the

convex capital adjustment cost in a q theory of investment, e.g., Lucas and Prescott (1971),

Hayashi (1982), and Abel and Eberly (1994).3 The government’s marginal cost of servicing

debt, ´p1pbq, measures how much the household’s value decreases when government debt

increases by one unit. In a q theory, marginal q, the marginal value of capital, measures how

much the firm’s value increases with its investment. In our model, tax distortions and limited

commitment make ´p1pbq exceed one; ´p1pbq appears both in the first-order condition for an

optimal tax rate and in an equation that restricts the government’s optimal value function.

We describe components of our ABCD model in Section 2, then assemble them and

compute an optimal fiscal policy in Section 3. In Section 4 we calibrate some key parameters

to US debt-GDP ratio for 1980-2020 and use them to offer quantitative illustrations of our

ABCDmodel in ways designed to illustrate the balance of forces that shape the government’s

optimal fiscal plan. We study how transitions path toward debt capacity depend on prevailing

interest rates and convenience yields on government debt.

Section 5 extends our ABCD model by adding interest rate and spending ratio shocks in

the form of jumps at random times. Anticipations of higher rates reduce the government’s

debt capacity and lower the rate at which the government increases its debt-GDP ratio.

Anticipated increases in government spending (scaled by GDP) induce the government to

increase the tax rate in order to exploit the convenience yield and smooth tax distortions.

In Section 6, we extend the ABCD model in another way by introducing uninsurable

jump shocks to output. Unlike outcomes in the ABCD model, now the government defaults

whenever its debt-GDP ratio bt jumps above its debt capacity b. Consequently, the govern-

ment pays a credit spread. The Section 6 model brings a new region that acts as a “cushion”

3Jermann (1998) integrates a q theory of investment into an general equilibrium model to study asset-
pricing implications. Dai, Giroud, Jiang, and Wang (2024) study a q theory for the internal capital markets.
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between the tax smoothing and default regions by delaying inefficient defaults. In this new

region, the drift of the debt-GDP ratio bt is zero when output doesn’t jump; the optimal

tax rate is chosen accordingly. Section 7 summarizes our findings, discusses how normative

models like ours have sometimes been deployed to organize monetary-fiscal histories, and

indicates how our ABCD model opens fruitful avenues for future research.

Related Literature. Our model assembles building blocks from Lucas and Stokey (1983)

(complete state-contingent debt) and Barro (1979) (tax distortion costs) in a tractable

continuous-time framework with an exogenously specified SDF along lines of Black and

Scholes (1973), Merton (1973), and Harrison and Kreps (1979). The exogenous stochastic

discount factor process in our model distinguishes it from Lucas and Stokey (1983), where

a government’s tax and borrowing strategy affects the stochastic discount factor process.

That motivates their government to manipulate equilibrium debt prices by altering distort-

ing taxes. As in Lucas and Stokey (1983), the presence of complete financial markets allows

the government to issue fully state contingent debt.4 By staying within the Barro tradition

of an exogenous SDF process, we remove dynamic inconsistencies that arise from bond-

price-manipulation motives central to models in the Lucas-Stokey tradition.5 We focus on

implications of limited commitment for debt capacity and debt dynamics. In Section 5 we

describe a setting in which an optimal tax rate is discontinuous even when shocks are hedge-

able; in this setting smoothing taxes in the fashion recommended by Barro’s 1979 model is

just too costly.

Bohn (1995) valued government debt with an SDF like that of Lucas (1978). Bohn

(1990) studied how hedging with financial instruments shapes optimal fiscal policy of a risk-

neutral government in a stochastic reformulation of Barro (1979).6 Unlike Bohn (1990),

hedging costs play a key role in debt-GDP dynamics in our model. We extend Bohn’s

insights by incorporating effects of default opportunities on debt dynamics and sustainability.

Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2019) analyze how the covariance between

an intertemporal marginal rate of substitution and a primary government surplus ought to

affect the value of government debt.

Brunnermeier, Merkel, and Sannikov (2020, 2022) incorporate a bubble within a fiscal

4Our complete financial spanning setting eases analysis and exposition. We leave important extensions to
incomplete markets settings along the line of Aiyagari, Marcet, Sargent, and Seppälä (2002) for subsequent
research.

5The Barro (1979) model is deterministic, so his SDF is an exponential function that decays at a risk-free
rate per unit of time.

6Bohn (1998) described measures that the US took in response to the accumulation of debt during the
1970s and 1980s that are broadly consistent with dynamics prescribed by our model.
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theory of the price level, develop a model of safe assets with a negative beta in an incomplete-

markets setting, and analyze implications for debt sustainability. Kocherlakota (2021) devel-

ops a model of government debt bubbles associated with tail risk in a heterogeneous-agent

incomplete-markets Aiyagari-Bewley-Huggett model. Reis (2021) studies debt capacity in a

related model with a bubble on government debt. D’Erasmo, Mendoza, and Zhang (2016)

review the literature on government debt sustainability. Abel, Mankiw, Summers, and Zeck-

hauser (1989) and Abel and Panageas (2022) analyze maximum budget-feasible government

debt in overlapping generations models with perpetually zero primary budget surpluses.

Chernov, Schmid, and Schneider (2020) synthesize insights from the macro and finance liter-

atures in a quantitative framework in which a government can tax output and issue nominal

debt to finance its expenditures. They show how credit default swap (CDS) premia reflect

risk-adjusted probabilities of government default. Elenev et al. (2021) construct a New Key-

nesian model that includes financial intermediation, risk premia, production, fiscal policies,

and monetary policies.7

Our work is related to papers in international macro that use limited enforcement as a

source of financial imperfections. Kehoe and Perri (2002) use limited enforceability and con-

sequent endogenous debt capacity in an international real business cycle model that extends

Backus et al. (1992). Bai and Zhang (2010) introduce limited spanning into a Kehoe and

Perri (2002) framework. Aguiar and Gopinath (2006) and Arellano (2008) provide quan-

titative analyses of sovereign debt in the tradition of Eaton and Gersovitz (1981). Tourre

(2017) develops a continuous-time model to study sovereign debt spreads in which, because

debt has a finite term, default can be triggered by continuous, diffusion shocks. In our base-

line ABCD model with only diffusion shocks, complete (dynamic) financial spanning allow

government debt to be risk free. But when unhedgeable downward output jumps are large

enough, default occurs in our section 6 jump-diffusion extension of our ABCD model. This

outcome is related to ones in Bornstein (2020), who studies sovereign default in a model in

which output follows a Poisson process in a continuous-time version of Arellano (2008). In all

of the papers discussed above, the government solves a representative household’s problem.

In contrast, we follow the tradition of Lucas and Stokey (1983) by explicitly analyzing a

benevolent government’s optimal fiscal plan. We jointly characterize debt capacity and debt

dynamics that optimally serve a tax smoothing motive.

DeMarzo, He, and Tourre (2023) construct a continuous-time sovereign-debt model that

7For other discussions of ‘r ´ g’ and debt sustainability, see Barro (2020), Van Wijnbergen, Olijslagers,
and de Vette (2020), Aguiar, Amador, and Arellano (2021), Mian, Straub, and Sufi (2022), Reis (2021), and
Liu, Schmid, and Yaron (2021).
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generates debt ratcheting. Rebelo, Wang, and Yang (2022) construct a continuous-time

sovereign-debt model in which a country’s degree of financial development, defined as how

easily it can issue debt denominated in domestic currency in international capital markets,

generates “debt intolerance” in the sense of Rogoff, Reinhart, and Savastano (2003).

Because its fiscal policy exposes it to net-of-interest deficit risks, the government in our

model follows Shiller’s (1994) and recommendation to insure those risks by trading shares of

a GDP-indexed Arrow security.8 In the language of Jiang et al. (2019, 2020), our government

uses that Shiller security to “manufacture” the risk-free debt that is part of its optimal debt

management package. Costs of trading the Shiller security appear in the government’s budget

constraint and add a risk-premium to the “r´g” debt dynamics featured in Blanchard (2019).

An alternative interpretation of these Arrow-Shiller type of insurance/hedging contractual

payments is that the government increases its spending in good times and decreases it in bad

times. This interpretation would have the government adopt a spending rule that makes its

debt co-move GDP in a way that makes it become risk-free, allowing the debt-GDP ratio bt

to evolve deterministically.

2 Benchmark Setting

We construct an optimal fiscal policy for the government of a country that finances an

exogenous random expenditure process and that is small in the sense that asset prices are

determined outside the country. Time t P r0,`8s. The government chooses a moment TD P

r0,`8s at which it defaults on its contractual agreements. When t ă TD, the government

is in a “no-default regime” and has more opportunities to borrow and insure than it does in

the “balanced budget regime” that prevails when t ě TD.

The country’s (potential) GDP tYt; t ě 0u is determined outside of our model and follows

a geometric Brownian motion (GBM) process

dYt
Yt

“ gdt ` σdZY
t , (2)

where g is expected GDP growth, σ ą 0 is growth volatility, ZY
t is a standard Brownian

motion, and Y0 ą 0. In the no-default regime that prevails before stopping time TD, GDP

equals Yt. But in the post-TD default regime, GDP is systematically less than Yt, as equation

(11) below asserts. Except for risk-free debt that the government of this country issues, all

8Jiang et al. (2024) verifies that the presence of a complete set of Arrow history-contingent securities
implies the existence of Shiller’s macro security.
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income streams are priced by investors who live outside the model and use a shared stochastic

discount factor process (SDF) tMtu with multiplicative increments described by

dMt

Mt

“ ´rdt ´ ηdZm
t , M0 “ 1 , (3)

where Zm
t is a standard Brownian motion that represents an aggregate/systematic shock in

(world) capital markets and r is the risk-free rate. Let ρ denote the constant correlation co-

efficient between the GDP shock dZY
t and dZm

t . Absence of arbitrage opportunities requires

that the drift of dMt{Mt equals ´r (see Duffie, 2001). The diffusion coefficient of dMt{Mt

equals ´η, where η is the market price of risk in the sense of Black and Scholes (1973) and

Merton (1973).9

The government finances an exogenous government spending process tΓt; t ě 0u that

does not appear in the utility functional of a representative household. When t ă TD so

that the no-default regime prevails, Γt varies with contemporaneous output Yt according to

Γt “ γtYt , (4)

where γt “ γ P p0, 1q so that government spending is proportional to GDP.

Let tTt; t ě 0u denote the government’s tax revenue process. When the government

collects tax revenue Tt and GDP is Yt, there are deadweight losses from taxation measured

in lost consumption goods that are described by a function Θt “ ΘpTt, Ytq. Following Barro

(1979), we assume that ΘpTt, Ytq, is homogeneous of degree one in GDP and tax revenue:

Θt “ ΘpTt, Ytq “ θpτtqYt , (5)

where τt “ Tt{Yt and scaled deadweight loss θpτq is increasing, convex, and smooth. We

assume that

τt ď τ , (6)

where τ ď 1 ´ γ is a maximal politically feasible tax rate on GDP in the no-default regime.

Keynes (1923, pp.56–62) and Keynes (1931) described on how an upper bound τ was shaped

by political considerations and used it to infer limits on a country’s debt-GDP ratio.

In the no-default regime, the government can finance its spending Γt partly by issuing

9The rZm
t ,ZY

t sJ process is a bivariate Brownian motion with a covariance matrix
“

1 ρ
ρ 1

‰

t. If ρ “ 1, the
country’s GDP shock is systematic. If ρ “ 0, the country’s GDP shock is idiosyncratic.
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risk-free debt. Let tBt; t ě 0u denote the government’s risk-free debt process, with B0 a

given initial condition. The government can manage its exposure to expenditure and tax

collection risks by dynamically trading a Shiller (1994) macro security whose payouts equal

the country’s (potential) GDP tYtu. The time t price St of the Shiller’s macro security is

St “ Et

„
ż 8

t

Ms

Mt

Ysds

ȷ

, (7)

where Mt is the SDF given in (3). Using Ito’s lemma, the Shiller security’s cum-dividend

return is:

dRt ”
dSt ` Ytdt

St

“ pr ` λq dt ` σdZY
t , (8)

where λ “ ρησ is a risk premium.

In the spirit of Krishnamurthy and Vissing-Jorgensen (2012), we assume that risk-free

government debt enjoys a convenience yield δ ą 0 that creates a wedge between the ordinary

market risk-free rate r and the rate r ´ δ that the government pays on its risk-free debt. In

the no-default regime, the government’s risk-free debt Bt evolves according to10

dBt “ pΓt ´ Ttqdt
looooomooooon

primary deficit

` rBtdt ´ δBtdt
loomoon

convenience yield

` dHt
loomoon

debt issue

´Φt pdRt ´ rdtq
loooooooomoooooooon

hedging net exposure

. (9)

The first term is the government’s primary deficit. The second term would be the govern-

ment’s interest payment on its debt if it paid the risk-free rate r. The third term captures

the convenience yield δ on the government’s risk-free debt. The fourth term dHt ě 0 is a

(lumpy) issue of government risk-free debt.11 The last term describes how the government’s

purchase Φt of the Shiller security affects dBt.

Integrating debt dynamics (9) forward and imposing a balanced budget if the government

defaults, we conclude that the government budget constraint at t “ 0 is

B0 ď E0

«

ż TD

0

eδtMt rpTt ´ Γtq dt ´ dHts

ff

(10)

where B0 is the government’s risk-free debt at t “ 0. The right side of (10) is the present

value of the government’s primary surplus. It takes into account benefits of debt financing

10To construct an optimal fiscal plan, our government uses both singular control (lump-sum debt issuance
and payout to the household) and convex control (tax smoothing). The US government’s 2020 and 2021
covid stimulus checks and related transfers might be interpreted as examples of such payouts financed by
lump-sum debt issuances.

11The tHt; t ě 0u process is nondecreasing and describes a non-negative net debt issuance dHt for any dt.
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coming from the convenience yield δ ą 0. Lumpy debt issuance dHt ą 0 is netted out from

pTt ´ Γtq dt. The convenience yield δ multiplies the SDF Mt in (10).

Financing opportunities are more limited in the balanced budget regime that prevails

when t ě TD. Let pYt denote GDP in the balanced-budget regime. We assume that when it

defaults the government repudiates all of its debts, that GDP then immediately drops from

the pre-default level YTD´ “ limsÒTD´ Ys to pYTD “ αYTD´ , where α P p0, 1q,12 and that the

government is excluded from markets for the Shiller security and for risk-free debt.13 For

t ě TD, GDP pYt follows the downward scaled version (11) of the process (2):

pYt “ αYt , t ě TD . (11)

Consequently, the government confronts budget constraints

pTt “ Γt “ γtYt , t ě TD , (12)

where pTt is the government’s tax revenue in the balanced-budget regime. The government’s

spending tΓt; t ě 0u is not affected by its decision to default. When the government collects

tax revenues pTt and output is pYt, deadweight loss pΘt “ pΘp pTt, pYtq, where

pΘp pTt, pYtq “ pθppτtqpYt , (13)

pτt “ pTt{pYt, and pθppτq is increasing, convex, and smooth. Deadweight loss functions in the two

regimes are related by
pθp ¨ q “ κ θp ¨ q , (14)

where κ ě 1 measures how much more costly taxation is in the balanced-budget regime. We

require pTt ď τ pYt, which is equivalent to the following constraint on the tax rate pτt in the

balanced-budget regime:

pτt ď τ , t ě TD , (15)

where τ is the same maximum politically feasible tax rate described above.

12Many other studies of sovereign debt make this assumption, for example, Aguiar and Gopinath (2006)
and Rebelo, Wang, and Yang (2022).

13The government has limited commitment with respect to all liabilities. When it defaults, it defaults on
all of them, including promised repayment on short positions in the Shiller macro security. The government
has one budget constraint. Gains and losses from its state-contingent contracts appear in the law of motion
(9) of its debt. Reneging on any contractual agreement causes the country to lose access to international
capital markets and casts it into the balanced-budget regime.
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The government designs tax and debt management policies to maximize the utility func-

tional of a representative consumer who receives an after-tax, after-tax-distortion income

flows of Nt in the no-default regime and pNt and in the balanced-budget regime, where

Nt “ Yt ´ Tt ´ Θt and pNt “ pYt ´ pTt ´ pΘt . (16)

In the no-default regime t P r0, TDq, the household occasionally receives non-negative lump

sum government transfers financed by lumpy debt issuance dHt, so that total payments are

dHt ` Ntdt.
14

Where UpC, tq is increasing in C, the representative household chooses consumption tCtu

and state-contingent assets to maximize lifetime utility E0

“ş8

0
UpCt, tqdt

‰

subject to the

present-value budget constraint:

E0

„
ż 8

0

MtCtdt

ȷ

ď P0, (17)

where P0 is the time 0 value of Pt, the time t market value of continuation GDP after taxes

and tax distortions have been deducted:

Pt “ Et

«

ż TD

t

Ms

Mt

pdHs ` Nsdsq `
MTD

Mt

pPTD

ff

, t ă TD , (18)

and pPt is the value of prospective GDP after taxes and tax distortions when the government

defaults at t “ TD:

pPt “ Et

„
ż 8

t

Ms

Mt

pNsds

ȷ

, t ě TD . (19)

Because the value function for the consumer’s problem is a function that is increasing in the

consumer’s P0,
15 the government can design a tax and debt management policy to maximize

the utility functional of the representative consumer by choosing a policy that maximizes P0

subject to the budget constraints (10) and (12) as well as other the other implementability

restrictions it faces. Thus, given the government expenditure process tΓt; t ě 0u and the

14Later we show that the government chooses to set dHt ą 0 is only at t “ 0.
15Assume for example that UpC, tq “ e´ϱt C1´ω

1´ω , where ω ě 0 is a coefficient of relative risk aversion and
ϱ is a discount rate. By adapting the Lagrangian martingale method developed by Cox and Huang (1989)

(also see(Duffie, 2001, ch. 9)), We show that for a given CRRA utility the indirect utility function is pιP0q
1´ω

1´ω ,

where ι “
`

p1 ´ 1
ω qr `

ϱ
ω ` 1

2 p1 ´ 1
ω q 1

ωη
2
˘´ ω

1´ω . Appendix A analyzes a general case where the representative
household is endowed with an initial level of wealth and a share of the aggregate flow payments.
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stochastic discount factor process tMtu, at t “ 0 the government chooses a default time

TD, risk-free debt processes tdHt, Btu, taxes tTt, pTtu, and Shiller’s security holdings tΦtu

to maximize P0 defined in (18) subject to risk-free debt dynamics (9), budget constraints

constraints (10) and (12), and constraints (6) and (15) on tax rates.

3 Optimal Fiscal Policy

We first study the government’s problem in the balanced-budget regime, then in the no-

default regime. Government debt is always zero in the balanced-budget regime, so the value

function pPt “ pP ppYtq depends on only contemporaneous GDP pYt “ αYt and satisfies

r pP ppY q “

´

pY ´ Γ ´ pΘpΓ, pY q

¯

` pg ´ ρησqpY pP 1
ppY q `

σ2
pY 2

2
pP 2

ppY q . (20)

The first term on the right side of (20) is the household’s net income. Since the government

neither borrows nor lends, tax revenues pTt equal government spending Γt. The second and

third terms capture effects of the risk-adjusted drift and volatility of output on pP ppY q. To

ensure that pP ppY q ě 0, we impose:

Assumption 3.1. r ´ δ ` λ ą g, κ ě 1, α ď 1, and 1 ´ γ{α ´ κθpγ{αq ě 0.

Let ppt “ pP ppYtq{pYt. We’ll soon show that ppt is constant for t ě TD.

Its access to the lump sum transfer process tdHtu means that under an optimal govern-

ment policy there is a lower bound Bt on government debt for t ą 0. We’ll soon indicate

how Bt is determined jointly with dH0 and note how it is optimal to set dHt “ 0 whenever

Bt ě Bt. Before doing that, we’ll describe optimal government policy in an interior region

in which Bt ě Bt.

When Bt ď B and t ď TD, the government sets dHt “ 0 and relies exclusively on risk

management and taxation to shape its risk-free debt dynamics. The government chooses tax

revenue T and allocates Φ to Shiller security purchases. The optimal value function P pB, Y q

solves the following Hamilton-Jacobi-Bellman (HJB) equation:

rP pB, Y q “ max
T ,Φ

pY ´ T ´ ΘpT , Y qq ` rpr ´ δqB ` Γ ´ T sPBpB, Y q `
σ2Φ2

2
PBBpB, Y q

` pg ´ ρησqY PY pB, Y q `
σ2Y 2

2
PY Y pB, Y q ´ σ2ΦY PBY pB, Y q . (21)

The convenience yield δ and trades Φ of the Shiller security both influence the risk-free

debt dynamics. The first term on the right side of (21) is the after-tax income flowing to
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the representative household. The second and third terms are drift and diffusion volatility

effects of increasing debt B on P pB, Y q. The fourth and fifth terms express effects of drift

and volatility of GDP on P pB, Y q. The sixth term describes effects of intertemporal hedging

via holdings Φ of the Shiller security and the cross partial PBY on P pB, Y q.

The FOC for tax revenue T equates the marginal cost 1`ΘT pT , Y q of taxing the house-

hold with the marginal benefit ´PBpB, Y q ą 0 of using taxes to reduce debt:

1 ` ΘT pT , Y q “ ´PBpB, Y q . (22)

In the spirit of Merton (1971), purchases Φ of the Shiller security satisfy:

Φ “
Y PBY pB, Y q

PBBpB, Y q
. (23)

We shall soon verify that the FOC (23) implies hedging demand Φt “ ´Bt. The excess

return on the Shiller macro security is dRt´rdt “ λdt`σdZY
t , so we can express the hedging

term contributing to dBt in (9) as:

´Φt pdRt ´ rdtq
loooooooomoooooooon

hedging net exposure

“ λBtdt ` σBtdZY
t . (24)

By incurring hedging cost λBtdt the government acquires exposure σBtdZY
t to risk in in-

crements to Bt. This is optimal because it decreases government debt due when the output

shock dZY
t is negative. Equation (24) describes how hedging cost λBtdt and the exposure

to σBtdZY
t that hedging acquires combine to contribute to debt dynamics in equation (9).

FOCs (22) and (23) let us represent HJB equation (21) as

rP pB, Y q “ max
T ďτY

Y ´ T ´ ΘpT , Y q ` rpr ´ δqB ` Γ ´ T sPBpB, Y q (25)

` rg Y PY pB, Y q `
σ2Y 2

2
PY Y pB, Y q ´

σ2Y 2

2

P 2
BY pB, Y q

PBBpB, Y q
,

where rg “ g ´ ρησ is a risk-adjusted growth rate.16 Because value function P pB, Y q is

16Technically, it is the expected GDP growth rate under the risk-neutral measure rP.
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homogeneous of degree one in B and Y , it follows that17

PY Y pB, Y q “
P 2
BY pB, Y q

PBBpB, Y q
. (26)

By using (26) to simplify (25), we obtain the following first-order partial differential equation:

rP pB, Y q “ max
T ďτY

pY ´ T ´ ΘpT , Y qq ` ppr ´ δqB ` Γ ´ T qPB ` rgY PY . (27)

The first term on the right side of (27) is after tax income N “ Y ´ T ´ ΘpT , Y q of the

representative household. The second term captures effects of the gross government budget

deficit ppr ´ δqB ` Γ ´ T q on the value function P pB, Y q, while the last term describes the

risk-adjusted growth effect of Y . Optimality implies that the sum of these three terms equals

rP pB, Y q. By optimally managing its risk, the government makes its debt be risk free. That

explains why no diffusion terms associated with PBB, PY Y , or PBY appear in (27).

Whenever Bt ă Bt, the government wants to issue a lump-sum amount of debt and to

use it to finance a one-time payout to households. That will happen only at t “ 0. In the

interval 0 ď Bt ă Bt, issuing government debt is inexpensive in a sense related to Blanchard’s

(2019) analysis. When the debt-GDP ratio bt “ Bt{Yt is low enough, it is optimal for the

government instantaneously to capitalize on its convenience yield debt by issuing enough

risk-free debt and using it to finance a one-time payout to the representative household in

the amount

dHt “ max tBt ´ Bt, 0u . (28)

Equation (28) implies the following value-matching condition when Bt ă Bt:

P pBt, Ytq “ P pBt, Ytq ` Bt ´ Bt . (29)

By setting dHt to maximize (29), the government attains a new debt level Bt ě 0 that solves

max
Bě0

P pBt, Ytq ` Bt . (30)

If the optimal Bt is interior (i.e., if Bt ą 0), it satisfies the FOC:

´PBpBt, Ytq “ 1 , (31)

17Using the homogeneity property P pB, Y q “ ppbqY , we obtain PB “ p1pbq, PBB “ p2pbq{Y, PY “

ppbq ´ p1pbqb, PY Y “ p2pbqbB{Y 2 “ p2pbqb2{Y , and PBY “ ´p2pbqb{Y . Therefore, we can verify PBBPY Y “

pp2pbqb{Y q2 “ P 2
BY .

13



so that the government’s optimal level Bt of its initial risk-free debt sets the marginal cost

´PBpBt, Ytq of using future fiscal surpluses to service its debt equal to one, the marginal

benefit of distributing to the representative household all of the proceeds from an immediate

issue of new risk free debt. Otherwise, the government issues no lump-sum debt and Bt “ 0.

Thus, Blanchard’s (2019) “debt is inexpensive” logic is valid in our setting only at t “ 0

and when B0 ą 0 and initial risk-free debt B0 ă B0. But when Bt ě Bt, the government’s

risk-free debt still presents a convenience yield, but bt moves smoothly as the government

takes advantage of its risk-free debt’s convenience yield by gradually increasing both the

risk-free debt-GDP ratio and the tax rate.

Turning now to the government’s debt capacity Bt at t ď TD, let P ˚
t denote the maximal

time-t market value Pt of the tail of the representative household’s’ after-tax income flow

given in (18). The Markovian structure of the Y process lets us write P ˚
t “ P pBt, Ytq. For

the government to choose not to default, it is necessary that

P pBt, Ytq ě pP ppYtq . (32)

When (32) binds, it determines the government’s debt capacity Bt as a function of Yt.

If government debt Bt ever exceeds debt capacity Bt, the government defaults and stays

ever after in the balanced-budget regime.18 The value function P pBt, Ytq at Bt ą Bt satisfies

P pBt, Ytq “ pP ppYtq . (33)

The government’s debt capacity Bt is shaped by 1) its incentive to renege on any larger

risk-free debt; and 2) an exogenous constraint τ ď τ (again see Keynes (1923, pp.56–62) and

Keynes (1931)), leading to two possible situations. In one, (33) holds but τ ď τ is slack at

Bt. Having reached its debt capacity Bt, the government is indifferent between defaulting

and servicing its risk-free debt with future taxes, so the following value-matching condition

prevails:

P pBt, Ytq “ pP ppYtq , (34)

where pYt “ αYt´ and pP ppYtq satisfies (20). Counterparts of this condition play key roles in

models of Worrall (1990), Kehoe and Levine (1993), and Kocherlakota (1996).19 In the other

18We generalize our model to allow for the possibility where the government probabilistically exits the
balanced-budget regime and returns to the no-default regime in Appendix A.

19Our approach is related to those of Bolton, Wang, and Yang (2019) and Rebelo, Wang, and Yang (2022).
They incorporate default options into continuous-time corporate and international finance models.
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situation, constraint τ ď τ binds and therefore

T pBt, Ytq “ τYt . (35)

In this case, (32) is slack at Bt “ Bt.

Thus, the government’s risk-free debt capacity equals the minimum of the distinct Bt’s

that solve (34) and (35). As we shall see, although the government chooses not to enter this

balanced-budget region, its presence helps pin down Bt.

The government’s risk-free debt-output ratio b is its state variable. Let dht “ dHt{Yt

be the scaled lump-sum transfer and bt “ Bt{Yt be the maximum feasible debt-GDP ratio.

Substituting P pB, Y q “ ppbqY into the FOC (22) for tax revenue T , we obtain the following

FOC for τpbq:20

1 ` θ1
pτpbqq “ ´p1

pbq . (36)

Since tax distortion costs are convex (θ2p ¨ q ą 0), we can invert the marginal tax distortion

cost function θ1p ¨ q to obtain an optimal tax rate τpbq. Simplifying FOC (23) for Φt, we

deduce that optimal hedging demand is ϕt “ Φt{Yt “ ϕpbtq “ ´bt.

We turn now to an interior b interval where an optimal fiscal policy sets dht “ 0 because

the marginal benefit of financing an immediate payout to the representative household is

smaller than the marginal cost of servicing risk-free government debt with future taxes and

debt-management. Applying Ito’s Lemma shows that in this region bt evolves as

9bt ” µb
t “ µb

pbtq “ γ ´ τpbtq
looomooon

primary deficit

` pr ´ δq ¨ bt
looooomooooon

interest payment

´ g ¨ bt
loomoon

growth

` λ ¨ bt
loomoon

hedging cost

. (37)

The first term on the right side of (37) is the scaled “primary” deficit γ ´ τpbq. The second

term is the interest cost of servicing debt netting out the convenience yield. The sum of

the first two terms is the scaled fiscal deficit, gross of interest payments. The third term is

a reduction in growth of the debt-GDP ratio contributed by output growth. The last term

captures the hedging cost due to the risk premium payment.21 Although payouts from the

government’s net debt Bt are risk-free, the λbt term appears because the source of funds for

these payouts is a stochastic prospective primary surplus process that must be discounted

at the rate of r ´ δ ` λ in order to account for the government debt’s convenience yield and

for the cost of purchasing insurance by shorting the Shiller security in order to service the

20This condition holds regardless of whether the tax constraint (6) binds or not. The reason is that the
tax constraint may bind only at b. Tax smoothing implies that the FOC (36) holds also at the boundary b.

21Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2019) included this term in a related setting.
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promised risk-free debt repayments.

That the debt GDP ratio b cannot exceed b implies µbpbq ď 0. Furthermore, because

δ ě 0, at the margin the government usually wants to postpone tax distortions, which

implies that µbpbq ě 0. Together these two inequalities imply that the drift of b is zero at b:

µb
pbq “ 0. (38)

Equation (38) is the free-boundary condition that pins down debt capacity Bt in (35).22

Substituting µbpbq “ 0 into (37) yields

b “
τpbq ´ γ

r ´ δ ` λ ´ g
“ min

"

qb ,
τ ´ γ

r ´ δ ` λ ´ g

*

, (39)

whereqb is the unique positive root of ppqbq “ αpp and pp “
1´γ{α´κθpγ{αq

r`λ´g
is the scaled household’s

value in the balanced-budget regime.23 The first equality in (39) asserts that the maximum

sustainable debt-GDP ratio b equals the present value of the primary surplus pτpbq ´ γq

evaluated at the appropriate rate r ´ δ ` λ, because the optimal primary deficit is risky and

bears an insurance premium of λ. The second equality states that debt capacity b equals
qb when the default option constraint (32) binds, or instead τ´γ

r´δ`λ´g
, when the tax-rate

constraint is tighter and binds at debt capacity.

We can verify that the lump-sum debt issuance boundary b solves

max
bě0

ppbq ` b . (40)

If the optimal b is interior (i.e., b ą 0), the marginal cost of debt issuance must be zero at b

so that p1pbq “ ´1. Otherwise, since p1pbq ă ´1, the government issues no lumpy debt and

b “ 0. Thus, an optimal lump-sum transfer policy satisfies

dht “ max tb ´ bt, 0u . (41)

Different economic forces shape b and b. The lower boundary b involves an instantaneous

lump-sum transfer to the representative household financed by a lump-sum debt issue and

is characterized by smooth-pasting and super-contact conditions. The upper boundary b is

22The zero-drift condition at b is an equilibrium argument based on local changes. The Gordon growth
model at the steady state is a forward-looking present value calculation argument for the determination of
b. They are equivalent. A non-zero drift of b at b would be inconsistent with the notion of debt capacity.

23Simplifying ppbq “ αpp at b “ b, we obtain 1´ pr ´ δ ` λ´ gqb´ θppr ´ δ ` λ´ gqb` γq “ α´ακθpγ{αq.
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the maximum sustainable level of debt per unit of GDP and can be approached only from

the left.

If government debt were zero at t “ 0 and if b ą 0, a government would immediately issue

debt and use the proceeds to finance a lump-sum payment dH0 “ bY0 to the representative

household, thereby resetting b to equal b; thereafter bt would stay inside rb, bs, gradually

approaching until b from below. As we show later, the optimal bt process has a transition

path towards its equilibrium debt capacity, if and only if the government debt enjoys a

convenience yield. Moreover, the optimal initial debt-GDP ratio, b˚
0 , is strictly positive only

if the convenience yield is so large that the government is willing to make a lump-sum debt

issuance at t “ 0 to the households and then bear the consequence of incurring higher tax

distortion costs over time.24

The following proposition pulls things together and characterizes an optimal tax and debt

plan for our ABCD model.

Theorem 3.2. Under Condition 3.1, the scaled value function ppbq in the no-default regime

satisfies the first-order nonlinear differential equation:

rr ` λ ´ gs ppbq “ 1 ´ τpbq ´ θpτpbqq ` rpr ´ δ ` λ ´ gqb ` γ ´ τpbqs p1
pbq , (42)

for b P r0, bs where b is the government’s scaled debt capacity as determined by (39). The

optimal lumpy debt issue policy is described by b in (40) and dht satisfies (41). The optimal

tax rate policy τpbq satisfies (36), optimal (scaled) holdings of the Shiller security is ϕpbq “

´b, and the tbtu process satisfies differential equation(37).

Let Vt denote the sum of the household’s value and creditors’ value: Vt “ Pt ` Bt.

Next, we use corollaries to summarize the results for the three important special cases of our

ABCD model: A, AB, and ABC.

Corollary 3.3. (Ricardian Equivalence: Model A) Under the r`λ ą g condition, the

scaled total value, vt “ Vt{Yt, is constant at all t and equals:

vFB
“

1 ´ γ

r ` λ ´ g
. (43)

24Only at time 0 may the government be in either the lump-sum debt issuance and payout region or the
balanced-budget region. If starting in the lump-sum debt issuance and payout region where b ă b, the
government increases its debt so that its b instantly equals b after time 0 and then the bt process is dictated
by the law of motion in the no-default regime. If starting in the balanced-budget regime where b ą b, the
government immediately defaults and sets the tax rate to its spending-output ratio γ so that its primary
deficit is zero at all time.
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Since tax and debt policies are irrelevant under Ricardian equivalence, the total value

Vt equals the net present value of p1 ´ γqYt, the country’s GDP netting out the government

spending and the proper discount rate for the stream of p1 ´ γqYt is r ` λ, where λ is the

risk premium of Shiller’s GDP-indexed macro security. The superscript FB refers to the

solution of Model A under Ricardian equivalence.

Corollary 3.4. (Stochastic Barro (1979): Model AB.) Under Condition 3.1 and with

no convenience yield (δ “ 0), the equilibrium debt capacity b in the AB model is given by

b “
τ ´ γ

r ` λ ´ g
. (44)

When b0 P r0, bs, bt “ b0, τpbtq “ τpb0q “ pr ` λ ´ gqb0 ` γ ,

ppbtq “
1 ´ τpb0q ´ θpτpb0qq

r ` λ ´ g
, and vt “

1 ´ γ ´ θpτpb0qq

r ` λ ´ g
. (45)

Compared with the A model, we uniquely pin down the fiscal policy in the AB model.

First, bt “ b0 and the tax rate is constant for all t. The government does not exhaust its

debt capacity (provided that b0 ă b). The primary surplus τpbtq ´ γ “ pr ` λ ´ gqb0 ą 0 if

and only if b0 ą 0. The optimal tax rate is independent of the deadweight cost parameter κ

because the government has to repay debt eventually and the (scaled) tax deadweight loss

function θp ¨ q is invariant over time. So long as the optimal tax rate is positive, the marginal

cost of servicing debt exceeds one, ´p1pbq ą 1, as taxes are distortionary.25 Second, complete

tax smoothing implies that the scaled total value vt is constant over time and lower than

vFB by θpτpb0qq{pr ` λ ´ gq due to tax-induced deadweight losses. Finally, if the initial debt

b0 is endogenously chosen, the optimal level would be b0 “ 0 and τt “ γ in the AB model.

Next, we introduce our limited-commitment assumption into the AB model, we obtain

the following new result relative to the AB model.

Corollary 3.5. (Stochastic Barro (1979) with Limited Commitment: Model ABC.)

When the limited-commitment constraint (32) is tighter than the Keynes tax constraint (6),

the equilibrium debt capacity b equals qb, where qb is the unique positive root of

1 ´ pr ` λ ´ gqb ´ θppr ` λ ´ gqb ` γq “ α ´ ακθpγ{αq . (46)

25Consider the case the government savings is positive and moreover so large that it can fully cover all
its future spending, in that ´b0 ą γ{pr ` λ ´ gq, then the government does not need to rely on taxes
to pay for its spending. In this case, it optimally sets τ “ 0 and distributes the excess savings (i.e., if
p´B0 ´ Γ0{pr ` λ ´ gqq ą 0), at t “ 0 to the households.
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All other predictions are the same as in the AB model.

Compared with the AB model, the government may have a tighter credit constraint due

to the government’s temptation to default. Quantitatively, the limited-commitment induced

debt capacity is much tighter than the Keynes tax constraint as we show in our quantitative

illustration in Section 4.

By optimally managing its risk exposures and taxing households, the government in

model ABC makes its debt level, primary deficit, and the household’s consumption evolve

via GBM processes with the same drift g and volatility σ as the output process:

dBt

Bt

“
dTt

Tt

“
dpTt ´ Γtq

pTt ´ Γtq
“
dCt

Ct

“
dYt
Yt

“ gdt ` σdZY
t . (47)

This behavior is in line with stochastic balanced-growth asset-pricing and business-cycle

models as in Lucas (1978, 1987). Also note that debt is a b0pr`λ´gq share of an (unlevered)

“equity” claim (the Shiller macro security) on the country’s output. That is, public debt in

effect is the country’s equity.26 Next, we turn to quantitative illustrations to bring out the

role of the government debt’s convenience yield in our ABCD model.

4 Quantitative Illustrations

To understand the forces that contribute to outcomes in our ABCD model, we begin by

presenting the reasoning that shaped our choices of plausible values of free parameters. We

follow Barro (1979) by assuming a quadratic deadweight loss function:

θpτq “
φ

2
τ 2 , (48)

where the parameter φ ą 0 measures the deadweight cost caused by distortionary taxes.

With this specification, we can obtain a formula for debt capacity.

Lemma 4.1. Under Assumption 3.1 and when the deadweight loss function is quadratic so

that θpτq “ φτ 2{2 as given in (48), the equilibrium debt capacity b is given in (39). If the

limited-commitment constraint binds, b “ qb “

´?
1`2φp1´α`γ`φκγ2{α{2q´1

¯

{φ´γ

r´δ`λ´g
; so b rises with

increases in expected growth g, convenience yield δ, default costs κ, and output losses 1 ´ α;

it falls with increases in tax distortion costs φ, the risk free rate r, and the Shiller macro

security’s risk premium λ.

26This result no longer holds in our ABCD model. Because its debt enjoys a convenience yield, a
government optimally increase its debt-GDP ratio bt and its tax rate over time.
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Table 1 summarizes our baseline parameter values. We set the mean of output growth to

g “ 2% per annum, the annual risk-free rate r to 1.5%, the risk premium λ to 3.5%, and

the government spending/output ratio γ to 20%, in line with the estimates in Jiang, Lustig,

Van Nieuwerburgh, and Xiaolan (2019, 2020).27 Our choice of a 3.5% annual risk premium

aligns with an equilibrium consumption CAPM analysis.28 We set the upper bound τ for a

politically feasible tax rate at 50%.29 By comparison, Denmark has the highest average tax-

output ratio: 46.3% and the average tax rate in OECD countries is 33.8%. We set output

recovery α in the balanced-budget regime to 0.93 in line with an estimate in Hébert and

Schreger (2017) and a calculation in Rebelo, Wang, and Yang (2022).

Table 1: Parameter Values for Model ABCD. Where applicable, parameter values are
continuously compounded and annualized.

Parameter Symbol Value
A. Calibration inputs
risk-free rate r 1.5%
risk premium λ 3.5%
average output growth rate g 2%
government spending to output ratio γ 20%
output recovery in the balanced-budget regime α 0.93
B. Calibration outputs
convenience yield δ 0.13%
default deadweight loss κ 1.3
parameter in the quadratic (tax deadweight) loss function φ 3.9

We inferred Ω “ tδ, κ, φu from the US data over the 1980-2020 period (see Appendix B)

and obtained 1.) a convenience yield of δ “ 0.13% per annum, which is on the conservative

side of the estimates in the literature (Krishnamurthy and Vissing-Jorgensen, 2012); 2.) a

default deadweight loss of κ “ 1.3 in the balanced-budget regime; and 3.) a tax distortion

parameter of φ “ 3.9.

Figure 1 portrays how outcomes in the interior region of the state space b P r0,`8q

vary as we include or withhold components of our ABCD model. The dotted black lines

show Ricardian outcomes that prevail in our component-A-only model. Here, the total

scaled value is constant: p1 ´ γq{pr ` λ ´ gq “ 26.7 and the tax rate and the dynamics

27We do not need to choose the value for output growth volatility σ once we calibrate risk premium λ.
28In a Lucas (1978) equilibrium asset pricing model in which the source of aggregate risk is the world

stock market with a 6% annual market risk premium and the ‘beta’ of a financial claim (Shiller’s security)
on the US aggregate output proposed by Shiller (1994) around 0.6, which seems plausible in light of sizes of
the US stock market and the US economy relative to the world’s, we obtain a risk premium of λ “ 3.5% for
the financial claim on US output.

29Keynes (1931) guessed .25 for this parameter for France in 1926.
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of bt are indeterminate (and so absent from panels C and D). When we add the model B

tax distortion component to get a Stochastic Barro model AB, the government optimally

smooths tax distortions by hedging shocks to bt with trades of the Shiller security and

setting the drift of bt to zero. That policy delivers constant debt-GDP ratios and tax rates,

so bt “ b0 and τpbtq “ τpb0q “ γ ` pr ` λ ´ gqb0. A total welfare efficiency loss, measured

by the wedge between the solid blue line (the solution for the stochastic Barro model AB)

and the horizontal Ricardian model A line in panel A, increases with b. The maximum

sustainable level of b is determined by the government’s ability to tax households, so that

b “
τ´γ

r`λ´g
“ 0.5´0.2

1.5%`3.5%´2%
“ 10, because we have assumed that the tax rate cannot exceed

τpbq “ τ “ 50%. In model AB, the marginal deadweight cost of debt ´v1pbtq “ ´v1pb0q “

θ1pτ0q “ φpγ` pr`λ´ gqb0q is constant over time, increases linearly with b0 and reaches the

maximal value of ´v1pbq “ 1.95 if b0 “ b “ 10.

Figure 1: Outcomes for a Ricardian model (A), a stochastic Barro model (AB), a credit
limit (ABC) model with no convenience yield, and a credit limit (ABCD) model with a
convenience yield δ “ 0.13% . In the stochastic Barro (AB) model, debt capacity is b “ 10
with τ “ 0.5. With credit limits, b “ 1.79 when δ “ 0 in ABC model and b “ 1.87 when
δ “ 0.13% in ABCD model. Under Ricardian model (A) vpbq “ vFB “ 26.7 and v1pbq “ 0 .
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When we add the limited credit component C to obtain model ABC, maximum sus-

tainable debt-to-GDP ratio b̄ drops to a much lower value of b “ 1.79 from b “ 10 in the

stochastic Barro model AB.30 The 82% reduction in debt capacity comes from giving the

government an option to default on its debt. The credit constraint binds at the debt capacity

b in the ABC model, so that at b the government is indifferent between defaulting and not

defaulting: ppbq “ αpp. It follows that

1 ´ τpbq ´ θpτpbqq “ αp1 ´ γ{α ´ κθpγ{αqq, (49)

which pins down a maximal tax rate τpbq “ 25.4%, which depends on the default cost, e.g.,

output loss 1 ´ α and tax distortions that are represented with κ and the θp ¨ q function.

Debt capacity solves b “
τpbq´γ
r`λ´g

“ 25.4%´20%
1.5%`3.5%´2%

“ 1.79.

Adding the convenience yield component D gives our ABCD model. Here both bt and

τt are time varying. The existence of the convenience yield of its risk-free debt lets the

government use a lower tax rate τpbq than prevails in the ABC model (see panel C). Now

the government issues more debt than what was needed for the pure tax-smoothing purpose

present in the ABC model. Drift t9btu starts at its highest level 9b0, decreases with t and

eventually declines to zero, as debt capacity b is an absorbing state (see panel D). Introducing

a convenience yield increases b to 1.87 in ABCD model from 1.79 in ABC model. This

follows from a formula for debt capacity:

b “
τpbq ´ γ

r ´ δ ` λ ´ g
(50)

and from the optimal tax rate at debt capacity, τp ¨ q when b “ b in model ABCD equaling

its value in model ABC: τpbq “ 25.4%, an outcome that prevails even though the values of

b in the two models are different.

We can characterize optimal fiscal policy in model ABCD by using the FOC (36) for

τpbq and the first-order nonlinear ODE (42) for ppbq. These present an initial-value problem

with the boundary conditions: τpbq given in (49) and ppbq “
1´τpbq´θpτpbqq

r´δ`λ´g
when b “ b at b

given in (50).

The government’s capacity debt-GDP ratio b is reached in finite time in model ABCD

but not in model and ABC for b0 ă b. The debt-output ratio bt evolves deterministically at

30For all levels of b0 up to b “ 1.79, τpbtq “ τpb0q, bt “ b0, and moreover, the solution for our ABC is the
same as in our Stochastic Barro model (AB) with commitment. This is why the cyan-colored lines and the
red lines overlap with each other in Figure 1.
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Figure 2: Transition of optimal tax rates τt and debt-GDP dynamics bt. The initial
level of b is set at b0 “ 0. All other parameter values are reported in Table 1.
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the rate of 9bt “ µbpbtq described by (37). For a given b0, the time it takes to reach its debt

capacity b is
ż b

b0

dbt
9bt

“

ż b

b0

1

pr ´ δ ` λ ´ gqbt ` γ ´ τpbtq
dbt. (51)

Starting from b0 “ 0, panels A and B of Figure 2 plot how the tax rate τt, debt-GDP ratio

bt, and drift 9bt evolve. In models AB and ABC, τt “ γ “ 20% and bt “ 0 for all t ě 0.

In the ABCD model, the government optimally increases its borrowing in order to enjoy

the convenience yield (δ “ 0.13%), lowers its tax rate to τ0 “ 18% from 20%, smoothly

increases its tax rate to 20% after 35 years, and then continues to increase its tax rate until

it reaches its debt capacity b “ 1.87 in 120 years and permanently taxes households at rate

τpbq “ 25.4%.31 Drift of the debt-GDP ratio starts high at 9b0 “ 0.02 and gradually decreases

it over time.

Figure 3 shows how the time to reach debt capacity varies with the convenience yield

δ, interest rate r, risk premium λ, and GDP growth g. Panel A shows that as convenience

yield δ increases, the time it takes exhaust debt capacity decreases. This happens because

the government borrows faster to take advantage of its ability to issue risk-free debt cheaply.

Effects on time to reach debt capacity are large even for a small increase of convenience yield

δ. If δ “ 0.13%, then starting from debt-GDP ratio of b “ 126.1%, it takes about 54 years to

reach debt capacity (the pink triangle for our baseline model). It takes less than 27 years to

reach the debt limit if δ were instead to be 0.73%, an estimate reported in Krishnamurthy

31Mian, Straub, and Sufi (2022) also predict a debt capacity around 200%, although their notion of debt
capacity differs from ours. The risk premium on the Shiller macro security affects debt capacity in our model,
but it is absent from theirs. Consequently, a zero primary deficit characterizes an equilibrium debt capacity
in their model, but not in ours.
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and Vissing-Jorgensen (2012).

Figure 3: Time to Reach Debt Capacity as Function of Convenience Yield δ,
Interest Rate r, Risk Premium λ, and GDP Growth Rate g. For all panels, b0 “

126.1%. All other parameter values are reported in Table 1.
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Panel B plots time it takes to reach its debt capacity as a function of the world risk-free

rate r, holding the convenience yield fixed at δ “ 0.13%. When it faces a lower interest

rate, the government can finance its debt repayments with a lower tax rate τpbq, so debt

capacity b is higher. The lower is r, the more valuable is a 13 basis-point interest cost

reduction contributed by that convenience yield. So the government borrows more, causing

its debt-GDP ratio to drift upward at a faster rate 9bt. Overall, it still takes longer for the

government to exhaust its debt capacity when the interest rate is lower (panel B). Starting

from the current US debt level of b “ 126.1%, it takes about 79 years to reach the debt limit

if r “ 0.75%, but takes about 54 years to reach the debt limit if r “ 1.5% (the triangle for

our baseline case). This pattern aligns with reasoning by Blanchard (2019) and Furman and

Summers (2020).

Panel C of Figure 3 plots time to reach debt capacity b as we vary the risk premium λ.
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A higher risk premium λ makes risk management more costly, lowering debt capacity b, and

requiring a higher tax rate τpbq to service debt. In response, the government lowering the

drift of its debt-GDP ratio. The government reaches its debt capacity quicker the higher

its risk premium λ (panel C). Across economies, variations in the risk premium have large

consequences. Starting from b “ 126.1%, it would take 21 years to reach debt capacity if we

were to increase λ to 4.5%.

GDP growth has big effects on borrowing capacity. Panel D plots times to reach debt

capacity as we vary the GDP growth rate g. A higher GDP growth rate g increases a govern-

ment’s ability to service its debt increases its debt capacity b. In response, the government

increases the drift of its debt-GDP ratio bt. The government reaches its debt capacity later

when its GDP growth g is higher. Starting from b “ 126.1%, the time it takes to reach

borrowing capacity increases 90 years when g permanently increases to 3% from g “ 2%.

Across all of the parameter combinations portrayed in the four panels of Figure 3, τpbq “

25.4% even though b varies substantially. Since the primary surplus ratio τpbq ´ γ “ 5.4%

at debt capacity b, times to reach debt capacity depend sensitively on the convenience yield

δ, the risk-free rate r, the risk premium λ, and the GDP growth rate g. Notice how these

four parameters jointly determine the denominator of debt-capacity formula: b “
τpbq´γ

r´δ`λ´g
.

5 Stochastic Interest Rate or Spending Ratio

By specifying the interest rate and the government spending ratio as fixed parameters, in

early sections we characterized a government’s value function and optimal fiscal and debt-

management policies with a single ODE that helped us isolate and understand our baseline

model’s mechanics. In this section, we study how stochastic interest rates and/or government

spending GDP ratios affect optimal fiscal plans. In particular, we use a Markov state variable

st to govern stochastic variations of the interest rate rt and the government spending ratio

γt. We allow the government to hedge those risks.

The state st can take one of two possible values, tL,Hu. The economy starts with s0 “ L
and moves from L to the absorbing state H at a constant rate of ξ ą 0 per unit of time. We

turn on either interest rate risk or spending-ratio risk by setting either rt “ rst or γt “ γst .

We can represent output shock dZY
t over dt under physical measure P as dZY

t “
a

1 ´ ρ2 dZh
t `

ρ dZm
t , where standard Brownian motion Zh

t represents the idiosyncratic shock, standard

Brownian motion Zm
t represents the systemic shock, and ρ is the constant correlation coef-

ficient between output shock dZY
t and aggregate (market) shock dZm

t .
32

32We also refer to the systematic shock dZm
t as the market shock. For mnemonic purposes, we use
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At time t´, the government can hedge state-transition risk in the following way. Over a

small time interval dt, the government pays a unit insurance premium rξdt to a counterparty

in exchange for a unit payment that is made at time t if and only if the state transition

occurs so that st ‰ st´. This contract earns the counterparty a risk premium.33

Let Ψt´ denote the units of this state-transition hedging contract that the government

purchases at t´ and let ψt´ “ Ψt´{Yt´. Before the state transitions to H, the government’s

debt evolves according to

dBt “ pprt´ ´ δqBt´ ` Γt´ ´ Tt´q dt ` dHt

´ Φh
t´

a

1 ´ ρ2σdZh
t ´ Φm

t´ρσ pηdt ` dZm
t q ´ rξΨt´dt ` Ψt´dNt , (52)

where ´Φh
t´

a

1 ´ ρ2σ and ´Φm
t´ρσ are holdings of the idiosyncratic-risk hedging asset and

the systematic (diffusion) risk hedging asset, respectively, rξΨt´ is the insurance premium

payment for the state-transition, and dNt “ 1 if and only if the state tstu moves from L
to H. By setting Ψt´ ă 0, the government hedges against stochastic transition of st by the

counterparty at the rate of ´rξΨt´ ą 0. While increasing the government’s risk-free debt

before the state transitions, this hedging payment lowers the government’s risk-free debt if

the state transitions to H. The remaining terms in (52) are the same as those in (9) for our

baseline model.

The value function P pBt, Yt;Lq in state L satisfies the HJB equation:

rLP pB, Y ;Lq “ max
T ďτY,Φh,Φm,Ψ

Y ´ T ´ ΘpT , Y q `
“ `

rL ´ δ
˘

B ` γLY ´ T ´ rξΨ
‰

PBpB, Y ;Lq

`
σ2

`

p1 ´ ρ2qpΦhq2 ` ρ2pΦmq2
˘

2
PBBpB, Y ;Lq ` rgY PY pB, Y ;Lq

`
σ2Y 2

2
PY Y pB, Y ;Lq ´ σ2

`

p1 ´ ρ2qΦh
` ρ2Φm

˘

Y PBY pB, Y ;Lq

` rξ rP pB ` Ψ, Y ;Hq ´ P pB, Y ;Lqs , (53)

where rg “ g ´ λ is the risk-adjusted growth rate. Because H is an absorbing state,

the value function P pB, Y ;Hq satisfies HJB equation (21). In Appendix D, we calculate

P pB, Y ;Hq for state H and value functions pP pY ;Hq and pP pY ;Lq in the balanced-budget

regime. Exploiting homogeneity again, it is enough to compute ppbt; stq “ P pBt, Yt; stq{Yt

superscript m to refer to the market shock and the superscript h to refer to the hedgeable idiosyncratic
shock.

33The ratio rξ{ξ captures the risk premium associated with the state st transition (see, e.g., Duffie (2001),
Chen (2010), and Bolton, Chen, and Wang (2013) for details.)
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and pppstq “ pP pYt; stq{Yt.

For st “ L,H, let τpbt; stq, ϕ
hpbt; stq, ϕ

mpbt; stq, bpstq, and bpstq denote the optimal tax

rate, optimal idosyncratic risk hedging demand, optimal systematic risk hedging demand,

debt capacity, and the scaled lumpy debt issuance boundary, respectively. FOCs for taxes

τpb; sq and diffusion hedging demand ϕpb; sq are

1 ` θ1
pτpb; sqq “ p1

pb; sq and ϕh
pb; sq “ ϕm

pb; sq “ ´b (54)

in state s “ L,H. We focus on the FOC for the jump hedging demand ψpbq in state L, a new

part of the model relative to our baseline fixed parameter model. When the post-transition

level of the debt-GDP ratio b`ψpbq P r0, bpHqs so that b`ψpbq can be said to be admissible,

the government chooses ψpbq to keep its marginal cost ´p1pb; sq of servicing debt constant

when the state s transitions from L to H:

p1
pb;Lq “ p1

pb ` ψpbq;Hq . (55)

Condition (55) uniquely pins down ψpbq, the scaled demand for hedging against state tran-

sitions. Otherwise, the post-st-transition level of b is at the corner of the admissible set so

that either b ` ψpbq “ bpHq or b ` ψpbq “ 0 holds, which we discuss below.

The debt-GDP ratio limit bpLq for state L satisfies

bpLq “
τpbpLq;Lq ´ γL ` rξψpbpLqq

rL ´ δ ` λ ´ g
“ min

#

qbpLq ,
τ ´ γL ` rξψpbpLqq

rL ´ δ ` λ ´ g

+

, (56)

where qbpLq is the unique positive root of ppqbpLqq “ αpppLq and pppLq is the scaled fiscal

planner’s value in the balanced-budget regime for state L given in Appendix D.

The following proposition describes optimal fiscal policy.34

Proposition 5.1. Under Assumption 3.1 for s “ L,H, the scaled value function ppb;Lq in

state s “ L, satisfies the following nonlinear differential equation:

“

rL ` λ ´ g
‰

ppb;Lq “
“

prL ´ δ ` λ ´ gqb `
`

γL ´ τpb;Lq
˘

´ rξψpbq
‰

p1
pb;Lq

` 1 ´ τpb;Lq ´ θpτpb;Lqq ` rξrppb ` ψpbq;Hq ´ ppb;Lqs (57)

for b P r0, bpLqs where bpLq is debt capacity determined by (56). The optimal tax rate

34The scaled value ppb;Hq, debt capacity bpHq, debt issuance boundary bpHq, and optimal tax rate policy
τpb;Hq are the same as in our baseline model as H is an absorbing state.
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policy τpb;Lq and risk hedging demand ϕhpb;Lq and ϕmpb;Lq satisfy (54). The lumpy debt

issuance boundary bpLq is argmaxbě0 ppb,Lq ` b and the optimal scaled lumpy debt issuance

is dht “ maxtbpLq ´ bt, 0u.

Figure 4: Stochastic Interest Rate. Interest rate rt stochastically increases from rL “

1.5% to rH “ 2.5%. Other parameters are from Table 1.
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To illustrate effects of a stochastic interest rate or spending ratio on the government’s

optimal fiscal plans, we set the risk-adjusted state transition rate from L to H, rξ, to 2%

for per year. First, consider a situation in which the interest rate rt stochastically increases

from rL “ 1.5% to rH “ 2.5%. Figure 4 plots an optimal fiscal plan. Anticipating that

the interest rate will probabilistically increase, the government buys insurance and pays a

time-varying insurance premium (given in panel C) as a function of bt´. When the interest

rate jumps to rH “ 2.5% at time t, the government receives a lump-sum transfer ψpbt´qYt´

from its insurance counterparty, which lowers its debt balance in state H (see the arrow in

panel A). This state-contingent hedging contract optimally keeps its tax rate τpbq and the

marginal cost of servicing debt ´p1pbq constant in the face of the interest rate shock (see the

horizontal arrows in panels B and D.) The upward interest-rate shock lowers debt capacity
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in the L state (where rt “ rL “ 1.5%) to bpLq “ 1.67 from b “ 1.87, debt capacity in the

constant-interest-rate setting where rt “ rL “ 1.5% at all t.

Figure 5: Stochastic Government Spending. The spending ratio γt stochastically
increases from γL “ 20% to γH “ 25%. All other parameters are given in Table 1.

Unlike outcomes in our ABCD diffusion model, an optimal tax rate can be discontinuous

even when aggregate st state transition shocks are hedgeable. The stochastic-st version of

our model thus modifies Barro’s tax smoothing result substantially. Figure 5 illustrates this

for a setting in which the government spending ratio stochastically increases from γL “ 20%

to γH “ 25%. The figure shows the optimal fiscal plan.35 If bt ě 1.01, the government is

able to keep its tax rate unchanged in response to its government spending shock γt. Thus,

when bt “ 1.01. the optimal tax rate remains unchanged from its pre-jump level of 22.8%

(see the horizontal dashed line between the black square and the pink triangle in panel D.)

However, if bt ă 1, the government no longer keeps its tax rate unchanged because when the

government’s spending ratio γt jumps to γH “ 25%, its debt capacity and the benefits/costs

35This new (jumpy tax rate) prediction is also present in the stochastic interest-rate model analyzed above
(see Figure 4), but it is less visible and quantitatively less important.
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of hedging st shock jump discretely, making it too costly to insulate the marginal cost ´p1pbq

of servicing debt from the γt shock. Thus, when bt “ 0.25, it is optimal to increase the tax

rate to 22.8% (see the square on the vertical axis in panel D) from 19.9% in response to the

increase of γt. Anticipating prospective higher government spendings, it is optimal for the

government to manage its γt shock before it arrives and raise the tax rate immediately when

the shock arrives.

6 GDP Jumps and Defaultable Government Debt

We extend the ABCD model in Section 2 by adding downward discontinuous (jump) GDP

shocks that cannot be hedged. This creates circumstances in which the government chooses

to default and brings our tractable continuous-time formulation even closer to international

macro papers such as Eaton and Gersovitz (1981), Aguiar and Gopinath (2006), and Arellano

(2008) in which governments default, a departure from limited-commitment models with a

complete set of state-contingent securities, e.g., Kehoe and Levine (1993) and Kocherlakota

(1996).

6.1 The Setting

GDP tYt; t ě 0u now evolves according to a geometric jump-diffusion process that is subject

both to idiosyncratic shocks Zh
t that bear no risk premium and to systematic shocks Zm

t

that do bear a risk premium:

dYt
Yt

“ gdt `

´

a

1 ´ ρ2 σdZh
t ` ρσdZm

t

¯

´ p1 ´ ZqdJt . (58)

Here Jt is a pure jump process with a constant arrival rate ζ.36 If no jump occurs at date t

(dJt “ 0), Yt “ Yt´, where Yt´ ” limsÒt Ys denotes the left limit of the output. If a jump does

arrive at date t (dJt “ 1), GDP changes from Yt´ to Yt “ ZYt´, where Z P r0, 1s is a random

variable with cumulative distribution function Qp ¨ q. As in the rare-disaster literature (e.g.,

Barro (2006), Gabaix (2012), Pindyck and Wang (2013), and Wachter (2013)), we assume

that recovery fraction Z is governed by a power law (Gabaix, 2009) so that:

QpZq “ Zβ , 0 ď Z ď 1 . (59)

36To capture a small open economy, we assume that GDP jump risk is idiosyncratic, unhedgeable and
thus bears no risk premium.
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The smaller is β, the more fat-tailed is the distribution of p1´Zq. Although diffusion shocks

are hedgeable, jump shocks are not.

In the no-default regime, the government debt Bt evolves as

dBt “ rpr ` πt´ ´ δqBt´ ` pΓt´ ´ Tt´qs dt ` dHt ´ Φh
t´

a

1 ´ ρ2σdZh
t ´ Φm

t´ρσ pηdt ` dZm
t q ,

(60)

where πt´ is the equilibrium credit spread and ´Φh
t´

a

1 ´ ρ2σ and ´Φm
t´ρσ are holdings of

the idiosyncratic risk hedging asset and the systematic risk hedging asset, respectively. As

in discrete-time sovereign-debt models, e.g., Eaton and Gersovitz (1981), debt is priced in a

symmetric Markov-perfect equilibrium. In Appendix E, we show that the equilibrium credit

spread πt´ equals πpbt´q, where

πpbt´q “ ζQpbt´{bq , (61)

ζ is the jump arrival rate,and the equilibrium debt capacity b is described by equation (66)

to be discussed below. Equation (61) ties the equilibrium credit spread to the country’s

default strategy. For a unit of debt per unit of time, the left side of equation (61) is the

compensation for bearing credit risk and the right side is the expected loss given default. The

government defaults when bt ą b. Because downward GDP jump shocks are uninsurable,

the government sometimes chooses to default.

The household’s value P pB, Y q in the no-default regime satisfies the HJB equation:

rP pB, Y q “ max
T ,Φh,Φm

pY ´ T ´ ΘpT , Y qq ` rpr ` π ´ δqB ` Γ ´ T sPBpB, Y q

`
σ2

`

p1 ´ ρ2qpΦhq2 ` ρ2pΦmq2
˘

2
PBBpB, Y q ` rg Y PY pB, Y q `

σ2Y 2

2
PY Y pB, Y q

´ σ2
`

p1 ´ ρ2qΦh
` ρ2Φm

˘

Y PBY pB, Y q ` ζE rP pB,ZY q ´ P pB, Y qs , (62)

where rg “ g´λ. Appendix E presents the household’s value function pP pY q in the balanced-

budget regime and shows that pp “ pP pY q{Y is a constant described by equation (A-34).

Applying the Ito’s Lemma and the optimal hedging policy ϕhpbq “ ϕmpbq “ ´b lets us

show that the debt-output ratio tbtu evolves according to

dbt “ rpr ` πpbt´q ´ δ ` λ ´ gqbt´ ` γ ´ τpbt´qs dt `
`

Z´1
´ 1

˘

bt´dJt . (63)
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Let b̆ denote the root of:

1 ` θ1
ppr ` πpb̆q ´ δ ` λ ´ gqb̆ ` γq “ ´p1

pb̆q . (64)

In the region where b P pb̆, bs, the government optimally sets its tax rate according to:

τpbq “ pr ` πpbq ´ δ ` λ ´ gqb ` γ . (65)

This policy ensures that the drift of bt is zero in the absence of jumps. If a jump arrives at

t, the debt-output ratio jumps from bt´ to bt “ bt´{Z. If bt ă b, the tax rate jumps to τpbtq

given by (65) and the government then sets bs “ bt for s ě t until another jump arrives.

However, if a jump arrives that causes bt “ bt´{Z to exceed b, the government defaults.

In Appendix E, we show that b satisfies

b “
τpbq ´ γ

r ` ζ ´ δ ` λ ´ g
“ min

"

qb,
τ ´ γ

r ` ζ ´ δ ` λ ´ g

*

, (66)

where qb is the unique positive root of ppqbq “ αpp. In our Section 2 ABCD model in which

jumps are not present, the drift of bt (absent jumps) equals zero only at debt capacity b.

Now with jump shocks present, the drift of bt equals zero for a range of bt values.

The equilibrium debt capacity b in our jump-diffusion model is lower than that in our

baseline ABCD model and also the equilibrium credit spread is higher due to the jump risk.

Proposition 6.1. Under conditions r ´ δ ` λ ą g ´ ζp1 ´ EpZqq, κ ě 1, α ď 1, and

1 ´ γ{α ´ κθpγ{αq ě 0, the scaled value function ppbq in the no-default regime satisfies the

nonlinear differential equation:

rr ` λ ´ gs ppbq “ 1 ´ τpbq ´ θpτpbqq ` rpr ` πpbq ´ δ ` λ ´ gqb ` γ ´ τpbqs p1
pbq

`ζE rZppb{Zq ´ ppbqs , (67)

for b P r0, b s, where b is debt capacity determined by (66).The lump-sum debt issue boundary

b is described by (40), and the optimal lump-sum transfer policy dht is given by (41). The

optimal tax rate policy τpbq is described by (36) for b ă b ă b̆ and (65) for b̆ ď b ď b, where

b̆ solves (64). The debt-output ratio tbtu process is described by (63).
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6.2 Quantitative Illustration

To provide a quantitative illustration, we use the parameter values from our quantitative

illustration of the baseline ABCD model in Section 4. The additional parameters for the

jump-diffusion output process (58), we follow Rebelo, Wang, and Yang (2022) by setting the

power-law parameter pβq to 6.3 and the jump arrival rate pζq to 0.073 per annum. To capture

a small open economy, we assume that the jump risk is idiosyncratic and hence carries no

risk premium.

Figure 6: Optimal fiscal plan when output is subject to unhedgeable downward
jump shocks and government debt is defaultable.
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Figure 6 plots value and policy functions. Panels A and B show that the value function

is decreasing and concave in b. Introducing unhedgeable jump shocks substantially lowers

debt capacity to b “ 0.53 from 1.87 in our baseline model. When the debt balance is low,

e.g., when b ď b̆ “ 0.35, the government optimally increases its tax rates smoothly over time

in order to take advantage of its convenience yield. This is the tax-smoothing region.

When the debt-GDP ratio b is larger than the debt capacity b “ 0.53, the government

defaults and enters the balanced-budget regime. The b ě b “ 0.53 is the default region.
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For bt that lies between the tax-smoothing region and the default region, i.e., if b in the

“cushion” region where b P rb̆, bs “ r0.35, 0.53s, the government keeps its bt constant absent

jumps in order to lower its probability of defaulting subsequently (see Panel D). However,

when a jump arrives, the debt-GDP ratio increases to bt{Z from bt. Depending on the

realized value of Z, the government either defaults (if bt{Z ą b “ 0.53) or continues to stay

in this “cushion” region but with a higher debt-GDP ratio bt{Z.

The zero-drift result for b in this cushion region is accompanied by the tax policy described

by (65); notice how this policy differs from the policy (36) which is optimal in the b ď b̆ tax-

smoothing region. Because tax policies differ in the b ď b̆ tax-smoothing and the b P pb̆, bs

cushion regions, the tax policy τpbq and the marginal cost of servicing debt ´p1pbq, while

continuous, are not smooth when b “ b̆.

7 Concluding Remarks

We have studied convergence to a maximal sustainable government’s debt-to-GDP ratio

together the associated optimal tax and debt management policy. Because we have cast it in

continuous time, our model is tractable and solvable mostly by hand. It includes three types

of agents: 1.) a representative household that ranks outcomes according to the expected value

of intertemporal utility; 2.) investors in competitive financial markets; and 3) a benevolent

government that finances an exogenous government expenditure path with taxes that inflict

deadweight losses described by the convex function used by Barro (1979). As exogenous

stochastic processes, the government confronts: a discount factor process that prices state-

contingent securities; a GDP process with idiosyncratic (i.e., country-specific) and systemic

components; and government spending that is a fraction of GDP. The government can default

on its debt, an option that imposes endogenous credit constraints on it. The government

issues risk-free debt that carries a convenience yield. The benevolent planner’s value function

p depends on a single state variable, a debt-to-GDP ratio bt, whose dynamics reflect (i)

primary deficit, (ii) interest payment, (iii) GDP growth, and (iv) costs for hedging systemic

shocks.

Value function ppbq measures the maximum present value of after-tax income net of

deadweight losses from taxes that a budget-feasible tax and debt management plan can

deliver to a representative household. Barro’s (1979) convex tax distortion cost function

shapes the marginal cost ´p1pbq of increasing the debt-GDP ratio and also, when risk-free

government debt carries a convenience yield, the rate at which the government chooses

gradually to approach that limit from below. The presence of deadweight taxation costs and
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the government’s option to default on its debt combine to make ´p1pbq exceed one.

We actually walk through four p theories as we successively activate the A, B, C, and D

components that together form the ABCD model portrayed in Figure 1. The figure depicts

two endogenous debt-to-GDP thresholds (b and b) that characterize the ABCD model. If

b ă b, the government immediately jumps its b to b. If b P rb, bs, the bt level moves smoothly

over time toward the debt capacity b. After reaching the debt capacity, the economy stays

there forever. We calculated that introducing limited commitment and a convenience yield

substantially can lower debt-GDP capacity from the 10 associated with an arbitrary 50%

Keynes constraint (6) on the tax rate to an empirically more plausible level of 1.87.

Section 5 extends our baseline ABCD model to include stochastic interest rates and

government spending-output ratios. Section 6 then extends ABCD model by including un-

hedgeable output jumps. When a negative jump shock pushes the country’s debt-GDP ratio

too high, the government optimally defaults.37 Introducing unhedgeable jumps generates a

fourth “cushion” region that lies between the “tax smoothing” and “default” region, but is

absent in our ABCD diffusion model. In this fourth region, the government keeps its bt

invariant absent jumps to reduce the cost of inefficient default.

We have called our model “normative” because, being cast as an optimal fiscal policy

problem, it studies “what should be?” rather than the “what is?” questions that concern a

positive analysis. Nevertheless, our exposition has occasionally strayed across the normative-

positive line, for example, when we calculated the marked drop in the sustainable debt-GDP

ratio from 10 to 1.87 that accompanies introduction of the default option component C in a

numerical illustration of our ABCD model.38 Applied macroeconomists including ourselves

have used contending normative models to interpret observed monetary and fiscal policies.39

It would be fruitful to explore other possible sources for key forces in our model. For

example, a similar but not observationally equivalent way to generate a positive drift in

the debt-GDP dynamics would be to make the household whose welfare the government

37The mechanics here resemble ones operating in parts of the sovereign debt literature, e.g., Eaton and
Gersovitz (1981), Aguiar and Gopinath (2006), and Arellano (2008).

38Many economists have productively crossed the thin line separating “normative” and “positive” models.
Thus, theoretical work on “rationalizable” decision rules starts from observed behavior patterns and reverse
engineers normative models of purposes and constraints that explain them. Bernheim (1984), Pearce (1984),
and Muth (1960) provide instructive examples. Lucas (1987, Sec. II) discussed pros and cons of normative
and positive uses of models in applied macroeconomics.

39For example, Hall and Sargent (2014, 2021) applied both the Barro (1979) and the Lucas and Stokey
(1983) to interpret patterns observed in US monetary-fiscal history, while Sargent and Velde (1995) used
the same two models to organize observations about French fiscal policies before and during the Revolution
(1789-1799). The Barro (1979) model guided actions of Secretary of Treasury Albert Gallatin during the
Jefferson and Madison administrations (see Gallatin (1837)), while Figure 2 of Sargent and Velde (1995)
depicting 18th century British fiscal policy resembles a simulation of the Barro (1979) model.
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maximizes be more impatient than the government’s creditors (Amador (2004) and Aguiar

and Amador (2021)). A subtle difference in outcomes emerges vis a vis the convenience

yield specification in our ABCD model: the representative household’s impatience wouldn’t

affect the government’s debt capacity because households are equally impatient before and

after the government’s defaults in the alternative specification.

To construct streamlined formulas that isolate forces that shape optimal fiscal policy,

debt capacity, and debt dynamics, we purposefully chose to work with a limited-commitment

model in which a shock to GDP growth is the sole aggregate shock. For some purposes it

would be useful to introduce additional aggregate shocks, for example, the monetary shock

that Lucas (1987, Sec. VI) stressed as an independent source of both price level fluctuations

and business cycles. In subsequent work, we plan to extend our model to include a quantity

theory of money and an inflation tax as an additional source of government revenues. That

will force us to confront some monetary-fiscal policy coordination issues described by Sargent

and Wallace (1981) and Bassetto and Sargent (2020).
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Appendices

A Optimal Fiscal Plan for ABCD Model

We provide technical details for the optimal plan that appeared in Section 3 for the dynamic
debt management problem defined in Section 2, discuss special cases of our ABCD model,
then extend our ABCD model to a setting in which a government that has defaulted regains
access to international capital markets.

A.1 Technical Details for the ABCD Model Solution

HJB equation for P pB, Y q. Consider the tax-smoothing region where dHt “ 0. Using Ito’s
formula, we obtain the following SDF-adjusted dynamics for the household’s value function
P pBt, Ytq:

dpMtP pBt, Ytqq “ MtdP pBt, Ytq ` P pBt, YtqdMt` ă dMt, dP pBt, Ytq ą, (A-1)

where the SDF tMt; t ě 0u is given in (3) and

dP pBt, Ytq “ PBdBt `
PBB

2
ă dBt, dBt ą `PY dYt `

PY Y

2
ă dYt, dYt ą `PBY ă dBt, dYt ą

“ rppr ´ δqBt ` pΓt ´ Ttq ´ λΦtqPB ` gYtPY s dt ´ σΦtPBdZY
t ` σYtPY dZY

t

`

„

σ2Y 2
t PY Y

2
`
σ2Φ2

tPBB

2
´ σ2ΦtYtPBY

ȷ

dt. (A-2)

The process defined by

ż t

0

Ms pYs ´ Ts ´ ΘpTs, Ysqq ds ` MsdHs ` MtP pBt, Ytq

is a martingale under physical measure P so its drift under P is zero:

Et rd pMtP pBt, Ytqqs ` Mt pYt ´ Tt ´ ΘpTt, Ytqq dt “ 0. (A-3)

Simplifying (A-3) gives HJB equation (21) for value function P pBt, Ytq. First-order conditions
(FOCs) for tax and risk management policies, respectively, are given in (22) and (23).
Debt-GDP ratio bt dynamics. Using the government’s optimal risk management policy
ϕt “ ´bt implied by (23) and applying the Ito’s Lemma to bt “ Bt{Yt, where Bt is given in
(9) and Yt is given in (2), we obtain the following bt process in the tax-smoothing region:

dbt “ µb
t dt ` σb

t dZY
t “ µb

pbtqdt , (A-4)
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where the volatility of bt is zero, σ
b
t “ ´σϕt ` σbt “ 0, and the drift of bt is

µb
t “ µb

pbtq “ pr ´ δ ` λ ´ gqbt ` γ ´ τpbtq . (A-5)

Lemma A.1. Under Condition 3.1, the equilibrium debt capacity b exists and is uniquely
determined by (39).

Proof. Equations (38) and (42) imply

ppbq “
1 ´ τpbq ´ θpτpbqq

r ´ δ ` λ ´ g
, (A-6)

where τpbq “ pr´ δ ` λ´ gqb` γ. Debt capacity b solves one of the following two equations

ppbq “ αpp , when the tax rate constraint (6) does not bind ; (A-7)

τpbq “ τ , when the tax rate constraint (6) binds . (A-8)

If tax constraint (6) binds, debt capacity b is the unique solution of (A-8): b “
τ´γ

r´δ`λ´g
.

If tax constraint (6) does not bind, we can show that debt capacity is the solution of (A-
7), that it exists, and that it is unique. First, (A-6) implies that the left side of (A-7) is

decreasing b. Second, the left side of (A-7) when b “ 0 equals 1´γ´θpγq

r´δ`λ´g
, which is strictly

larger than the right side of (A-7), given that the deadweight loss function θp ¨ q is increasing
and convex (in addition to the κ ě 1 and α ď 1 conditions). Third, the left side of (A-7)
approaches negative infinity as b Ñ 8. Therefore, there exists a unique value of b ą 0 at
which (A-7) holds with equality. Let b̌ ą 0 denote the unique positive root of (A-7), which
can be simplified as 1 ´ pr ´ δ ` λ ´ gqb ´ θppr ´ δ ` λ ´ gqb ` γq “ α ´ ακθpγ{αq. Thus,
debt capacity exists and is uniquely determined by (39).

A.2 Special Cases: Model A, Model AB, and Model ABC

Model A (Ricardian equivalence). We revisit the Ricardian equivalence logic of Barro
(1974) via model A that includes a complete set of Arrow’s one-period ahead securities. The
household’s value (18) at time 0 becomes

P0 “ E0

ż 8

0

Mt rdHt ` pYt ´ Ttq dts (A-9)

and the government’s budget constraint holds with equality:

B0 “ E0

ż 8

0

Mt rpTt ´ Γtq dt ´ dHts . (A-10)
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Combining (A-9) and (A-10), we obtain a single budget constraint for the household:

P0 ` B0 “ E0

„
ż 8

0

Mt pYt ´ Γtq dt

ȷ

. (A-11)

Expression (A-11) states that the total value V0 “ P0 ` B0 is independent of policies
tHt, Tt; t ě 0u. Corollary 3.3 summarizes this Ricardian equivalence for the A model.

Model AB (A Stochastic Version of Barro (1979)). Our AB model excludes the C
and D features of our ABCD model but includes Barro’s tax distortions and a complete set
of Arrow’s one-period-ahead securities. The government maximizes

E0

„
ż 8

0

Mt rdHt ` pYt ´ pTt ` Θtqq dts

ȷ

(A-12)

subject to its budget constraint (A-10) and the Keynes constraint (6) on the tax rate. Using
(A-10), we rewrite the government’s objective (A-12) as:

E0

„
ż 8

0

Mt pYt ´ Γt ´ Θtq dt

ȷ

´ B0 . (A-13)

Choosing tTt; t ě 0u to maximize (A-13) is equivalent to minimizing the value of deadweight
losses E0

“ş8

0
MtΘtdt

‰

subject to the constraint of honoring an initial debt B0 that satisfies
(A-10). This was Barro’s justification for recasting the government’s value maximization
problem as a deadweight loss minimization problem. However, that equivalence does not
hold in ourABCD model because the government’s option to default induces an endogenous
distortion cost. Therefore, the government in ourABCDmodel maximizes household’s value
function.

Model ABC (Stochastic Barro (1979) with Default Option). The government can
default so its debt capacity is smaller in our ABC model whenever the Keynes tax constraint
(6) does not bind. Because government risk-free debt carries no extra convenience yield, the
tax rate and debt-GDP ratio are both constant over time.

A.3 Extension with Finite Balanced-budget Regime Duration

Our baseline ABCD model assumes that the government stays in the balanced-budget
regime permanently after reneging on its liability. We extend that model by letting the
government to regain its access to international capital markets with probability χ per unit
of time after entering into the balanced-budget regime. This realistic assumption appears in
Eaton and Gersovitz (1981), Aguiar and Gopinath (2006), Arellano (2008), and much of the
international macro literature.

Let T ε denote the government’s stochastic exogenous exit time from the balanced-budget
regime. Upon returning to the no-default regime at T ε, the household’s value function is
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P p0, YT εq, where output is continuous at T ε in the sense that YT ε “ pYT ε . The household’s

value function in the balanced-budget regime pP ppY q satisfies

pr ` χq pP ppY q “ pY ´ Γ ´ pΘpΓ, pY q ` pg ´ ρησqpY pP 1
ppY q `

σ2
pY 2

2
pP 2

ppY q ` χP p0, pY q . (A-14)

The scaled value pp in the balanced-budget regime is

pp “
1 ´ γ{α ´ κθpγ{αq ` χpp0q

r ` λ ´ g ` χ
. (A-15)

B More Illustrations for Section 4

We use the annual debt-output ratio from 1980 to 2020 for the US. US debt and GDP data
are from FRED provided by St. Louis Fed: https://fred.stlouisfed.org. Let Ω “ tδ, κ, φu.
Our model asserts that the government debt-GDP ratio bt grows deterministically at rate
9bt ” µbpbtq given in (37). Let µbpbt; Ωq denote the drift of b given Ω. To account for
measurement errors, we introduce a noise term into the law of motion (37) for bt and discretize
the bt process:

bti`1
“ bti ` µb

pbti ; Ωqpti`1 ´ tiq ` εi`1 , i “ 1, 2, ¨ ¨ ¨ , (A-16)

where εi`1 is a random variable that captures the effect of measurement errors. Let fpεi`1q

denote the density function of εi`1:

f
`

bti`1
´ bti ` µb

pbti ; Ωqpti`1 ´ tiq
˘

. (A-17)

Let tpbti , i “ 1, ¨ ¨ ¨ , 41u, where ti “ 1979 ` i, denote the annual US debt-to-GDP ratio
from 1980 to 2020. We calibrate Ω by minimizing the sum of squared differences between
one-step-ahead model-predicted bt and the realized bt:

pΩ “ argmax
Ω

40
ÿ

i“1

ln f
´

pbti`1
´ pbti ` µb

ppbti ; Ωq

¯

. (A-18)

In Panel A of Figure A-1, we plot the model-implied debt-GDP ratio dynamics using the

parameter values pΩ obtained from the above procedure using the 1980-2020 US data. The
diamond blue solid lines in panels B, C, and D of Figure A-1 plot the same outcomes using
the parameter values described in the main body of this paper.

Next, we perturb a set of key parameters one at a time and display effects on outcomes.

Effects of convenience yield δ. A larger parameter δ has quantitatively important effects
on taxes and value functions. Figure A-2 compares outcomes from the case (δ “ 0.13%)
with those from a δ “ 1.6% case, where in both cases we fix risk-free rate r “ 2% and
risk premium λ “ 2.5%. As δ increases from 0.13% to 1.6%, the total value ppbq increases
by about one tenth at all admissible levels of b (panel A.) This outcome mostly reflects a
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Figure A-1: Prospective Debt-GDP Ratio Dynamics. The diamond blue solid line in
panel A calibrates to the average growth of the US debt-output ratios from 1980 to 2020.
The black dashed lines in all four panels depict the US debt-output ratios from 1980 to 2020.
The diamond blue solid lines in panels B, C, and D are projected debt-output ratios from
2020 to 2120 for our baseline case using parameters in Table 1. The triangle red solid lines
in panels B, C, and D are projected debt-output ratios from 2020 to 2120 as we modify our
baseline case with a single change as follows: 1.) decreasing r to r “ 0.75%, 2.) decreasing
g to g “ 1.5%, and 3.) decreasing risk premium λ to λ “ 2.5%, respectively.
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typical discounting channel. Debt capacity b substantially increases from 2.26 to 5.96. More
interesting to us is that the marginal cost of debt (´p1pbq) and the optimal tax rate (τpbq)
both decrease substantially for most values of b (panels B and C). This happens because it
becomes much less costly for the government to defer taxes. As a result, the marginal cost
´p1pbq of debt at b “ 0.64 is one when δ “ 1.6% but equals 1.69 dollars in our baseline
δ “ 0.13% case. The optimal tax rate τpbq at b “ 0.64 is zero when δ “ 1.6% but equals
17.6% in our baseline δ “ 0.13% case.

Over time, as b increases, the tax rate τpbq and the marginal cost of debt increase until
debt reaches debt capacity. Increasing δ substantially increases the drift of the debt-GDP
ratio µbpbq, which in turn affects the time it takes for a government to reach its debt capacity,
as we describe in Section 4.
Effects of risk-free rate r. Figure A-3 compares outcomes in our baseline (r “ 1.5%)
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Figure A-2: Effects of Convenience Yield δ. We choose r “ 2% and λ “ 2.5%. All
other parameter values other are reported in Table 1.
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case with those when r “ 0.75%. When r decreases across economies from 1.5% to 0.75%,
a government’s debt capacity b increases substantially from 1.87 to 2.53. The marginal cost
of debt ´p1pbq and the tax rate τpbq both fall substantially in the lower r economy. Because
interest payments are smaller, debt service smaller and tax distortions are also smaller.
Consequently, a government is more willing to borrow, increasing the drift of the debt-GDP
ratio µbpbq at all levels of b (panel D).
Effects of risk premium λ. Figure A-4 compares outcomes under our baseline (λ “ 3.5%)
case with those when λ “ 2.5%. When λ decreases from 3.5% to 2.5% across economies, a
government’s debt capacity b doubles from 1.87 to 2.87. The marginal cost ´p1pbq of debt
and the tax rate τpbq both decrease markedly. Because systematic risk management costs are
smaller, debt service and tax distortions are smaller. Consequently, a government is more
willing to borrow, so the drift 9bt “ µbpbq of the debt-GDP ratio increases at all levels of b
(panel D).
Effects of Output Growth Rate g. Figure A-5 compares outcomes under our baseline
(g “ 2%) case with those in a g “ 1.5% economy. When the growth rate across economies
decreases from 2% to 1.5%, a government’s debt capacity b decreases by about one third,
from 1.87 to 1.59. The marginal cost ´p1pbq of debt and the tax rate τpbq both increase

substantially.With slower growth, a government is less willing to borrow, causing drift 9bt “
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Figure A-3: Effects of Interest Rate r. All parameter values other than r are reported
in Table 1.
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µbpbq of the debt-GDP ratio to fall at all levels of b (panel D). That affects the time it takes
to reach a debt limit.
Effects of tax distortion cost φ. The parameter φ governs tax distortions in the dead-
weight loss function θp ¨ q. Figure A-6 compares outcomes under our baseline (φ “ 3.9) with
those when φ “ 0.1. When φ decreases from 3.9 to 0.1, a government’s debt capacity b
increases substantially from 1.87 to 2.41 and the household’s value function ppbq increases.
The marginal cost of debt ´p1pbq and the tax rate τpbq both decrease. When taxes are
less distortionary, a government is more willing to borrow, causing the lump-sum debt is-
suance threshold b to increase from 0 to 0.12 (panel A), and the drift of the debt-GDP ratio
9bt “ µbpbtq to increase at all levels of bt (panel D).
Effects of default costs: (increasing tax distortion costs κ ě 1). The parameter
κ measures how much more distortionary taxes are in the balanced-budget regime than in
the service-debt regime. Figure A-7 compares outcomes under our baseline (κ “ 1.3) case
with those under a κ “ 1.5 case. When across economies κ increases from 1.3 to 1.5, a
government’s debt capacity b increases from 1.87 to 2.16 and the household’s value function
ppbq increases slightly. The marginal cost of debt ´p1pbq and the tax rate τpbq both decrease
because a higher default cost makes a government is more willing to repay debt, so it can
borrow more. As κ increases across economies, the drift of the debt-GDP ratio 9bt “ µbpbtq
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Figure A-4: Effects of Risk Premium λ. All parameter values other than λ are reported
in Table 1.
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is higher at all levels of b (panel D).
Effects of default costs: output loss p1´αq. The parameter α measures the recovery of
output in the default regime. Figure A-8 compares outcomes under our baseline (α “ 0.93)
case with those when α “ 0.90. When across economies output loss p1 ´ αq increases from
7% to 10%, a government’s debt capacity b increases markedly from 1.87 to 2.45, but the
household’s value function ppbq increases only slightly. The marginal cost of debt ´p1pbq and
the tax rate τpbq both decrease. When default is more costly, the government is more willing
to repay debt and hence can borrow more. Finally, for higher output loss p1 ´ αq, the drift

of the debt-GDP ratio 9bt “ µbpbtq is higher at all levels of b (panel D).
Comparative results with respect to p1´αq and κ are similar because increasing p1´αq

directionally has the same effect as increasing κ. Both make default more costly, improving
incentives to repay and consequently debt capacity.
Effects of government spending-GDP ratio γ. The parameter γ measures government
spending as a fraction of output. Figure A-9 compares outcomes under our baseline (γ “ 0.2)
case with those when γ “ 0.25. When across economies government spending γ increases
from 0.2 to 0.25, a government’s debt capacity b increases slightly from 1.87 to 1.98, but the
household’s value function ppbq decreases markedly. The marginal cost of debt ´p1pbq and the
tax rate τpbq both increase substantially. When the government spending fraction is higher,
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Figure A-5: Effect of Average Output Growth Rate g. All parameter values other
than g are reported in Table 1.
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a household’s value in the balanced-budget regime becomes lower, making a government be
more willing to tax more in order to repay its debt. That enables it to borrow more.
Effects of expected balanced-budget-regime duration 1{χ. In our baseline Section
2 model, the government permanently stays in the balanced-budget regime once it enters.
In practice, sovereign that default eventually regain access to capital markets. To capture
a finite stochastic duration of staying in the balanced-budget regime, we assume that a
government exits that regime at a constant (annual) rate, denoted by χ. We set χ “ 1{5 per
annum to capture that after default a sovereign on average can’t access international capital
markets for four or five years (e.g., see the estimate in Aguiar and Gopinath, 2006). In Figure
A-10, we compare a χ “ 0.2 case with our baseline χ “ 0 case in which the balanced-budget
regime is an absorbing state.

As we decrease the expected duration of being in the balanced-budget regime 1{χ from
8 to five years, debt capacity b decreases from 1.87 to 1.06 while the marginal cost of debt
´p1pbq and the tax rate τpbq both increase. With a lower debt capacity (for the χ “ 0.2
case), the government has less room to smooth taxes and hence has to tax more in order to
honor its debt. Because higher taxes cause more distortions, the government’s marginal cost
of debt is higher. As a result of higher taxes, the government pays back its debt at a faster
rate (for all admissible levels of b) causing the drift of its debt-GDP ratio 9bt “ µbpbtq to be
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Figure A-6: Effect of Tax Distortion Cost φ. All parameter values other than φ are
reported in Table 1.
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lower for the χ “ 0.2 case than for our baseline χ “ 0 case (panel D).

C Households’ and Government’s Optimality

We provide technical details about the household’s and the government’s optimization prob-
lems. 1.) The representative household maximizes lifetime utility taking the government’s
policies as given; 2.) The government chooses tax and debt management policies to maximize
the representative household’s lifetime utility. 3.) The household, government, and investors
take the stochastic discount factor (SDF) process as given. The first two assumptions are
made by Lucas and Stokey (1983), while the third disarms Lucas and Stokey’s government’s
ability to manipulate the SDF process.

Below we show that the government’s optimal policy boils down to maximizing the net
present value of the net transfers to the representative household. We start with the house-
hold’s problem.

Households’ optimization problem. Taking the government’s tax policies tTt, pTtu in the
no-default and balanced-budget regimes, lumpy transfer policies tdHtu, and default timing
TD as given, the representative household is endowed with an initial wealth W0 and share
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Figure A-7: Effects of Default Costs: (Increasing Tax Distortion Costs κ ě 1). All
parameter values other than κ are reported in Table 1.
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ζ0 of aggregate flow payments. The household chooses consumption policies tCtu to solve

max E0

„
ż 8

0

UpCt, tqdt

ȷ

(A-19)

subject to the budget constraint:

E0

ˆ
ż 8

0

pMtCtq dt

˙

ď W0 ` ζ0P0 . (A-20)

In (A-20), Mt is the exogenously given SDF defined in (3) and P0 is the present value of
aggregate transfer payments to households:

P0 “ E0

„
ż TD

0

Mt pdHt ` Ntdtq `

ż 8

TD
Mt

pNtdt

ȷ

, (A-21)

where Nt “ Yt ´ Tt ´ Θt for t ă TD in the no-default regime and pNt “ pYt ´ pTt ´ pΘt for
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Figure A-8: Effect of Default Costs: Output Recovery α. All parameter values other
than α are reported in Table 1.
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t ě TD in the balanced-budget regime. The household is endowed with a constant-relative
risk-averse (CRRA) utility and a subjective discount rate ϱ ą 0: UpC, tq “ e´ϱt C1´ω

1´ω
, where

ω ě 0 is the coefficient of relative risk aversion.
A complete financial spanning assumption makes the time´0 budget constraint (A-20)

appropriate. As in Cox and Huang (1989), we can pin down the household’s consumption
path and trading strategy at time 0. The Lagrangian for the household’s problem is

L “E0

„
ż 8

0

UpCt, tqdt

ȷ

` ϑ

„

W0 ` E0

ˆ

ζ0

ż TD

0

Mt pdHt ` Ntdtq ` ζ0

ż 8

TD
Mt

pNtdt ´

ż 8

0

MtCtdt

˙ȷ

,

where ϑ is Lagrange multiplier. The FOC for consumption for all t ě 0 is

UCpCt, tq “ ϑMt , (A-22)

which implies the standard optimal consumption rule: Ct “ ϑ´1{ωM´1{ω
t e´ϱt{ω .
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Figure A-9: Effect of Government Spending γ. All parameter values other than γ are
reported in Table 1.

0 0.5 1 1.5 2

15

20

25

0 0.5 1 1.5 2

1.6

1.8

2

2.2

0 0.5 1 1.5 2

0.15

0.2

0.25

0.3

0 0.5 1 1.5 2

0

0.005

0.01

0.015

0.02

Applying Ito’s Lemma lets us obtain the following geometric Brownian motion for tCtu:

dCt

Ct

“

ˆ

r

ω
´
ϱ

ω
`

1

2

p1 ` ωqη2

ω2

˙

dt `
η

ω
dZm

t . (A-23)

By substituting (A-23) into the budget constraint (A-20), we obtain the optimal consumption
C0 at time 0

C0 “

ˆ

p1 ´
1

ω
qr `

ϱ

ω
`

1

2
p1 ´

1

ω
q
1

ω
η2

˙

pW0 ` ζ0P0q ,

and the household’s time-0 indirect utility functional:

E0

„
ż 8

0

UpCt, tqdt

ȷ

“
pιpW0 ` ζ0P0qq1´ω

1 ´ ω
, (A-24)

where ι “
`

p1 ´ 1
ω

qr `
ϱ
ω

` 1
2
p1 ´ 1

ω
q 1
ω
η2

˘´ ω
1´ω .

Government’s problem. The benevolent government chooses tax policies tTt, pTtu, lumpy
transfer policies tdHtu, and default timing TD to maximize the household’s indirect utility
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Figure A-10: Effect of intensity to exit balanced-budget regime χ. All parameter
values other than χ are reported in Table 1.
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functional given in (A-24). This optimization problem is equivalent to maximizing P0 where

P0 “ E0

„
ż TD

0

Mt pdHt ` Ntdtq `

ż 8

TD
Mt

pNtdt

ȷ

, (A-25)

subject to the government’s budget constraint:

B0 ď E0

„
ż TD

0

eδtMt rpTt ´ Γtqdt ´ dHts

ȷ

, (A-26)

where δ is the government debt’s convenience yield and B0 is the initial debt level. To make
dependence of the present value of net payments to households on consumption and taxes

explicit, we have substituted the expressions for Nt and pNt given by (16) into (A-21).
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D Technical Details for Section 5

We provide technical details about the extended model analyzed in Section 5. Because the
H state is absorbing, the value function P pB, Y ;Hq in this state for the no-default regime
satisfies the HJB equation:

rHP pB, Y ;Hq “ max
T ďτY,Φh,Φm

Y ´ T ´ ΘpT , Y q `
“`

rH ´ δ
˘

B ` γHY ´ T
‰

PBpB, Y ;Hq

`
σ2

`

p1 ´ ρ2qpΦhq2 ` ρ2pΦmq2
˘

2
PBBpB, Y ;Hq ` rgY PY pB, Y ;Hq

`
σ2Y 2

2
PY Y pB, Y ;Hq ´ σ2

`

p1 ´ ρ2qΦh
` ρ2Φm

˘

Y PBY pB, Y ;Hq ,

(A-27)

where rg “ g´λ. An HJB equation for P pB, Y ;Lq and associated FOCs for the government’s
fiscal policies in the L state are described in Section 5.

Value functions in the balanced-budget regime, pP pY ;Lq and pP pY ;Hq, satisfy the follow-
ing differential equations:

rL pP pY ;Lq “ Y ´ T ´ pΘpγLY, Y q ` rgY pPY pY ;Lq `
σ2Y 2

2
pPY Y pY ;Lq ` rξ

”

pP pY ;Hq ´ pP pY ;Lq

ı

(A-28)

rH pP pY ;Hq “ Y ´ T ´ pΘpγHY, Y q ` rgY pPY pY ;Hq `
σ2Y 2

2
pPY Y pY ;Hq . (A-29)

Using the homogeneity property, we obtain the scaled value functions, pppLq and pppHq:

pppLq “
1 ´ γL{α ´ κθpγL{αq

rL ` λ ´ g ` rξ
`

rξ

rL ` λ ´ g ` rξ

1 ´ γH{α ´ κθpγH{αq

rH ` λ ´ g
,

pppHq “
1 ´ γH{α ´ κθpγH{αq

rH ` λ ´ g
.

State H is absorbing, so the scaled value ppb;Hq, debt capacity bpHq, debt issuance
boundary bpHq, and optimal tax rate τpb;Hq are the same as in our baseline model. Thus,
ppb;Hq solves

“

rH ` λ ´ g
‰

ppb;Hq “1 ´ τpb;Hq ´ θpτpb;Hqq `
“

prH ´ δ ` λ ´ gqb

`
`

γH ´ τpb;Hq
˘ ‰

p1
pb;Hq , (A-30)
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subject to the following debt-sustainability condition:

bpHq “
τpbpHq;Hq ´ γH

rH ´ δ ` λ ´ g
.

The debt-GDP ratio bt in state H follows (A-4), as in our baseline model.
In state L, the law of motion for scaled debt, bt, in the no-default regime where b ď b is

dbt “ µb
t´ dt ` ψt´dNt , (A-31)

where

µb
t´ “ prt´ ` λ ´ δ ´ gqbt´ ` pγt´ ´ τt´q ´ rξψt´ , (A-32)

As in our ABCD diffusion model, the bt process does not respond to diffusion shocks as
σb
t´ “ ´ pσϕt´ ` σbt´q “ 0. But unlike in our baseline model, bt discretely jumps as the

state transitions.

E Technical Details for Section 6

We provide technical results for the jump-diffusion model of Section 6. First, we characterize
the representative household’s value in the no-default and balanced-budget regimes. The

household’s value in the balanced-budget regime pP ppY q satisfies

r pP ppY q “

´

pY ´ Γ ´ pΘpΓ, pY q

¯

`pg´λqpY pP 1
ppY q`

σ2
pY 2

2
pP 2

ppY q`ζE
”

pP pZY q ´ pP pY q

ı

, (A-33)

where the last term captures jumps. To ensure that pP ppY q is finite, we impose r ` λ ą

g´ ζp1´EpZqq. Using the homogeneity property, we obtain the following expression for the
scaled value pp in the balanced-budget regime:

pp “
1 ´ γ{α ´ κθpγ{αq

r ` λ ´ pg ´ ζp1 ´ EpZqqq
. (A-34)

Using the optimal diffusion hedging strategy, i.e., Φm “ Φh “ Y PBY {PBB, we obtain
the following first-order partial differential equation for the households’ value P pB, Y q in the
no-default regime:

rP pB, Y q “ max
T ďτY

pY ´ T ´ ΘpT , Y qq ` ppr ` π ´ δqB ` Γ ´ T qPB ` pg ´ λqY PY

`ζE rP pB,ZY q ´ P pB, Y qs . (A-35)

Second, we turn to the default boundary. Let Zt denote the highest level of fractional
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recovery Z at t that satisfies P pBt, Ytq ď pP pαYtq, where Yt “ ZYt´. Using the homogeneity
property, we express the default boundary Zt as:

Zt “ Zpbtq “ bt{b , for bt ď b . (A-36)

Third, we determine the equilibrium credit spread. To compensate investors for credit
losses they bear when the government defaults at t, the credit spread πt´ must satisfy the
following zero-profit condition for creditors:

Bt´p1 ` rdtq “ Bt´p1 ` pr ` πt´qdtq
“

1 ´ ζ QpZpbt´qqdt
‰

` ζ QpZpbt´qqdt ˆ 0 . (A-37)

The first term on the right side of (A-37) is the expected total payment to investors, the
product of the probability of repayment,

“

1 ´ ζ QpZpbt´qqdt
‰

and the cum-interest value of
debt repayment, Bt´p1` pr` πt´qdtq. The second term on the right side of (A-37) captures
the zero payment to investors upon default. The left side of (A-37) is investors’ total expected
payoff at t ` dt ,including principal Bt´. Simplifying (A-37) gives credit spread (61).

Finally, at the debt capacity b, πpbq “ ζ and bt evolves as

9bt “ µb
pbtq “ pr ` ζ ´ δ ` λ ´ gqbt´ ` γ ´ τpbt´q . (A-38)

The debt-sustainability zero-drift (absent jumps) given in (39) continues to hold.
When the Keynes tax constraint (6) does not bind, the debt-sustainability condition

implies b “
τpbq´γ

r`ζ´δ`λ´g
“ b̌ , where b̌ solves ppb̌q “ αpp. When the Keynes tax constraint (6)

binds, the debt-sustainability condition implies that b “
τ´γ

r`ζ´δ`λ´g
. Therefore, debt capacity

satisfies (66).
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