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ABSTRACT. We apply recursive methods to obtain a finite dimensional and recursive rep-
resentation of an equilibrium of one of Townsend’s models of ‘forecasting the forecasts of
others’. The equilibrium has the property that decision makers make common forecasts
of the hidden state variable whose presence motivates them to pay attention to prices in
other markets. Thus, the model has too few sources of randomness to put decision makers
into a situation where they should form ‘higher order beliefs’ (i.e., beliefs about others’ be-
liefs). In Townsend’s model, they know the beliefs of others because they share them. We
attain our finite-dimensional recursive representation by applying methods of Pearlman,
Currie, and Levine (1986).

Key Words: Forecasting the forecasts of others, higher order beliefs, pool-
ing equilibrium, recursive methods, Kalman filter.

1. INTRODUCTION

Robert E. Lucas (1975), Kasa (2000), and Townsend (1983) make a compelling case
that the assumption that decision makers have to extract signals about hidden persistent
state variables is a good source both for additional impulses and for elongated impulse
response functions in business cycle models. This theme has been pursued in recent
analyses in which decision maker’s imperfect information forces them into pursuing an
infinite recursion of forming beliefs about the beliefs of other (e.g., Allen, Morris, and
Shin (2002)). Robert E. Lucas (1975) side stepped the problem of forecasting the forecasts
of others by letting decision makers pool their information before forecasting. Townsend
(1983) bit the bullet, didn’t assume pooling, and directly confronted the forecasting the
forecasts of others problem. He proposed an approximate equilibrium of a model in
which decision makers extract signals from endogenous variables (prices).

By applying results of Pearlman, Currie, and Levine (1986), this paper shows that there
is a recursive representation of the equilibrium of the ‘perpetually and symmetrically un-
informed’ model formulated but not completely solved in section 8 of Townsend (1983).
Our computational method is recursive: it combines the Kalman filter with invariant sub-
space methods for solving systems of Euler equations.1 As Singleton (1987), Kasa (2000),
and Sargent (1991) also found, the equilibrium is fully revealing: observed prices tell
participants in industry i all of the information held by participants in market −i (i.e.,
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‘not i’). This means that higher-order beliefs play no role: seeing equilibrium prices lets
decision makers pool their information sets.2 The disappearance of higher order beliefs
means that decision makers in this model do not really face a problem of forecasting the
forecasts of others. They know those forecasts because they are the same as their own.

Townsend (1983) pointed out that his model with perpetually and symmetrically un-
informed decision makers is one in which the state space explodes because it is necessary
for decision makers to keep track of an infinite history of the vector of observables. He
didn’t actually characterize or compute an equilibrium for that model, but instead com-
puted an approximate equilibrium by analyzing another model in which, after a finite
number j periods, the lagged value of the key hidden state variable becomes known.
The presence of that hidden state variable is the only thing that inspires decision makers
in one market to condition their decisions on the history of prices in the other market. Sar-
gent (1991) proposed a way to compute an equilibrium without making Townsend’s ap-
proximation. Extending the reasoning of Muth (1960), Sargent noticed that it is possible
to summarize the relevant history with a low dimensional object, namely, a small number
of current and lagged forecasting errors. Positing an equilibrium in a space of perceived
laws of motion for endogenous variables that takes the form of a vector autoregressive,
moving average, Sargent described an equilibrium as a fixed point of a mapping from
the perceived law of motion to the actual law of motion of that form. Sargent worked in
the time domain and had to guess and verify the appropriate orders of the autoregressive
and moving average pieces of the equilibrium representation. However, by working in
the frequency domain Kasa (2000) showed how to discover the appropriate orders of the
autoregressive and moving average parts, and also how to compute an equilibrium.

Our recursive computational method, which stays in the time domain, also discovers
the appropriate orders of the autoregressive and moving average pieces. In addition,
by displaying equilibrium representations in the form of Pearlman, Currie, and Levine
(1986), we show how the moving average piece is linked to the innovation process of
the hidden persistent component of the demand shock. That scalar innovation process
is the additional state variable contributed by the problem of extracting a signal from
equilibrium prices that decision makers face in Townsend’s model.

2. TOWNSEND’S MODEL

This section describes Townsend’s basic model of an industry, then solves it under sev-
eral assumptions about what decision makers observe. Firms in each of two industries
i = 1, 2 employ a single factor of production capital, ki

t, to produce output of a single
good, yi

t. We let capital letters denote market wide objects and lower case letters denote
objects chosen by a representative firm. A representative firm in industry i has produc-
tion function yi

t = fki
t, f > 0, acts as a price taker with respect to output price P i

t , and

2See Allen, Morris, and Shin (2002) for a discussion of the information assumptions needed to create a
situation in which higher order beliefs appear in equilibrium decision rules. The way to read our findings
in light of Allen, Morris, and Shin (2002) is that Townsend’s section 8 model has too few sources of random
shocks relative to sources of signals to permit higher order beliefs to play a role.
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maximizes

(2.1) Ei
0

∞∑
t=0

βt
{
P i

t fki
t − .5h(ki

t+1 − ki
t)

2
}

, h > 0.

Demand in industry i obeys

(2.2) P i
t = −bY i

t + θt + εi
t, b > 0,

where Y i
t = fKi

t is output in market i, θt is persistent component of a demand shock
that is common across the two industries, and εi

t is an industry specific component of the
demand shock that is i.i.d. with variance σ2

ε . We assume that θt satisfies

(2.3) θt+1 = ρθt + vt+1

where {vt+1} is an i.i.d. sequence of Gaussian shocks with mean zero and variance σ2
v .

To simplify notation, we’ll set h = f = 1. In equilibrium, ki
t = Ki

t , but as usual we must
distinguish between ki

t and Ki
t when we pose the firm’s optimization problem.

Townsend (1983) assumed that at time t firms in industry i observe ki
t, Y

i
t , P i

t , (P
−i)t,

where (P−i)t is the history of prices in the other market up to time t. Notice that because
the representative firm i sees the aggregate state variable Y i

t in its own industry, as well
as the price, it can infer the total demand shock θt + εi

t. However, at time t, the firm sees
only P−i

t and does not see Y −i
t , so that firm i does not appear to see θ+ ε−i

t . Nevertheless,
in the end the firm in industry i will be able to infer the composite shock θt + ε−i

t from
the data that it does observe at t. We shall proceed to establish this result in steps.

2.0.1. Strategy. To prepare the way for solving Townsend’s model, we shall first com-
pute the law for capital in industry i under a sequence of assumptions about what the
firm observes that make its information increasingly obscure. We begin with the most
information, then gradually withdraw information in a way that approaches and even-
tually reaches the solution of Townsend’s model that we are after. In particular, we shall
consider the following information assumptions:

• Perfect foresight. Here we assume that future values of θt, ε
i
t are observed in in-

dustry i.

• Observed but stochastic θt. Here we assume that while {θt, ε
i
t} are realizations

from a stochastic process, current values of each are observed at time t.

• One noise-ridden observation on θt. At time t, a history wt of a scalar noise-ridden
observation on θt is observed at time t.

• Two noise-ridden observations on θt. At time t, a history wt of two noise-ridden
observations on θt is observed at time t.

Our solutions to these problems build one upon the other. We proceed by first finding
the solution under perfect foresight. Then to get the solution with θt observed, we use a
certainty equivalence principle to modify the perfect foresight solution by replacing fu-
ture values of θs, ε

i
s, s ≥ t with expectations conditioned on θt. This gives us the solution

when θt is observed. To get solutions when only the history of a noise ridden observation
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wt on θt is observed, we again apply a certainty equivalence principle and replace future
values of θs, ε

i
s, s ≥ t with their expectations conditioned on wt.

By this means, we shall discover solutions that form a benchmark against which we
can interpret the equilibrium to Townsend’s model that we shall compute in section 5
by applying the machinery of Pearlman, Currie, and Levine (1986). Our solution with
two noise-ridden observations on θt will perfectly mimic the equilibrium of Townsend’s
model.

2.1. Equilibrium conditions. It is convenient to formulate the firm’s problem as a dis-
crete time Hamiltonian by forming the Lagrangian for the problem without uncertainty:

(2.4) J =
∞∑

t=0

βt
{
P i

t k
i
t − .5(µi

t)
2 + φi

t

[
ki

t + µi
t − ki

t+1

]}
where {φi

t} is a sequence of Lagrange multipliers on the transition law for ki
t+1. First

order conditions for the nonstochastic problem are

φi
t = βφi

t+1 + βP i
t+1(2.5)

µi
t = φi

t.(2.6)

Substituting the demand function (2.2) for P i
t , imposing the condition that the repre-

sentative firm is representative ( ki
t = Ki

t ), and using the definition below of gi
t, the Euler

equation (2.5), lagged by one period, can be expressed as−bki
t+θt+εi

t+(ki
t+1−ki

t)−gi
t = 0

or

(2.7) ki
t+1 = (b + 1)ki

t − θt − εi
t + gi

t

where we define gi
t by

(2.8) gi
t = β−1(ki

t − ki
t−1).

We can write the Euler equation (2.5) in terms of gi
t:

(2.9) gi
t = P i

t + βgi
t+1.

In addition, we have the law of motion for θt, (2.3), and the demand equation (2.2).
In summary, under the deterministic or perfect foresight interpretation, the equilib-

rium conditions for industry i consist of the following system of difference equations:

ki
t+1 = (1 + b)ki

t − εi
t − θt + gi

t(2.10)
θt+1 = ρθt + vt(2.11)
gi
t+1 = β−1(gi

t − P i
t )(2.12)

P i
t = −bki

t + εi
t + θt(2.13)

Without perfect foresight, the same system prevails except that the following equation
replaces (2.12):

(2.14) gi
t+1,t = β−1(gi

t − P i
t )

where xt+1,t denotes the expected value of xt+1 given information up to time t.
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2.2. Solution under perfect foresight. Our first step is to compute the equilibrium law
of motion for ki

t under perfect foresight. Let L be the lag operator.3 Equations (2.9) and
(2.7) imply the second order difference equation in ki

t:
4

(2.15)
[
(L−1 − (1 + b))(1− βL−1) + b

]
ki

t = βL−1εi
t + βL−1θt.

Factor the polynomial in L on the left side as:

(2.16) −β[L−2 − (β−1 + (1 + b))L−1 + β−1] = λ̃−1(L−1 − λ̃)(1− λ̃βL−1)

where |λ̃| < 1 is the smaller root and λ is the larger root of (λ−1)(λ−1/β) = bλ. Therefore,
(2.15) can be expressed as

(2.17) λ̃−1(L−1 − λ̃)(1− λ̃βL−1)ki
t = βL−1εi

t + βL−1θt.

Solving the stable root backwards and the unstable root forwards gives

(2.18) ki
t+1 = λ̃ki

t +
λ̃β

1− λ̃βL−1
(εi

t+1 + θt+1)

Thus under perfect foresight the capital stock satisfies

(2.19) ki
t+1 = λ̃ki

t +
∞∑

j=1

(λ̃β)j(εi
t+j + θt+j).

Next, we shall use alternative forecasting formulae in (2.19) to compute the equilibrium
decision rule under alternative assumptions about the information available to decision
makers in market i.

2.3. Solution with θt stochastic but observed at t. If future θ’s are unknown at t, it is ap-
propriate to replace all random variables on the right side of (2.19) with their conditional
expectations based on the information available to decision makers in market i. In this
section, we assume that this information set Ip

t =
[
θt εit

]
, where zt represents the infi-

nite history of variable zs up to time t. In later subsections, we give the decision makers
less and less information about θt.

To obtain the counterpart to (2.19) under our current assumption about information,
we apply a certainty equivalence principle. In particular, it is legitimate to take (2.19) and
replace each term (εi

t+j + θt+j) on the right side with E[(εi
t+j + θt+j)|θt]. After using (2.3)

and the i.i.d. assumption about {εi
t}, this gives

(2.20) ki
t+1 = λ̃ki

t +
λ̃βρ

1− λ̃βρ
θt

or

(2.21) ki
t+1 = λ̃ki

t +
ρ

λ− ρ
θt

3See Sargent (1987), especially chapters IX and XIV, for the methods used in this section.
4As noted by Sargent (1987), this difference equation is the Euler equation for the planning problem of

maximizing the discounted sum of consumer plus producer surplus.
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where λ ≡ (βλ̃)−1. For future purposes, it is useful to represent the solution for ki
t recur-

sively as

ki
t+1 = λ̃ki

t +
1

λ− ρ
θ̂t+1(2.22)

θ̂t+1 = ρθt(2.23)
θt+1 = ρθt + vt.(2.24)

3. FILTERING

3.1. One noisy signal. We get closer to Townsend’s setup, by now assuming that deci-
sion makers in market i do not observe θt, but that they do observe a history of noisy
signals wt. In particular, assume that

wt = θt + et(3.25)
θt+1 = ρθt + vt(3.26)

where et and vt are mutually independent i.i.d. Gaussian shock processes with means of
zero and variances σ2

e and σ2
v , respectively. Define

(3.27) θ̂t+1 = E(θt+1|wt)

where wt denotes the history of the ws process up to and including t. Associated with the
state-space representation (3.25),(3.26) is the innovations representation

θ̂t+1 = ρθ̂t + kat(3.28)

wt = θ̂t + at(3.29)

where at ≡ wt − E(wt|wt−1) is the innovations process in wt and the Kalman gain k is

(3.30) k =
ρp

p + σ2
e

and where p satisfies the Riccati equation

(3.31) p = σ2
v + ρ2p− (ρp)2

σ2
e + p

.

Define the state reconstruction error θ̃t by

(3.32) θ̃t = θt − θ̂t.

Then p = Eθ̃tθ̃
T
t . Equations (3.26) and (3.28) imply

(3.33) θ̃t+1 = (ρ− k)θ̃t + vt − ket.

Now notice that we can express θ̂t+1 as

(3.34) θ̂t+1 = [ρθt + vt] + [ket − (ρ− k)θ̃t − vt],

where the first term in braces in the first line equals θt+1 and the second term in braces
equals −θ̃t+1.
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3.1.1. The θ-reconstruction error: a new state variable. We can express (2.21) as

(3.35) ki
t+1 = λ̃ki

t +
1

λ− ρ
Eθt+1|θt.

An application of a certainty equivalence principle asserts that when only wt is observed,
the appropriate solution is found by replacing the information set θt with wt in (3.35).
Making this substitution and using (3.34) leads to

(3.36) ki
t+1 = λ̃ki

t +
ρ

λ− ρ
θt +

k

λ− ρ
et −

ρ− k

λ− ρ
θ̃t.

Simplifying equation (3.34), we also have

(3.37) θ̂t+1 = ρθt + ket − (ρ− k)θ̃t.

Equations (3.36), (3.37) describe the solution when wt is observed. Relative to (2.21), the
solution acquires a new state variable, namely, the θ–reconstruction error, θ̃t. For future
purposes, by using (3.30), it is useful to write (3.36) as

(3.38) ki
t+1 = λ̃ki

t +
ρ

λ− ρ
θt +

1
λ− ρ

pρ

p + σ2
e

et −
1

λ− ρ

ρσ2
e

p + σ2
e

θ̃t

In summary, when decision makers in market i observe one noisy signal on θt at t, we
can write the equilibrium law of motion for ki

t as

ki
t+1 = λ̃ki

t +
1

λ− ρ
θ̂t+1(3.39)

θ̂t+1 = ρθt +
ρp

p + σ2
e

et −
ρσ2

e

p + σ2
e

θ̃t(3.40)

θ̃t+1 =
ρσ2

e

p + σ2
e

θ̃t −
pρ

p + σ2
e

et + vt(3.41)

θt+1 = ρθt + vt.(3.42)

3.2. Two noisy signals. We get even closer5 to what will be the outcome in Townsend’s
model by assuming that the firm gets two noisy signals wt on θt:

θt+1 = ρθt + vt(3.43)

wt =
[
1
1

]
θt +

[
e1t

e2t

]
(3.44)

The innovations representation becomes

θ̂t+1 = ρθ̂t + kat(3.45)

wt =
[
1
1

]
θ̂t + at(3.46)

5‘Even closer’ is an understatement. As we shall see in section 5, we actually match the outcomes in the
equilibrium of Townsend’s model.
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where at ≡ wt −E[wt|wt−1] is a (2× 1) vector of innovations in wt and k is now a (1× 2)
vector of Kalman gains. The formulae for the Kalman filter imply that

(3.47) k =
ρp

2p + σ2
e

[
1 1

]
where p = Eθ̃tθ̃

T
t now satisfies the Riccati equation

(3.48) p = σ2
v +

pρ2σ2
e

2p + σ2
e

.

In summary, when the representative firm in industry i observes two noisy signals on
θt, we can express the equilibrium law of motion for capital recursively as

ki
t+1 = λ̃ki

t +
1

λ− ρ
θ̂t+1(3.49)

θ̂t+1 = ρθt +
ρp

2p + σ2
e

(e1t + e2t)−
ρσ2

e

2p + σ2
e

θ̃t(3.50)

θ̃t+1 =
ρσ2

e

2p + σ2
e

θ̃t −
pρ

2p + σ2
e

(e1t + e2t) + vt(3.51)

θt+1 = ρθt + vt.(3.52)

We shall encounter versions of precisely these formulae again in section 5 where we
compute the equilibrium of Townsend’s model in which the representative firm in indus-
try i receives a second noisy signal on θt by inferring it from P−i

t and the other informa-
tion that it has at time t. By extracting signals from the endogenous state variables, it
will turn out that the firm recovers exactly the same process for the key additional state
variable, the state reconstruction error θ̃t, that imperfect information contributes to the
dynamics.

4. METHOD OF PCL

In section 5, we shall compute the equilibrium of Townsend’s model with two appli-
cations of the method of Pearlman, Currie, and Levine (1986). In this section, we briefly
review a specialized version of their method that we shall apply. Readers who already
know the Pearlman, Currie, and Levine procedures can proceed directly to section 5.

4.1. Setup. For any vector yt, we let yt+1,t = E [yt+1|Ip
t ], where E is the mathematical

expectation operator and Ip
t denotes the public’s information set at time t, to be spec-

ified below. We shall make assumptions that imply that [yt+1, I
p
t ] are jointly normally

distributed, so that the mathematical expectation operator E coincides with the linear
least squares projection operator. Let zt denote a vector of state variables that are inher-
ited from the past at t, while xt is a vector of jump variables that adjust at time t to clear
markets. We assume that decision makers’ first-order necessary conditions and the other
equilibrium conditions of our model can be arranged into the following special case of
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the setup of Pearlman, Currie, and Levine (1986):[
zt+1

xt+1,t

]
= G

[
zt

xt

]
+

[
u1t

0

]
(4.53)

wt = K

[
zt

xt

]
.(4.54)

Here u1t is an i.i.d. Gaussian random vector with mean zero and covariance matrix
Eu1tu

T
1t = U11 and wt is a vector of variables whose history is observed by decision

makers. That is, we assume that all decision makers have the information set

(4.55) Ip
t = {ws : s ≤ t} .

In (4.53), (4.54), z0 is a given initial condition, but x0 is not given.
Let M be a matrix of right eigenvectors of G and let Λ be the diagonal matrix of the

associated eigenvalues. Assume that the eigenvalues are distinct, so that we have the
representation

(4.56) MG = ΛM.

More generally, we can replace (4.56) with a Schur decomposition (see Anderson, Hansen,
McGrattan, and Sargent (1996)). We assume that G has the saddle point property that the
number of eigenvalues of G less than one in modulus is equal to the dimension of zt and
that the other eigenvalues are greater than one in modulus. Let Λ2 contain the eigenval-
ues that exceed unity in modulus (call them the unstable eigenvalues) and let Λ1 contain
the eigenvalues that are less than unity in modulus (the stable eigenvalues), and partition
M conformably with the partition of Λ. A stable solution of (4.53), (4.54) satisfies

(4.57) E0

∞∑
t=0

γt

[
zt

xt

] [
zt

xt

]T

< +∞

for all γ < 1, given z0. Under the saddle point property, there is a unique stable solution
of our system that satisfies

(4.58) M21zt+1,t + M22xt+1,t = 0.

4.2. Solution. We seek the stable solution of (4.53) that respects the information con-
straints that xt+1,t be measurable with respect to Ip

t . Following Pearlman, Currie, and
Levine (1986), define the matrices6

C = G11 −G12M
−1
22 M21

A = G11 −G12G
−1
22 G21

D = K1 −K2G
−1
22 G21

where G and K are conformably partitioned as

G =
[
G11 G12

G21 G22

]
K =

[
K1

K2

]
6We make the innocuous assumption that M22 is full rank; if not, then (4.58) implies that there is a linear

combination of zt that is unstable.
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Let P be the unique positive definite matrix that satisfies the matrix Riccati equation

(4.59) P = APAT + U11 −APDT ∆DPAT

where

(4.60) ∆ = (DPDT )−1.

Define the innovation process z̃t = zt − zt,t−1. The solution of the Riccati equation (4.59)
determines the innovation covariance matrix P = Ez̃tz̃

T
t . Then the stable solution of

(4.53) that respects the information constraints imposed on the expectations vector xt+1,t

has the recursive representation

z̃t+1 = A(I − PDT ∆D)z̃t + u1
t(4.61)

zt+1 = Czt + (A− C)(I − PDT ∆D)z̃t + u1
t(4.62)

This solution incorporates two layers of optimization on the part of decision makers.
First, decision makers’ first-order conditions are arranged within (4.53), while the fac-
torization (4.56) that is used in (4.59) solves stable roots backwards and unstable roots
forwards, thereby assuring the stability of the solution. Second, decision makers’ filter-
ing and forecasting problems are solved via the Riccati equation (4.59).

5. SOLVING TOWNSEND’S MODEL WITH PCL

Using the preceding results of Pearlman, Currie, and Levine (1986), we now compute
the equilibrium of Townsend’s model and verify that it mirrors the outcomes that we at-
tained in the two-noisy-signal model of section 3.2. We proceed in two steps. First, we
solve the model assuming common information or full information pooling.7 That will
generate a candidate decision rule that we shall use as a guess for the decision rule of
firm −i. With that guess, we shall apply the methods of Pearlman, Currie, and Levine
(1986) again to Townsend’s setup with perpetually and symmetrically uninformed de-
cision makers, and shall verify that the same decision rules prevail as in the pooling
equilibrium. We shall see that in section 3 we have already encountered all of the key
expressions that appear in those decision rules.

5.1. Information pooling. We temporarily assume that both industries are able to view
values of ki

t and P i
t for both industries. This is precisely the system the equilibrium of

which has already been determined in 3.2. Note that by augmenting the system with an
additional state corresponding to each εi

t, it is possible to apply the methods of Pearlman,
Currie, and Levine (1986), and reproduce equations (3.49) - (3.52). We consign the details
to the appendix.8

7This is the type of equilibrium computed by Robert E. Lucas (1975).
8The appendix has the virtue of giving a cookbook example of how to apply the Pearlman, Currie, and

Levine machinery.
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5.2. No information pooling. As the key step of our ‘guess-and-verify’ strategy, we shall
hypothesize that Corollary 3.1.1 of Kasa (2000) is true, namely that in equilibrium, the
diverse information solution (agent i having information on P i, P j and ki) leads to the
same solution as in section 3.2. Thus from the point of view of industry 2, we shall assume
that (3.49) - (3.52) hold for industry 1; we shall then prove that they hold for industry 2
as well.

We assume therefore that the system as viewed by industry 2 is given by
(5.63)

ε1
t+1

ε2
t+1

θt+1

θ̃t+1

k1
t+1

k2
t+1

g2
t+1,t


=



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 ρ 0 0 0 0
−pρ

2p+σ2
ε

−pρ
2p+σ2

ε
0 ρσ2

ε
2p+σ2

ε)
0 0 0

−pρ
(2p+σ2

ε)(ρ−λ)
−pρ

(2p+σ2
ε)(ρ−λ)

−ρ
ρ−λ

ρσ2
ε

(2p+σ2
ε)(ρ−λ)

λ̃ 0 0
0 −1 −1 0 0 1 + b 1
0 −1/β −1/β 0 0 b/β 1/β





ε1
t

ε2
t

θt

θ̃t

k1
t

k2
t

g2
t


+



ε1
t+1

ε2
t+1

vt

vt

0
0
0


with observations given by

(5.64) w2
t =

0 0 0 0 0 1 0
0 1 1 0 0 −b 0
1 0 1 0 −b 0 0




ε1
t

ε2
t

θt

θ̃t

k1
t

k2
t

g2
t


Here we have written the expression for k1

t+1 in terms of θt and θ̃t rather than θ̂t Now the
A, D and U matrices of section 4 are

(5.65) A =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 ρ 0 0 0
−pρ

2p+σ2
ε

−pρ
2p+σ2

ε
0 ρσ2

ε
2p+σ2

ε)
0 0

−pρ
(2p+σ2

ε)(ρ−λ)
−pρ

(2p+σ2
ε)(ρ−λ)

−ρ
ρ−λ

ρσ2
ε

(2p+σ2
ε)(ρ−λ)

λ̃ 0
0 0 0 0 0 1



(5.66) D =

0 0 0 0 0 1
0 1 1 0 0 −b
1 0 1 0 −b 0

 U =


σ2

ε 0 0 0 0 0
0 σ2

ε 0 0 0 0
0 0 σ2

v σ2
v 0 0

0 0 σ2
v σ2

v 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

Inspection of these matrices leads to the conclusion that the last state is deterministic and
fully observable. Hence we can reduce the A and U matrices by removing the last row



12 JOSEPH G. PEARLMAN AND THOMAS J. SARGENT

and column, with the D matrix changing to

(5.67) D =
[
0 1 1 0 0
1 0 1 0 −b

]
One can then show that the corresponding Riccati matrix is given by

(5.68) P =


σ2

ε 0 0 0 0
0 σ2

ε 0 0 0
0 0 p p 0
0 0 p p 0
0 0 0 0 0


where p is the same as equation (3.48). Hence

(5.69) I − PDT (DPDT )−1D =


p p −σ2

ε 0 b(p + σ2
ε)

p p −σ2
ε 0 −bp

−p −p σ2
ε 0 bp

−p −p −2p σ2
ε + 2p bp

0 0 0 0 σ2
ε + 2p

 /(2p + σ2
ε).

This time therefore, the equation for the innovations process corresponding to the first
five states z̃t+1 = A(I − PDT (DPDT )−1D)z̃t + ut is represented by

(5.70) z̃t+1 =



0 0 0 0 0
0 0 0 0 0
−pρ

2p+σ2
ε

−pρ
2p+σ2

ε

ρσ2
ε

2p+σ2
ε

0 bpρ
2p+σ2

ε
−pρ

2p+σ2
ε

−pρ
2p+σ2

ε
0 ρσ2

ε
2p+σ2

ε
0

0 0 −ρσ2
ε

(2p+σ2
ε)(ρ−λ)

ρσ2
ε

(2p+σ2
ε)(ρ−λ)

−pρb
(2p+σ2

ε)(ρ−λ)

 z̃t +


ε1
t+1

ε2
t+1

vt

vt

0


Note that z̃4t satisfies an identical equation to θ̃t. In addition, z̃5t is dependent only on
z̃3t-z̃4t, which itself depends on z̃5t, but not on any of the disturbance terms. Thus, both
of these are zero, and it follows that z̃3t=z̃4t=θ̃t.

The eigenvector of the unstable eigenvalue (which is the same as earlier) is given by
[N 1] where N =

[
0 −1 λ

ρ−λ 0 0 λ− 1
β

]
, so that

(5.71) C = G11 −G12N =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 ρ 0 0 0
−pρ

2p+σ2
ε

−pρ
2p+σ2

ε
0 ρσ2

ε
2p+σ2

ε)
0 0

−pρ
(2p+σ2

ε)(ρ−λ)
−pρ

(2p+σ2
ε)(ρ−λ)

−ρ
ρ−λ

ρσ2
ε

(2p+σ2
ε)(ρ−λ)

λ̃ 0
0 0 −ρ

ρ−λ 0 0 λ̃


.
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Hence, after appending an additional row and column of zeros to I − PDT (DPDT )−1D
as calculated above, we have
(5.72)

(A−C)(I−PDT (DPDT )−1D) =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−pρ

(2p+σ2
ε)(ρ−λ)

−pρ
(2p+σ2

ε)(ρ−λ)
ρσ2

ε
(2p+σ2

ε)(ρ−λ)
0 pρb

(2p+σ2
ε)(ρ−λ)

0


It therefore follows that zt+1 = Czt+(A−C)(I−PDT (DPDT )−1D)z̃t corresponds exactly
to equations A.8, A.9, A.10, and A.11 in the appendix and that the dynamics are the same
as for information pooling.

5.2.1. Slight generalization. So far we have assumed that both industries are identical,
with f = h = 1. Suppose that adjustment costs differ for each industry. In particular,
assume that h = 1 for industry 1, but not for industry 2. Then a similar approach to the
above yields the same equation for k1, while for industry 2,

(5.73) k2
t+1 = µ̃k2

t −
p

2p + σ2
ε

ρ

ρ− µ
(ε1

t + ε2
t )−

ρ

ρ− µ
θt +

σ2
ε

2p + σ2
ε

ρ

ρ− µ
θ̃t

where µ and µ̃ are the roots of (µ− 1)(µ− 1/β) = bµ/h.

6. CONCLUDING REMARKS

By applying recursive methods, this paper has verified a claim that has been suspected
and that emerges in a sequence of papers including Townsend (1983), Singleton (1987),
Sargent (1991), and Kasa (2000) in an environment like Townsend’s. Townsend created
that environment as a laboratory in which to study the effects of unleashing ‘higher order
beliefs’. He wanted to put traders into a setting in which they would have to estimate the
beliefs of others in order to solve their own optimization and forecasting problems. The
claim emerging from the string of papers just cited is that higher order beliefs disappear
from this environment because there are so few sources of private information that prices
can reveal all traders’ private information. This result has both encouraging and discour-
aging aspects. Encouraging parts are that equilibria of models like that of Townsend
(1983) (section 8) are much easier to compute than Townsend originally thought, that
standard recursive methods suffice to do the computations, that the resulting equilib-
ria have low-dimensional representations, and that the signal extraction part of agents’
problems give a new state variable – a state reconstruction error – that contributes inter-
esting dynamics. A discouraging aspect is the fact that the dimension of the state-space
is finite reflects the disappearance of the ‘forecasting the forecasts of other problem’ in
equilibrium.

To reinstate the forecasting the forecasts of others problem, we would have to modify
Townsend’s environment to increase the dimension of decision makers’ private informa-
tion relative to the number of endogenous variables (prices) that decision makers can
condition their forecasts upon. New work by Allen, Morris, and Shin (2002) shows that
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when this is done, the dimension of the state space can become infinite. One of the first
macroeconomic applications of these ideas was by Woodford (2001), who used an islands
model with a forecasting the forecasts of others feature to blow up the dimension of the
state space and thereby get additional avenues for augmenting and shaping the persis-
tence of the effects of monetary policy shocks on prices and output. In future work, we
hope to apply the PCL technology that we have used here to that richer class of models.
Preliminary research on an extension to Townsend’s model by Sargent (1991) looks set
to restore the infinite regress issue. The extension incorporates a cost of capital term in
the firm’s maximization problem, where the rental rate is stochastic. If the correlation
between rental rates for the two firms is either 1 (i.e. impact of a shock is the same for
each firm) or -1 (i.e. the aggregate shock is 0), then the solution is virtually identical to
that obtained above, in that the Kalman filtering coefficients are the same. However if
the correlation between rental rates lies between -1 and 1 then the system requires more
than the two obvious additional state variables - each firm’s estimate of the other firm’s
state estimation error. As yet, the authors have not found a finite state representation, or
proved the necessity of infinite regress.

APPENDIX A. APPLICATION OF PCL TO POOLING EQUILIBRIUM

This appendix applies the methods of Pearlman, Currie, and Levine to verify the claim made in
section 5.1. Assume that both industries are able to view values of ki

t and P i
t for both industries;

the equations describing the system can be jointly written as:

(A.1)



ε1
t+1

ε2
t+1

θt+1

k1
t+1

k2
t+1

g1
t+1,t

g2
t+1,t


=



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 ρ 0 0 0 0
−1 0 −1 1 + b 0 1 0
0 −1 −1 0 1 + b 0 1

−1/β 0 −1/β b/β 0 1/β 0
0 −1/β −1/β 0 b/β 0 1/β





ε1
t

ε2
t

θt

k1
t

k2
t

g1
t

g2
t


+



ε1
t+1

ε2
t+1

vt

0
0
0
0


with observations given by

(A.2)


k1

t

P 1
t

k2
t

P 2
t

 =


0 0 0 1 0 0 0
1 0 1 −b 0 0 0
0 0 0 0 1 0 0
0 1 1 0 −b 0 0





ε1
t

ε2
t

θt

k1
t

k2
t

g1
t

g2
t


In the notation of Pearlman, Currie and Levine (1986) we can write this as

(A.3)
[

zt+1

xt+1,t

]
=

[
G11 G12

G21 G22

] [
zt

xt

]
+

[
ut

0

]
wt =

[
K 0

] [
zt

xt

]
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Now define the following matrices from PCL

(A.4) A =


0 0 0 0 0
0 0 0 0 0
0 0 ρ 0 0
0 0 0 1 0
0 0 0 0 1

 D =


0 0 0 1 0
1 0 1 −b 0
0 0 0 0 1
0 1 1 0 −b

 U11 = diag(σ2
ε , σ2

ε , σ2
v , 0, 0)

for which we must solve the Riccati equation P = APAT − APDT (DPDT )−1DPAT + U11. In-
spection of these matrices leads to the conclusion that the 4th and 5th states are deterministic and
fully observable, so that the innovations process for them is identically equal to zero. The matrices
for the system with those states eliminated are then given by

(A.5) A =

0 0 0
0 0 0
0 0 ρ

 D =
[
1 0 1
0 1 1

]
U11 = diag(σ2

ε , σ2
ε , σ2

v).

This yields a solution to the Riccati equation given by P = diag(σ2
ε , σ2

ε , p) where

(A.6) p =
ρ2pσ2

ε

2p + σ2
ε

+ σ2
v .

After further effort we can show that for these three states

(A.7) I − PDT (DPDT )−1D =

 p p −σ2
ε

p p −σ2
ε

−p −p σ2
ε

 /(2p + σ2
ε)

and hence that the corresponding innovations process

(A.8) z̃t+1 = A(I − PDT (DPDT )−1D)z̃t + ut

is given by

(A.9)

ε̃1
t+1

ε̃2
t+1

θ̃t+1

 =

 0 0 0
0 0 0
−pρ

2p+σ2
ε

−pρ
2p+σ2

ε

ρσ2
ε

2p+σ2
ε


ε̃1

t

ε̃2
t

θ̃t

 +

ε1
t+1

ε2
t+1

vt

 .

Note that only the third state here is of interest, since the first two are identical to what we have
already.

The equations for the main variables of the system are now given by

(A.10) zt+1 = Czt + (A− C)(I − PDT (DPDT )−1D)z̃t + ut

where

(A.11) C = G11 −G12N =


0 0 0 0 0
0 0 0 0 0
0 0 ρ 0 0
0 0 −ρ

ρ−λ
1

βλ 0
0 0 −ρ

ρ−λ 0 1
βλ

 N =

[
−1 0 λ

ρ−λ λ− 1
β 0

0 −1 λ
ρ−λ 0 λ− 1

β

]

and λ is the larger solution of (λ − 1)(λ − 1/β) = bλ. (Note that 1/(βλ)is therefore the smaller
solution.) Also the matrix [N I] represents the two eigenvectors of the unstable eigenvalues of the
G matrix.

To ensure that this is compatible with the 3-state innovations process derived above, we must
append two rows of zeros to the matrix I − PDT (DPDT )−1D.
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The full representation of the reduced-form system can therefore be written as

(A.12) ki
t+1 =

1
βλ

ki
t −

p

2p + σ2
ε

ρ

ρ− λ
(ε1

t + ε2
t )−

ρ

ρ− λ
θt +

σ2
ε

2p + σ2
ε

ρ

ρ− λ
θ̃t

where

(A.13) θ̃t+1 =
ρσ2

ε

2p + σ2
ε

θ̃t −
pρ

2p + σ2
ε

(ε1
t + ε2

t ) + vt.
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