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Abstract

This paper uses a two-stage specification search to study growth miracles in China, Singapore,
and South Korea. The first stage estimates a scalar additive-functional model that decomposes
per capita GDP into deterministic trend, martingale, and stationary components. Bayesian
posterior estimates indicate highly persistent transient growth gaps and substantial volatility.
The second stage uses the method of simulated moments to calibrate a stochastic Ramsey growth
model that replicates key moments of the estimated statistical model. Specification searches over
the long-run growth parameter v reveal that fixing v = 0.02 to match US growth systematically
understates high-growth outcomes for China, while estimating v separately for each economy
improves the fit of both statistical and structural models. Our analysis illustrates how priors

and likelihoods jointly determine posterior distributions and inferences about parameters.

1 Introduction

This paper presents statistical representations of three “growth miracles” that are outcomes of
“specification searches” in the spirit of Leamer (1978). A statistical model is a joint probability
distribution for a vector of random variables of interest that is indexed by a vector of parameters. A
manifold of statistical models is swept out as we vary the parameter vector within a set of possible
values. In the Bayesian tradition, we will endow ourselves with a subjective prior probability distri-
bution over the parameters, then view the observables as draws from the marginal joint probability
distribution of the variables of interest. We can make inferences about unknown parameters by
computing the probability distribution of the parameters conditional on the observed variables of

interest, i.e., by computing a “posterior probability distribution”.

The random variables that interest us in this paper are generated by a univariate stochastic process

of per capita GDP growth rates. We have organized our specification search to reflect a distinction

*We thank Lawrence Kotlikoff for helpful comments on an earlier version.



between “description” and “explanation” cast in terms of whether a statistical model’s parameters
are “incompletely” or “fully” interpreted in terms of objects intelligible to an economic theorist. We
thus follow Koopmans (1947) in distinguishing between, on the one hand, purely descriptive “Kepler
stage” statistical models whose parameters are just useful data-compression devices that are not
interpretable in terms of objects appearing in economic theories and, on the other hand, “structural”
Newton-stage models whose parameters pin down the preferences, technologies, and information
flows underlying an economic model. Section 2 describes the per capita GDP data that we aspire to
describe in Section 3 and to explain in Section 4. Section 3 describes our descriptive “Kepler stage”
model, an additive functional model of stochastic growth, while Section 4 describes our “Newton

stage” structural model, a Brock and Mirman (1972) stochastic optimal growth model.!

Because statistically evaporating transient dynamics in per capital GDP are an important part of
the “growth miracles” that we study, we use statistical models that don’t satisfy workhorse assump-
tions of stationarity and ergodicity that underlie important properties of frequentist and Bayesian
inferences about parameters. Consequently, we build non-stationarity into the class of statistical
models within which we confine our specification searches and inferences about parameters. In
doing this, we take advantage of the insights presented by Kohn and Ansley (1985, 1986), Hansen
and Sargent (2013, ch. 8, app. A), and others.?

Fears of misspecification pervade an econometrician’s specification searches and a decision maker’s
use of a statistical model. Section 5 briefly describes how some econometricians have expressed
their concerns about misspecifications and organized responses to them. Section 6 offers concluding

remarks.

2 Growth Facts

We study GDP growth in three East Asian economies from the 1960s to the 2020s: China, Singapore,
and South Korea. For each economy i, let GDPpc;, denote real GDP per capita in year . We use
real GDP per capita (2015 US dollars) from the World Bank.? Define the log level

¢ =log (GDPpc; ).

Figure 1 plots five-year moving averages of annual growth rates ¢; ; — ;.1 for the three East Asian
economies, with a horizontal line showing the long-run US growth rate calculated as the average
growth rate over 1961-2023.

IKydland and Prescott (1982) calibrated a version of this model and called it a “real business cycle model”.

2See https://python.quantecon.org/arl_bayes.html for an elementary computational presentation.

3Specifically, we use the NY.GDP.PCAP.KD series from the World Bank’s World Development Indicators database
(https://data.worldbank.org/).
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Figure 1: Per-capita GDP growth (5-year moving averages)

The East Asian economies experienced sustained high growth rates over multi-decade periods, far
exceeding the long-run US growth rate but eventually converging towards it. In the following

section, we develop a statistical model that captures these growth patterns.

3 A Scalar Additive-Functional Growth Model

For a chosen economy and a starting year * (the “miracle start”), we define a normalized log level
series. For notational convenience, we suppress the economy subscript i in what follows, with the

understanding that all parameters and variables are economy-specific:
yt::€T*+t_€T*: tZO,l,...,T,

where T is the sample length, so yp = 0 and y; is the cumulative log growth since the start of the

episode. The one-period growth rate between t and t + 1 is
A_yt+1 =Yl — Vs t:0715""T_1'
The model links these growth rates to states and shocks via the equations

Xt+1 = Xt + B2pyq, (1)

AYer1 =V + X + F2ep1, (2)



where x; is a latent “growth gap” that captures how far growth is above or below the stationary
long-run trend, ¢ is the persistence parameter with 0 < ¢ < 1, and v measures the long-run
growth rate for the economy. B > 0 and F > 0 are volatility parameters governing state and growth
innovations, respectively, and z..1 ~ N (0, 1) are i.i.d. standard normal shocks. Conditional on the

realized initial state xg, the path (x;, Ay;+1) is determined by (¢, B, F,v) and the innovations (2¢1).

This model is deliberately modest: it has one state x; and one shock z..1. Yet it is rich enough to
model the stylized growth patterns observed in Figure 1. We discuss the estimation of this model
using Bayesian methods below. In the baseline specification (Section 3.2), we fix v = 0.02 to match
typical estimates of long-run per-capita GDP growth in the United States, and later we consider

an alternative specification in which v is estimated jointly with (¢, B, F, xg) in Section 3.5.

3.1 Likelihood of Descriptive Model

The model’s likelihood is derived from the conditional distribution of growth, Ay;,1, which depends

on a latent state, x;, and parameters ¥ = (@, B, F, v, xp). From (2), this distribution is:
A,yt+1 |xtal»b~N(V+xtaF2)' (3)

While the state evolves according to the structural shocks in (1), for estimation it is more convenient
to use an alternative representation. We can express the state updates in terms of the observed

innovations in growth. First, define the one-step-ahead forecast error as

Ay — (v +x¢)
.

&1 =

Then, the state recursion becomes

Xeyl = @X¢ + By .

This representation generates the same likelihood function as the structural model defined by (1)
and (2). Its advantage is for MCMC estimation: given the parameters 1, the path of latent states
(x¢) is fully determined by the data (Ay;+1) without requiring auxiliary sampling of the structural

shocks. This avoids the need to sample the states as separate parameters.



3.2 Priors

In the baseline specification, we place independent priors on the parameters P = (¢, B, F, x), with
v = 0.02 fixed:

P~ Beta((xq,, ﬂCP): (anJ ﬁ(P) = (]-: 1))

B ~ HalfNormal(op), op=1, @)
F ~ HalfNormal(oF), or =1,

Xo ~ N(IJXO: 0)2(0): (llxo; oxo) = (05 05)

The prior for ¢ is a flat prior on (0, 1), thereby restricting attention to stationary growth gaps
consistent with our observations in Figure 1. The priors for B and F are weakly informative half-
normal priors, and the prior for xy centers the initial growth deviation at zero with a large standard
deviation, which allows the data to inform the estimation. One alternative specification of x fixes
it such that v +x¢ matches the first observed growth rate in the sample; we discuss this alternative
in Appendix A. Another alternative specification treats v as an unknown parameter to be estimated

using MCMUC instead of being fixed at 0.02. We explore this specification in Section 3.5.

Another modeling choice concerns the starting year t* for each economy. The choice of T* determines
the initial growth gap xg, which in turn influences the estimation of (¢, B,F). For China, we
choose " = 1984, since it marks the formal shift of reform and opening-up policies to urban and
enterprise sectors documented in the “Decision on Reform of the Economic Structure” issued by
the Third Plenum of the 12th Central Committee (Central Committee of the Communist Party
of China, 1984; Xinhua News Agency, 1984). This year saw the expansion of special economic
zones and the 1980s peak of real GDP growth. For Singapore, we choose t° = 1966, the year after
its independence from Malaysia. This year marked the start of Singapore as a sovereign nation,
during which it implemented strategic economic policies that laid the foundation for its rapid
growth and development. For South Korea, we choose t = 1963, the first year of Park Chung-
hee’s presidency, which initiated a series of ambitious five-year economic development plans that
transformed South Korea’s economy. This year also marked the beginning of a sustained period of

rapid industrialization and export-led growth.

3.3 Posterior sampling

Posterior inference is carried out using the No-U-Turn Sampler (NUTS) (Hoffman et al., 2014),
an adaptive variant of Hamiltonian Monte Carlo implemented in the NumPyro library (Phan et al.,
2019).

For each of the three economies (China, Singapore, and South Korea), the scalar model (1)—(2) is

estimated using the procedure described in Algorithm 1, holding v = 0.02 fixed. Posterior summaries



Algorithm 1: Run configuration for Bayesian estimation

Require:
Data: (yo)l_y with yo =0
Priors: (e, B,F,xq) as in (4), with v = 0.02 fixed

Sampler settings: number of chains = 4, warm-up iterations = 5000,
post-warm-up samples per chain = 5000
1: For each economy and specification, form growth rates Ayi1 = yer1 — Ye-
2: Run NUTS with the specified priors and sampler settings.
3: Collect posterior draws and compute summaries for (¢, B, F, xq).

(medians and 95% HDIs) for (¢, B, F,x() are reported in Table 1 and in the prior—posterior plots

in Figure 2.

In Table 1, we see that the posterior medians of ¢ are all close to 1, indicating that growth gaps
are highly persistent across the three economies. The posterior medians of F lie between roughly
0.025 (China) and 0.039 (Singapore), which is substantial relative to the long-run growth rate of
0.02. The reported values for xy range between about 6% and 9%, capturing the initial growth
deviations above the long-run mean observed in Figure 1. Relative to the diffuse priors in Figure 2,
the posterior distributions are much more concentrated for (@, B, F, x), signaling that the data are

quite informative about the persistence, volatility of growth gaps, and initial growth rate.

Table 1: Bayesian posterior medians and 95% credible intervals for (¢, B, F,xg) with v fixed at
0.02 and xg estimated.

Economy Start year ) B F X0
China 1984 0.929 0.0176 0.0246 0.086
(0.810,1.000) (0.0070,0.0300) (0.0190,0.0310) (0.037,0.137)
Singapore 1966 0.928 0.0025 0.0391 0.093
(0.813,0.989) (0.0000,0.0100) (0.0320,0.0470) (0.044,0.144)
South Korea 1963 0.970 0.0053 0.0324 0.061

(0.912,1.000) (0.0000,0.0130) (0.0270,0.0390) (0.014,0.101)

Figure 3 shows that the posterior-median predictive distribution with v fixed at 0.02 tracks the
broad movements in growth for each economy well. For each economy, we fix (¢, B, F, xg) at their
posterior medians, simulate many artificial (y;) paths from the estimated scalar model, convert
them to growth rates, and at each horizon take quantiles across simulations. The dark and light

shaded regions therefore plot the 50% and 90% predictive bands for annual growth.

In all three episodes, the realized growth path typically stays within the 50% posterior predictive
band and almost always within the wider 90% band, while gradually converging toward the long-
run US growth rate. For all three economies, the posterior predictive bands capture both the initial

high-growth phase and the subsequent slowdown.
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Figure 2: Prior and posterior distributions of (¢, B, F,xp) for China (top), Singapore (middle),
and South Korea (bottom).
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3.4 Decomposition of growth paths

In this section, we follow the discrete-time variant of Hansen (2012) to decompose the observed
path of (y;) specified in the additive-functional model in (1)—(2) into trend, martingale, stationary,
and constant components. We use the posterior-median estimates from the fixed-v scalar gap
specification in the previous section, summarized in Table 1. This specification imposes a common
steady-state growth rate v = 0.02 across economies and therefore yields a clean separation of 2%
deterministic trend growth from the stochastic components of growth that vary across economies

and contribute to their growth miracles.

The following proposition summarizes the decomposition:

Proposition 3.1 (Additive-Functional Decomposition). Suppose (x¢, y;) satisfy the scalar additive-
functional model (1)—(2) with |@| < 1, and let {z¢41} be the i.i.d. shocks in (1). Define

=—, H:=F+ b
Sl o (5)

Then y; admits the decomposition

t
Y= tv o+ Z Hz; —gx;  +(gxo+y0). (6)
S~— =1 ~—— R —
Trend (T¢) N . Stationary (S;) Constant
Martingale (M;)

Proof. See Appendix B. |

We plot the decomposition of y; for each economy in Figure 4, using the posterior median estimates
of (@, B, F,xg) from the fixed-v specification (Table 1). For each episode we use the normalized
log level y; = €4 — &+, so that yg = 0 and all paths are measured relative to the log level at the
miracle start year. The black line in the figure shows the data y;. The martingale component
M, (magenta line) accumulates the shocks and captures the permanent, stochastic part of growth.
The stationary component S; (green line) is a function of the latent gap x, and converges to zero
over time, representing transitory deviations from trend. The trend component T; (red dashed line)
grows deterministically at the common long-run growth rate » = 0.02 and traces the contribution
of the constant-growth term. Given the normalization yp = 0, the constant term in (6) is absorbed

into the initial level of S; and is therefore not plotted separately.

Across all three economies, the decomposition displays a common structure once the normalization
is taken into account. With yo = 0, (6) implies y; = T; + M; + S; — Sp, so the rise of y, reflects
deterministic trend growth together with (i) the gradual run-down of an initial gap, captured by

St — So, and (ii) the accumulation of shocks with permanent effects, captured by the martingale
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M;. In each episode Sy = —gx( is negative when xy > 0, and S, drifts back toward (and fluctuates
around) zero as the gap closes. The martingale component typically rises through the high-growth
phase and then flattens when growth slows, accounting for the persistent gap between the realized

path and what would be implied by deterministic trend growth alone.

3.5 Long-run growth rate as unknown parameter

The fixed-v specification imposes a common long-run growth rate across all economies. In this
section, we “describe as completely as possible the mapping from priors into posteriors” (Leamer,
1978, pp. 15-16).

To allow for heterogeneous trends, we also estimate the scalar gap model, treating v as an un-
known parameter with a diffuse prior v ~ N(0.02,0.5%), and the same priors for (¢, B,F,xq) as
in (4). The likelihood and state recursions are unchanged; only the parameter vector is enlarged

tO (q-)) B) F: XO, V)'

Posterior medians and 95% credible intervals for (¢, B, F, xo, v) under this specification are reported
in Table 2. Relative to the fixed-v case, the posterior medians of v are roughly 0.3% for South Korea,
2.9% for Singapore, and 7.5% for China, with wide credible intervals for all three economies. The
change in the median estimate of v also alters the persistence of x;. For China, ¢ is lowered from
0.929 in the fixed-v specification to 0.521 in the estimated-v specification. These results illustrate

how the mapping from prior to posterior is shaped by beliefs about the long-run growth pattern.

The wide credible intervals for v in Table 2 illustrate Leamer’s point that the mapping from prior to
posterior is a deliberate modeling choice. For South Korea, the 95% interval (—0.433, 0.183) includes
implausible negative values—a consequence of pairing a diffuse prior with data that provide little
information to distinguish trend from persistence. One could impose a more informative prior on v
to rule out negative values, or fix v at a benchmark like 2%. Both approaches encode beliefs about

long-run growth; what matters is transparency about how those beliefs shape posteriors.

Table 2: Posterior medians and 95% credible intervals for (¢, B, F, xg,v) with v estimated.

Economy Start year ® B F Xo v
China 1984 0.521 0.0138 0.0229 0.040 0.075
(0.105,1.000)  (0.0060,0.0240)  (0.0180,0.0290) (-0.022,0.105)  (0.023,0.108)
Singapore 1966 0.909 0.0033 0.0398 0.092 0.029
(0.423,1.000)  (0.0000,0.0140)  (0.0320,0.0490) (=0.016,0.271) (~0.168,0.077)
South Korea 1963 0.986 0.0053 0.0323 0.082 0.003

(0.793,1.000) (0.0000,0.0130) (0.0270,0.0390) (-0.132,0.499) (-0.433,0.183)

Figure 5 displays posterior-median predictive bands for the estimated-» specification. Allowing v to
move reduces uncertainty around the median, which is also consistent with lower B and F estimates
in Table 2.
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4 Inferring Parameters of a Ramsey Model

In this section, we connect a version of the stochastic Ramsey—Cass—Koopmans model formulated
by Brock and Mirman (1972) to our section 3 statistical model. Section 4.1 introduces the tech-
nology, preferences, shocks. and planner’s problem for the Ramsey model, together with a scaling
for growth that delivers a stationary optimal growth formulation susceptible to dynamic program-
ming. Section 4.2 then shows how to use the Method of Simulated Moments to choose structural
parameters so that the Ramsey model’s simulated growth paths match key moments implied by
the scalar additive—functional model estimated via Algorithm 1. This provides a mapping from
the parameters of the scalar additive—functional model to the structural primitives in the Ramsey

model.

4.1 Environment

Time is discrete with t =0,1,...,T. Let Y;, C;, and K; denote per-capita output, consumption, and

capital.

Output is produced according to a Cobb—Douglas technology
Yt = AtftK;X, a € (O, 1), (7)

where A; is an exogenous level of total factor productivity (TFP), & is a stationary multiplicative
shock, and K; is the capital stock. For later use, let f(k) := k* so that Y; = A& f(K;).

The deterministic TFP component follows
At+1 = I—IAI‘) u > 0) (8)

so that log A, grows at rate log .

The multiplicative productivity shock is i.i.d. log-normal with unit mean:
log & ~ N (=303, 0f), (9)

so that [E[&,] =1 for all t.

Capital accumulates according to
Kt+1 = (1 - 6)Kt + It; 6 € (0, 1]7 (10)

where I; denotes investment. The resource constraint is given by C; +I; < Y;.

13



A representative household chooses consumption to maximize

o Y Bu(C), Be(0,1), (11)
t=0
where u takes the form of CRRA utility:
1-y _ 1
u(x)—xl_ , v>0,y#1, (12)

and u(x) = logx in the limiting case y = 1.

It is convenient to work with stationary variables by dividing out the deterministic TFP trend. We

define detrended variables

KL’ C[ - th
ki=———, ¢Gi=———, Y= ——. (13)
Atl/(l—a) Atl/(l—a) Atl/(l—a)
Using Y; = A& f(K;) and the normalization above, we obtain
- Y
Vo= —— =&f (ko).
Atl/(l_a)
Using A1 = pA; and the capital-accumulation equation (10),
Ky (-9K+I  (1=8)k+&f(k) —c
kel = W00 T (1w A0 p1/(-a) : (14)
t+1 H t
Equivalently, the detrended resource constraint is
¢+ Vkeyr = & f (k) + (1 - 8k, (15)

With the normalization C; = ctAtl/(lfa) and A; = p*Ag, the planner’s objective can be written, up to

a constant factor, as

Bo ) Buc), st co+p/ T Vky =Ef(k) + (1= 8k, ket >0,
t=0

where u(c;) = Cf— is applied to per-efficiency-unit consumption and

B = put—n/- (16)

is an effective discount factor that absorbs TFP growth. This is the same stochastic optimal growth

14
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framework studied in standard optimal growth treatments (see e.g., Brock and Mirman (1972)),

with state variable k¢, control ¢;, and i.i.d. productivity shocks &;.

4.2 Moments we Match

We now show how to connect that structural model to the scalar additive-functional representation
estimated in Section 3. We adopt a method of simulated moments (MSM) (McFadden, 1989; Pakes
and Pollard, 1989): choose 6 so that key statistics of the Ramsey model’s simulated growth rates

match the corresponding moments implied by our Bayesian scalar additive-functional model.

Using the estimated-v (Table 2) estimates of the scalar additive-functional model described in

Section 3, we obtain posterior medians for each economy:
¥ = (¢, B, F, 5, %). (17)

These parameters have the following interpretations: ¥ is the long-run growth rate, ¢ measures
the persistence of deviations from trend growth, B governs the contribution of transient state x;
shocks to growth volatility, F is the volatility of the innovation in growth conditional on the state,
and Xy is the initial deviation of growth from its long-run mean. In the “fixed-v” specification, we
replace ¥ by the common benchmark value v = 0.02 and use the corresponding posterior medians
from Table 1.

For each country, we compress (@, B, F, 9, %) into three scalar target moments. Under the scalar

transient gap model, the posterior-median path of expected growth is

Ay ¢ =D+ @'xo, t=0,...,T-1,
so the sample average of this path,
T-1
Lo 1 PN
my == » (0+@'%o),
T t=0

serves as the target for the mean growth rate. The scalar gap model also implies an approximately
stationary unconditional standard deviation of one-period growth. For values of ¢ sufficiently below

unity, the innovation variance converges to

Tﬁg =0Opy = +F2, (18)
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which we use as the volatility target. Finally, the initial expected growth rate
Tﬁg =D+ JACO
is the target for the Ramsey model’s first-period growth rate.

For any candidate structural parameter vector 8 = (u, og, Ko), where p is the TFP growth factor,
o¢ is the productivity shock volatility, and Ko is the initial capital, we solve the nonlinear Ramsey
model using Optimistic Policy Iteration (OPI) (Sargent and Stachurski, 2025). This yields optimal
policy functions for consumption and capital accumulation. We fix the time-invariant structural
parameters at the following values: capital share a = 0.33, discount factor 8 = 0.96, risk aversion
y = 2.0, and depreciation rate § = 0.03. We also set Ap = 1.

We then simulate R = 1000 independent paths of length T, each starting from initial capital Ko and
drawing i.i.d. log-normal productivity shocks & ~ LogNormal(—o? /2, cg). For the r-th simulated
path, we compute normalized log output

Y0 0) =10g, " (0) ~log ¥y (0),  t=0,1,...,T,

and the corresponding growth rates Ayfff’(r) (6) = yf im’(”(e) - ySim’(r)(G).

+1 t

From the simulated growth rates, we compute three key moments averaged across the R replications:

R , T-1
_ 1 1 sim, (r
m1(0) = 2 Z T Z Ay, " (p) (mean growth), (19)
r=1 t=0
1< -
ma(0) = 2 std(AytSfln’(r)(Q)) (growth volatility), (20)
r=1
1
m3(0) = - Z AyS™ ) () (initial growth). (21)
r=1

For each country, we collect the simulated and target moments into vectors m(0) = (m1(0), ..., ms(9))’
and m = (mq,...,m3)". The MSM criterion is

Q(0) = (m(6) — m)'W(m(0) - m), (22)

where W is a diagonal positive-definite weighting matrix. In the first stage, we set W equal to the
identity (equal weights on the three moments). In the second stage we estimate the variance of
each moment at the first-stage estimate and set W to a diagonal matrix with entries 1 /\7a\r(rﬁi),

following standard two-step MSM practice.



The moment matching estimator is

6 € argmin Q(6), (23)
6O

where @ is a compact parameter space for the structural parameters. In the implementation we

use a bound-constrained quasi-Newton method (L-BFGS-B) to minimize Q(0) for each country.

We report MSM estimates under two different calibrations of the scalar additive-functional model
in Table 3. One (“fixed-v”) uses targets based on the posterior medians (@, B, F, X9) with # = 0.02,
and another (“estimated-v”) uses targets based on the posterior medians (@, B,F,b,%0) from the
estimated-v scalar gap specification. This allows us to compare how much of the observed growth
miracles can be rationalized by a Ramsey model disciplined by a US-style 2% trend versus one that

inherits heterogeneous long-run growth rates from the Bayesian scalar gap model.

The quality of the fit is illustrated in Figures 6 and 7, which compare realized growth rates to the
distribution implied by the Ramsey model. In Figure 6, the China fit is struggling to reconcile
the low average growth rate implied by the fixed v = 0.02 with the high initial growth rates and
volatility observed in the data. Under the fixed-v calibration, the model matches the volatility of
growth but systematically understates the frequency of high-growth outcomes for China. Allowing
for country-specific v shifts the Ramsey model’s growth distributions to the right, bringing the
model-implied means and upper tails much closer to the empirical histograms for these economies,
while leaving the fit for Singapore and South Korea largely unchanged. This serves as an indication
either that China has not yet converged to a steady state with US-like growth, or that China has

a higher long-run growth rate compared to the 2% benchmark.

Leamer (1978) called a process that lets evidence guide a specification search “Sherlock Holmes
inference”. He warned that such post data model construction can promote overconfidence if the
data used to generate the model is also used to help evaluate its performance. In this spirit, we
report both fixed-v and estimated-v calibrations as a transparent sensitivity check: the fixed-v case
imposes an ez ante trend-growth discipline, while the systematic China misfit motivates a targeted
relaxation to country-specific v. Presenting both calibrations makes explicit how assumptions
about long-run growth map into the Ramsey MSM parameter estimates. In the spirit of (Leamer,
1978, p. 15), this mapping from assumptions to parameter estimation complements our Section 3.5

mapping from priors to posteriors.

5 Approximations and Misspecifications

Scientists who participate in specification searches of course know that all models are imperfect

approximations to a hidden “truth” that governs their observations.? It is natural to think about

4See Weinberg (2015, ch. 12), White (1982, 1994) and White and Hong (1999).
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Table 3: MSM estimates of Ramsey model parameters under the fixed-v and estimated-v calibra-
tions. Entries report TFP growth g, := p — 1 (percent per year), productivity-shock volatility oe,
initial capital Ky, and the minimized MSM objective value for each economy. The depreciation rate
is fixed at § = 0.03 in all cases.

gu (%) 0g Ko
Economy fixed-v estimated-v fixed-v estimated-v fixed-v estimated-v
China 2.39 4.62 0.036 0.018 0.848 0.823
Singapore 2.08 2.42 0.025 0.026 0.731 0.695
South Korea ~ 2.90 3.62 0.027 0.032 1.350 1.301
China China
Model 90% interval 254 H :
= Model median 1
0.15 : ?::uz :
1
1
o 1
g 1
5
3
2
S
~0.05 .
1985 1990 1995 2000 2005 2010 2015 2020 02 0.1 0.0 0.1 02
Year Growth rate
Singapore Singapore
Vi IH B Data
0.151 - ;;:ellnean:() 047
== = Model mean=0.042
5 0107
g z
= @
2 0051 g
o A
S
0.00 {
-0.05 {
1970 1980 1990 2000 2010 2020 T 010 005 0.00 0.05 0.10 0.15 0.20
Year Growth rate
South Korea South Korea
0.150 T
W Data
0.1251 Model
== = Data mean=0.057
0.100 4 == = Model mean=0.049
o 00751
i >
= 0050 £
s 5
2 00259 o\ =t
3
0.000 1
—0.025 4 Model 90% interval
s Model median
~0.0501 : 13:[;102
1970 1980 1990 2000 2010 2020 o 0.00 0.05 0.10
Year Growth rate

Figure 6: Distribution of annual growth rates implied by the Ramsey model under the fixed-v
MSM calibration (histograms) compared with empirical growth rate histograms for each economy.
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Figure 7: Distribution of annual growth rates implied by the Ramsey model under the estimated-v
MSM calibration compared with empirical growth rate histograms. Relative to Figure 6, the model
places more mass at higher growth rates for China and South Korea, reflecting the higher Bayesian
posterior medians for v.
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some of the approaches to specification searches analyzed by Leamer (1978) in the light of Christo-
pher Sims’s work on finite-dimensional-parameter approximations to infinite-dimensional statistical
models.® Sims challenged a Bayesian’s sharp distinction between a likelihood function and a prior
distribution.® Thus, Sims challenged Hansen and Sargent’s work that imposed the strongly over-
ridentifying cross-equation restrictions brought by the rational expectations hypothesis Hansen and
Sargent (1980, 1981). Sims noted that in specifying their likelihood function, Hansen and Sargent
had, from Sims’s broader perspective, in effect put overly informative and implausible prior distribu-
tions on parameters of a much higher-dimensional parameter models that Sims favored.” Partly in
response to Sims’s criticisms, Hansen and Sargent (2022, 2024) proposed a structure that perturbs
the two basic building blocks of a Bayesian approach, the likelihood function and the prior. Hansen
and Sargent imagine a setting in which a decision maker distrusts both of those components. The
decision maker expresses that distrust by considering a set of likelihood functions and a set of pri-
ors. The decision maker uses a set of priors to describe what Hansen and Sargent call “ambiguity”.
Hansen and Sargent’s decision makers use the set likelihood functions to describe what Hansen and
Sargent call “misspecification”. Hansen and Sargent proceed to study axiomatic foundations for
preferences that distinguish a decision maker’s aversion to ambiguity from its aversion to model

misspecification.

These issues vitally affect a rational expectations theorist.® The rational expectations assumption
imputes a common joint distribution to all agents inside a model, thereby excluding disagreements
about statistical models and parameter values as well as any concerns about model misspecifica-
tions. The artificial agents who live inside a rational expectations model don’t do specification
searches. But econometricians like Lars Peter Hansen who have constructed and estimated ratio-
nal expectations models have expressed ample doubts about both likelihood functions and priors.
Hansen (2014) describes research that makes the agents inside his models more like himself and
econometricians like White (1994) who have concerns about misspecifications. Hansen tells how
doing that has helped him understand some behavior of asset pricing that rational expectations

models had struggled to explain.

In the context of this paper, the choice between fixed-v and estimated-v specifications illustrates

5See Sims (1971, 1972, 1974).
6Leamer makes a closely related point:

. if the prior could be uniquely determined, there would be a unique interpretation of the data, but
ambiguity in the choice of prior implies ambiguity in the posterior distribution. In the case of data-
selection searches, if the data distribution could be taken as given, the data would imply a unique
likelihood function. But just as it is impossible unambiguously to select a prior, so too is it impossible
unambiguously to select a data distribution. Not only must the interpretation of the data evidence thus
remain elusive, but also the data evidence itself must be defined imprecisely. (Leamer, 1978, p. 260)

7See Figure 1 on page 128 of Del Negro et al. (2006) for a graphical illustration of what Sims seems to have had
in mind.

8They also affect a game theorist committed to the “Harsanyi doctrine” that imposes a “common priors” assump-
tion.
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Leamer’s mapping from priors to posteriors. Fixing v = 0.02 encodes a prior belief about long-run
convergence to US growth rates; estimating v with a diffuse prior lets the data speak more freely,
though at the cost of wider posterior uncertainty. Both specifications give plausible statistical
representations of the data, and each leads to a different mapping from statistical to structural
parameters in the Ramsey MSM step. The framework of Hansen and Sargent suggests that a

cautious analyst might want to evaluate decisions under a range of probability specifications.

6 Concluding Remarks

This paper implements a two-stage specification search to represent growth miracles in China,
Singapore, and South Korea. The first stage estimates a scalar additive-functional model via
Bayesian methods. The second stage uses the method of simulated moments to select parameters

of a stochastic Ramsey growth model that replicate key features of the estimated statistical model.

The scalar additive-functional model decomposes each growth path into deterministic trend, mar-
tingale, and stationary components. For all three countries, the martingale component accounts for
sustained deviations from deterministic trend while the stationary component describes a transient
growth gap that dissipates over time. In the fixed-v baseline, posterior estimates of the dynamics
of the transient component indicate high persistence (¢ near unity) and substantial volatility of

this transient component.

We explored two specifications of the long-run growth parameter v. Fixing v = 0.02 imposes a
common steady-state growth rate over three countries, while estimating v allows heterogeneous
trends. For China, the estimated-v specification yields a posterior median of 7.5% annual growth,
substantially above the US benchmark. This difference matters for the MSM calibration: the fixed-
v Ramsey model systematically understates high-growth outcomes for China, while the estimated-v

calibration aligns model and data distributions more closely.

The analysis illustrates Leamer’s point that specification searches involve dual sources of uncer-
tainty. The choice of prior distributions generates posterior uncertainty about (¢, B, F, xg), while
the choice between fixed and estimated v alters both the statistical model and the implied structural

parameters. Presenting both calibrations makes this mapping transparent.

Several extensions merit consideration. The scalar state restriction limits the model’s capacity to
represent richer dynamics. The MSM step matches only three moments per economy; alternative
moment sets or full-information methods could tighten the connection between our descriptive and
structural statistical models. Similar methods could be applied to other growth episodes and to
declining economies. More generally, it would be interesting to try to use additive functional statis-
tical models like those used in section 3 to approximate transition paths generated by deterministic
models like Kotlikoff et al. (2024), Benzell et al. (2024).
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A Fixing initial x

One alternative to the prior for xp is to hold it fixed rather than estimate it. We do so by choosing
xo to match the initial observed growth rate under the assumption of zero initial innovation, which
is achieved by

Xo = Ay1 —v,

using equation (2) with z; = 0, so that only (¢, B, F) are treated as parameters to be estimated.

Re-estimating the model under this restriction yields posterior summaries reported in Figure 8. For
China and Singapore, the fixed value of xg lies close to the posterior median under the estimated-xg

specification.

For South Korea, by contrast, the posterior links xg much more tightly to (¢, F). The early part of
the growth path can be rationalized either by a relatively large and persistent initial gap (large xo, ¢@
close to one, moderate F) or by a smaller initial gap combined with more transitory shocks (smaller
X0, lower @, larger F). Imposing xg = Ay; —v therefore amounts to conditioning on a particular value
of a variable that is strongly correlated with (¢, F) and excludes part of the “large and persistent
gap” region of the joint posterior. The conditional posterior under fixed xy correspondingly shifts
probability mass toward the alternative “more transitory shocks” story, which appears in Figure 8
as the additional bump in the posterior for ¢ and the secondary mode in the posterior for F for
South Korea.

B Proof of Additive Functional Decomposition

Proof of Proposition 3.1. Recall the model

Xty1 = QX + B2ey1, (24)

AYei1 = Yer1 — Ye =V + X + F2p41, (25)

with |p]| <1, B> 0, F > 0, and (2;) i.i.d. standard normal. Define

B
g=—, H=F+ .
- l-o

We first show that, with these choices of g and H, each increment of y, can be written as
Ayer1 =V + Hzee1 — 8Xee1 + 8%, (26)

for all t > 0. Starting from the right-hand side of (26) and substituting the state recursion (24) for
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Figure 8: Posterior distributions of (¢, B, F, xg) under the estimated- and fixed-xg specifications for
China (top), Singapore (middle), and South Korea (bottom). For each economy, colored histograms
show the posteriors under the fixed-x specification; black step histograms show the corresponding
posteriors when x is estimated. In the right panels, the histogram is the posterior for xo under the
estimated-x( specification and the dashed line marks the fixed value.

Xe41, we have

V4 Hzq — 8Xer1 + 8% = V + Hzep1 — 8(X¢ + Bzey1) + 8¢

v+ (H — gB)zen1 +8(1 — @)xe.
By the definitions of g and H,

B

1—(p_1—(p

1
g(l—qo)=—1 1-9)=1, H-gB=F+
-

Substituting these identities into the last expression makes the right-hand side equal to v+x;+Fz¢1,
which is exactly Aye1 by (25). Hence (26) holds.

26



27

Now sum (26) over t =0,...,T —1:

T-1
Yr—Yo= Z AYer
t=0
T-1 T-1 T-1 T-1
= Z[V + Hzt11 — §Xe41 +gxt] = VT+HZZt+1 _gZle +g2xt-
t=0 t=0 t=0 t=0

The last two sums telescope:

T-1 T-1
g > x+g Y i = —gur + guo,
t=0 t=0

Thus
T-1

Yr—Yo= VT+HZZt+1 — gXr + §X0,
t=0

or, after reindexing the shock sum,

yT:TV+

T
Hz; — gxr + (gx0 + Y0),

j=1
which is the decomposition in (6) with t in place of T.

To interpret the components, let
t
T, = tv, M; = Z sz, St = —gxy, t=0.
=1
Work with the filtration % := o{xg, 21, ..., 2:}. Since {zq1} are i.i.d. with E[z,1|%] = 0, we have

t
E[Mu1 | 7] = B| ) Hz; + Haun
j=1

7’?] =M +HE[z141 | F] = M;.

Hence (M,) is an (#;)-martingale. Under the assumptions, the process (x;) is a stable AR(1) driven
by i.i.d. shocks; under || < 1 there exists a unique stationary distribution. The remaining term

gxo + Yo is constant over time.

Collecting terms, we obtain the stated decomposition of y; into a deterministic trend T;, a martingale

M, a stationary component S;, and a constant term. This proves Proposition 3.1. O
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