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Abstract

This paper uses a two-stage specification search to study growth miracles in China, Singapore,
and South Korea. The first stage estimates a scalar additive-functional model that decomposes
per capita GDP into deterministic trend, martingale, and stationary components. Bayesian
posterior estimates indicate highly persistent transient growth gaps and substantial volatility.
The second stage uses the method of simulated moments to calibrate a stochastic Ramsey growth
model that replicates key moments of the estimated statistical model. Specification searches over
the long-run growth parameter 𝜈 reveal that fixing 𝜈 = 0.02 to match US growth systematically
understates high-growth outcomes for China, while estimating 𝜈 separately for each economy
improves the fit of both statistical and structural models. Our analysis illustrates how priors
and likelihoods jointly determine posterior distributions and inferences about parameters.

1 Introduction

This paper presents statistical representations of three “growth miracles” that are outcomes of
“specification searches” in the spirit of Leamer (1978). A statistical model is a joint probability
distribution for a vector of random variables of interest that is indexed by a vector of parameters. A
manifold of statistical models is swept out as we vary the parameter vector within a set of possible
values. In the Bayesian tradition, we will endow ourselves with a subjective prior probability distri-
bution over the parameters, then view the observables as draws from the marginal joint probability
distribution of the variables of interest. We can make inferences about unknown parameters by
computing the probability distribution of the parameters conditional on the observed variables of
interest, i.e., by computing a “posterior probability distribution”.

The random variables that interest us in this paper are generated by a univariate stochastic process
of per capita GDP growth rates. We have organized our specification search to reflect a distinction

∗We thank Lawrence Kotlikoff for helpful comments on an earlier version.

1



2

between “description” and “explanation” cast in terms of whether a statistical model’s parameters
are “incompletely” or “fully” interpreted in terms of objects intelligible to an economic theorist. We
thus follow Koopmans (1947) in distinguishing between, on the one hand, purely descriptive “Kepler
stage” statistical models whose parameters are just useful data-compression devices that are not
interpretable in terms of objects appearing in economic theories and, on the other hand, “structural”
Newton-stage models whose parameters pin down the preferences, technologies, and information
flows underlying an economic model. Section 2 describes the per capita GDP data that we aspire to
describe in Section 3 and to explain in Section 4. Section 3 describes our descriptive “Kepler stage”
model, an additive functional model of stochastic growth, while Section 4 describes our “Newton
stage” structural model, a Brock and Mirman (1972) stochastic optimal growth model.1

Because statistically evaporating transient dynamics in per capital GDP are an important part of
the “growth miracles” that we study, we use statistical models that don’t satisfy workhorse assump-
tions of stationarity and ergodicity that underlie important properties of frequentist and Bayesian
inferences about parameters. Consequently, we build non-stationarity into the class of statistical
models within which we confine our specification searches and inferences about parameters. In
doing this, we take advantage of the insights presented by Kohn and Ansley (1985, 1986), Hansen
and Sargent (2013, ch. 8, app. A), and others.2

Fears of misspecification pervade an econometrician’s specification searches and a decision maker’s
use of a statistical model. Section 5 briefly describes how some econometricians have expressed
their concerns about misspecifications and organized responses to them. Section 6 offers concluding
remarks.

2 Growth Facts

We study GDP growth in three East Asian economies from the 1960s to the 2020s: China, Singapore,
and South Korea. For each economy 𝑖, let GDPpc𝑖,𝜏 denote real GDP per capita in year 𝜏. We use
real GDP per capita (2015 US dollars) from the World Bank.3 Define the log level

ℓ𝑖,𝜏 = log
(
GDPpc𝑖,𝜏

)
.

Figure 1 plots five-year moving averages of annual growth rates ℓ𝑖,𝜏 − ℓ𝑖,𝜏−1 for the three East Asian
economies, with a horizontal line showing the long-run US growth rate calculated as the average
growth rate over 1961–2023.

1Kydland and Prescott (1982) calibrated a version of this model and called it a “real business cycle model”.
2See https://python.quantecon.org/ar1_bayes.html for an elementary computational presentation.
3Specifically, we use the NY.GDP.PCAP.KD series from the World Bank’s World Development Indicators database

(https://data.worldbank.org/).

https://python.quantecon.org/ar1_bayes.html
https://data.worldbank.org/
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Figure 1: Per-capita GDP growth (5-year moving averages)

The East Asian economies experienced sustained high growth rates over multi-decade periods, far
exceeding the long-run US growth rate but eventually converging towards it. In the following
section, we develop a statistical model that captures these growth patterns.

3 A Scalar Additive-Functional Growth Model

For a chosen economy and a starting year 𝜏∗ (the “miracle start”), we define a normalized log level
series. For notational convenience, we suppress the economy subscript 𝑖 in what follows, with the
understanding that all parameters and variables are economy-specific:

𝑦𝑡 ≔ ℓ𝜏∗+𝑡 − ℓ𝜏∗ , 𝑡 = 0, 1, . . . , 𝑇,

where 𝑇 is the sample length, so 𝑦0 = 0 and 𝑦𝑡 is the cumulative log growth since the start of the
episode. The one-period growth rate between 𝑡 and 𝑡 + 1 is

Δ𝑦𝑡+1 ≔ 𝑦𝑡+1 − 𝑦𝑡, 𝑡 = 0, 1, . . . , 𝑇 − 1.

The model links these growth rates to states and shocks via the equations

𝑥𝑡+1 = 𝜑𝑥𝑡 + 𝐵𝑧𝑡+1, (1)
Δ𝑦𝑡+1 = 𝜈 + 𝑥𝑡 + 𝐹𝑧𝑡+1, (2)
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where 𝑥𝑡 is a latent “growth gap” that captures how far growth is above or below the stationary
long-run trend, 𝜑 is the persistence parameter with 0 < 𝜑 < 1, and 𝜈 measures the long-run
growth rate for the economy. 𝐵 > 0 and 𝐹 > 0 are volatility parameters governing state and growth
innovations, respectively, and 𝑧𝑡+1 ∼ N(0, 1) are i.i.d. standard normal shocks. Conditional on the
realized initial state 𝑥0, the path (𝑥𝑡, Δ𝑦𝑡+1) is determined by (𝜑, 𝐵, 𝐹, 𝜈) and the innovations (𝑧𝑡+1).

This model is deliberately modest: it has one state 𝑥𝑡 and one shock 𝑧𝑡+1. Yet it is rich enough to
model the stylized growth patterns observed in Figure 1. We discuss the estimation of this model
using Bayesian methods below. In the baseline specification (Section 3.2), we fix 𝜈 = 0.02 to match
typical estimates of long-run per-capita GDP growth in the United States, and later we consider
an alternative specification in which 𝜈 is estimated jointly with (𝜑, 𝐵, 𝐹, 𝑥0) in Section 3.5.

3.1 Likelihood of Descriptive Model

The model’s likelihood is derived from the conditional distribution of growth, Δ𝑦𝑡+1, which depends
on a latent state, 𝑥𝑡, and parameters 𝜓 = (𝜑, 𝐵, 𝐹, 𝜈, 𝑥0). From (2), this distribution is:

Δ𝑦𝑡+1 | 𝑥𝑡, 𝜓 ∼ N(𝜈 + 𝑥𝑡, 𝐹2). (3)

While the state evolves according to the structural shocks in (1), for estimation it is more convenient
to use an alternative representation. We can express the state updates in terms of the observed
innovations in growth. First, define the one-step-ahead forecast error as

𝜀𝑡+1 ≔
Δ𝑦𝑡+1 − (𝜈 + 𝑥𝑡)

𝐹
.

Then, the state recursion becomes
𝑥𝑡+1 = 𝜑𝑥𝑡 + 𝐵𝜀𝑡+1.

This representation generates the same likelihood function as the structural model defined by (1)
and (2). Its advantage is for MCMC estimation: given the parameters 𝜓, the path of latent states
(𝑥𝑡) is fully determined by the data (Δ𝑦𝑡+1) without requiring auxiliary sampling of the structural
shocks. This avoids the need to sample the states as separate parameters.
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3.2 Priors

In the baseline specification, we place independent priors on the parameters 𝜓 = (𝜑, 𝐵, 𝐹, 𝑥0), with
𝜈 = 0.02 fixed:

𝜑 ∼ Beta(𝛼𝜑, 𝛽𝜑), (𝛼𝜑, 𝛽𝜑) = (1, 1),
𝐵 ∼ HalfNormal(𝜎𝐵), 𝜎𝐵 = 1,

𝐹 ∼ HalfNormal(𝜎𝐹), 𝜎𝐹 = 1,

𝑥0 ∼ N(𝜇𝑥0 , 𝜎
2
𝑥0), (𝜇𝑥0 , 𝜎𝑥0) = (0, 0.5).

(4)

The prior for 𝜑 is a flat prior on (0, 1), thereby restricting attention to stationary growth gaps
consistent with our observations in Figure 1. The priors for 𝐵 and 𝐹 are weakly informative half-
normal priors, and the prior for 𝑥0 centers the initial growth deviation at zero with a large standard
deviation, which allows the data to inform the estimation. One alternative specification of 𝑥0 fixes
it such that 𝜈 + 𝑥0 matches the first observed growth rate in the sample; we discuss this alternative
in Appendix A. Another alternative specification treats 𝜈 as an unknown parameter to be estimated
using MCMC instead of being fixed at 0.02. We explore this specification in Section 3.5.

Another modeling choice concerns the starting year 𝜏∗ for each economy. The choice of 𝜏∗ determines
the initial growth gap 𝑥0, which in turn influences the estimation of (𝜑, 𝐵, 𝐹). For China, we
choose 𝜏∗ = 1984, since it marks the formal shift of reform and opening-up policies to urban and
enterprise sectors documented in the “Decision on Reform of the Economic Structure” issued by
the Third Plenum of the 12th Central Committee (Central Committee of the Communist Party
of China, 1984; Xinhua News Agency, 1984). This year saw the expansion of special economic
zones and the 1980s peak of real GDP growth. For Singapore, we choose 𝜏∗ = 1966, the year after
its independence from Malaysia. This year marked the start of Singapore as a sovereign nation,
during which it implemented strategic economic policies that laid the foundation for its rapid
growth and development. For South Korea, we choose 𝜏∗ = 1963, the first year of Park Chung-
hee’s presidency, which initiated a series of ambitious five-year economic development plans that
transformed South Korea’s economy. This year also marked the beginning of a sustained period of
rapid industrialization and export-led growth.

3.3 Posterior sampling

Posterior inference is carried out using the No-U-Turn Sampler (NUTS) (Hoffman et al., 2014),
an adaptive variant of Hamiltonian Monte Carlo implemented in the NumPyro library (Phan et al.,
2019).

For each of the three economies (China, Singapore, and South Korea), the scalar model (1)–(2) is
estimated using the procedure described in Algorithm 1, holding 𝜈 = 0.02 fixed. Posterior summaries
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Algorithm 1: Run configuration for Bayesian estimation
Require:

Data: (𝑦𝑡)𝑇𝑡=0 with 𝑦0 = 0
Priors: (𝜑, 𝐵, 𝐹, 𝑥0) as in (4), with 𝜈 = 0.02 fixed
Sampler settings: number of chains = 4, warm-up iterations = 5000,

post-warm-up samples per chain = 5000
1: For each economy and specification, form growth rates Δ𝑦𝑡+1 = 𝑦𝑡+1 − 𝑦𝑡.
2: Run NUTS with the specified priors and sampler settings.
3: Collect posterior draws and compute summaries for (𝜑, 𝐵, 𝐹, 𝑥0).

(medians and 95% HDIs) for (𝜑, 𝐵, 𝐹, 𝑥0) are reported in Table 1 and in the prior–posterior plots
in Figure 2.

In Table 1, we see that the posterior medians of 𝜑 are all close to 1, indicating that growth gaps
are highly persistent across the three economies. The posterior medians of 𝐹 lie between roughly
0.025 (China) and 0.039 (Singapore), which is substantial relative to the long-run growth rate of
0.02. The reported values for 𝑥0 range between about 6% and 9%, capturing the initial growth
deviations above the long-run mean observed in Figure 1. Relative to the diffuse priors in Figure 2,
the posterior distributions are much more concentrated for (𝜑, 𝐵, 𝐹, 𝑥0), signaling that the data are
quite informative about the persistence, volatility of growth gaps, and initial growth rate.

Table 1: Bayesian posterior medians and 95% credible intervals for (𝜑, 𝐵, 𝐹, 𝑥0) with 𝜈 fixed at
0.02 and 𝑥0 estimated.

Economy Start year 𝜑 𝐵 𝐹 𝑥0

China 1984 0.929 0.0176 0.0246 0.086
(0.810, 1.000) (0.0070, 0.0300) (0.0190, 0.0310) (0.037, 0.137)

Singapore 1966 0.928 0.0025 0.0391 0.093
(0.813, 0.989) (0.0000, 0.0100) (0.0320, 0.0470) (0.044, 0.144)

South Korea 1963 0.970 0.0053 0.0324 0.061
(0.912, 1.000) (0.0000, 0.0130) (0.0270, 0.0390) (0.014, 0.101)

Figure 3 shows that the posterior-median predictive distribution with 𝜈 fixed at 0.02 tracks the
broad movements in growth for each economy well. For each economy, we fix (𝜑, 𝐵, 𝐹, 𝑥0) at their
posterior medians, simulate many artificial (𝑦𝑡) paths from the estimated scalar model, convert
them to growth rates, and at each horizon take quantiles across simulations. The dark and light
shaded regions therefore plot the 50% and 90% predictive bands for annual growth.

In all three episodes, the realized growth path typically stays within the 50% posterior predictive
band and almost always within the wider 90% band, while gradually converging toward the long-
run US growth rate. For all three economies, the posterior predictive bands capture both the initial
high-growth phase and the subsequent slowdown.
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Figure 2: Prior and posterior distributions of (𝜑, 𝐵, 𝐹, 𝑥0) for China (top), Singapore (middle),
and South Korea (bottom).
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Figure 3: Posterior-median predictive bands for China (top), Singapore (middle), and South
Korea (bottom). The solid black line shows realized growth; shaded areas show 50% and 90%
prediction intervals; the dashed horizontal line marks the long-run US growth rate.
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3.4 Decomposition of growth paths

In this section, we follow the discrete-time variant of Hansen (2012) to decompose the observed
path of (𝑦𝑡) specified in the additive-functional model in (1)–(2) into trend, martingale, stationary,
and constant components. We use the posterior-median estimates from the fixed-𝜈 scalar gap
specification in the previous section, summarized in Table 1. This specification imposes a common
steady-state growth rate 𝜈 = 0.02 across economies and therefore yields a clean separation of 2%
deterministic trend growth from the stochastic components of growth that vary across economies
and contribute to their growth miracles.

The following proposition summarizes the decomposition:

Proposition 3.1 (Additive-Functional Decomposition). Suppose (𝑥𝑡, 𝑦𝑡) satisfy the scalar additive-
functional model (1)–(2) with |𝜑| < 1, and let {𝑧𝑡+1} be the i.i.d. shocks in (1). Define

𝑔 ≔
1

1 − 𝜑
, 𝐻 ≔ 𝐹 + 𝐵

1 − 𝜑
. (5)

Then 𝑦𝑡 admits the decomposition

𝑦𝑡 = 𝑡𝜈︸︷︷︸
Trend (𝑇𝑡 )

+
𝑡∑
𝑗=1

𝐻𝑧 𝑗︸  ︷︷  ︸
Martingale (𝑀𝑡 )

−𝑔𝑥𝑡︸︷︷︸
Stationary (𝑆𝑡 )

+ (𝑔𝑥0 + 𝑦0)︸      ︷︷      ︸
Constant

. (6)

Proof. See Appendix B. □

We plot the decomposition of 𝑦𝑡 for each economy in Figure 4, using the posterior median estimates
of (𝜑, 𝐵, 𝐹, 𝑥0) from the fixed-𝜈 specification (Table 1). For each episode we use the normalized
log level 𝑦𝑡 = ℓ𝜏∗+𝑡 − ℓ𝜏∗ , so that 𝑦0 = 0 and all paths are measured relative to the log level at the
miracle start year. The black line in the figure shows the data 𝑦𝑡. The martingale component
𝑀𝑡 (magenta line) accumulates the shocks and captures the permanent, stochastic part of growth.
The stationary component 𝑆𝑡 (green line) is a function of the latent gap 𝑥𝑡 and converges to zero
over time, representing transitory deviations from trend. The trend component 𝑇𝑡 (red dashed line)
grows deterministically at the common long-run growth rate 𝜈 = 0.02 and traces the contribution
of the constant-growth term. Given the normalization 𝑦0 = 0, the constant term in (6) is absorbed
into the initial level of 𝑆𝑡 and is therefore not plotted separately.

Across all three economies, the decomposition displays a common structure once the normalization
is taken into account. With 𝑦0 = 0, (6) implies 𝑦𝑡 = 𝑇𝑡 + 𝑀𝑡 + 𝑆𝑡 − 𝑆0, so the rise of 𝑦𝑡 reflects
deterministic trend growth together with (i) the gradual run-down of an initial gap, captured by
𝑆𝑡 − 𝑆0, and (ii) the accumulation of shocks with permanent effects, captured by the martingale
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Figure 4: Decomposition of normalized log GDP per capita 𝑦𝑡 into martingale (𝑀𝑡, magenta),
stationary (𝑆𝑡, green), and deterministic trend (𝑇𝑡, red dashed) components for China (top), Sin-
gapore (middle), and South Korea (bottom), using posterior median estimates of (𝜑, 𝐵, 𝐹, 𝑥0) from
the fixed-𝜈 scalar additive-functional model in Section 3.3 (Table 1). The black line shows the
observed normalized series 𝑦𝑡.
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𝑀𝑡. In each episode 𝑆0 = −𝑔𝑥0 is negative when 𝑥0 > 0, and 𝑆𝑡 drifts back toward (and fluctuates
around) zero as the gap closes. The martingale component typically rises through the high-growth
phase and then flattens when growth slows, accounting for the persistent gap between the realized
path and what would be implied by deterministic trend growth alone.

3.5 Long-run growth rate as unknown parameter

The fixed-𝜈 specification imposes a common long-run growth rate across all economies. In this
section, we “describe as completely as possible the mapping from priors into posteriors” (Leamer,
1978, pp. 15–16).

To allow for heterogeneous trends, we also estimate the scalar gap model, treating 𝜈 as an un-
known parameter with a diffuse prior 𝜈 ∼ N(0.02, 0.52), and the same priors for (𝜑, 𝐵, 𝐹, 𝑥0) as
in (4). The likelihood and state recursions are unchanged; only the parameter vector is enlarged
to (𝜑, 𝐵, 𝐹, 𝑥0, 𝜈).

Posterior medians and 95% credible intervals for (𝜑, 𝐵, 𝐹, 𝑥0, 𝜈) under this specification are reported
in Table 2. Relative to the fixed-𝜈 case, the posterior medians of 𝜈 are roughly 0.3% for South Korea,
2.9% for Singapore, and 7.5% for China, with wide credible intervals for all three economies. The
change in the median estimate of 𝜈 also alters the persistence of 𝑥𝑡. For China, 𝜑 is lowered from
0.929 in the fixed-𝜈 specification to 0.521 in the estimated-𝜈 specification. These results illustrate
how the mapping from prior to posterior is shaped by beliefs about the long-run growth pattern.

The wide credible intervals for 𝜈 in Table 2 illustrate Leamer’s point that the mapping from prior to
posterior is a deliberate modeling choice. For South Korea, the 95% interval (−0.433, 0.183) includes
implausible negative values—a consequence of pairing a diffuse prior with data that provide little
information to distinguish trend from persistence. One could impose a more informative prior on 𝜈

to rule out negative values, or fix 𝜈 at a benchmark like 2%. Both approaches encode beliefs about
long-run growth; what matters is transparency about how those beliefs shape posteriors.

Table 2: Posterior medians and 95% credible intervals for (𝜑, 𝐵, 𝐹, 𝑥0, 𝜈) with 𝜈 estimated.

Economy Start year 𝜑 𝐵 𝐹 𝑥0 𝜈

China 1984 0.521 0.0138 0.0229 0.040 0.075
(0.105, 1.000) (0.0060, 0.0240) (0.0180, 0.0290) (−0.022, 0.105) (0.023, 0.108)

Singapore 1966 0.909 0.0033 0.0398 0.092 0.029
(0.423, 1.000) (0.0000, 0.0140) (0.0320, 0.0490) (−0.016, 0.271) (−0.168, 0.077)

South Korea 1963 0.986 0.0053 0.0323 0.082 0.003
(0.793, 1.000) (0.0000, 0.0130) (0.0270, 0.0390) (−0.132, 0.499) (−0.433, 0.183)

Figure 5 displays posterior-median predictive bands for the estimated-𝜈 specification. Allowing 𝜈 to
move reduces uncertainty around the median, which is also consistent with lower 𝐵 and 𝐹 estimates
in Table 2.



12

Figure 5: Posterior-median predictive bands for the scalar gap model with 𝜈 estimated. The solid
black line shows realized growth; shaded areas show 50% and 90% prediction intervals.
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4 Inferring Parameters of a Ramsey Model

In this section, we connect a version of the stochastic Ramsey–Cass–Koopmans model formulated
by Brock and Mirman (1972) to our section 3 statistical model. Section 4.1 introduces the tech-
nology, preferences, shocks. and planner’s problem for the Ramsey model, together with a scaling
for growth that delivers a stationary optimal growth formulation susceptible to dynamic program-
ming. Section 4.2 then shows how to use the Method of Simulated Moments to choose structural
parameters so that the Ramsey model’s simulated growth paths match key moments implied by
the scalar additive–functional model estimated via Algorithm 1. This provides a mapping from
the parameters of the scalar additive–functional model to the structural primitives in the Ramsey
model.

4.1 Environment

Time is discrete with 𝑡 = 0, 1, . . . , 𝑇. Let 𝑌𝑡, 𝐶𝑡, and 𝐾𝑡 denote per-capita output, consumption, and
capital.

Output is produced according to a Cobb–Douglas technology

𝑌𝑡 = 𝐴𝑡𝜉𝑡𝐾
𝛼
𝑡 , 𝛼 ∈ (0, 1), (7)

where 𝐴𝑡 is an exogenous level of total factor productivity (TFP), 𝜉𝑡 is a stationary multiplicative
shock, and 𝐾𝑡 is the capital stock. For later use, let 𝑓 (𝑘) ≔ 𝑘𝛼 so that 𝑌𝑡 = 𝐴𝑡𝜉𝑡 𝑓 (𝐾𝑡).

The deterministic TFP component follows

𝐴𝑡+1 = 𝜇𝐴𝑡, 𝜇 > 0, (8)

so that log 𝐴𝑡 grows at rate log 𝜇.

The multiplicative productivity shock is i.i.d. log-normal with unit mean:

log 𝜉𝑡 ∼ N
(
−1

2𝜎
2
𝜉, 𝜎

2
𝜉

)
, (9)

so that E[𝜉𝑡] = 1 for all 𝑡.

Capital accumulates according to

𝐾𝑡+1 = (1 − 𝛿)𝐾𝑡 + 𝐼𝑡, 𝛿 ∈ (0, 1], (10)

where 𝐼𝑡 denotes investment. The resource constraint is given by 𝐶𝑡 + 𝐼𝑡 ⩽ 𝑌𝑡.
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A representative household chooses consumption to maximize

E0

∞∑
𝑡=0

𝛽𝑡𝑢(𝐶𝑡), 𝛽 ∈ (0, 1), (11)

where 𝑢 takes the form of CRRA utility:

𝑢(𝑥) = 𝑥1−𝛾 − 1
1 − 𝛾

, 𝛾 > 0, 𝛾 ≠ 1, (12)

and 𝑢(𝑥) = log 𝑥 in the limiting case 𝛾 = 1.

It is convenient to work with stationary variables by dividing out the deterministic TFP trend. We
define detrended variables

𝑘𝑡 ≔
𝐾𝑡

𝐴1/(1−𝛼)
𝑡

, 𝑐𝑡 ≔
𝐶𝑡

𝐴1/(1−𝛼)
𝑡

, 𝑦̃𝑡 ≔
𝑌𝑡

𝐴1/(1−𝛼)
𝑡

. (13)

Using 𝑌𝑡 = 𝐴𝑡𝜉𝑡 𝑓 (𝐾𝑡) and the normalization above, we obtain

𝑦̃𝑡 =
𝑌𝑡

𝐴1/(1−𝛼)
𝑡

= 𝜉𝑡 𝑓 (𝑘𝑡).

Using 𝐴𝑡+1 = 𝜇𝐴𝑡 and the capital-accumulation equation (10),

𝑘𝑡+1 =
𝐾𝑡+1

𝐴1/(1−𝛼)
𝑡+1

=
(1 − 𝛿)𝐾𝑡 + 𝐼𝑡

𝜇1/(1−𝛼) 𝐴1/(1−𝛼)
𝑡

=
(1 − 𝛿)𝑘𝑡 + 𝜉𝑡 𝑓 (𝑘𝑡) − 𝑐𝑡

𝜇1/(1−𝛼) . (14)

Equivalently, the detrended resource constraint is

𝑐𝑡 + 𝜇1/(1−𝛼)𝑘𝑡+1 = 𝜉𝑡 𝑓 (𝑘𝑡) + (1 − 𝛿)𝑘𝑡 . (15)

With the normalization 𝐶𝑡 = 𝑐𝑡𝐴
1/(1−𝛼)
𝑡 and 𝐴𝑡 = 𝜇𝑡𝐴0, the planner’s objective can be written, up to

a constant factor, as

E0

∞∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡), s.t. 𝑐𝑡 + 𝜇1/(1−𝛼)𝑘𝑡+1 = 𝜉𝑡 𝑓 (𝑘𝑡) + (1 − 𝛿)𝑘𝑡, 𝑘𝑡+1 ⩾ 0,

where 𝑢(𝑐𝑡) = 𝑐1−𝛾𝑡
1−𝛾 is applied to per-efficiency-unit consumption and

𝛽 ≔ 𝛽𝜇 (1−𝛾)/(1−𝛼) (16)

is an effective discount factor that absorbs TFP growth. This is the same stochastic optimal growth
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framework studied in standard optimal growth treatments (see e.g., Brock and Mirman (1972)),
with state variable 𝑘𝑡, control 𝑐𝑡, and i.i.d. productivity shocks 𝜉𝑡.

4.2 Moments we Match

We now show how to connect that structural model to the scalar additive-functional representation
estimated in Section 3. We adopt a method of simulated moments (MSM) (McFadden, 1989; Pakes
and Pollard, 1989): choose 𝜃 so that key statistics of the Ramsey model’s simulated growth rates
match the corresponding moments implied by our Bayesian scalar additive-functional model.

Using the estimated-𝜈 (Table 2) estimates of the scalar additive-functional model described in
Section 3, we obtain posterior medians for each economy:

𝜓 = (𝜑̂, 𝐵, 𝐹, 𝜈, 𝑥0). (17)

These parameters have the following interpretations: 𝜈 is the long-run growth rate, 𝜑̂ measures
the persistence of deviations from trend growth, 𝐵 governs the contribution of transient state 𝑥𝑡

shocks to growth volatility, 𝐹 is the volatility of the innovation in growth conditional on the state,
and 𝑥0 is the initial deviation of growth from its long-run mean. In the “fixed-𝜈” specification, we
replace 𝜈 by the common benchmark value 𝜈 = 0.02 and use the corresponding posterior medians
from Table 1.

For each country, we compress (𝜑̂, 𝐵, 𝐹, 𝜈, 𝑥0) into three scalar target moments. Under the scalar
transient gap model, the posterior-median path of expected growth is

Δ𝑦med
𝑡+1 = 𝜈 + 𝜑̂𝑡𝑥0, 𝑡 = 0, . . . , 𝑇 − 1,

so the sample average of this path,

𝑚̂1 ≔
1
𝑇

𝑇−1∑
𝑡=0

(
𝜈 + 𝜑̂𝑡𝑥0

)
,

serves as the target for the mean growth rate. The scalar gap model also implies an approximately
stationary unconditional standard deviation of one-period growth. For values of 𝜑 sufficiently below
unity, the innovation variance converges to

𝑚̂2 ≔ 𝜎Δ𝑦 =

√
𝐵2

1 − 𝜑̂2 + 𝐹2, (18)
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which we use as the volatility target. Finally, the initial expected growth rate

𝑚̂3 ≔ 𝜈 + 𝑥0

is the target for the Ramsey model’s first-period growth rate.

For any candidate structural parameter vector 𝜃 = (𝜇, 𝜎𝜉, 𝐾0), where 𝜇 is the TFP growth factor,
𝜎𝜉 is the productivity shock volatility, and 𝐾0 is the initial capital, we solve the nonlinear Ramsey
model using Optimistic Policy Iteration (OPI) (Sargent and Stachurski, 2025). This yields optimal
policy functions for consumption and capital accumulation. We fix the time-invariant structural
parameters at the following values: capital share 𝛼 = 0.33, discount factor 𝛽 = 0.96, risk aversion
𝛾 = 2.0, and depreciation rate 𝛿 = 0.03. We also set 𝐴0 = 1.

We then simulate 𝑅 = 1000 independent paths of length 𝑇, each starting from initial capital 𝐾0 and
drawing i.i.d. log-normal productivity shocks 𝜉𝑡 ∼ LogNormal(−𝜎2

𝜉/2, 𝜎2
𝜉). For the 𝑟-th simulated

path, we compute normalized log output

𝑦sim,(𝑟)
𝑡 (𝜃) = log𝑌 (𝑟)

𝑡 (𝜃) − log𝑌 (𝑟)
0 (𝜃), 𝑡 = 0, 1, . . . , 𝑇,

and the corresponding growth rates Δ𝑦sim,(𝑟)
𝑡+1 (𝜃) = 𝑦sim,(𝑟)

𝑡+1 (𝜃) − 𝑦sim,(𝑟)
𝑡 (𝜃).

From the simulated growth rates, we compute three key moments averaged across the 𝑅 replications:

𝑚̄1(𝜃) =
1
𝑅

𝑅∑
𝑟=1

1
𝑇

𝑇−1∑
𝑡=0

Δ𝑦sim,(𝑟)
𝑡+1 (𝜃) (mean growth), (19)

𝑚̄2(𝜃) =
1
𝑅

𝑅∑
𝑟=1

std
(
Δ𝑦sim,(𝑟)

𝑡+1 (𝜃)
)

(growth volatility), (20)

𝑚̄3(𝜃) =
1
𝑅

𝑅∑
𝑟=1

Δ𝑦sim,(𝑟)
1 (𝜃) (initial growth). (21)

For each country, we collect the simulated and target moments into vectors 𝑚̄(𝜃) = (𝑚̄1(𝜃), . . . , 𝑚̄3(𝜃))′

and 𝑚̂ = (𝑚̂1, . . . , 𝑚̂3)′. The MSM criterion is

𝑄(𝜃) =
(
𝑚̄(𝜃) − 𝑚̂

) ′
𝑊
(
𝑚̄(𝜃) − 𝑚̂

)
, (22)

where 𝑊 is a diagonal positive-definite weighting matrix. In the first stage, we set 𝑊 equal to the
identity (equal weights on the three moments). In the second stage we estimate the variance of
each moment at the first-stage estimate and set 𝑊 to a diagonal matrix with entries 1/V̂ar(𝑚̄𝑖),
following standard two-step MSM practice.
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The moment matching estimator is
𝜃 ∈ arg min

𝜃∈Θ
𝑄(𝜃), (23)

where Θ is a compact parameter space for the structural parameters. In the implementation we
use a bound-constrained quasi-Newton method (L-BFGS-B) to minimize 𝑄(𝜃) for each country.

We report MSM estimates under two different calibrations of the scalar additive-functional model
in Table 3. One (“fixed-𝜈”) uses targets based on the posterior medians (𝜑̂, 𝐵, 𝐹, 𝑥0) with 𝜈 = 0.02,
and another (“estimated-𝜈”) uses targets based on the posterior medians (𝜑̂, 𝐵, 𝐹, 𝜈, 𝑥0) from the
estimated-𝜈 scalar gap specification. This allows us to compare how much of the observed growth
miracles can be rationalized by a Ramsey model disciplined by a US-style 2% trend versus one that
inherits heterogeneous long-run growth rates from the Bayesian scalar gap model.

The quality of the fit is illustrated in Figures 6 and 7, which compare realized growth rates to the
distribution implied by the Ramsey model. In Figure 6, the China fit is struggling to reconcile
the low average growth rate implied by the fixed 𝜈 = 0.02 with the high initial growth rates and
volatility observed in the data. Under the fixed-𝜈 calibration, the model matches the volatility of
growth but systematically understates the frequency of high-growth outcomes for China. Allowing
for country-specific 𝜈 shifts the Ramsey model’s growth distributions to the right, bringing the
model-implied means and upper tails much closer to the empirical histograms for these economies,
while leaving the fit for Singapore and South Korea largely unchanged. This serves as an indication
either that China has not yet converged to a steady state with US-like growth, or that China has
a higher long-run growth rate compared to the 2% benchmark.

Leamer (1978) called a process that lets evidence guide a specification search “Sherlock Holmes
inference”. He warned that such post data model construction can promote overconfidence if the
data used to generate the model is also used to help evaluate its performance. In this spirit, we
report both fixed-𝜈 and estimated-𝜈 calibrations as a transparent sensitivity check: the fixed-𝜈 case
imposes an ex ante trend-growth discipline, while the systematic China misfit motivates a targeted
relaxation to country-specific 𝜈. Presenting both calibrations makes explicit how assumptions
about long-run growth map into the Ramsey MSM parameter estimates. In the spirit of (Leamer,
1978, p. 15), this mapping from assumptions to parameter estimation complements our Section 3.5
mapping from priors to posteriors.

5 Approximations and Misspecifications

Scientists who participate in specification searches of course know that all models are imperfect
approximations to a hidden “truth” that governs their observations.4 It is natural to think about

4See Weinberg (2015, ch. 12), White (1982, 1994) and White and Hong (1999).
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Table 3: MSM estimates of Ramsey model parameters under the fixed-𝜈 and estimated-𝜈 calibra-
tions. Entries report TFP growth 𝑔𝜇 ≔ 𝜇 − 1 (percent per year), productivity-shock volatility 𝜎𝜉,
initial capital 𝐾0, and the minimized MSM objective value for each economy. The depreciation rate
is fixed at 𝛿 = 0.03 in all cases.

𝑔𝜇 (%) 𝜎𝜉 𝐾0

Economy fixed-𝜈 estimated-𝜈 fixed-𝜈 estimated-𝜈 fixed-𝜈 estimated-𝜈
China 2.39 4.62 0.036 0.018 0.848 0.823
Singapore 2.08 2.42 0.025 0.026 0.731 0.695
South Korea 2.90 3.62 0.027 0.032 1.350 1.301
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Figure 6: Distribution of annual growth rates implied by the Ramsey model under the fixed-𝜈
MSM calibration (histograms) compared with empirical growth rate histograms for each economy.



19

1985 1990 1995 2000 2005 2010 2015 2020
Year

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

G
ro

w
th

 ra
te

China
Model 90% interval
Model median
Data
=0.07

0.05 0.00 0.05 0.10 0.15 0.20
Growth rate

0

5

10

15

20

25

D
en

si
ty

China
Data
Model
Data mean=0.078
Model mean=0.077

1970 1980 1990 2000 2010 2020
Year

0.05

0.00

0.05

0.10

0.15

G
ro

w
th

 ra
te

Singapore
Model 90% interval
Model median
Data
=0.03

0.10 0.05 0.00 0.05 0.10 0.15 0.20 0.25
Growth rate

0

2

4

6

8

10
D

en
si

ty

Singapore
Data
Model
Data mean=0.047
Model mean=0.047

1970 1980 1990 2000 2010 2020
Year

0.05

0.00

0.05

0.10

0.15

G
ro

w
th

 ra
te

South Korea

Model 90% interval
Model median
Data
=0.00

0.1 0.0 0.1 0.2
Growth rate

0

2

4

6

8

10

D
en

si
ty

South Korea
Data
Model
Data mean=0.057
Model mean=0.058

Figure 7: Distribution of annual growth rates implied by the Ramsey model under the estimated-𝜈
MSM calibration compared with empirical growth rate histograms. Relative to Figure 6, the model
places more mass at higher growth rates for China and South Korea, reflecting the higher Bayesian
posterior medians for 𝜈.
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some of the approaches to specification searches analyzed by Leamer (1978) in the light of Christo-
pher Sims’s work on finite-dimensional-parameter approximations to infinite-dimensional statistical
models.5 Sims challenged a Bayesian’s sharp distinction between a likelihood function and a prior
distribution.6 Thus, Sims challenged Hansen and Sargent’s work that imposed the strongly over-
ridentifying cross-equation restrictions brought by the rational expectations hypothesis Hansen and
Sargent (1980, 1981). Sims noted that in specifying their likelihood function, Hansen and Sargent
had, from Sims’s broader perspective, in effect put overly informative and implausible prior distribu-
tions on parameters of a much higher-dimensional parameter models that Sims favored.7 Partly in
response to Sims’s criticisms, Hansen and Sargent (2022, 2024) proposed a structure that perturbs
the two basic building blocks of a Bayesian approach, the likelihood function and the prior. Hansen
and Sargent imagine a setting in which a decision maker distrusts both of those components. The
decision maker expresses that distrust by considering a set of likelihood functions and a set of pri-
ors. The decision maker uses a set of priors to describe what Hansen and Sargent call “ambiguity”.
Hansen and Sargent’s decision makers use the set likelihood functions to describe what Hansen and
Sargent call “misspecification”. Hansen and Sargent proceed to study axiomatic foundations for
preferences that distinguish a decision maker’s aversion to ambiguity from its aversion to model
misspecification.

These issues vitally affect a rational expectations theorist.8 The rational expectations assumption
imputes a common joint distribution to all agents inside a model, thereby excluding disagreements
about statistical models and parameter values as well as any concerns about model misspecifica-
tions. The artificial agents who live inside a rational expectations model don’t do specification
searches. But econometricians like Lars Peter Hansen who have constructed and estimated ratio-
nal expectations models have expressed ample doubts about both likelihood functions and priors.
Hansen (2014) describes research that makes the agents inside his models more like himself and
econometricians like White (1994) who have concerns about misspecifications. Hansen tells how
doing that has helped him understand some behavior of asset pricing that rational expectations
models had struggled to explain.

In the context of this paper, the choice between fixed-𝜈 and estimated-𝜈 specifications illustrates
5See Sims (1971, 1972, 1974).
6Leamer makes a closely related point:

. . . if the prior could be uniquely determined, there would be a unique interpretation of the data, but
ambiguity in the choice of prior implies ambiguity in the posterior distribution. In the case of data-
selection searches, if the data distribution could be taken as given, the data would imply a unique
likelihood function. But just as it is impossible unambiguously to select a prior, so too is it impossible
unambiguously to select a data distribution. Not only must the interpretation of the data evidence thus
remain elusive, but also the data evidence itself must be defined imprecisely. (Leamer, 1978, p. 260)

7See Figure 1 on page 128 of Del Negro et al. (2006) for a graphical illustration of what Sims seems to have had
in mind.

8They also affect a game theorist committed to the “Harsanyi doctrine” that imposes a “common priors” assump-
tion.
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Leamer’s mapping from priors to posteriors. Fixing 𝜈 = 0.02 encodes a prior belief about long-run
convergence to US growth rates; estimating 𝜈 with a diffuse prior lets the data speak more freely,
though at the cost of wider posterior uncertainty. Both specifications give plausible statistical
representations of the data, and each leads to a different mapping from statistical to structural
parameters in the Ramsey MSM step. The framework of Hansen and Sargent suggests that a
cautious analyst might want to evaluate decisions under a range of probability specifications.

6 Concluding Remarks

This paper implements a two-stage specification search to represent growth miracles in China,
Singapore, and South Korea. The first stage estimates a scalar additive-functional model via
Bayesian methods. The second stage uses the method of simulated moments to select parameters
of a stochastic Ramsey growth model that replicate key features of the estimated statistical model.

The scalar additive-functional model decomposes each growth path into deterministic trend, mar-
tingale, and stationary components. For all three countries, the martingale component accounts for
sustained deviations from deterministic trend while the stationary component describes a transient
growth gap that dissipates over time. In the fixed-𝜈 baseline, posterior estimates of the dynamics
of the transient component indicate high persistence (𝜑 near unity) and substantial volatility of
this transient component.

We explored two specifications of the long-run growth parameter 𝜈. Fixing 𝜈 = 0.02 imposes a
common steady-state growth rate over three countries, while estimating 𝜈 allows heterogeneous
trends. For China, the estimated-𝜈 specification yields a posterior median of 7.5% annual growth,
substantially above the US benchmark. This difference matters for the MSM calibration: the fixed-
𝜈 Ramsey model systematically understates high-growth outcomes for China, while the estimated-𝜈
calibration aligns model and data distributions more closely.

The analysis illustrates Leamer’s point that specification searches involve dual sources of uncer-
tainty. The choice of prior distributions generates posterior uncertainty about (𝜑, 𝐵, 𝐹, 𝑥0), while
the choice between fixed and estimated 𝜈 alters both the statistical model and the implied structural
parameters. Presenting both calibrations makes this mapping transparent.

Several extensions merit consideration. The scalar state restriction limits the model’s capacity to
represent richer dynamics. The MSM step matches only three moments per economy; alternative
moment sets or full-information methods could tighten the connection between our descriptive and
structural statistical models. Similar methods could be applied to other growth episodes and to
declining economies. More generally, it would be interesting to try to use additive functional statis-
tical models like those used in section 3 to approximate transition paths generated by deterministic
models like Kotlikoff et al. (2024), Benzell et al. (2024).
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A Fixing initial 𝑥0

One alternative to the prior for 𝑥0 is to hold it fixed rather than estimate it. We do so by choosing
𝑥0 to match the initial observed growth rate under the assumption of zero initial innovation, which
is achieved by

𝑥0 = Δ𝑦1 − 𝜈,

using equation (2) with 𝑧1 = 0, so that only (𝜑, 𝐵, 𝐹) are treated as parameters to be estimated.
Re-estimating the model under this restriction yields posterior summaries reported in Figure 8. For
China and Singapore, the fixed value of 𝑥0 lies close to the posterior median under the estimated-𝑥0

specification.

For South Korea, by contrast, the posterior links 𝑥0 much more tightly to (𝜑, 𝐹). The early part of
the growth path can be rationalized either by a relatively large and persistent initial gap (large 𝑥0, 𝜑
close to one, moderate 𝐹) or by a smaller initial gap combined with more transitory shocks (smaller
𝑥0, lower 𝜑, larger 𝐹). Imposing 𝑥0 = Δ𝑦1−𝜈 therefore amounts to conditioning on a particular value
of a variable that is strongly correlated with (𝜑, 𝐹) and excludes part of the “large and persistent
gap” region of the joint posterior. The conditional posterior under fixed 𝑥0 correspondingly shifts
probability mass toward the alternative “more transitory shocks” story, which appears in Figure 8
as the additional bump in the posterior for 𝜑 and the secondary mode in the posterior for 𝐹 for
South Korea.

B Proof of Additive Functional Decomposition

Proof of Proposition 3.1. Recall the model

𝑥𝑡+1 = 𝜑𝑥𝑡 + 𝐵𝑧𝑡+1, (24)
Δ𝑦𝑡+1 ≔ 𝑦𝑡+1 − 𝑦𝑡 = 𝜈 + 𝑥𝑡 + 𝐹𝑧𝑡+1, (25)

with |𝜑| < 1, 𝐵 > 0, 𝐹 > 0, and (𝑧𝑡) i.i.d. standard normal. Define

𝑔 ≔
1

1 − 𝜑
, 𝐻 ≔ 𝐹 + 𝐵

1 − 𝜑
.

We first show that, with these choices of 𝑔 and 𝐻, each increment of 𝑦𝑡 can be written as

Δ𝑦𝑡+1 = 𝜈 + 𝐻𝑧𝑡+1 − 𝑔𝑥𝑡+1 + 𝑔𝑥𝑡, (26)

for all 𝑡 ⩾ 0. Starting from the right-hand side of (26) and substituting the state recursion (24) for
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Figure 8: Posterior distributions of (𝜑, 𝐵, 𝐹, 𝑥0) under the estimated- and fixed-𝑥0 specifications for
China (top), Singapore (middle), and South Korea (bottom). For each economy, colored histograms
show the posteriors under the fixed-𝑥0 specification; black step histograms show the corresponding
posteriors when 𝑥0 is estimated. In the right panels, the histogram is the posterior for 𝑥0 under the
estimated-𝑥0 specification and the dashed line marks the fixed value.

𝑥𝑡+1, we have

𝜈 + 𝐻𝑧𝑡+1 − 𝑔𝑥𝑡+1 + 𝑔𝑥𝑡 = 𝜈 + 𝐻𝑧𝑡+1 − 𝑔(𝜑𝑥𝑡 + 𝐵𝑧𝑡+1) + 𝑔𝑥𝑡
= 𝜈 +

(
𝐻 − 𝑔𝐵

)
𝑧𝑡+1 + 𝑔(1 − 𝜑)𝑥𝑡 .

By the definitions of 𝑔 and 𝐻,

𝑔(1 − 𝜑) = 1
1 − 𝜑

(1 − 𝜑) = 1, 𝐻 − 𝑔𝐵 = 𝐹 + 𝐵

1 − 𝜑
− 𝐵

1 − 𝜑
= 𝐹.

Substituting these identities into the last expression makes the right-hand side equal to 𝜈+ 𝑥𝑡 +𝐹𝑧𝑡+1,
which is exactly Δ𝑦𝑡+1 by (25). Hence (26) holds.
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Now sum (26) over 𝑡 = 0, . . . , 𝑇 − 1:

𝑦𝑇 − 𝑦0 =
𝑇−1∑
𝑡=0

Δ𝑦𝑡+1

=
𝑇−1∑
𝑡=0

[
𝜈 + 𝐻𝑧𝑡+1 − 𝑔𝑥𝑡+1 + 𝑔𝑥𝑡

]
= 𝜈𝑇 + 𝐻

𝑇−1∑
𝑡=0

𝑧𝑡+1 − 𝑔
𝑇−1∑
𝑡=0

𝑥𝑡+1 + 𝑔
𝑇−1∑
𝑡=0

𝑥𝑡 .

The last two sums telescope:

−𝑔
𝑇−1∑
𝑡=0

𝑥𝑡+1 + 𝑔
𝑇−1∑
𝑡=0

𝑥𝑡 = −𝑔𝑥𝑇 + 𝑔𝑥0.

Thus

𝑦𝑇 − 𝑦0 = 𝜈𝑇 + 𝐻
𝑇−1∑
𝑡=0

𝑧𝑡+1 − 𝑔𝑥𝑇 + 𝑔𝑥0,

or, after reindexing the shock sum,

𝑦𝑇 = 𝑇𝜈 +
𝑇∑
𝑗=1

𝐻𝑧 𝑗 − 𝑔𝑥𝑇 + (𝑔𝑥0 + 𝑦0),

which is the decomposition in (6) with 𝑡 in place of 𝑇.

To interpret the components, let

𝑇𝑡 ≔ 𝑡𝜈, 𝑀𝑡 ≔
𝑡∑
𝑗=1

𝐻𝑧 𝑗, 𝑆𝑡 ≔ −𝑔𝑥𝑡, 𝑡 ⩾ 0.

Work with the filtration F𝑡 ≔ 𝜎{𝑥0, 𝑧1, . . . , 𝑧𝑡}. Since {𝑧𝑡+1} are i.i.d. with E[𝑧𝑡+1 |F𝑡] = 0, we have

E[𝑀𝑡+1 | F𝑡] = E
[ 𝑡∑
𝑗=1

𝐻𝑧 𝑗 + 𝐻𝑧𝑡+1

��� F𝑡] = 𝑀𝑡 + 𝐻E[𝑧𝑡+1 | F𝑡] = 𝑀𝑡 .

Hence (𝑀𝑡) is an (F𝑡)-martingale. Under the assumptions, the process (𝑥𝑡) is a stable AR(1) driven
by i.i.d. shocks; under |𝜑| < 1 there exists a unique stationary distribution. The remaining term
𝑔𝑥0 + 𝑦0 is constant over time.

Collecting terms, we obtain the stated decomposition of 𝑦𝑡 into a deterministic trend 𝑇𝑡, a martingale
𝑀𝑡, a stationary component 𝑆𝑡, and a constant term. This proves Proposition 3.1. □
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