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ABSTRACT

This paper shows how to formulate and compute robust Ramsey (aka
Stackelberg) plans for linear models with forward looking private agents.
The leader and the followers share a common approximating model and
both have preferences for robust decision rules because both doubt the
model. Since their preferences differ, the leader’s and followers’ decision
rules are fragile to different misspecifications of the approximating model.
We define a Stackelberg equilibrium with robust decision makers in which
the leader and follower have different worst-case models despite sharing a
common approximating model. To compute a Stackelberg equilibrium we
formulate a Bellman equation that is associated with an artificial single-
agent robust control problem. The artificial Bellman equation contains
a description of implementability constraints that include Euler equations
that describe the worst-case analysis of the followers. As an example, the
paper analyzes a model of a monopoly facing a competitive fringe.

∗ We thank Robert King, Peter von zur Muehlen, Evan Anderson, Mark Giannoni, Jose
Mazoy, and Michael Woodford for helpful discussions. We thank Chao Wei and Stijn Van
Nieuwerburgh for excellent help with the calculations. We both thank the National Science
Foundation, which supported both authors’ work on robustness.
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1. Introduction

This paper is a prolegomenon to subsequent work that analyzes the quantitative effects
of preferences for robustness on Ramsey policies in forward-looking monetary policy models
like those of Clarida, Gali, and Gertler (1999, 2000), King and Wolman (1999), Goodfriend
and King (1997), Rotemberg and Woodford (1997), and Woodford (1998). Such work
requires an equilibrium concept that somehow renders consistent the multiplicity of models
that are in play when decision makers fear misspecification. This paper formulates such
an equilibrium concept for Ramsey or Stackelberg problems in which both the leader and
follower doubt the model specification and therefore prefer robust decision rules. As a
consistency condition that extends rational expectations to our setting, we impose that
the leader and follower share a common approximating model. The same appeals to
economy and discipline that recommend rational expectations in environments without
model uncertainty can be used to justify our imposing a common approximating model
here.

Robust control theory instructs decision makers to investigate the fragility of decision
rules by conducting worst-case analyses. When both types of agent prefer robustness, the
approximating model for each agent must include a description of the robust decision rules
of the other type of agent, and of how they respond to his own actions. Though they share
a common approximating model, because their preferences may differ, the different types
of agent may not share the same worst-case model. In order completely to describe the
common approximating model of the two types of agents, the Stackelberg leader requires
an adequate description of the dynamics of the worst case shocks of the followers.

Without preferences for robustness, it is known that these Stackelberg or Ramsey prob-
lems can be solved by forming a Lagrangian in which a sequence of multipliers adheres to
a sequence of the followers’ Euler equations. The followers’ Euler equations become ‘im-
plementability constraints’ that require the leader’s decision at time t to confirm forecasts
that had informed followers’ earlier decisions. The Lagrange multipliers on the imple-
mentability constraints make the leader’s actions depend on the history of the economy
and allow a recursive representation of the leader’s history-dependent Stackelberg plan.

To compute a Stackelberg plan when the followers have a preference for robustness,
similar procedures apply, except that we have to augment the implementability constraints
with Euler equations that characterize the follower’s choice of a worst case model. We
attach implementability multipliers to these constraints too, then proceed much as we
would in the analysis without preferences for robustness.1

1 As noted below, this strategy exploits the remarkable Bellman-Isaacs condition that characterizes the
zero-sum two-person game that the follower uses to devise a robust decision rule.
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1.1. Motivation

Milton Friedman expressed an enduring concern when he recommended that designers of
macroeconomic policy rules acknowledge model uncertainty. His style of analysis revealed
that he meant a kind of model uncertainty that could not be formalized in terms of objective
or subjective probability distributions over models. For despite his willingness to use
Savage’s (1954) axioms in other work (see Friedman and Savage (1948)), sometimes he
declined to use them in his writings on monetary policy. Instead Friedman sometimes
indicated that he knew too little about the dynamic structure of the economy to allow
him to specify the personal probabilities needed to rationalize policy choices using Savage’s
method. To support his preference for policy rules that don’t depend on detailed knowledge
about the workings of the economy, Friedman mentioned unknown long and variable lags
in the effects of policies.

Recently Bennett McCallum and others have taken up Friedman’s theme by embracing
a research program designed to evaluate the robustness of monetary policy rules across sets
of alternative models. In his comment on Rotemberg and Woodford (1997), McCallum
repeated his preference for using multiple models when analyzing a proposed rule:2

I have favored a research strategy centering around a rule’s robustness, in the
following sense: Because there is a great deal of professional disagreement as to
the proper specification of a structural macroeconomic model, it seems likely to be
more fruitful to strive to design a policy rule that works reasonably well in a variety
of plausible quantitative models, rather than to derive a rule that is optimal in any
one particular model. (McCallum, 1997, p. 355).

McCallum also criticized analyses of monetary policy rules that unrealistically assume that
latent variables like ‘potential GNP’ or ‘trend productivity growth’ are observed without
error by the policy maker.3

This paper describes how robust control can be used to address some of McCallum’s
concerns about robustness.4 We extend earlier work on robust control theory to solve
Ramsey or Stackelberg problems – i.e., problems of optimal government policy where the
government can commit itself, but where neither the government nor the private agents
doubt the common (rational expectations) model that they share. Our use of robust control
theory in the context of model uncertainty and our desire to put private agents and the
government on the same footing, with both having doubts about model misspecification,
induces us to model robustness differently than do McCallum and his co-workers. They
take a small set of particular models and evaluate the performance of a given rule across
those models. Typically, at least some of those models are rational expectations models in
which the agents forecast using the model itself. In contrast, we explicitly specify only a
single model and require all of the agents inside the model to share it. This commonality of
models lends our approach much of the same discipline that rational expectations models
acquire by having only a single model in play. But here the decision makers all treat their
common model as an approximation. Each agent surrounds the approximating model with

2 Blinder (1998, pp. 12-13) advocates a procedure for assessing the robustness of proposed decisions.
3 Several of the contributions in Taylor (1999) share McCallum’s concern for robustness.
4 In related work (Hansen and Sargent, (2004)), we take up issues about robust filtering that pertains to

signal extraction in the presence of doubts about model specification. We hope soon to apply this work to
McCallum’s concern about the implications of latent variables for designing policy.
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a continuum of unspecified alternative models that fit the data nearly as well. Both the
government and the agents inside the model explicitly confront their concern about model
misspecification in making forecasts and designing policies. We allow possibly different but
also possibly equal concerns about model misspecification within the private sector and the
government, modelled as different sets of models surrounding the approximating model.
As under rational expectations, we propose an equilibrium concept in which the private
sector and the government share the same approximating model of the stochastic variables
shaking the economy. But both types of agent have doubts about that model in the form
of possibly different penumbras of alternative models that surround the approximating
models.5 These alternative models can be difficult to distinguish statistically from the
approximating model based on finite data sets, so that the government’s and public’s
concerns about model misspecification are well founded.

1.2. A word about practicality

While the multiplicity of models that any analysis of misspecification must acknowledge
can make robust control theory seem intimidating at first encounter, it is actually easy to
use. One purpose of this paper is to convince the reader of this. Robust decision rules
are justified and can be computed as the Markov perfect equilibrium of a zero-sum two
person game. The zero-sum feature means that there is only one value function that can
be computed by solving a Bellman equation that is as simple as the ones we now routinely
solve in macroeconomics. Because we work in a linear-quadratic context, a matrix Riccati
equation is associated with the Bellman equation. For us, the key step in computing an
equilibrium is to solve that Riccati equation, which is easy.

1.3. Related literature

Brunner and Meltzer (1969) and von zur Muehlen (1982) were early advocates of zero-sum
two person games for representing model uncertainty and designing macroeconomic rules.
Stock (1999), Sargent (1999), and Onatski and Stock (2002) have used versions of robust
control theory to study robustness of purely backward looking macroeconomic models.
They focused on whether a concern for robustness would make policy rules more or less
aggressive in response to shocks. Blanchard and Khan (1980), Whiteman (1983), and
Anderson and Moore (1985) are early sources on solving control problems with forward-
looking private sectors.6 Without a concern for robustness, Kydland and Prescott (1980),
Hansen, Epple, and Roberds (1985), Miller and Salmon (1985a, 1985b), Oudiz and Sachs
(1985), Sargent (1987), Currie and Levine (1987), Pearlman, Currie, and Levine (1986),
Pearlman (1992), Woodford (1998), King and Wolman (1999), and Marcet and Mari-
mon (1999) have solved Stackelberg or Ramsey problems using Lagrangian formulations.
Pearlman, Currie, and Levine (1986), Pearlman (1992) and Svensson and Woodford (2000)
study the control of forward looking models where part of the state is unknown and must
be filtered. De Jong, Ingram, and Whiteman (1996), Otrok (In press), and others study

5 These differences are parameterized by the robustness parameters Θ and θ that we assign to the leader
and the follower below.

6 Anderson, Hansen, McGrattan, and Sargent (1996) describe efficient computational algorithms for such
models.
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the Bayesian estimation of forward looking models. They summarize the econometrician’s
doubts about parameter values with a prior distribution, meanwhile attributing no doubts
about parameter values to the private agents in their models. Mark Giannoni (2002) stud-
ies robustness in a forward looking macro model. He models the policy maker as knowing
all parameters except two, for which he knows only bounds. The policy maker then com-
putes the min−max policy rules. Kasa (2002) also studies robust policy in a forward
looking model. Onatski (2000) designs simple (not history dependent) robust policy rules
for a forward looking monetary model. Christiano and Gust (1999) study robustness from
the viewpoint of the determinacy and stability of rules under nearby parameters. They
adopt a perspective of robust control theorists like Başar and Bernhard (1995) and Zhou,
Doyle, and Glover (1996), who are interested in finding rules that stabilize a system under
the largest set of departures from a reference model.7

1.4. Organization

The remainder of this paper is organized as follows. Section 2 states a Stackelberg prob-
lem in which decision makers fear model misspecification and therefore want robustness.
Section 3 describes how to solve the robust Stackelberg problem by properly rearranging
and reinterpreting some state variables and some Lagrange multipliers after having solved
a robust linear regulator. As an example, section 5 describes a dynamic model of a mo-
nopolist facing a competitive fringe. Section 6 tells our plans to apply our equilibrium
concept to ‘new synthesis’ macro models.

2. The robust Stackelberg problem

This section defines a robust Stackelberg problem where the Stackelberg leader is concerned
about model misspecification. In macroeconomic problems, the Stackelberg leader is often
a government and the Stackelberg follower is a representative agent within a private sector.
In section 5, we present an application with an interpretation of the two players as a
monopolist and a competitive fringe.

Let zt be an nz × 1 vector of natural state variables, xt an nx × 1 vector of endogenous
variables free to jump at t, and Ut a vector of the leader’s controls. The zt vector is
inherited from the past. The model determines the ‘jump variables’ xt at time t. Included

in xt are prices and quantities that adjust to clear markets at time t. Let yt =
[

zt

xt

]
.

7 Some of our previous work about robustness is contained in Hansen, Sargent, and Tallarini (1999) and
Hansen, Sargent, and Wang (2002), both of which apply single agent robust decision theory to representative
agent pricing models. Anderson (1998)’s work that computes Pareto problems when agents have differing
degrees of risk-sensitivity can be interpreted as one of the few applications of robustness to environments
with heterogenous agents. For important and useful references on robustness, see Jacobson (1973), Whittle
(1990, 1996), Başar and Bernhard (1995), Glover and Doyle (1988), Mustafa and Glover (1990), and Zhou,
Glover, and Doyle (1996).
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Define the Stackelberg leader’s one-period loss function8

r (y, U) = y′Qy + U ′RU. (2.1)

The leader wants to maximize

−
∞∑
t=0

βtr (yt, Ut) . (2.2)

The leader makes policy in light of a set of models indexed by a vector of specification
errors Wt+1 around its approximating model:

[
I 0

G21 G22

] [
zt+1

xt+1

]
=

[
Â11 Â12

Â21 Â22

] [
zt

xt

]
+ B̂Ut + ĈWt+1. (2.3)

We assume that the matrix on the left is invertible, so that9

[
zt+1

xt+1

]
=

[
A11 A12

A21 A22

] [
zt

xt

]
+ BUt + CWt+1 (2.4)

or
yt+1 = Ayt + BUt + CWt+1. (2.5)

2.1. Characterizing the followers

The followers’ behavior is summarized by the second block of equations of (2.3) or (2.4).
These typically include the first-order conditions of private agents’ optimization problem
(i.e., their Euler equations). These equations summarize the forward looking aspect of
the followers’ behavior. The particular structure of these equations and the variables
composing xt depend on the followers’ optimization problems, and in particular, on whether
we impute a concern about robustness to them. As we shall see later, if we impute a motive
for robustness to the followers, then it is necessary to include what we shall denote as wt+1,
the specification errors of the followers, among the variables in xt. In section 5, we’ll display
a concrete example.

8 The problem assumes that there are no cross products between states and controls in the return function.
A simple transformation converts a problem whose return function has cross products into an equivalent
problem that has no cross products. See Anderson, Hansen, McGrattan, and Sargent (1996).

9 We have assumed that the matrix on the left of (2.3) is invertible for ease of presentation. However,
by appropriately using the invariant subspace methods described in Anderson, Hansen, McGrattan, and
Sargent (1996), it is straightforward to adapt the computational method when this assumption is violated.
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2.2. Modelling specification errors

Returning to (2.3) or (2.4), the vector Wt+1 of unknown specification errors can feed back,
possibly nonlinearly, on the history yt, which lets the Wt+1 sequence represent misspecified
dynamics. The leader regards its approximating model (which has Wt+1 = 0) as a good
approximation to the unknown true model in the sense that the unknown Wt+1 sequence
satisfies ∞∑

t=0

βt+1W ′
t+1Wt+1 ≤ η0 (2.6)

where η0 > 0.
A certainty equivalence principle discussed by Hansen and Sargent (2004) allows us to

work with non stochastic approximating and distorted models. We would attain the same
decision rule if we were to replace xt+1 with the forecast Etxt+1 and to add a shock process
Ĉεt+1 to the right side of (2.3) or Cεt+1 to the right side of (2.4), where εt+1 is an i.i.d.
random vector with mean of zero and identity covariance matrix.10

Let X t denote the history of any variable X from 0 to t. Kydland and Prescott (1980),
Miller and Salmon (1985a, 1985b), Oudiz and Sachs (1985), Hansen, Epple, and Roberds
(1985), Pearlman, Currie and Levine (1986), Sargent (1987), Pearlman (1992) and others
have studied non-robust (i.e., η0 = 0) versions of the following problem:

Definition 2.1. For η0 > 0, the constraint version of the Stackelberg problem is to
extremize (2.2) subject to (2.5) by finding a sequence of decision rules expressing Ut and
Wt+1 as sequences of functions mapping the time t history of the state zt into the time t
decision. The leader chooses these decision rules at time 0 and commits to them forever.

Definition 2.2. When η0 > 0, the decision rule for Ut that solves the Stackelberg
problem is called a robust Stackelberg plan or robust Ramsey plan.

Note that the decision rules are designed to depend on the history of the true state zt

and not on the history of the jump variable xt. For a non-robust version of the problem,
the forementioned authors show that the optimal rule is history-dependent, meaning that
Ut, Wt+1 depend not only on zt but also on lags of it. The history dependence comes from
two sources: (a) the leader’s ability to commit to a sequence of rules at time 0,11 and
(b) the forward-looking behavior of the followers that is embedded in the second block of
equations in (2.3) or (2.4).

Fortunately, there is a recursive way of expressing this history dependence by having
decisions Ut, Wt+1 depend linearly only on the current value zt and on a new component
of the state vector, µxt. The component µxt is a vector of Lagrange multipliers on the last
nx equations of (2.3) or (2.4). Part of the solution of the problem in Definition 2.2 is then

10 If Cεt+1 were added to the right side of (2.5), we would take the expectation of (2.6). As discussed
in Hansen and Sargent (2004), we could also reformulate the problem as one in which distorted shock
distributions are selected instead of just shifts in the conditional means. When ε is normal, the resulting
worst case shock distribution will be a shifted normal with an enhanced covariance matrix. Since a version
of certainty equivalence applies, it is only the conditional mean distortion that is pertinent in computing
robust decision rules. The analysis that follows thus focuses exclusively on the conditional mean distortion.
11 The leader would make different choices were it to choose sequentially, that is, were it to set Ut at time

t rather than at time 0.
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a law of motion expressing µxt+1 as a linear function of (zt, µxt). The history dependence
of the leader’s plan is expressed in the dynamics of µxt. These multipliers track past
leader promises about current and future settings of U . At time 0, if there are no past
promises to honor, it is appropriate for the leader to initialize the multipliers to zero (this
maximizes its criterion function). The multipliers take non zero values thereafter, reflecting
the subsequent costs to the leader of adhering to its commitments.

2.3. Multiplier version of the robust Stackelberg problem

Hansen and Sargent (2004) show that it is usually more convenient to solve a multiplier
game rather than a constraint game. Essentially, a multiplier game is obtained by attaching
a non-negative Lagrange multiplier Θ to constraint (2.6) and formulating the constraint
problem in terms of a Lagrangian. Accordingly, we use:

Definition 2.3. The multiplier version of the robust Stackelberg problem is the zero-sum
two-player game:

max
{Ut}∞t=0

min
{Wt+1}∞t=0

−
∞∑

t=0

βt
{
r (yt, Ut) − βΘW ′

t+1Wt+1

}
(2.7)

where the extremization is subject to (2.5) and Θ < Θ < ∞.

Recall again that the followers’ behavior is embedded in Euler equations that are included
in (2.5).

3. Solving the robust Stackelberg problem

This section describes a three step algorithm for solving a multiplier version of the
robust Stackelberg problem.

3.1. Step 1: solve a robust linear regulator

Step 1 temporarily disregards the forward looking aspect of the problem (step 3 will take
account of that) and notes that superficially the multiplier version of the robust Stackelberg
problem (2.7), (2.5) has the form of a robust linear regulator problem. Mechanically, we
can solve this artificial robust linear regulator by noting that associated with problem (2.7)
is the Bellman equation12

v (y) = max
U

min
W

{−r (y, U) + βΘW ′W + βv (y∗)
}

, (3.1)

where y∗ denotes next period’s value of the state and the extremization is subject to the
transition law y∗ = Ay + BU + CW . The solution has the form v(y) = −y′Py, where P
is a fixed point of the operator T ◦ D defined by

T (P ) = Q + βA′PA − β2A′PB
(
R + βB′PB

)−1
B′PA (3.2)

D (P ) = P + Θ−1PC
(
I − Θ−1C ′PC

)−1
C ′P. (3.3)

12 This Bellman equation is closely related to the one on page 87 of Kydland and Prescott (1980), because
for the problems that we have in mind, Kydland and Prescott’s λ can be shown to be an invertible function
of the jump variables.
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Thus, the Bellman equation (3.1) leads to the Riccati equation

P = T ◦ D (P ) . (3.4)

Here the T operator emerges from the maximization over U on the right side of (3.1), while
the D operator emerges from the minimization over W . The extremizing decision rules are
given by Ut = −F1yt where

F1 = β
(
R + βB′D (P ) B

)−1
B′D (P )A (3.5)

and Wt+1 = −F2yt where

F2 = −Θ−1
(
I − Θ−1C ′PC

)−1
C ′P (A − BF1) . (3.6)

(See Hansen and Sargent (2004) or Başar and Bernhard (1995).)
The next steps recognize how the solution of the Riccati equation P = T ◦ D encodes

objects that solve the robust Stackelberg problem. That will tell us how to manipulate the
decision rules for Ut and Wt+1 (linear functions identified by the vectors (3.5) and (3.6) )
to get the solution of the robust Stackelberg problem.

3.2. Step 2: use the stabilizing properties of shadow price Pyt

At this point we use P to describe how shadow prices on the transition law relate to
the artificial state vector yt = [ z′t x′

t ]′ (we say ‘artificial’ because xt is a vector of jump
variables.) Linear quadratic dynamic programming problems can also be solved with
Lagrangian methods (see Anderson, Hansen, McGrattan, and Sargent (1996) and Hansen
and Sargent (2004).) Thus, another way to solve the multiplier version of the robust
Stackelberg problem (2.7), (2.5) is to form the Lagrangian:

L = −
∞∑

t=0

βt
[
y′tQyt + U ′

tRUt + 2βµ′
t+1 (Ayt + BUt + CWt+1 − yt+1) − βΘW ′

t+1Wt+1

]
.

(3.7)
We want to maximize (3.7) with respect to sequences for Ut and yt+1 and minimize it with
respect to a sequence for Wt+1. The first-order conditions with respect to Ut, yt, Wt+1,
respectively, are:

0 = RUt + βB′µt+1 (3.8a)
µt = Qyt + βA′µt+1 (3.8b)
0 = βΘWt+1 − βC ′µt+1. (3.8c)

Solving (3.8a) and (3.8c) for Ut and Wt+1 and substituting into (2.5) gives

yt+1 = Ayt − β
(
BR−1B′ − β−1Θ−1CC ′) µt+1. (3.9)

Write (3.9) as
yt+1 = Ayt − βB̃R̃−1B̃′µt+1 (3.10)
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where B̃ = [B C ] and R̃ =
[

R 0
0 −βθI

]
. We can represent the system formed by (3.10)

and (3.8b) as [
I βB̃R̃−1B̃′
0 βA′

] [
yt+1

µt+1

]
=

[
A 0
−Q I

] [
yt

µt

]
(3.11)

or

L∗
[

yt+1

µt+1

]
= N

[
yt

µt

]
. (3.12)

We want to find a ‘stabilizing’ solution of (3.12), i.e., one that satisfies

∞∑
t=0

βty′tyt < +∞.

The stabilizing solution is attained by setting µ0 = Py0, where P solves the matrix Riccati
equation P = T ◦ D(P ). The solution for µ0 replicates itself over time in the sense that

µt = Pyt. (3.13)

3.3. Key insight

In a typical robust linear regulator problem, y0 is a state vector inherited from the past;
the multiplier µ0 jumps at t = 0 to satisfy µ0 = Py0. See Anderson, Hansen, McGrattan,
and Sargent (1996). But in the Stackelberg problem, pertinent components of both y0 and
µ0 must adjust to satisfy µ0 = Py0, as shown in step 3.

3.4. Step 3: convert implementation multipliers into state variables

Partition µt conformably with the partition of y′t into [ z′t x′
t ]:13

µt =
[

µzt

µxt

]
.

For the robust Stackelberg problem, only the first nz elements of yt are predetermined
while the remaining components are free to jump at t. And while the first nz elements
of µt are free to jump at t, the remaining components are not. The third step completes
the solution of the robust Stackelberg problem by taking note of these facts. We convert
the last nx Lagrange multipliers µxt into state variables by using the following procedure
after we have performed the key step of computing the P that solves the Riccati equation
P = T ◦ D(P ).

Write the last nx equations of (3.13) as

µxt = P21zt + P22xt. (3.14)

13 This argument just adapts one in Pearlman (1992). The Lagrangian associated with the robust Stack-
elberg problem remains (3.7). Then the logic of section 3.2 implies that the stabilizing solution must satisfy
(3.13). It is only in how we impose (3.13) that the solution diverges from that for the linear regulator.
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The vector µxt becomes part of the state at t, while xt is free to jump at t. Therefore,
solve (3.14) for xt in terms of (zt, µxt):

xt = −P−1
22 P21zt + P−1

22 µxt. (3.15)

Then we can write

yt =
[

I 0
−P−1

22 P21 P−1
22

] [
zt

µxt

]
(3.16)

and from (3.14)
µxt = [P21 P22 ] yt. (3.17)

With these modifications, the key formulas (3.5), (3.6), and (3.4) from the optimal
linear regulator for F and P , respectively, continue to apply. Using (3.16), the solutions
for the control and worst case shock are[

Ut

Wt+1

]
=

[−F1

−F2

] [
I 0

−P−1
22 P21 P−1

22

] [
zt

µxt

]
. (3.18)

Using the law of motion for yt+1 together with (3.16) and (3.17) allows us to represent our
solution recursively as[

zt+1

µx,t+1

]
=

[
I 0

P21 P22

]
(A − BF1 − CF2)

[
I 0

−P−1
22 P21 P−1

22

] [
zt

µxt

]
(3.19a)

xt = [−P−1
22 P21 P−1

22 ]

[
zt

µxt

]
. (3.19b)

When the random shock εt+1 is present, we must add[
I 0

P21 P22

]
Cεt+1 (3.20)

to the right side of (3.19). Equation (3.19a) is the worst-case law of motion for zt. To get
the law of motion under the approximating model and the robust Stackelberg or Ramsey
plan, we replace (A−BF1−CF2) with A−BF1 in (3.19a). By doing so, we set the worst-
case shock Wt+1 to zero. Then we have the following description of the approximating
model under the robust Stackelberg plan:[

zt+1

µx,t+1

]
=

[
I 0

P21 P22

]
(A − BF1)

[
I 0

−P−1
22 P21 P−1

22

] [
zt

µxt

]
(3.21a)

xt = [−P−1
22 P21 P−1

22 ]
[

zt

µxt

]
(3.21b)

Again, in the random case we must add (3.20) to the right side of (3.21). The difference
equation (3.21a) is to be initialized from the given initial value for z0 and the value µx,0 = 0.
The latter setting reflects that at time 0 there are no past promises to keep.

In summary, we solve the robust Stackelberg problem by formulating a particular opti-
mal linear regulator, solving the associated matrix Riccati equation (3.4) for P , computing
F1, F2, and then partitioning P to obtain representation (3.21).14

14 For some purposes, it is useful to eliminate the implementation multipliers µxt and to express the
decision rules for Ut and Wt+1 as functions of zt, zt−1 and Ut−1. Hansen and Sargent (2004) show how this
can be done. By making the leader’s control or ‘instrument’ feed back on itself, this form of the decision rule
for Ut allows ‘instrument-smoothing’ to emerge as an optimal rule under commitment. This insight partly
motivated Woodford (1998) to use his model as a tool to interpret empirical evidence about interest rate
smoothing in the U.S.
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By following the approaches of Kydland and Prescott (1980) and Marcet and Marimon
(2000), Hansen and Sargent (2004, chapter 15) describe a closely related Bellman equation
that can be used to compute a robust Ramsey plan.

4. Incorporating robustness for the followers

So far we have concentrated on getting a robust rule for the leader, taking as given the
Euler equations that characterize the followers’ behavior. In this section, we point out that
by including the appropriate Euler equations for the followers among the implementability
constraints, we can impute a concern for robustness to the followers as well as to the leader.
For a representative follower example, we shall index the concern for robustness among
the followers by a multiplier θ that can but need not equal the robustness parameter Θ of
the leader.

4.1. An approach enabled by the Bellman-Isaacs condition

To apply the preceding results to a problem in which the Stackelberg leader and the Stack-
elberg followers both want robust decision rules, we have to include Euler equations for the
follower that incorporate a concern about robustness. To formulate these implementability
constraints concisely, we can rely on findings about the zero-sum two-player dynamic game
that underlies the single-agent robust control problem. Başar and Bernhard (1995) and
Hansen and Sargent (2004) show that the equilibrium outcomes are identical for several
games with different timing protocols for the maximizing and minimizing players. Among
these different timing protocols is one in which both players simultaneously choose en-
tire sequences of state-contingent decisions at time 0. By using that timing protocol for
the follower’s two-person zero-sum game, we can represent the followers’ decisions by the
stabilizing solution of the follower’s Euler equations for extremizing with respect to both
his ‘natural control’ ut and his pseudo-control wt+1, the worst case shocks.15 Then to
formulate the robust Stackelberg problem, we can regard the first-order conditions of the
competitive firm, including those for choosing the follower’s worst-case shock process, as
among the implementability conditions for the monopolist. This leads to an equilibrium
of the game between the leader and the follower in which each understands the decision

15 A Bellman-Isaacs condition on the value function described by Hansen and Sargent (2004) allows us to
characterize the solution of the robust control problem in this way. A substantial and very important result
is being used here. For general two-person games, the Markov-perfect equilibrium cannot be computed
by stacking and solving the Euler equations for the two players. Doing that would produce a candidate
equilibrium that would not be subgame perfect. But under the Bellman-Isaacs condition, which pertains
to two-player zero-sum games, a Markov perfect equilibrium can be computed by stacking and solving the
Euler equations. For proofs, see Başar and Bernhard (1995) and Hansen and Sargent (2004). Technically,
the irrelevance of timing protocols for zero-sum two-player dynamic games is related to Chari, Kehoe, and
Prescott’s (1989, pp. 269–272) characterization of time-inconsistency in macroeconomics as pertaining only
to situations in which there is conflict between a society’s objective and those of the agents within it. Chari,
Kehoe, and Prescott show that without such conflict, the existence of a single value function makes irrelevant
the order of maximization. Comparing their result to the similar one based on the Bellman-Isaacs condition
for two-player zero-sum dynamic games, it can be seen that to avoid time inconsistency requires only that
objective functions of different decision makers be completely aligned , a condition that allows complete
conflict.
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rules of the other, and in which the leader takes into account how the follower’s decisions
respond to its own. To know how the follower responds, the leader has to keep track of
how the worst case shocks of the follower respond to the leader’s decisions. This impels us
to include the worst case shock process of the followers in the state vector for the leader.

By following this recipe, we can construct an equilibrium in which leaders and followers
share a common approximating model. However, differences in their preferences can lead
them to slant their worst case models in different directions away from their common
approximating model, as the two types of agents use their own worst-case analyses to
investigate the fragility of alternative rules to possible misspecifications of that common
approximating model. In the next section, we illustrate our equilibrium concept with an
example.

5. A monopolist with a competitive fringe

As an example, this section studies an industry with a large firm that acts as a Stackel-
berg leader with respect to a competitive fringe. The industry produces a single nonstorable
homogeneous good. One large firm called the monopolist produces Qt and a representa-
tive firm in a competitive fringe produces qt. We use qt to denote the quantity chosen by
the individual competitive firm and qt to denote the equilibrium quantity. In equilibrium,
qt = qt, but it is necessary to distinguish between qt and qt in posing the optimum problem
of the representative competitive firm. The representative firm in the competitive fringe
takes Qt and qt as exogenous and chooses sequentially. In light of the responses of the
representative firm in the competitive fringe, the monopolist commits to a policy at time
0, taking into account its ability to manipulate the price sequence and the worst case
beliefs of the representative competitive firm through its quantity choices. Subject to the
competitive fringe’s best response, the monopolist views itself as choosing qt+1 and Qt+1

for t ≥ 0, as well as the representative competitive firm’s worst-case shock process wt+1

for t ≥ 0.
Costs of production are Ct = eQt + .5gQ2

t + .5c(Qt+1 − Qt)2 for the monopolist and
σt = dqt + .5hq2

t + .5c(qt+1 − qt)2 for the representative competitive firm, where d > 0, e >
0, c > 0, g > 0, h > 0 are cost parameters. There is a linear inverse demand curve

pt = A0 − A1 (Qt + qt) + vt, (5.1)

where A0, A1 are both positive and vt is a disturbance to demand governed by

vt+1 = ρvt + Cv ε̌t+1 (5.2)

and where |ρ| < 1 and ε̌t+1 is an i.i.d. sequence of random variables with mean zero and
variance 1. The monopolist and the representative competitive firm share equation (5.2) as
their approximating model for the demand shock. The monopolist and the representative
competitive firm both want decision rules that are robust to alternative specifications of
the process for the demand shock. Because the monopolist and the representative firm in
the competitive fringe potentially have different worst case models of the demand shock, we
distinguish between them by letting vt denote the process perceived by the representative
firm, and Vt the process perceived by the monopolist. For the representative competitive
firm, the alternative models of the demand shock have the form

vt+1 = ρvt + Cv (εt+1 + wt+1) . (5.3)
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For the monopolist, they have the form

Vt+1 = ρVt + Cv (ε̃t+1 + Wt+1) . (5.4)

It is appropriate to set initial conditions so that V0 = v0. Here wt+1, Wt+1 are specifica-
tion errors for the representative competitive firm and the monopolist, respectively, and
εt+1, ε̃t+1 are other i.i.d. random processes with mean zero and variance 1. The distortions
(wt+1, Wt+1) can feed back on the history of the state of the market, namely, (q, Q, v, V ).
The distortions wt+1 and Wt+1 will typically differ because the monopolist and the repre-
sentative competitive firm have different objectives.

5.1. The competitive fringe

The representative competitive firm regards {Qt, qt}∞t=0 as given stochastic processes and
chooses an output plan {qt+1}∞t=0 and shock distortion process {wt+1}∞t=0 to extremize

E0

∞∑
t=0

βt
{
ptqt − σt + βθw2

t+1

}
, β ∈ (0, 1) (5.5)

subject to q0 given, where Et is the mathematical expectation based on time t information
evaluated with respect to a distorted model that includes (5.3). Here θ is the robustness
parameter of the representative firm in the competitive fringe, which could differ from Θ,
the robustness parameter of the monopolist. Let ut = qt+1 − qt. We take (ut, wt+1) as the
representative competitive firm’s composite control vector at t. Subject to (5.1) and (5.3),
first order-conditions for extremizing (5.5) with respect to ut, wt+1 are

ut = Etβut+1 − c−1βhqt+1 + c−1βEt (pt+1 − d)

wt+1 = − 1
2θ

Cvqt+1 + βρEtwt+2

(5.6)

for t ≥ 0.
In more detail, we derive the first-order conditions (5.6) by forming the following

Lagrangian for the representative firm in the competitive fringe:

L = E0

∞∑
t=0

βt
{
[A0 − A1 (Qt + qt) + vt] qt −

[
dqt + .5hq2

t + .5cu2
t

]

βθw2
t+1 + �1t [qt + ut − qt+1] + �2t [ρvt + Cvwt+1 − vt+1]

}
.

(5.7)

Here {�1t, �2t} are sequences of Lagrange multipliers. Taking {Qt, qt}∞t=0 as given, the
representative firm maximizes L with respect {ut, qt+1}∞t=0 and minimizes it with respect
to {wt+1, vt+1}∞t=0. Rearranging the first order conditions for (ut, qt+1) gives the first
equation of (5.6), while rearranging the first-order conditions for (wt+1, vt+1) gives the
second equation of (5.6), which from now on we call the Euler equation for wt+1.

We can appeal to a certainty equivalence principle stated by Hansen and Sargent
(2004) to justify working with a non-stochastic version of (5.6) that we form by dropping



15

the expectation operator and the random terms ε̌t+1 and εt+1 from (5.2) and (5.3).16 Shift
(5.1) forward one period, set qt = qt for all t ≥ 0, and substitute for pt+1 in (5.6) to get

ut = βut+1 − c−1βhqt+1 + c−1β (A0 − d) − c−1βA1qt+1

− c−1βA1Qt+1 + c−1βvt+1

wt+1 = − 1
2θ

Cvqt+1 + βρwt+2.

(5.8)

Equation (5.8) combines the Euler equations of the representative firm in the competitive
fringe with market clearing.17 Note that v, and not V , appears in the first equation of (5.8).
This reflects how the representative competitive firm’s forecasts influence its decisions, a
fact that the monopolist will acknowledge when he designs his policy.

5.2. The monopolist’s problem

The monopolist views the sequence of Euler equations-cum-market-clearing conditions
(5.8) as implementability constraints. We can represent the constraints impinging on
the monopolist, including (5.8), in terms of the transition law:




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0

A0 − d 1 0 −A1 −A1 − h c 0
0 0 0 0 − 1

2θCv 0 βρ







1
vt+1

Vt+1

Qt+1

qt+1
ut+1

wt+2




=




1 0 0 0 0 0 0
0 ρ 0 0 0 0 Cv

0 0 ρ 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 c

β 0
0 0 0 0 0 0 1







1
vt

Vt

Qt

qt
ut

wt+1




+




0
0
0
1
0
0
0




Ut +




0
0
Cv

0
0
0
0




Wt+1,

(5.9)

where Ut = Qt+1 − Qt is the control of the monopolist. The last row portrays (5.8).
Represent (5.9) as

yt+1 = Ayt + BUt + CWt+1. (5.10)

Although we have included (ut, wt+1) as components of the ‘state’ yt in the monopolist’s
transition law (5.10), (ut, wt+1) are actually ‘jump’ variables that correspond to xt in

16 We use a method that Sargent (1987) used to compute a rational expectations equilibrium. The key
step is to eliminate price and output by setting qt = qt and substituting from the inverse demand curve and
the production function into the firm’s first-order conditions to get a difference equation in capital.
17 As shown in Sargent (1987) in the case without robustness, (5.8) is also the Euler equation for a fictitious

planner who takes Qt as exogenous and who chooses a sequence for {qt+1}∞t=0 to maximize the discounted sum
of consumer and producer surplus. Given stable sequences {Qt, vt}, we could solve (5.8) and ut = qt+1 − qt

to express the competitive fringe’s output sequence as a function of the monopolist’s output sequence.
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section 3. The analysis in section 3 implies that the solution of the monopolist’s problem
is encoded in the Riccati equation associated with a robust linear regulator that takes
(5.10) as the transition law.

To match the setup of section 3, we partition yt as y′t = [ z′t x′
t ] where z′t

= [ 1 vt Vt Qt qt ], x′
t = [u′

t w′
t+1 ], and let µxt =

[
µut

µwt

]
be the vector of multipliers

associated with the Euler equations for (ut, wt+1). The monopolist’s artificial optimal
linear regulator problem can be expressed

max
{Ut}

min
{Wt+1}

∞∑
t=0

βt
{
ptQt − Ct + βΘW ′

t+1Wt+1

}

or

max
{Ut}

min
{Wt+1}

∞∑
t=0

βt
{
(A0 − A1 (qt + Qt) + Vt)Qt − eQt − .5gQ2

t − .5cU2
t + βΘW 2

t+1

}
(5.11)

subject to (5.10). Notice that the monopolist’s perceived demand shock appears in (5.11).
The monopolist’s problem can be written

max
{Ut}

min
{Wt+1}

−
∞∑
t=0

βt
{
y′tQyt + U ′

tRUt − βΘW 2
t+1

}
(5.12)

subject to (5.10) where

Q = −




0 0 0 A0−e
2 0 0 0

0 0 0 0 0 0 0
0 0 0 1

2 0 0 0
A0−e

2 0 1
2 −A1 − .5g −A1

2 0 0
0 0 0 −A1

2 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




and R = c
2 . The results of section 3 apply.

5.3. Representation of the monopolist’s decision rule

We want to study the approximating model under the robust decision rules for the monop-
olist and the representative competitive firm. Subject to one adjustment, the approximat-
ing model under the robust rules is given by an equation of the form (3.21). The required
adjustment comes from the need to take account of the fact that we have included the fol-
lower’s Euler equation for wt+1 among the pseudo-state equations in (5.9). In particular,
notice the (2,7) entry in the matrix multiplying the pseudo-state on the right of (5.9). It
builds in the law of motion for the representative competitive firm’s worst-case model for
v. But now we want to build in the law of motion for v under the approximating model.
Therefore, we must make sure at this point that (3.21) incorporates the approximating
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model for vt, not the worst-case model. We can do this by appropriately adjusting A on
the right side of (3.21a), namely, by ‘zeroing out’ the Cv term that appears in the (2,7)
position of the matrix multiplying the pseudo-state on the right side of equation (5.9). It
is important that we make this adjustment only after we have solved Bellman equation
(3.1) for the robust Stackelberg plan.

Recall that zt = [ 1 vt Vt Qt qt ]′ and xt = [ut wt+1 ]′. The monopolist’s decision
rule has the representation

[
Ut

Wt+1

]
= o1




1
vt

Vt

Qt

qt


 + o2

[
µut

µwt

]
. (5.13)

Equation (3.15), which describes the decisions of the representative competitive firm, has
the form

[
ut

wt+1

]
= n1




1
vt

Vt

Qt

qt


 + n2

[
µut

µwt

]
. (5.14)

Here n1, n2, o1, o2 are matrices to be defined by matching the formulas from section 3. In
addition, (3.21a) gives the law of motion of [ zt µxt ]′ with the Stackelberg plan under the
approximating model.

5.4. Interpretation

The approximating model incorporates the robust decision rules for both types of firm,
but, after the adjustment mentioned in ther precding subsection, adds neither CvWt+1

nor Cvwt+1 to the right side of (3.21a). The absence of these terms from the right side
of (3.21a) reflects that the Wt+1 and wt+1 terms that emerge from the monopolist’s and
representative competitive firm’s problems are not their ‘predicted misspecifications’, but
are instead artifacts of their procedures for devising robust decision rules. Under the
approximating model the selected Wt+1 and wt+1 processes are just some of the firms’
decision making tools. They do not affect the motion of vt and Vt under the approximating
model. Indeed, under the approximating model, Vt ≡ vt.18

18 To simulate the random version of the model, we would add [ 0 Cv Cv 0 0 0 0 ]′ εt+1 to the right
side of (5.9) and the appropriate counterpart to the right side of (3.21a). Note that the same innovation
εt+1 impinges on both Vt and vt under the approximating model.
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Table 5.1: Steady state values

(Θ, θ) (∞,∞) (∞, 10) (10,∞) (10, 10)

p 50 49.69 50.2 49.9
q 30 29.45 30.2 29.65
Q 20 20.86 19.59 20.46
w 0 -1.23 0 -1.24
W 0 0 -.82 -.84

5.5. Numerical example

This section briefly describes a numerical example of the monopoly-competitive fringe
model in which we start without preferences for robustness, then study the effects of
successively turning on preferences for robustness for one type of agent, but not the other,
and then turning them on for both.

For parameter settings (A0, A1, ρ, Cv, c, d, e, g, h, β)= (100, 1, .8, .2, 1, 20, 20, 1, 1, .95),
Table 5.1 displays steady state values associated with four pairs of settings for Θ, θ. To
represent little or no preference for robustness, we set θ or Θ equal to 100000. To activate
preferences for robustness, we set θ or Θ equal to 10. Fig. 5.1, Fig. 5.2, and Fig. 5.3, dis-
play some impulse responses for the model with (Θ, θ) = (10, 10) under the approximating
model and the robust rule.

The first column of Table 5.1 serves as a benchmark, preferences for robustness having
been turned off for both the monopolist and the competitive firms by setting Θ = θ ≈ +∞.
The next two columns turn on a preference for robustness for one but not the other of
the two types of agents, while the fourth column turns on a preference for robustness for
both types. The entries in the table show that a main effect of turning on a preference for
robustness is to make the steady state values of the worst case shocks w and W negative.
In effect, firms’ pessimistic forecasts about demand push their outputs down. In the middle
two columns in the table in which preferences for robustness are turned on for one but not
the other type of agent, the type with the preference for robustness produces less and the
other type produces more than under the benchmark steady state without preferences for
robustness. Hovever, when we activate a concern for robustness for both types of firms in
the fourth column, the monopolist produces enough more in the steady state to drive the
price below its value in the benchmark no-robustness case in the first column.

For (θ, Θ) = (10, 10), Fig. 5.1, Fig. 5.2, and Fig. 5.3 show impulse responses to the
demand innovation εt. (Impulse response functions for price and output associated with
other pairs of (θ, Θ) are very similar; the main effects of activating robustness are to af-
fect the constants, or very low frequency components, of prices and quantities. The worst
case shocks embrace state-dependent pessimism about the state of demand, which is ev-
idently mostly a very low frequency phenomenon, virtually a difference in unconditional
means. ) The impulse responses show that a demand innovation pushes the implementa-
tion multiplier µu down and µw up, and leads the monopolist to expand output while the
representative competitive firm at first contracts and then expands output in subsequent
periods. The response of price to a demand shock innovation is to rise on impact but



19

then to decrease in subsequent periods in response to the increase in total supply q + Q
engineered by the monopolist. Note from Fig. 5.3 that both of the worst case shocks W
and w fall in response to an innovation in demand. This and the negative unconditional
means of w and W in Table 5.1 tell us that both types of firms’ decision rules are most
fragile in the direction of overestimating demand.

The steady state values of the multipliers µu, µw are negative. This reflects the cost
to the monopolist of adhering to its plan. Time inconsistency is surfaces in the incentive
the monopolist would have to reset the multipliers to zero after period 0 and thereby
reinitialize its plan (see Hansen, Epple, and Roberds (1985)).

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

p

0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2
x 10

−3

q

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

Q

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

q 
+

Q

Figure 5.1: Impulse response of p, q, Q, q + Q to innovation to demand
shock ε

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

µ w

0 1 2 3 4 5 6 7 8 9 10
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

µ u

Figure 5.2: Impulse response of µw and µu to innovation in demand shock
ε.



20

0 1 2 3 4 5 6 7 8 9 10
−5

−4

−3

−2

−1

0
x 10

−3

W

0 1 2 3 4 5 6 7 8 9 10
−7

−6

−5

−4

−3

−2

−1

0
x 10

−5

w

Figure 5.3: Impulse response of W and w to demand shock innovation ε.
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6. Concluding remarks

We wrote this paper to define an appropriate equilibrium concept for studying the ef-
fects of concerns about model misspecification in dynamic macroeconomic and monetary
policy models and because existing equilibrium concepts did not seem to allow us to im-
pute doubts about the model specification to both the government and to private agents.
The equilibrium concept in this paper will allow us to compute robust Ramsey plans for
macroeconomics models with forward-looking agents, like the ‘new synthesis’ models of
Clarida, Gali, and Gertler (1999), King and Wolman (1999), Rotemberg and Woodford
(1997) and others.

The existing new synthesis literature without concerns for robustness computes Ramsey
plans by formulating linear quadratic approximants that include implementability condi-
tions in the form of consumption Euler equations for consumers and price-setting Euler
equations for a typical monopolistically competitive price-setting firm. If in the spirit of
this paper we wish to impute concerns about misspecification and the consequent desires
for robustness to consumers and firms in such new synthesis models, we have to add some
additional state variables and some additional implementability conditions for both the
consumers and the firms. These additional state variables are specification error processes
(worst case shocks) for the representative household and the representative firm, and the
additional implementability conditions are Euler equations for those worst case shock pro-
cesses.19 Our Ramsey equilibrium concept pins down all of the endogenous (decision)
variables in a common approximating model that all agents in the model share, but that
all agents doubt.
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