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Abstract

For postwar U.S. data, this paper uses Bayesian methods to account for
the four sources of uncertainty in a random coefficients VAR for inflation,
unemployment, and an interest rate. We use the model to assemble evidence
about the evolution of measures of the persistence of inflation, prospective
long-horizon forecasts (means) of inflation and unemployment, statistics for
testing an approximation to the natural unemployment rate hypothesis, and
a version of a Taylor rule. We relate these measures to stories that interpret
the conquest of U.S. inflation under Volcker and Greenspan as reflecting how
the monetary policy authority came to learn an approximate version of the
natural unemployment rate hypothesis. We study Taylor’s warning that
defects in that approximation may cause the monetary authority to forget
the natural rate hypothesis as the persistence of inflation attentuates.
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1. Introduction

This paper uses a nonlinear stochastic model to describe inflation-unemployment
dynamics in the U.S. after World War II. The model is a vector autoregression
with coefficients that are random walks with reflecting barriers that keep the
VAR stable. The innovations in the coefficients are arbitrarily correlated with
each other and with innovations to the observables. The model enables us to
detect features that have been emphasized in theoretical analyses of inflation-
unemployment dynamics. Those analyses involve coefficient drift in essential ways.
Thus, DeLong (1997), Taylor (1997, 1998), and Sargent (1999) interpreted the

broad movements of the inflation rate in terms of the monetary authority’s chang-
ing views about the Phillips curve. According to them, the run-up in inflation in
the late 1960’s and 1970’s occurred because the monetary authority believed that
there was an exploitable trade-off between inflation and unemployment. Its be-
liefs induced the monetary authority to accept the temptation to inflate more and
more until eventually it had attained Kydland-Prescott (1977) time-consistent in-
flation rates. But the observations of the 1970’s taught Volcker and Greenspan
the natural rate hypothesis, which they eventually acted upon to reduce inflation.
Another mechanism was posited by Parkin (1993) and Ireland (1999), who

argued that the inflation-unemployment dynamics are driven by exogenous drift
in the natural rate of unemployment, for example due to demographic changes.
Because the time-consistent inflation rate varies directly with the natural rate of
unemployment, Parkin and Ireland attributed the drift in the inflation rate to
drift in the natural rate of unemployment.
The DeLong-Taylor-Sargent story makes contact with various elements in Lu-

cas’s (1976) Critique. It makes the drift in inflation-unemployment dynamics a
consequence of the monetary authority’s evolving views about the economy. The
story attributes alterations in the law of motion for inflation and unemployment
to the changing behavior of the monetary authority, which emerges in turn from
its changing beliefs. This story is consistent with one way that Lucas (1976) has
been read, namely, as an invitation to impute observed drift in coefficients of
econometric models to time-series variation in government policy functions.
Sargent’s (1999) version of the story focuses on how the coefficient drift over

time affected the results of time-series tests of the natural rate hypothesis. In
the late 1960’s, Robert Solow and James Tobin proposed a test of the natural
rate hypothesis. Using data through the late 1960’s that test rejected the natural
rate hypothesis in favor of a permanent trade-off between inflation and unem-
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ployment. Lucas (1972) and Sargent (1971) criticized that test for not properly
stating the implications of the natural rate hypothesis under rational expecta-
tions. In particular, the Solow-Tobin test was correct only if inflation exhibited a
unit root. Before the 1970’s, post-war U.S. inflation data did not exhibit a unit
root, rendering invalid (in the opinion of Lucas and Sargent) Solow’s and Tobin’s
interpretation of their test. However, in the 1970’s, just when U.S. inflation seems
to have acquired a unit root, the Solow-Tobin test began accepting the natural
rate hypothesis. Building on Sims (1988) and Chung (1990), Sargent (1999) con-
structs an adaptive model of the government’s learning and policy making that
centers on the process by which the government learns an imperfect version of the
natural rate hypothesis, cast in terms of Solow and Tobin’s representation.
Parts of Sargent’s adaptive story acquire credibility when it is noted how the

Solow-Tobin characterization of the natural rate hypothesis has endured, despite
the criticism of Lucas and Sargent. As Hall (1999) and Taylor (1998) lament, that
faulty characterization continues to be widely used. For example, see Rudebusch
and Svensson (1999) for a widely cited model that represents the natural rate
hypothesis in the Solow-Tobin form. Fisher and Seater (1993), King and Watson
(1994 and 1997), Fair (1996), Eisner (1997), and Ahmed and Rogers (1998) con-
struct tests of long-run neutrality that are predicated on the assumption of a unit
root in inflation.1 Estrella and Mishkin (1999) use the Solow-Tobin characteriza-
tion to estimate the natural rate of unemployment. In the discussion following the
paper by Estrella and Mishkin, John Williams confesses that the Federal Reserve
Board’s large-scale macroeconometric model also incorporates this characteriza-
tion. Hall questions its validity for U.S. data after 1979 and sharply criticizes its
continued use.
Taylor (1998) warns that adherence to the erroneous econometric character-

ization of the natural rate hypothesis will eventually cause policy to go astray.
Because of the diminished serial correlation that he sees in recent inflation data,
Taylor is concerned that the disappearance of a unit root in inflation means that
the faulty test may soon signal an exploitable trade-off that will once again tempt
the monetary authority. The theme of both Hall and Taylor is that failure to
remember the theoretical and econometric lessons of the 1970’s is likely to resus-
citate pressure to inflate emanating from the empirical Phillips curve. In the same

1Many of these authors pre-test for a unit root and apply the Solow-Tobin test only if they
fail to reject the null hypothesis. But pretesting could result in a more subtle version of the
Lucas-Sargent trap. Unit root tests have low power and may fail to detect circumstances in
which the Solow-Tobin test is inappropriate.
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symposium, Friedman (1998) and Solow (1998) made a number of assertions that
may have contributed to Taylor’s worries. Friedman asserted that the real effects
of monetary policy are so long-lasting that “for all practical purposes they might
just as well be permanent.” Solow (1998) expressed skepticism about the natural
rate hypothesis and suggested that the supporting evidence is specific to the U.S.
economy since 1970. He argued that monetary policy can affect the natural rate
of unemployment and that the experience of the U.S. in the 1960’s suggests that
persistent high unemployment would yield to a revival of aggregate demand. Tay-
lor’s concern is that low inflation would be hard to sustain if belief in a long-run
trade-off were again to become influential.
The object of this paper is to develop empirical evidence that is relevant to

this discussion.2 Section 2 describes a Bayesian model that we use to summarize
the evolution of inflation dynamics. Section 3 reports stylized facts about this
evolution, and section 4 discusses test statistics for the Solow-Tobin version of the
natural rate hypothesis. Section 5 considers Taylor’s warning about recidivism on
the natural rate hypothesis. The paper concludes with a summary.

2. A Random Coefficients Representation

We use a Bayesian vector autoregression with time-varying parameters to describe
the evolution of the law of motion for inflation. We are interested in a random
coefficients representation for some of the reasons expressed in the initial sections
of Lucas (1976). The Bayesian framework treats coefficients as random variables,
making it attractive for modeling data from economies in which important decision
makers, including the monetary authority, are learning.3

2Albanesi, Chari, and Christiano (2000) model the inception and termination of inflation
in the 1970’s with a sunspot variable that shifts expectations between two regimes. Their
equilibrium excludes the concerns about model misspecification that are the focus of the present
discussion. It is possible that a regime switching model like theirs can confront the observations
about co-movements between inflation persistence and mean inflation that we document below.

3Our focus in this paper is on the evolution of reduced form relationships. Structural mod-
els involve nonlinear cross-equation restrictions on the evolving parameters, and they require
nonlinear filtering methods. We are currently studying nonlinear filters.
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2.1. Notation and State-Space Representation

The model has a non-linear state-space representation. The measurement equa-
tion is

yt = X
0
tθt + εt, (2.1)

where yt is an N × 1 vector of endogenous variables, θt is a K × 1 vector of
coefficients, X 0

t is an N ×K matrix of predetermined and/or exogenous variables,
and εt is an N ×1 vector of prediction errors. The vector yt includes inflation and
variables useful for predicting inflation. In this paper, we use (2.1) to represent
a vector autoregression, so that the right-hand variables are lags of yt. In an
unrestricted vector autoregression, each equation contains the same right-hand
variables, X 0

t = (IN ⊗ x0t).
We treat the coefficients of the VAR as a hidden state vector. The state vector

θt evolves according to

p(θt+1|θt, V ) ∝ I(θt+1)f(θt+1|θt, V ) (2.2)

where I(θt) = 0 if the roots of the associated VAR polynomial are inside the unit
circle and 1 otherwise; V is a covariance matrix defined below; and

f(θt+1|θt, V ) ∼ N(θt, Q). (2.3)

Thus, f(θt+1|θt, V ) can be represented as the driftless random walk

θt = θt−1 + vt, (2.4)

where vt is an i.i.d. Gaussian process with mean 0 and covariance Q. The economy
changes over time when news arrives, making θt vary in an unpredictable way.
Throughout this paper, we use f(·) to denote a normal density, and p(·) to denote
a more general density.
We assume that the innovations, (ε0t, v

0
t)
0, are identically and independently

distributed normal random variables with mean zero and covariance matrix,

Et

·
εt
vt

¸ £
ε0t v0t

¤
= V =

µ
R C 0

C Q

¶
, (2.5)

where R is the N ×N covariance matrix for measurement innovations, Q is the
K×K covariance matrix for state innovations, and C is a K×N cross-covariance

5



matrix. Following the Bayesian literature, we call the θ’s “parameters” and the
elements of R,Q, and C “hyperparameters.”
We assume that the hyperparameters and initial state θ0 are independent, that

the initial state is a truncated Gaussian random variable, and that the hyperpa-
rameters come from an inverse-Wishart distribution. We adopted these parts of
the prior mostly because of their convenience in being natural conjugates for our
Gaussian virtual prior f .
Let f(θ0) = N(θ̄, P̄ ) represent a normal prior with mean θ̄ and variance P̄ .

The prior for the initial state is

p(θ0) ∝ I(θ)N(θ̄, P̄ ). (2.6)

Our prior for the hyperparameters is

p(V ) = IW (V
−1
, T0), (2.7)

where IW (S, df) represents the inverse-Wishart distribution with scale matrix
S and degrees of freedom df . This is a convenient form because it yields an
inverse-Wishart posterior when combined with a Gaussian likelihood. Collecting
the pieces, the joint prior for θ0, V can be represented as

p(θ0, V ) ∝ I(θ)N(θ̄, P̄ )IW (V −1, T0). (2.8)

Both pieces are informative, but in the empirical section we set θ̄, P̄ , V , and T0
so that they are only weakly informative.
We use the following notation to denote partial histories of the variables Yt

and θt. The vectors

Y T = [y0
1
, ..., y0T ]

0 (2.9)

and

θT = [θ0
1
, ..., θ0T ]

0 (2.10)

represent the history of data and states up to date T and

Y T+1,T+H = [y0T+1, ..., y
0
T+H ]

0 (2.11)

and

θT+1,T+H = [θ0T+1, ..., θ
0
T+H ]

0 (2.12)
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represent potential future trajectories from date T onward.
We can use (2.2) to assemble the joint density

p(θT |V ) ∝ I(θT )f(θT |V ) (2.13)

where

f(θT |V ) = f(θ0|V )
T−1Y
t=0

f(θt+1|θt, V ) (2.14)

and

I(θT ) =
TY
t=0

I(θt). (2.15)

We call f our ‘virtual prior’ and p the prior. The virtual prior f makes θ a
driftless random walk. Multiplying f(θT |V ) by I(θT ) puts zero probability on
sample paths of {θt} for which θt for any t ≥ 0 corresponds to unstable VAR
coefficients.4

In (2.2), the truncation of f(θt|θt−1, V ) through multiplication by I(θt) reflects
our opinion that explosive representations are implausible for the United States.
An unrestricted normal density f(θT |V ) = f(θ0)

QT
t=0 f(θt+1|θt, V ) for the history

of states θT implies a positive probability of explosive autoregressive roots, but an
explosive representation implies an infinite variance for inflation, which cannot be
optimal for a central bank that minimizes a loss function involving the variance
of inflation.5 We restrict the prior to put zero probability on explosive states.
This representation resembles some of the models in Doan, Litterman, and

Sims (1984), but with a different prior. Doan, et. al. were primarily interested
in forecasting and recommended a “random walk in variables” prior to promote
parsimony. We are less interested in forecasting and more interested in summariz-
ing the data in a relatively unconstrained fashion, so we chose the prior described
above.

4An appendix shows that the model formed by (2.3), (2.13), (2.14), and (2.15) implies the
nonlinear transition equation (2.2).

5Alternatively, explosive representations cannot result if the monetary policy rule ensures
that inflation is bounded. We do not claim that an integrated representation for inflation is
implausible on statistical grounds, only that drift in inflation is hard to reconcile with purposeful
central bank behavior.
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2.2. A Limitation of Our Model: No Stochastic Volatility

For macroeconomic variables and a period similar to ours, Bernanke and Mihov
(1998a, 1998b) and Sims (1999) presented evidence that favors a vector autore-
gression with time-invariant autoregressive coefficients but a covariance matrix of
innovations that fluctuates over time. In contrast, our specification allows the
coefficients to vary and assumes a time-invariant but unknown innovation covari-
ance matrix V . While our prior fixes V , our statistical methods nevertheless allow
the data to speak up for volatility or drift in V , albeit in a restricted and adaptive
way. Our estimates of V conditioned on time t data fluctuate over time in ways
that we shall discuss.
We chose our specification partly because we want to focus attention on the

coefficient drift issues raised by Lucas (1976). Our model is rigged to let us
detect drifts in the systematic parts of government and private behavior rules that
show up in the systematic parts of vector autoregressions. Our prior embodies a
prejudice that monetary policy changed systematically during the years that we
study. In contradistinction, the interpretation of the evidence favored by Bernanke
and Mihov (1998a, 1998b) and Sims (1999) is consistent with a view that while
distributions of shocks have evolved, agents’ responses to them have been stable.6

2.3. Posterior Predictive Density

As Bayesians, our goal is to summarize the posterior density for the objects of
interest. We are mostly interested in a forward looking perspective on inflation,
so we want posterior predictive densities.
In this model, there are four sources of uncertainty about the future. The

terminal state θT and the hyperparameters V are unknown and must be estimated.
In addition, as time goes forward the state vector will drift away from θT , and the
measurement equation will be hit by random shocks. Conditional on prior beliefs
and data through date T , beliefs about the future can be expressed by the joint
posterior distribution,

p(Y T+1,T+H , θT+1,T+H , θT , V |Y T ). (2.16)

Our objective is to characterize (2.16). This is a complicated object, but it
can be decomposed into more tractable components. We begin by factoring (2.16)

6See Sims (1982) and Sargent (1983) for theoretical settings that, by assuming that the
historical sample was produced by optimizing government behavior and stable private sector
responses to it, can explain such a pattern.
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into the product of a conditional and a marginal density,

p(Y T+1,T+H , θT+1,T+H , θT , V |Y T ) = p(θT , V |Y T )× (2.17)

p(Y T+1,T+H , θT+1,T+H |θT , V, Y T ).

This expression splits the joint density into a term that represents beliefs about
the past and present and another that represents beliefs about the future. The
first term is the joint posterior density for hyperparameters and the history of
states. It summarizes current knowledge about system dynamics, based on data
and prior beliefs. The second term reflects the uncertainty about the future that
would be present even if the current state and hyperparameters were known with
certainty. This term reflects the influence of future innovations to the state and
measurement equations.
Analytical expressions for each piece are unavailable, even for simple cases.

Instead, we use Monte Carlo methods to simulate them. The algorithm is split
into two parts, corresponding to the components of (2.17). The first part uses
the Gibbs sampler to simulate a draw of θT and V from the marginal den-
sity, p(θT , V |Y T ). The second step plugs that draw into the conditional density
p(Y T+1,T+H , θT+1,T+H |θT , V, Y T ) and generates a trajectory for future data and
states.

2.4. Beliefs About the Past and Present

The posterior density for states and hyperparameters can be expressed as

p(θT , V |Y T ) ∝ p(Y T | θT , V )p(θT , V ), (2.18)

∝ f(Y T | θT , V )p(θT |V )p(V ),
∝ I(θT ) £f(Y T | θT , V )f(θT |V )p(V )¤ .

The first line follows from Bayes’ theorem: p(θT , V ) represents a joint prior for
hyperparameters and states and p(Y T | θT , V ) is a conditional likelihood. Con-
ditional on states and hyperparameters, the measurement equation is linear in
observables and has normal innovations. Thus, the conditional likelihood is Gaus-
sian, p(Y T | θT , V ) = f(Y T | θT , V ), as shown in the second line. The joint prior
for hyperparameters and states can be factored into a marginal prior for V and
a conditional prior for θT , and substituting I(θT )f(θT |V ) for p(θT |V ) delivers the
expression on the third line.
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Notice that the term in brackets on the last line is the joint posterior kernel that
would result if the restriction on unstable roots were not imposed. If not for this
restriction, the model would have a linear Gaussian state-space representation,
with transition equation f(θT |V ). The posterior kernel associated with this linear
transition law is

pL(θ
T , V |Y T ) ∝ f(Y T | θT , V )f(θT |V )p(V ). (2.19)

Substituting this relation into the last equation, the posterior density for the non-
linear model can be expressed as a truncation of the posterior for the unrestricted
linear model,

p(θT , V | Y T ) ∝ I(θT )pL(θT , V |Y T ). (2.20)

Among other things, this means that p(θT , V | Y T ) can be represented and simu-
lated in two steps. First, we derive the posterior associated with linear transition
equation, pL(θT , V |Y T ), and then we multiply by I(θT ) to rule out explosive
outcomes. In the Monte Carlo simulation, this is implemented by simulating the
unrestricted posterior and rejecting draws that violate the stability condition. The
next subsection describes our method for simulating pL(θT , V |Y T ), and the one
after that confirms the validity of our rejection sampling procedure.

2.5. Simulating the Unrestricted Posterior

Following Kim and Nelson (1999), we use the Gibbs sampler to simulate draws
from pL(θ

T , V |Y T ). The Gibbs sampler iterates on two operations. First, con-
ditional on the data and hyperparameters, we draw a history of states from
pL(θ

T |Y T , V ). Then, conditional on the data and states, we draw hyperparame-
ters from pL(V |Y T , θT ). Subject to regularity conditions (see Roberts and Smith
1992), the sequence of draws converges to a draw from the joint distribution,
pL(θ

T , V |Y T ).

2.5.1. Gibbs Step 1: States Given Hyperparameters

Conditional on data and hyperparameters, the unrestricted transition law is linear
and has normal innovations. Thus, the virtual states are Gaussian,

pL(θ
T |Y T , V ) = f(θT | Y T , V ). (2.21)
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This density can be factored as7

f(θT |Y T , V ) = f(θT | Y T , V )
YT−1

t=1
f(θt | θt+1, Y t, V ). (2.22)

The leading term is the marginal posterior for the terminal state, and the other
terms are conditional densities for the preceding time periods. Since the condi-
tional densities on the right hand side are Gaussian, it is enough to update their
conditional means and variances. This can be done via the Kalman filter.
Deriving forward and backward recursions for f(θT |Y T , V ) is straightforward.

Going forward in time, let

θt|t ≡ E(θt |Y t, V ), (2.23)

Pt|t−1 ≡ V ar(θt |Y t−1, V ),
Pt|t ≡ V ar(θt |Y t, V ).

represent conditional means and variances. These are computed recursively, start-
ing from θ̄ and P̄ , by iterating on

Kt = (Pt|t−1Xt + C)(X 0
tPt|t−1Xt +R+X

0
tC + C

0Xt)−1, (2.24)

θt|t = θt−1|t−1 +Kt(yt −X 0
tθt−1|t−1),

Pt|t−1 = Pt−1|t−1 +Q,

Pt|t = Pt|t−1 −Kt(X
0
tPt|t−1 + C

0).

The matrix Kt is the Kalman gain.8 At the end of the sample, these iterations
yield the conditional mean and variance for the terminal state,

f(θT |Y T , V ) = N(θT |T , PT |T ). (2.25)

This pins down the first term in (2.22).
The remaining terms in (2.22) are derived by working backward through the

sample, updating means and variances to reflect the additional information about
θt contained in θt+1.

9 Let

θt|t+1 ≡ E(θt | θt+1, Y t, V ), (2.26)

Pt|t+1 ≡ V ar(θt | θt+1, Y t, V ),
7See Kim and Nelson (1999), ch. 8.
8The formula for Kt differs from that given in Anderson and Moore (1979) for the case of

correlated innovations because of a difference in assumptions about the timing of innovations.
9Notice that the backward recursions are not determined by the Kalman smoother. We

want the mean and variance for f(θt | θt+1, Y t, V ) = f(θt | θt+1, Y T , V ). The Kalman smoother
computes the mean and variance for f(θt |Y T , V ).
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represent backward estimates of the mean and variance, respectively. Because the
states are conditionally normal, these can be expressed as

θt|t+1 = θt|t + Pt|tP−1t+1|t(θt+1 − θt|t), (2.27)

Pt|t+1 = Pt|t − Pt|tP−1t+1|tPt|t.
Therefore the remaining elements in the (2.22) are

f(θt | θt+1, Y T , V ) = N(θt|t+1, Pt|t+1). (2.28)

Notice that the smoothed covariances depend only on the output of the Kalman
filter, but the smoothed conditional means depend on realizations of θt+1. Accord-
ingly, a random trajectory for states may be drawn from a backward recursion.
First, draw θT from (2.25), using (2.24) to compute the mean and variance. Next,
conditional on its realization, draw θT−1 from (2.28), using (2.27) to compute the
mean and variance. Then draw θT−2 conditional on the realization of θT−1, and
so on back to the beginning of the sample.

2.5.2. Gibbs Step 2: Hyperparameters Given States

Conditional on Y T and θT , the innovations are observable. Under the unrestricted
linear transition law, these are identically and independently distributed normal
random variables, and their conditional likelihood is Gaussian. When an inverse-
Wishart prior is combined with a Gaussian likelihood, the posterior is also an
inverse-Wishart density,

p(V |Y T , θT ) = IW (V −11 , T1), (2.29)

where

T1 = T0 + T, (2.30)

V1 = V + V T ,

and V T is proportional to the usual covariance estimator,

(1/T )V T = (1/T )
XT

t=1
(εt vt)(εt vt)

0. (2.31)

The posterior degree-of-freedom parameter is the sum of the prior degrees of
freedom, T0, plus the degrees of freedom in the sample, T . The posterior scale
matrix is the sum of the prior and sample sum-of-squares matrices.10

10See Gelman, Carlin, Stern, and Rubin (1995).
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To sample from an inverse-Wishart distribution, we exploit two facts. First, if
a matrix V is distributed as IW (S, df), then V −1 is a Wishart matrix with scale
matrix S and degrees of freedom df. Second, to simulate a draw from the Wishart
distribution, we take df independent draws of a random vector ηi from a N(0, S)
density and form the random matrix V −1 =

Pdf
i=1ηiη

0
i. Since V

−1 is a draw from
a Wishart density, V is a draw from an inverse-Wishart density.

2.5.3. Summary of the Gibbs Sampler

To summarize, the Gibbs sampler iterates on two simulations, drawing states
conditional on hyperparameters and then hyperparameters conditional on states.
After a transitional or “burn-in” period, the sequence of draws approximates a
sample from the virtual posterior, pL(θT , V | Y T ).

2.6. Rejection Sampling

The final step is to impose the stability condition, which is done by checking the
autoregressive roots at each date and rejecting draws with roots inside the unit
circle. The rejection step ensures that the posterior density puts zero probability
on explosive outcomes.
To confirm the validity of this procedure, we check the conditions associated

with rejection sampling.11 The normalized target density is

p(θT , V |Y T ) = I(θT )pL(θ
T , V |Y T )RR

I(θT )pL(θT , V |Y T )dθTdV . (2.32)

To perform rejection sampling, we need a candidate density, g(θT , V ), that satisfies
three properties. The candidate density must be non-negative and well-defined
for all (θT , V ) for which p(θT , V | Y T ) > 0, it must have a finite integral, and the
importance ratio, R(θT , V ), must have a known upper bound, M :

R(θT , V ) =
p(θT , V |Y T )
g(θT , V )

≤M <∞. (2.33)

A natural candidate density is the virtual posterior, pL(θT , V |Y T ). Because
this is a probability density, it is non-negative and integrates to 1. Since it is
an unrestricted analog of the target density, it is also well-defined for all (θT , V )

11E.g., see Gelman, et. al. (1995), pp. 303-305.

13



which occur with positive probability. Finally, the importance ratio is bounded by
the inverse of the probability of obtaining a stable draw from the virtual posterior,

R(θT , V ) =
I(θT )RR

I(θT )pL(θT , V |Y T )dθTdV (2.34)

≤ 1RR
I(θT )pL(θT , V | Y T )dθTdV =M.

The denominator is the expected value of I(θT ) under the virtual posterior, or
the probability of a stable draw from the unrestricted density. M is finite as long
as this probability is non-zero.
Rejection sampling proceeds in two steps: draw a trial (θTi , Vi) from the vir-

tual posterior, and then accept the draw with probability R(θTi , Vi)/M . Since
R(θTi , Vi)/M = I(θTi ), the second step is equivalent to accepting the trial draw
whenever it satisfies the stability condition, and rejecting it when it does not.

2.7. Beliefs About the Future

Having processed data through date T , the next step is to simulate future data
and states. Conditional on hyperparameters and the current state of the system,
the posterior density for future data and states is quite tractable. This density
can be factored into the product of a marginal distribution for future states and
a conditional distribution for future data,

p(Y T+1,T+H , θT+1,T+H |θT , V, Y T ) = p(θT+1,T+H |θT , V, Y T )× (2.35)

p(Y T+1,T+H |θT+1,T+H , θT , V, Y T ).

Because the states are Markov, the first term can be factored into

p(θT+1,T+H |θT , V, Y T ) =
YH

i=1
p(θT+i |θT+i−1, V, Y T ). (2.36)

Apart from the restriction on explosive autoregressive roots, θT+1 is conditionally
normal with mean θT and variance Q. Similarly, conditional on θT+1, V, and Y T ,
θT+2 is normally distributed with mean θT+1 and varianceQ, and so on. Therefore,
to sample from the virtual posterior for future states, we take H random draws
of vi from the N(0, Q) density and iterate on the state equation,

θT+i = θT+i−1 + vi. (2.37)
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The stability restriction is implemented in the same way as in the Gibbs sam-
pler, by checking the autoregressive roots associated with each draw and rejecting
explosive draws.
Given a trajectory for future states, all that remains is to simulate future data.

The second term in (2.35) can be factored into

p(Y T+1,T+H |θT+1,T+H , θT , V, Y T ) =
YH

i=1
p(yT+i |Y T+1,i−1, θT+1,T+H , θT , V, Y T ).

(2.38)

Conditional on θT ,V,Y
T , and a trajectory for future states, the measurement

innovation εT+1 is normally distributed with mean C 0Q−1vT+1 and variance R −
C 0Q−1C. Hence yT+1 is conditionally normal with mean (X 0

T+1θT+1+C
0Q−1vT+1)

and variance R − C 0Q−1C. Similarly, εT+2 is conditionally normal with mean
C 0Q−1vT+2 and variance R − C 0Q−1C, and so on. Therefore, to sample from
(2.38), we take H random draws of εi from a N( C 0Q−1vT+i, R−C 0Q−1C) density
and iterate on the measurement equation,

yT+i = X
0
T+iθT+i + εi, i = 1, ..., H, (2.39)

using lags of yT+i to compute XT+i.

2.8. Collecting the Pieces

Combining the results of the previous sections, (2.16) can be expressed as

p(Y T+1,T+H , θT+1,T+H , θT , V |Y T ) = p(θT , V |Y T )× (2.40)YH

i=1
p(θT+i |θT+i−1, V, Y T )×YH

i=1
p(yT+i |Y T+1,i−1, θT+1,T+H , θT , V, Y T ).

To sample from this distribution, we use the Gibbs sampler to simulate a draw
from p(θT , V |Y T ). Then, conditional on that draw, we simulate a trajectory for
future states, and conditional on both of those we simulate a trajectory for future
data. This provides the raw material for our analysis.

3. Stylized Facts About the Evolving Law of Motion

We study data on inflation, unemployment, and a short-term nominal interest
rate. Inflation is measured using the CPI for all urban consumers, unemployment
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is the civilian unemployment rate, and the nominal interest rate is the yield on
3-month Treasury bills. The inflation and unemployment data are quarterly and
seasonally adjusted, and the Treasury bill data are the average of daily rates in
the first month of each quarter. The sample runs from 1948.1 to 2000.4. We work
with a VAR(2) specification for inflation, the logit of unemployment, and the ex
post real interest rate.12

To calibrate the prior, we estimate a time-invariant vector autoregression using
data for 1948.1-1958.4. The mean of the virtual prior, θ̄, is the point estimate, P̄
is its asymptotic covariance matrix, and R is the innovation covariance matrix.
To initialize the other hyperparameters, we assume that C = 0 and that Q is
proportional to P̄ . To begin conservatively, we start with a minor perturbation
from a time-invariant representation, setting Q = (.01)2 · P̄ . In other words, our
prior is that time variation accounts for only 1 percent of the standard deviation
of each parameter.13 The prior degrees of freedom, T0, are equal to those in the
preliminary sample.
This is an informative prior, but only weakly so. Because the preliminary

sample contains only 4.5 data points per VAR parameter, the prior mean is just a
ballpark number and the prior variance allows for a substantial range of outcomes.
As time passes, the prior becomes progressively less influential and the likelihood
comes to dominate the posterior.
The simulation strategy follows the algorithm described above. Starting in

1965.4, we compute posterior densities for each year through 2000, for a total of 36
years. At each date, we perform 10,000 iterations of the Gibbs sampler, discarding
the first 2000 to let the Markov chain converge to its ergodic distribution.14 Then,
conditional on those outcomes, we generate 8,000 trajectories of future data and
states. Each posterior trajectory is 120 quarters long and contains information

12The unemployment rate is bounded between 0 and 1, and the logit transformation maps this
into (−∞,∞), which is more consonant with our Gaussian approximating model. To ensure that
posterior draws for unemployment lie between 0 and 1, we simulate logit(ut) and use the inverse
logit transformation. The non-negativity bound on nominal interest rates is implemented by
rejection sampling.
13The Gibbs sampler quickly adds more time variation to the system.
14Recursive mean graphs suggest rough convergence, though some wiggling persists beyond

the burn-in period. We checked our results by performing a much longer simulation based on
data through 2000.Q4. The longer simulation involved 106,000 draws from the Gibbs sampler,
the first 18,000 of which were discarded to allow for convergence. Smoothed estimates based on
this simulation were qualitatively similar to the filtered estimates reported in the text. Indeed,
we also performed calculations based on a burn-in period of 98,000 and found that the results
were much the same.
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about both short- and long-run features of the data.

3.1. Objects of Interest

We initially focus on three features of the data, long-horizon forecasts of infla-
tion and unemployment, the spectrum for inflation, and selected parameters of
a version of the Taylor rule for monetary policy. The long-horizon forecasts ap-
proximate core inflation and the natural rate of unemployment, the spectrum
encodes information about the variance, persistence, and predictability of infla-
tion, and the Taylor-rule parameters summarize the changes in monetary policy
that underlie the changing nature of inflation.
We are interested in these features because they play a role in theories about

the rise and fall of U.S. inflation. For example, Parkin (1993) and Ireland (1999)
point out that the magnitude of inflationary bias in the Kydland-Prescott (1977)
and Barro-Gordon (1983) model depends positively on the natural rate of un-
employment. Taylor (1997, 1998) and Sargent (1999) argue that core inflation
depends on the monetary authority’s beliefs about the natural rate hypothesis,
which in turn depend on the degree of inflation persistence. In particular, the
model presented in Sargent (1999) imposes a definite restriction on the joint evo-
lution of core inflation and the degree of persistence, which we discuss below.
Changes in beliefs about the natural rate hypothesis should also be reflected in
Taylor-rule parameters.

3.2. Core Inflation and the Natural Rate of Unemployment

Beveridge and Nelson (1981) define a stochastic trend in terms of long-horizon
forecasts. For a driftless random variable like inflation or unemployment, the
Beveridge-Nelson trend is defined as the value to which the series is expected to
converge once the transients die out,

τt = lim
h→∞

Etxt+h. (3.1)

Assuming that expectations of inflation and unemployment converge to the core
and natural rate as the forecast horizon lengthens, the latter can be approximated
using this measure.15 Because the posterior distributions are skewed and have fat
tails, we modify the Beveridge-Nelson definition by substituting the posterior

15Hall (1999) recommends an unconditional mean of unemployment as an estimator of the
natural rate of unemployment.
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median for the mean. We approximate core inflation and the natural rate of
unemployment by setting h = 120 quarters and finding the median of the posterior
predictive density,

πct = medt(πt+120), (3.2)

unt = medt(ut+120).

Estimates of core inflation and the natural rate are shown in figure 3.1. The
circles represent inflation, and x’s refer to unemployment. According to this mea-
sure, core inflation was between 1.75 and 4 percent in the late 1960s. It rose
throughout the 1970s and peaked at roughly 8 percent in 1979-80. Thereafter it
fell quickly, and it has fluctuated between 2.25 and 3.25 percent since the mid-
1980s. Core inflation was just shy of 3 percent at the end of 2000.
The natural rate of unemployment also rose throughout the 1970s, reaching a

peak of 6.6 percent in 1980. It declined gradually in the early 1980s and fluctuated
between 5.5 and 6 percent from the mid-1980s to the mid-1990s. The natural rate
again began to fall after 1994 and was a bit less than 5 percent at the end of 2000.
A scatterplot, shown in figure 3.2, provides a better visual image of the associ-

ation between the two. The simple correlation is 0.63, which is rather remarkable
given the difficulty of measuring these components. The two series rise and fall
together, in accordance with Parkin and Ireland’s theory.
As a reality check for the model, figures 3.3 and 3.4 report the cyclical com-

ponents of inflation and unemployment, measured by subtracting the median
Beveridge-Nelson trend estimates from the actual values. We include these plots
to confirm that the model captures important features of the data. The first figure
shows that the estimated peaks and troughs occur at the right times and are of
plausible magnitude. For example, unemployment was well above the natural rate
following the recessions of 1975 and 1982. Using Okun’s Law as a rule of thumb,
these estimates correspond to “output gaps” of roughly 6.75 and 12.5 percent,
respectively. The model also correctly predicts that the high inflation of 1974-75
and 1980-81 would be partially reversed.
Figure 3.4 plots a scatter of the cyclical components and illustrates two other

characteristics of the data. The first is that the components are asymmetric, with
large positive deviations occurring more often than large negative values. Second,
from 1967 until 1983, there were large counter-clockwise loops in inflation and un-
employment, with increases in inflation leading increases in unemployment. After
1986, the loops were smaller but still mostly counter-clockwise. The direction
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Figure 3.1: Core Inflation and the Natural Rate of Unemployment
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of the loops is consistent with other evidence on the cyclical relation between
inflation and economic activity, e.g. as summarized by Taylor (1999).
Beveridge-Nelson measures often suggest that all the variation is in the trend,

a feature to which many economists object. Our model does not have this feature.

3.3. The Persistence, Variance, and Predictability of Inflation

Next we consider the evolution of the second moments of inflation. This infor-
mation is encoded in the spectrum, and its evolution is illustrated in figures 3.5
through 3.7.
Figure 3.5 shows the median posterior spectrum for each year in the sample.

This figure was generated as follows. For each year, we estimated a spectrum for
each inflation trajectory in the posterior predictive density. Then we computed
a median spectrum by taking the median of the estimates on a frequency-by-
frequency basis.16 This yields a single slice of the figure, relating power to fre-
quency for a given year. By repeating this for each year, we produced the three-
dimensional surface shown in the figure. We emphasize that these are predictive
measures, which represent expected variation going forward in time. That is, the
slice associated with a given year represents a prediction about how inflation is
likely to vary in the future, conditional on data up to the current date.17

The most significant feature of this graph is the variation over time in the
magnitude of low-frequency power. Since the spectral densities have Granger’s
(1966) typical shape, we can interpret low-frequency power as a measure of in-
flation persistence. According to this measure, inflation was weakly persistent in
the 1960s and 1990s, when there was little low-frequency power, but strongly per-
sistent in the late 1970s, when there was a lot. Indeed, the degree of persistence
peaked in 1979-80, at the time as the peak in core inflation.
Figures 3.6 and 3.7 report results for selected years. Here, circles represent

1965, x’s refer to 1979, and asterisks stand for 2000. Figure 3.6 plots the spectrum,
and figure 3.7 plots its logarithm. To interpret the figures, recall that the total
variance is the integral of the spectrum,

σ2π = (1/2π)

Z π

−π
fππ(ω)dω, (3.3)

16The ordinates are asymptotically independent across frequencies.
17We also calculated an alternative local linear approximation using the VAR representation

and the mean posterior state at each date. The results were similar to those shown in the figure.
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and that the log of the univariate innovation variance can be expressed as the
integral of the log of the spectrum,

ln(σ2ε) = (1/2π)

Z π

−π
ln fππ(ω)dω. (3.4)

The function fππ(ω) is the spectrum at frequency ω, σ2π is the variance, and σ2ε
is the error variance for one-step ahead univariate forecasts of inflation. The
former measures long-run uncertainty about inflation, and the latter is a measure
of short-run uncertainty.
Looking first at figure 3.6, we can say something about how the total variance

has changed over time. Between 1965 and 1979, inflation became smoother but
more persistent. That is, there was less variation at high and medium frequencies,
especially those associated with business cycles (say 4 to 20 quarters per cycle),
but more variation at low frequencies, especially those corresponding to cycles
lasting 5 years or more. The increase in low-frequency power was greater in
magnitude than the decrease in high-frequency power, so the total variance was
greater. Thus, the increase in variance during the late 1960s and 1970s reflected
an increase in inflation persistence.
Between 1979 and 2000, the spectrum for inflation fell at all frequencies, and

therefore so did the total variance. But the decline in power was greatest at low
frequencies, especially at those greater than 20 quarters per cycle. In other words,
the diminished degree of inflation persistence accounted for most of the decline
in variance in this period. Thus the evolution of the variance has been closely
associated with that of inflation persistence. Inflation became more persistent
and more variable in the 1970s and less persistent and less variable in the 1980s
and 1990s.
Figure 3.7 is relevant for short-term forecasting and tells a somewhat different

story. The increase in the log of low-frequency power between 1965 and 1979 was
smaller in magnitude than the decrease in the log of high-frequency power. Thus,
although inflation became more persistent and more variable during the 1970s,
it also became easier to predict one quarter ahead. In other words, although
there was more long-term uncertainty in 1979, there was actually less short-term
uncertainty. Between 1979 and 2000, the log-spectrum fell at all frequencies, and
inflation became even easier to forecast one-quarter ahead. By 2000 there was
less uncertainty at both long and short horizons.
The next two figures provide more information about prediction errors. Figure

3.8 is a multivariate analog of figure 3.7 and is related to the total prediction
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variance for the system. To interpret this figure, recall that the total prediction
variance, |Vεε|, for a vector time series yt can be expressed in terms of the log of
the determinant of the spectral density,

ln (|Vεε|) = (1/2π)
Z π

−π
ln |Fyy(ω)|dω, (3.5)

where Vεε is the covariance matrix for innovations based on the history of yt and
Fyy(ω) is the spectral density matrix. Whittle (1953) interprets |Vεε| as a measure
of the total random variation entering the system at each date.
Unlike the univariate measure, the total prediction variance increased between

1965 and 1979. For the system as a whole, there was only a slight decrease in
variation at business cycle frequencies, and this was more than offset by a substan-
tial increase in variation at low and high frequencies. Between 1979 and 2000,
the system became more predictable, with ln |Fyy(ω)| falling at all frequencies.
This more than reversed the increase in the earlier period. By the end of 2000,
the total prediction variance was 40 percent smaller than in 1979 and 30 percent
smaller than in 1965. Thus, for the system as a whole, the degree of short-term
uncertainty has fallen substantially.
Figure 3.9 reports the variance of VAR forecast errors over the period 1965-

2000 and provides more detail about the evolution of short-run uncertainty. At
each date, the posterior prediction error variance was computed by averaging
across realizations of the posterior predictive density, one-quarter ahead. For
inflation and ex post real interest rates, there has been a downward trend in short-
term uncertainty since 1965, punctuated by an increase in 1974 and again in the
1978-82. According to this measure, the VAR innovation variance for inflation
fell by 21 percent between 1979 and 2000 and by 42 percent for the period as a
whole. In contrast, the forecast error variance for unemployment fluctuated until
the early 1980s, rising and falling with the business cycle. Since then it has fallen
steadily to less than one-third its peak level. Changes in short-run uncertainty
about unemployment account for much of the rise and fall of the total prediction
variance.18

Finally, in figures 3.10 and 3.11, we relate changes in core inflation to the
evolution of the variance and degree of persistence of inflation. Figure 3.10 plots

18Although our model assumes that V is constant, the figures illustrate that filtered estimates
do shift little by little over time, thus introducing a limited degree of variation in shock vari-
ances. This variation may reflect a transient adaptation to the kind of shifts emphasized by our
discussants.
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core inflation and the spectrum at frequency zero, which summarizes the degree
of persistence. The two are very closely related. Both rose in the 1960s and 1970s
and both fell during and after the Volcker disinflation. The simple correlation is
0.915.
Because persistence contributes to variance, core inflation also covaries pos-

itively with the long-horizon standard deviation of inflation, as shown in figure
3.11.19 Again, both measures rose during the 1970s and fell during the 1980s and
1990s. The correlation between the mean and standard deviation is 0.783. This
is a bit lower than the previous correlation because the variance includes changes
in both low- and high-frequency power, and the latter are less highly correlated
with changes in core inflation. Thus the well-known positive correlation between
the mean and variance of inflation reflects an even stronger correlation between
the mean and degree of persistence.

3.4. Taylor Rule Parameters

At the end of the day, we hope to interpret the evolution of inflation dynamics in
terms of the changing behavior of central bankers. Accordingly, we also investigate
the evolution of the parameters of a Taylor rule.
A simple form of the Taylor rule posits that the central bank’s nominal interest

target, i∗t , varies positively with inflation and inversely with unemployment,

i∗t = (r
∗ + π∗) + β(πt−1 − π∗) + γ(ut−1 − u∗), (3.6)

where π∗, u∗ and r∗ represent target values for inflation, unemployment, and
the real interest rate, respectively. The lags in the relationship reflect the fact
that current observations on inflation and unemployment are often unavailable
to policy makers, especially early in the quarter.20 Therefore decisions are based
on lagged values of inflation and unemployment. The basic Taylor rule is usually
augmented with a policy shock, ηt, and a partial adjustment formula to allow for
interest rate smoothing,

∆it = ρ(L)(i∗t − it−1) + ηt. (3.7)

Cast in this form, the Taylor rule can be represented as the interest rate equation
in a vector autoregression for inflation, unemployment, and nominal interest rates.

19We focus on the long-horizon variance, vart(πt+120), in order to let the transients die out.
20This is relevant in our case because the interest rate is sampled in the first month of the

quarter.
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In an alternate form of the Taylor rule, decisions about the ex ante real interest
rate depend on lags of inflation, unemployment, and ex post real rates,

it − Et−1πt = µ+ β(L)πt−1 + γ(L)ut−1 + ρ(L)(it−1 − πt−1) + ηt. (3.8)

By substituting πt = Et−1πt+επt, this form can be cast as the real interest equation
in a vector autoregression for inflation, unemployment, and ex post real rates, with
a composite innovation consisting of policy shocks and inflation prediction errors,

it − πt = µ+ β(L)πt−1 + γ(L)ut−1 + ρ(L)(it−1 − πt−1) + (ηt − επt). (3.9)

This is the form of the Taylor rule that we shall study.21 In response to our
discussants, we concede that it is controversial to interpret the systematic part
of the monetary policy rule as the projection of real interest rates only on past
information. By orthogonalizing an innovation covariance matrix in a particular
order, many studies attribute part of the contemporaneous covariance among
innovations to the monetary rule (i.e., the rule for setting interest rates responds
to contemporary information). We also recognize that the shapes of impulse
response functions of macroeconomic aggregates to the monetary policy shock
can depend sensitively on how much of the contemporaneous innovation volatility
is swept into the monetary shock. In defense of our choice, we note that among
others McCallum and Nelson (1999) doubt that monetary authorities have timely
and reliable enough reports to let them respond to what the vector autoregression
measures as contemporaneous information.22

The literature on monetary policy rules emphasizes several aspects of central
bank behavior. We focus on two elements that are especially relevant to the
evolution of the law of motion for inflation. One concerns the evolution of target
inflation, π∗, and the other concerns the evolution of the degree of activism.
The value of target inflation cannot be identified from the interest rate equation

alone. But assuming that the central bank adjusts interest rates so that inflation
eventually converges to its target, this can be estimated by computing long-horizon
forecasts using the entire vector autoregression. Under this assumption, target
and core inflation are synonymous. Evidence on this feature of the policy rule is
reported above, in figure 3.1.

21Actually, we substitute the logit of unemployment for unemployment.
22It would have been possible for us to condition on contemporaneous information by using

the time t estimate of the R component of V to orthogonalize R as desired, though we have not
done so in this paper.
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Another important issue concerns whether a rule is “activist” or “passivist,” a
distinction that bears on the determinacy of equilibrium (e.g., see Clarida, Gali,
and Gertler 2000). A policy rule is activist if, other things equal, the central
bank increases the nominal interest rate more than one-for-one in response to an
increase in inflation, so that the real interest rate increases. A passivist central
bank adjusts the nominal interest rate by one-for-one or less, so that the real
interest remains constant or falls as inflation rises. In the real interest version of
the Taylor rule, the degree of activism can be measured by

A =
β(1)

1− ρ(1)
. (3.10)

A policy rule is activist if A > 0.
Because our version of the Taylor rule is the real interest equation in the vector

autoregression, the posterior density for the activism coefficient can be computed
directly from the posterior density for the states. The output of the Gibbs sampler
at date t includes the terminal state, θt, and for each draw of the terminal state we
calculate the implied value for A. Conditional on data up to date t, this measures
the degree of activism that would be forecast going forward from date t.
Posterior beliefs about A are illustrated in figure 3.12. Because of outliers

in the posterior density, the figure graphs the posterior median and interquartile
range.23 The figure has two salient features. First, as reported by Clarida, et. al.,
there have been important changes in the degree of activism over time. Judging by
the posterior median, which is marked by circles, the degree of activism declined in
the late 1960s and was approximately neutral in the early 1970s. For the remainder
of the 1970s, the rule was decidedly passive, allowing real interest rates to fall as
inflation rose. Monetary policy started becoming activist in 1981 and continued
to grow more activist until the end of Volcker’s term. During the first half of
Greenspan’s term, policy drifted toward a less active stance, perhaps reflecting
the “opportunistic” approach to disinflation. But policy has again grown more
activist since 1993, surpassing the peak achieved at the end of the Volcker years.
The second notable feature concerns the dispersion of beliefs about the degree

of activism. Judging by the interquartile range, beliefs were tightly concentrated
only in the 1970s, when monetary policy was passive. At that time, there seemed
to be little doubt, for better or worse, about how the Fed was doing business.
The periods before and after both involve more uncertainty about the degree of
activism. In the 1960s, the lower end of the interquartile range straddled the
23The outliers result from division by 1−ρ(1), which sometimes takes on values close to zero.
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boundary of the activist region. In the Volcker-Greenspan years, the interquartile
range was wider but safely within the activist region.
Figure 3.13 shows how the activism parameter has covaried with core inflation

and the degree of inflation persistence.24 The latter both increased during the
1970s experiment with a passivist monetary rule, and they both fell in the 1980s
and 1990s as policy became more activist. The correlation between the degree of
activism and core inflation is -0.69 over the full sample and -0.87 in the Volcker-
Greenspan era. Similarly, the correlation between the activism and persistence
measures is -0.46 over the full sample and -0.76 in the Volcker-Greenspan years.
Thus, as one might expect, there is an inverse relation between the degree of
activism on the one hand and core inflation and inflation persistence on the other.

4. Testing the Natural Rate Hypothesis

Figures 4.1 through 4.3 summarize the consequences of implementing economet-
ric tests of the natural rate hypothesis along the lines of Solow (1968), Tobin
(1968), Gordon (1970), and many others. They tested the natural rate hypothesis
by regressing inflation on its own lags along with current and lagged values of
unemployment,

πt = β0 + β1(L)πt−1 + β2(L)ut + εt. (4.1)

They interpreted the condition β1(1) = 1 as evidence in favor of the natural rate
hypothesis and β1(1) < 1 as evidence in favor of a long-run trade-off.25

The outcomes of recursive natural rate tests are shown in figure 4.1. The
initial estimates are based on data from 1948 through 1964, allowing for lags at
the beginning of the sample. On the right-hand side of equation (4.1), we include
two lags of inflation along with the current value and two lags of unemployment.

24The variables are measured in standard units in order to put them on a common basis.
25The thought experiment in play imagines the consequences of a permanent increase in

expected inflation, which is proxied by the lagged inflation terms on the right-hand side. In order
for this to be neutral in the long run, it must be the case that this has a one-for-one effect on
actual inflation, so that β1(1) = 1. Assuming that current unemployment is predetermined with
respect to current inflation, this regression can be estimated by least squares. King and Watson
(1997) point out that the last assumption follows from the structure of vintage 1960s Keynesian
models, in which unemployment and inflation were determined in a block recursive fashion.
Unemployment was determined by aggregate demand and Okun’s law. Taking unemployment
as given, inflation was determined by a Phillips curve relation for wages and a mark-up equation
for prices.
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Starting in 1965:1, new data are added one quarter at a time, and β̂1(1) and
its t-ratio are updated using the Kalman filter. The figure plots the resulting
sequence of t-statistics for β̂1(1) − 1. Points marked with a circle represent OLS
estimates, and those marked with a diamond represent discounted least squares
(DLS) estimates. For the latter, the gain parameter was gt = max(1/t, 1/120).26

The horizontal line marks the one percent critical value for a one-sided test.
Sargent (1971) pointed out that this approach is valid only if the sample used

to estimate β1(1) contains permanent shifts in inflation. Otherwise the data are
uninformative for the thought experiment, and β1(1) could be less than 1 even if
there were no long-run trade-off. Thus, as the degree of inflation persistence in
the sample varies over time, so too will outcomes of the test.
Early versions of the test, based on samples in which there was little inflation

persistence, found estimates of β1(1) < 1 and were interpreted as evidence in favor
of a long-run trade-off. As shown in the figure, the natural rate hypothesis was
strongly rejected through 1973. Later versions were based on samples containing
more inflation persistence, and they fail to reject long run neutrality. Indeed, from
the mid-1970s until the mid-1980s there was very little evidence against long run
neutrality. Since then, as the degree of inflation persistence has fallen, evidence
against the natural rate hypothesis has grown.
Figures 4.2 illustrates the relation between inflation persistence and outcomes

of the test.27 The figure confirms that the test statistic is positively related to the
degree of persistence, though the relation is nonlinear. Once there was enough
persistence to identify the long run trade-off parameter, the test began to accept
long run neutrality, and further increases in persistence no longer increased the
t-ratio. Figure 4.3 shows that the test statistic is also positively related with
core inflation. Without alterations, the model of Sims (1988), Chung (1990), and
Sargent (1999) cannot explain that pattern. In that model, persistence rises and
the natural rate hypothesis is learned as inflation falls, so the model predicts an
inverse relation between core inflation and the outcome of the test. The pattern
shown in figure 4.3 is more consistent with an alternative story, in which the up-
ward drift in inflation taught the government to accept the natural rate hypothesis
via the Solow-Tobin test.
26There are only minor differences between the two estimators within the sample, because

until recently 1/t > 1/120. The distinction between constant and decreasing gain estimators
matters more when we consider the likely outcomes of future tests.
27These figures refer to discount least squares estimates, but the results for OLS estimates

are essentially the same.
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Figure 4.1: Recursive Tests of the Natural Rate Hypothesis. Circles represent
recursive least square estimates with decreasing gain, and diamonds illustrate
constant-gain estimates.
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Figure 4.2: Inflation Persistence and NRH Test Statistics
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Figure 4.3: Core Inflation and NRH Test Statistics
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Thus, though the Solow-Tobin procedure provided a valid test of the natural
rate hypothesis only when inflation had become sufficiently persistent, by the mid
1970’s inflation had become persistent enough to let the test detect the natu-
ral rate. Therefore the Solow-Tobin econometric procedures gave policy makers
information that should have caused them to stabilize inflation if they had the
preferences attributed to them, for example, by Kydland and Prescott (1977). For
when a policy maker solves the problem of minimizing an expected discounted sum
of a quadratic loss function in inflation and unemployment subject to a Phillips
curve like (4.1), and when the policy maker accepts the natural rate hypothesis in
the form in which Solow and Tobin cast it, then for discount factors large enough,
the policy maker will soon push average inflation to zero.28 When Volcker took
control, the advice quickly to push inflation toward zero came even from those
models and optimal control exercises that inadequately accounted for the Lucas
critique, because they rested on the Solow-Tobin test.
However, the strong inflation persistence that induced the Solow-Tobin test to

detect the natural rate in the mid 1970s depended on the monetary authority’s
having recently allowed inflation to drift upward, perhaps in response to its earlier
erroneous views about an exploitable tradeoff. If the government’s success in
lowering inflation created lower persistence in inflation, the Solow-Tobin test could
one day again point to an exploitable tradeoff that would tempt later monetary
authorities to use inflation to fight unemployment. That possibility has worried
John Taylor and others, an issue to which we now turn.

5. Taylor’s Warning About Recidivism

Recently, John Taylor (1998) has warned about recidivism on the natural rate
hypothesis. Taylor notes that inflation is lower and more stable in the current
monetary regime, and he points out that as such data accumulate, erroneous
econometric tests of long-run neutrality may again begin to suggest the existence
of a trade-off. To the extent that the tests undermine confidence in the natural
rate hypothesis, they could also undermine support for a low inflation policy. In
this section, we offer quantitative evidence to back up Taylor’s warning. The
evidence is based on the posterior predictive density conditioned on data through
the end of 2000. We use this to make predictions about the probability of rejecting

28This is a version of the control problem described by Phelps (1967) and Sargent (1999).
Long ago, Albert Ando pointed out that good macroeconometric models had confirmed the
absence of a long-run inflation-unemployment tradeoff by the early or mid 70’s.
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the natural rate hypothesis going forward in time.
Figure 4.1 suggests that Taylor’s concern has some merit, because by the end of

the sample conventional tests were close to rejecting β1(1) = 1 against β1(1) < 1
at the 5 percent level. The in-sample evidence is marginal,29 however, and it
is an open question whether stronger evidence will emerge as data from a low-
inflation regime accumulate. To address this question, we compute the posterior
predictive density of natural rate t-ratios going forward in time from 2000.4. Then
we calculate the probability, conditioned on what we know now, of rejecting the
natural rate hypothesis at various dates in the future. In this way, we can quantify
the risk of backsliding.
Let τ̂T+1,T+H represent a potential future sequence of recursive t-statistics for

β1(1)− 1,
τ̂T+1,T+H = [τ̂T+1, ..., τ̂T+H ]

0.

We want to make statements about how these sequences are likely to evolve. From
a Bayesian perspective, the natural way to proceed is to compute the posterior
predictive density for these sequences,

p(τ̂T+1,T+H |Y T ). (5.1)

To sample from this density, we start with the posterior predictive density for
inflation and unemployment and then exploit the fact that t-statistics are deter-
ministic functions of the data.30 Hence we can write

p(τ̂T+1,T+H |Y T ) = p(g(Y T+1,T+H , Y T )|Y T ), (5.2)

where the function g(·) is nothing more than the output of the recursive least
squares algorithm initialized with estimates through date T . To draw a realization
from (5.2), we first draw a trajectory for future inflation and unemployment from
their posterior predictive density and then apply the Kalman filter to compute
the associated sequence of test statistics. The probability that the test will reject
at some future date h is Z c(α)

−∞
p(τ̂h|Y T )dτ̂ , (5.3)

29In our opinion, strong rejections will be needed to reverse the consensus in favor of the
natural rate hypothesis.
30Remember, from a Bayesian perspective β(1) is random and β̂(1) is deterministic.
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where c(α) is the Normal critical value corresponding to a one-sided test of size α.
In terms of our sampling strategy, this is the fraction of simulated trajectories in
which β̂1(1) is significantly less than 1 at date h, where significance is determined
by the usual classical criterion. Thus, we are offering a Bayesian interpretation of
judgments based on a classical procedure.
Figure 5.1 reports results for a constant-gain estimator. The results for a

recursive OLS estimator are similar. We focus on the constant-gain estimator
because this holds the effective sample size constant as data accumulate. Thus
the increased probability of rejection does not follow simply from an increase in
the number of observations.
As the figure shows, the probability of rejection remains small in the first two

years of the forecast. But then it increases quickly, reaches 50 percent within 9
years, and approaches 85 percent in 20 years. The increasing probability of rejec-
tion reflects the changing nature of inflation-unemployment dynamics along with
the fact that data from new and old regimes are being mixed in different propor-
tions. As time moves forward, data from the old high-inflation, strong-persistence
regime are discounted more heavily, and data from the new low-inflation, weak-
persistence regime increasingly dominate the sample. The identifying information
from the 1970s is lost little by little, and the properties of the Volcker-Greenspan
era come more and more into play. This confirms an element of Taylor’s warning,
that the Solow-Tobin test may once again begin to suggest the existence of a
trade-off.

6. Concluding Remarks

This paper has used a vector autoregression with random coefficients to measure
parameter drift in U.S. inflation-unemployment-interest rate dynamics. We con-
struct our model to focus on parameter drift because we are sympathetic to the
theoretical views expressed in Lucas (1976) and Sargent (1999), which lead us to
suspect that evolution in the monetary policy authority’s view of the world will
make the systematic part of a vector autoregression drift. We have taken seri-
ously our model’s description of four sources of uncertainty about the future,31

and have used computer intensive Bayesian methods to take those uncertainties
into account. We use the model to develop a number of stylized facts about the

31These are: (1) the unknown current location of the VAR coefficients, (2) the unknown
covariance matrix of innovations to VAR coefficients and equations, (3) the future evolution of
the VAR coefficients, and (4) the stream of future shocks to the VAR equations.
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Figure 5.1: Probability of Rejecting the Natural Rate Hypothesis, Calculated
from the Posterior Predictive Distribution for the Constant-Gain Estimator.
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evolution of post-war U.S. inflation and relate them to important issues about
learning to detect the natural rate hypothesis using imperfect tests, and how the
evolving results from those tests were associated with evolution in a description
of a monetary policy rule (a ‘Taylor rule’). Among other things, we find that
the mean and persistence of inflation are strongly positively correlated; that the
persistence of inflation is positively associated with statistics that have been used
to test for accepting the natural rate hypothesis; that evolving measures of policy
activism in fighting inflation broadly point to more activism with a lag somewhat
after test statistics began accepting the natural rate hypothesis; and that recently
the degree of persistence in inflation has been drifting downward as inflation has
come under control.
We also study John Taylor’s warning about recidivism toward an exploitable

trade-off between inflation and unemployment. Unfortunately, our statistical
model confirms Taylor’s concerns. Our model predicts that as observations of
lower, more stable inflation accumulate, econometric evidence against the natural
rate hypothesis is likely to develop.32 Against this evidence, we hope that policy
makers do not succumb again to the temptation to exploit the Phillips curve.

7. Appendix: A Nonlinear Transition Equation

Our numerical procedures construct a sample using p(θT |V ) defined by (2.13).
This appendix verifies that these procedures are consistent with the non-linear
transition function defined in the text. In particular, we verify the nonlinear tran-
sition equation, p(θt+1|θt, V ) ∝ I(θt+1)f(θt+1|θt, V ) from equations (2.3), (2.13),
(2.14), and (2.15). First consider the transition equation for terminal state,

p(θT |θT−1, V ) = p(θT , θT−1|V )
p(θT−1|V ) . (7.1)

The joint density in the numerator can be expressed as

p(θT , θT−1|V ) =
Z
p(θT |V )dθT−2 (7.2)

∝ I(θT )f(θT |θT−1, V )
Z YT−2

t=0
I(θt+1)f(θt+1|θt, V )dθT−2.

32Prospects for a gradual backsliding away from the zero inflation Ramsey outcome toward
the higher Nash inflation rate also permeate the ‘mean dynamics’ in the model of Sargent (1999)
and Cho, Williams, and Sargent (2001).
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The marginal density in the denominator of (7.1) can be expressed as

p(θT−1|V ) =
Z
p(θT , θT−1|V )dθT (7.3)

∝
Z
I(θT )f(θT |θT−1, V )dθT

Z YT−2
t=0

I(θt+1)f(θt+1|θt, V )dθT−2.
The ratio between the two is

p(θT |θT−1, V ) ∝ I(θT )f(θT |θT−1, V ). (7.4)

Next consider the transition equation for the penultimate state,

p(θT−1|θT−2, V ) = p(θT−1, θT−2|V )
p(θT−2|V ) . (7.5)

The joint density in the numerator of (7.5) can be expressed as

p(θT−1, θT−2|V ) =
Z Z

p(θT−1|V )p(θT |θT−1, V )dθT−3dθT (7.6)

=

Z
p(θT−1|V )dθT−3

Z
p(θT |θT−1, V )dθT

=

Z
p(θT−1|V )dθT−3

where the last equality follows from the fact that p(θT |θT−1, V ) integrates to one.
Using the same argument as above, this can be expressed as

p(θT−1, θT−2|V ) ∝ I(θT−1)f(θT−1|θT−2, V )
Z YT−3

t=0
I(θt+1)f(θt+1|θt, V )dθT−3.

The marginal density for θT−2 is

p(θT−2|V ) =
Z
p(θT−1, θT−2|V )dθT−1 (7.7)

∝
Z
I(θT−1)f(θT−1|θT−2, V )dθT−1

Z YT−3
t=0

I(θt+1)f(θt+1|θt, V )dθT−3.
The ratio between the two is

p(θT−1|θT−2, V ) ∝ I(θT−1)f(θT−1|θT−2, V ). (7.8)

Continuing a backward recursion implies

p(θt|θt−1, V ) ∝ I(θt)f(θt|θt−1, V ). (7.9)

Hence, the nonlinear transition equation can indeed be expressed in terms of the
truncated linear transition equation.
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