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ABSTRACT

We pay human subjects to be the policy maker and the public in an ex-
pectational Phillips curve model. Policy makers often find ways to achieve
the time-inconsistent optimal inflation rate, at least for a while. But back-
sliding toward the sub-optimal Nash (time consistent) inflation rate also
occurs.
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1. Introduction

This paper describes experiments with human subjects in an environment that provokes

the time consistency problem of Kydland and Prescott (1977). There is an expectational

Phillips curve, a single policy maker able to set inflation up to a random error term, and

members of a public who forecast the inflation rate. The policy maker knows the model.

Kydland and Prescott considered a one-period model. They described how inability to

commit to an inflation policy causes the policy maker to set inflation to a Nash (i.e., time

consistent) level that is higher than if it could commit. With repetition,1 the availability

of history-dependent strategies multiplies the range of equilibrium outcomes. Some are

better than the one-period time-consistent one. Others are worse.

Commentators including Blinder (1998) and McCallum (1995) assert that in practice

the time consistency problem can be solved through some unspecified process that lets

the monetary authority ‘just do it’, in the terminology of an American sports shoe ad-

vertisement. Here ‘it’ is to choose the optimal or Ramsey target inflation rate. Although

reputational macroeconomics provides no support for the ‘just do it’ phrase as a piece of

policy advice,2 the range of outcomes predicted by that theory is big enough to rationalize

‘just do it’ behavior. The large set of outcomes motivated us to put human subjects inside

a Kydland-Prescott environment.

We paid undergraduate students to perform as policy makers and private forecasters

in a repeated version of the Kydland-Prescott economy. A single policy maker repeatedly

faced N forecasters whose average forecast of inflation positions an expectational Phillips

curve.

Inspired by the theoretical literature, we ask the following questions: (1) Emergence

of Ramsey: Is there a tendency for the optimal time-inconsistent (Ramsey) one-period

outcome to emerge as time passes within an experiment? (2) Backsliding: After a policy

maker has nearly achieved Ramsey inflation, does inflation ever drift back toward Nash

inflation? (3) Focal points: Are there other ‘focal points’ besides the Nash and Ramsey

1 See Barro and Gordon (1983).
2 The theory identifies multiple systems of expectations about its behavior to which the policy maker

wants to conform. It provides no guidance about how to switch from one system of expectations to another.
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inflation rates? (4) History-dependence: Is there evidence of ‘carry over’ across sessions

in agents’ forecasts of inflation? (5) Inferior forecasting: Are there sometimes systematic

average errors in forecasting inflation? We answer yes to the first four questions and no

to the last one. The positive answer to question (1) provides support for the ‘just do it’

position, but qualified by the positive answer to question (2).

Questions (1) and (2) are inspired by Barro and Gordon (1983) and Sargent (1999).

Barro and Gordon described a reputational equilibrium that could sustain repetition of

the Ramsey outcome. Sargent pointed out that Phelps’s (1967) control problem for the

monetary authority under adaptive expectations for the public would eventually lead the

monetary authority close to Ramsey outcomes. However, Sargent also showed that only

repetition of the Nash equilibrium outcome is a self-confirming equilibrium3 and that

the ‘mean dynamics’ of least squares learning on the part of the government drive the

system toward the self-confirming Nash equilibrium. The mean dynamics are essentially a

differential version of ‘best response dynamics’. They summarize and formalize the forces

alluded to in Kydland and Prescott’s (1977) heuristic sketch of an adaptive learning process

that causes the government to depart from the Ramsey outcome and gradually approach

the self-confirming Nash equilibrium outcome. We call ‘backsliding’ this process of moving

away from a Ramsey outcome, however attained, toward a Nash equilibrium.4

3 A self-confirming equilibrium is a regression of unemployment on inflation that reproduces itself under
a government decision problem that takes the regression as invariant under intervention and that trades off
inflation against unemployment. See Sargent (1999) for details. The statement in the text that the Nash
equilibrium outcome is the unique self-confirming equilibrium must be qualified because it depends on a
Phillips curve that regresses unemployment on inflation. If the direction of fit is reversed, the self-confirming
equilibrium has an inflation outcome that is higher than the Nash outcome. See Sargent (1999) for details.
4 John B. Taylor (see Solow and Taylor (1999)) warns against the prospect of backsliding because he thinks

that standard time series tests of the natural rate hypothesis will soon start to reject it if the persistence of
inflation continues to decrease as it seems to have in recent years in the U.S.
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2. The environment

Our basic model is Kydland and Prescott’s. Let (Ut, yt, xt, x̂t) denote the unemploy-

ment rate, the inflation rate, the systematic part of the inflation rate, and the public’s

expected rate of inflation, respectively. The policy maker sets xt, the public sets x̂t, and

the economy determines outcomes (yt, Ut).
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Figure 2.1: The Nash equilibrium and Ramsey outcome for the Kydland-
Prescott model.

The data are generated by the natural unemployment rate model

Ut = U∗ − θ (yt − x̂t) + v1t (2.1a)

yt = xt + v2t (2.1b)

xt = x̂t, (2.1c)

where θ > 0, U∗ > 0, and vt is a (2 × 1) i.i.d. Gaussian random vector with Evt = 0,

diagonal contemporaneous covariance matrix, and Ev2jt = σ2vj . Here U∗ is the natural

rate of unemployment and −θ is the slope of an expectations-augmented Phillips curve.

According to (2.1a), there is a family of Phillips curves indexed by x̂t. Condition (2.1b)

states that the government sets inflation up to a random term v2t. Condition (2.1c)

imposes rational expectations for the public. It embodies the idea that private agents

face a pure forecasting problem: their payoffs vary inversely with their squared forecasting
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error. System (2.1) embodies the natural unemployment rate hypothesis: surprise inflation

lowers the unemployment rate but anticipated inflation does not.

2.1. Nash and Ramsey equilibria and outcomes

The literature focuses on two equilibria of the one-period model. Both equilibria as-

sume that the government knows the correct model. Called the Nash and the Ramsey

equilibria, they come from different timing protocols. The Ramsey outcome is better than

the Nash outcome, symptomatic of a time inconsistency problem.

To define a Nash equilibrium, we need

Definition 2.1. A government best response map xt = B(x̂t) solves the problem

min
xt

E
(
U2t + y2t

)
(2.2)

subject to (2.1a), (2.1b), taking x̂t as given.

The best response map is xt = θ
θ2+1

U∗ + θ2

θ2+1
x̂t. A Nash equilibrium incorporates a

government best response and rational expectations for the public:

Definition 2.2. A Nash equilibrium is a pair (x, x̂) satisfying (a) x = B(x̂), and (b)

x̂ = x. A Nash outcome is the associated (Ut, yt).

Definition 2.3. The Ramsey plan xt solves the problem of minimizing (2.2) subject to

(2.1a), (2.1b), and (2.1c). The Ramsey outcome is the associated (Ut, yt).

A Ramsey outcome dominates a Nash outcome. The Ramsey plan is x̂t = xt = 0 and

the Ramsey outcome is Ut = U∗−θv2t+v1t, yt = v2t. The Nash equilibrium is x̂t = xt = θU∗

and the Nash outcome is Ut = U∗ − θv2t + v1t, yt = θU∗ + v2t. The addition of constraint

(2.1c) on the government’s in the Ramsey problem makes the government achieve better

outcomes by taking into account how its actions affect the public’s expectations. The

superiority of the Ramsey outcome reflects the value to the government of being able to

commit to a policy before the public sets expectations.
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3. Repetition

We design our experiments to implement an infinitely repeated version of the Kydland-

Prescott economy. The objective of the monetary authority is to maximize

J = −E0 (1− δ)
∞∑

t=0

δt
(
U2t + y2t

)
, δ ∈ (0, 1) . (3.1)

The objective of private agents continues to be to minimize the error variance in forecasting

inflation one period ahead.

Three types of theories apply to this setting.

(i.) Subgame perfection. Reputational macroeconomics, also called the theory of credible

or sustainable plans,5 studies subgame perfect equilibria with history-dependent strate-

gies. The theory discovers a set of equilibrium outcomes. For a big enough discount

factor δ, this set includes one that repeats the Ramsey outcome forever and others

that sustain worse than the one-period Nash outcome. One sensible reaction is that

because it contains so many possible equilibria, the theory says little empirically.

(ii.) Adaptive expectations (1950’s). Suppose that the government believes that the public

forms expectations by Cagan-Friedman adaptive expectations:

x̂t = (1− λ) yt + λxt (3.2)

or x̂t = (1 − λ)
∑∞

j=0 λ
jyt−j−1, where λ ∈ (0, 1). A version of Phelps’s (1967) control

problem is to maximize (3.1) subject to (2.1a), (2.1b), and (3.2). The solution of this

problem is a feedback rule

xt = f1 + f2x̂t. (3.3)

It can be shown that with a high enough discount factor, the coefficients in (3.3)

take values that make the government eventually push inflation toward the Ramsey

outcome. Cho and Matsui (1995) refined this idea in the context of a broad class of

expectations formations mechanisms for the public that satisfy the same ‘induction

5 See Stokey (1989) for a brief survey and Sargent (1999) for an application to the current problem.
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hypothesis’ that adaptive expectations exhibits: if sustained long enough, a constant

inflation rate will eventually come to be expected by the public.6

(iii.) Adaptive expectations (1990’s) Sargent (1999) shows that a self-confirming equilib-

rium (see Fudenberg and Levine (1995)) of the Kydland-Prescott model yields the pes-

simistic Nash equilibrium outcome. Sims (1988), Sargent (1999), and Cho, Williams,

and Sargent (2001) perturb the behavior rules of that self-confirming equilibrium by

imputing to the policy maker doubts about model specification that cause him to use

a constant-gain learning algorithm. Those papers show that the resulting model has

both (1) ‘mean dynamics’ usually propelling it toward the self-confirming equilibrium,

and (2) ‘escape dynamics’ occasionally expelling it toward the Ramsey outcome. Sam-

ple paths display recurrent abrupt stabilizations prompted by experimentation-induced

discovery by the monetary authority of an approximate natural rate hypothesis govern-

ment, followed by gradual backsliding toward the (inferior) self-confirming equilibrium.

4. Experiments

4.1. Design

A group of N+1 students composes the economy; we set N equal to 3, 4 or 5. The first

N students form the public. Their decision is to forecast the inflation rate for each period

of the experiment. Call agent i’s forecast x̂it and let x̂t be the average of the citizens’

forecasts. Citizens receive payoffs that rise as their session-average squared forecast errors

fall. Agent i’s payoff at the end of time period t is given by:

−.5 (yt − xi,t)
2 .

Student N + 1, chosen at random at the beginning of an experiment, is the policy maker.

Each period, student N + 1 sets a target inflation rate, xt. A random number generator

6 Cho and Matsui (1999) study a version of the repeated model with alternating choices by the government
and the public. They find that, depending on relative discount factors, the one period Nash outcome is
excluded as an equilibrium outcome, and that a narrow range of outcomes near Ramsey can be expected
under some parameter settings.
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sets v2t and the actual inflation rate equals yt = xt+v2t. Unemployment is then generated

by the Phillips curve (2.1a). Student N + 1’s payoff varies inversely with the session-wide

average of U2t + y2t and is given by:

−.5
(
U2t + y2t

)
.

The same student remains the policy maker throughout all sessions within a single exper-

iment. Sessions within an experiment are separated by a stopping time (see below).

4.2. Knowledge

The policy maker knows:

• The true Phillips curve (2.1).

• The existence of private agents who are trying to forecast its action.

• The histories of outcomes (yt, Ut) in the current experiment up to the current time.

The private forecasters know:

• The history of inflation and unemployment, including prior sessions of the current

experiment. At the beginning of an economy, there is no history. The private forecasters

do not know the structure of the economy. They know that a policy maker sets inflation

up to a random term.7

7 The experiments implement the environment described by Kydland and Prescott (1977) in which the
government knows the model. Our assumptions about what the government and private forecasters know
differ from those in Sargent (1999) and Cho, Williams, and Sargent (2001), where the private agents know
the government’s rule for setting the predictable part of inflation and the government does not know the
true Phillips curve model but instead estimates a non-expectational Phillips curve.
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4.3. Physical details

Subjects sit at computer terminals and are isolated from one another. They receive

written instructions at the beginning of each experiment. Appendices A and B reproduce

the instructions. All experiments were conducted at the Micro computer lab of the Simon

Fraser University, Burnaby, Canada. Subjects were SFU undergraduate economics majors.

They were recruited for 2 hour experiments but were not told in advance how many

sessions would be played during each experiment. No subject was used in more than one

experiment.

We conducted a total of 12 experiments, 3 in April 1998 and 9 between February and

April 1999.

4.4. Stopping rule

We followed Duffy and Ochs (1999) and Marimon, McGrattan, and Sargent (1990)

in using a random stopping rule to implement an infinite horizon and to discount future

payoffs with discount factor δ ∈ (0, 1). At the end of each period, the computer program

drew a random number from a uniform distribution over [0, 1]. If this random number was

less than δ, the experimental session would continue for one more period. If the number

was greater than δ, the session was terminated. An upper bound on the duration of an

individual session was set at 100 time periods.

4.5. Earnings

Subjects received $10 payment (Canadian funds) for completing a 2 hour experiment.

They could also earn a prize of additional $10.8 Whether or not they earned a prize was

determined in the following way. At the end of each experimental time period, the number

period points was calculated by adding 100 points to the subject’s payoff. If this number

was less than 0, it was truncated to 0. Then the number total points was calculated by

adding up all period points earned in a session. Finally, the number maximum points was
8 We used a version of the Roth-Malouf binary lottery to determine actual cash payments with the

intention to control for subjects’ differing attitudes towards risk.
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calculated as the product of 100 and the number of session periods. At the end of a session,

a probability of winning the prize, πwin, was computed as the ratio between the total points

and the maximum points.

Once an experiment was over, the computer program chose one of the sessions at

random and chose a number, rand, from a uniform distribution over [0, 1]. If πwin of the

selected session was greater than rand, a subject earned additional $10.

The parameter values used in the experiments were: U∗ = 5, θ = 1, and discount

parameter δ = 0.98. Two sets of values of the noise standard deviation σ were used,

σ ≡ σ1 = σ2 = 0.3 and σ ≡ σ1 = σ2 = 0.03. In addition to the setting of σ, an information

variable (yes or no) records whether the policy maker was told the value of x̂t from the

previous period.9

We label each experiment as an ‘economy’ that consists of a set of sessions with the

same policy maker and group of forecasters. Each economy has several sessions.

Table 4.1 summarizes the treatment variables across economies.10

Table 4.1: Design of Experiments

experiment sessions information σ N

1 3 * .03 4

2 2 ** .03 4

3 3 *** .3 5

4 2 yes .3 3

5 2 yes .3 4

6 9 yes .3 4

7 6 yes .3 4

8 9 yes .3 4

9 4 yes .3 4

10 2 yes .3 4

11 9 yes .3 4

12 9 yes .3. 4

9 We used two alternative scales for the payoffs for the forecasters. For experiments 1-8, we used −.5(yt−
x̂it)2, while for experiments 9-12 we used −5(yt−xit)2. The second scale was introduced in order to increase
the weight of poor forecasts in the calculation of πwin.
10 In Table 4.1, (*) denotes (no, yes, yes), (**) denotes (no, yes), and (***) denotes (no, yes, yes) in
successive sessions.
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5. Outcomes

Table 5.1 – Table 5.3 and Fig. C.1 – Fig. C.17 describe the outcomes. Each economy

corresponds to one set of N + 1 students. Fig. C.14–Fig. C.17 contain evidence about

the heterogeneity of the citizens’ expectations of inflation. An economy contains several

sessions, determined by the realization of a random variable that terminated the session.

The various panels in Fig. C.1–Fig. C.12 correspond to different sessions within the same

group of students.

The columns of Table 5.1 report the means and standard deviations of xt, x̂t, yt, Ut,−.5(U2t +

y2t ) across all sessions for each group. For the parameter values U∗ = 5, θ = 1, the popula-

tion values for these variables at the Nash equilibrium are 5, 5, 5, 5,−25. For the Ramsey

outcome, the values are 0, 0, 0, 5,−12.5.
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Table 5.1: Means and standard deviations of outcomes.

Economy x x̂ y U gov. payoff

Nash 5 5 5 5 -25

Ramsey 0 0 0 5 -12.5

1 4.1173 4.1497 4.1125 5.0381 -22.4196

(1.5267) (1.4923) (1.5298) (.4671) (5.2823)

2 1.4937 1.5047 1.4888 5.0183 -16.5486

(2.2521) (2.2286) (2.2522) (0.8135) (7.2296)

3 1.1266 1.1455 1.1162 5.0263 -14.0370

(1.1115) (1.0726) (1.1347) (0.5334) (3.1575)

4 1.3326 1.4218 1.2930 5.1438 -14.5550

(0.7794) (0.8094) (0.8360) (0.5383) (2.8898)

5 2.0143 2.2536 1.9998 5.2495 -18.0040

(1.7884) (1.7682) (1.8025) (1.1115) (7.5711)

6 1.9196 2.0600 1.9086 5.1636 -21.4142

(2.8144) (2.3279) (2.8319) (2.1278) (26.5034)

7 1.3561 1.4444 1.3080 5.0956 -14.7334

(1.1482) (1.1892) (1.1962) (0.6071) (3.8102)

8 0.7879 0.8354 0.7582 5.0545 -13.5492

( 0.7897) (0.9031) (0.8551) (0.4979) (3.0613)

9 5.8802 5.8129 5.8274 4.9490 -31.8680

(1.9699) (1.7939) (1.9725) (1.1919) (8.7549)

10 2.4640 2.5443 2.4158 5.1006 -20.8438

(2.4087) (2.0490) (2.4543) (1.9718) (11.6304)

11 3.6396 3.6664 3.6158 5.0216 -19.7498

(0.7379) (0.7217) (0.7873) (0.7706) (4.6579)

12 2.6957 2.7048 2.6659 5.0161 -18.8765

(1.7212) (1.1878) (1.7263) (1.5879) (15.8123)

Table 5.2: Patterns of results

Economy Ramsey back- other experi- rank

sliding focal mentation

1 x 11

2 x 5

3 x x 2

4 x 3

5 x x x 6

6 x x y x 9

7 x 4

8 x 1

9 y 12

10 x x x 10

11 x 8

12 x 7



13

Table 5.3: Inflation and Government Pay-off on Second-Half Dummy

Economy Inf Incpt Inf Dummy Gov Incpt Gov Dummy

1 4.5637 −2.8665∗ -23.7411 8.4138∗

(0.0882) (0.2226) (0.3396) (0.8571)

2 3.8583 −3.8385∗ -22.3969 9.4744∗

(0.1596) (0.2031) (0.7084) (0.9017)

3 1.3255 −1.0571∗ -14.1841 0.7430

(0.0829) (0.1864) (0.2475) (0.5563)

4 1.6127 −0.9593∗ -15.1001 1.6353∗

(0.0819) (0.1419) (0.3251) (0.5631)

5 3.1016 −1.9891∗ -21.4088 6.1463∗

(0.1917) (0.2576) (0.8823) (1.1854)

6 1.9549 -0.2388 -21.9732 2.8805

(0.1356) (0.3079) (1.2692) (2.8811)

7 1.6024 −0.9722∗ -15.0774 1.1365∗

(0.0840) (0.1526) (0.2858) (0.5195)

8 0.8524 −0.2388∗ -13.9437 0.9993∗

(0.0585) (0.0931) (0.2088) (0.3323)

9 5.4664 1.0468 -30.7858 -3.1381

(0.1658) (0.2824) (0.7498) (1.2769)

10 2.8456 −1.2428∗ -21.8264 2.8410

(0.2562) (0.4357) (1.2431) (2.1137)

11 3.4265 0.3872 -18.8962 -1.7463

(0.0533) (0.0763) (0.3199) (0.4576)

12 3.1043 −1.1103∗ -19.0925 0.5472

(0.1132) (0.1802) (1.0925) (1.7388)

5.1. Patterns

Table 5.2 summarizes what we see to be the patterns in Fig. C.1–Fig. C.17. The column

labels mean the following. ‘Ramsey’ indicates that the policy maker pushes the system

to Ramsey at least for a substantial length of time (e.g., see Fig. C.1 and Fig. C.2 for

economies 1 and 2). ‘Backsliding’ indicates a resurgence of inflation after having attained

Ramsey (e.g., see Fig. C.3 and Fig. C.6). ‘Other focal’ indicates sustained inflation at

values distinct from the Ramsey or Nash inflation (e.g., see Fig. C.9). ‘Experimentation’

indicates the presence of episodes in which the monetary authority seems to be engaging

in purposeful experimentation. ‘Rank’ denotes the rank order of the experiments in terms

of the economy-wide average payoff for the monetary authority. An ‘x’ signifies strong

evidence for the pattern in question, a ‘y’ weaker evidence, and a blank no evidence.

Table 5.3 reports results of regressions of inflation and the government payoff, respectively,
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on a constant and a dummy that takes value 0 in the first half of an experiment and 1 in

the second half, where the second half was defined as the last N/2 sessions if N was even

and N − 1/2 sessions if N is odd. The tables reports regression coefficients with standard

errors in parenthesis; an asterisk denotes statistical significance at the 5% level.

We summarize main features of the results as follows.

• Fig. C.1–Fig. C.12 indicate that on average the public’s forecasts of inflation

are good and do not contain systematic forecast errors.

• In nine of the twelve experiments, the policy maker pushes inflation to near

the Ramsey value for many periods.

• Backsliding occurs in four of twelve economies.

• Table 5.3 indicates that inflation falls and government payoffs rise during the

second half of 10 of the 12 experiments, with the fall in inflation being statis-

tically significant in 9 of the 12 experiments.

• The policy maker experiments in two of twelve economies.

• Economy 9 has a bad or indifferent policy maker. He attains an average payoff

level worse than that associated with the Nash outcome, the only policy maker

to fall short of the Nash outcome.

• Most of the transitions from Nash to Ramsey are smooth. Few if any have

the drama of the Volcker-like rapid disinflations produced by the escape route

dynamics of Cho, Williams, and Sargent (2001) and Sargent (1999). Depending

on parameter values, they could resemble a pattern predicted by Phelps (1967)

and Cho and Matsui (1995). However, we now show that the stabilizations are

too slow to be explained in this way, at least if policy makers are assumed to

know the rate at which the public is adapting its expectations.

• Heterogeneity of expectations across citizens is largest at the beginning of an

experiment. It also tends to grow at the start of a new session within an

experiment.



15

6. Adaptive expectations

For the purpose of checking whether the results confirm the predictions of the Phelps

(1967) problem, we estimated the parameter λ in the adaptive expectations model (3.2).

We estimated the model both for each individual within an experiment, pooling across ses-

sions,11 and for the average of households within an experiment, pooling across sessions.12

For econometric reasons, we wrote the model in the form

x̂it = (1− λi)
t−1∑

j=0

λj
iyt−1−j + ηiλ

t + uit, (6.1)

where uit is a random disturbance with mean zero that is orthogonal to yt−1−j for j =

0, . . . , t − 1 and η is the systematic part of the initial condition.13 We estimated (6.1) by

maximum likelihood, assuming a Gaussian distribution for uit. For each individual, we

pooled across sessions, estimating a common λi but a different session-specific ηi for each

session. For the average of forecasts across individuals, x̂t, we proceeded in a similar way,

estimating a common λ across sessions as well as session-specific η’s.

Table 6.1 shows the estimates of λ.14 Notice that most of them are below .5, indicating

that most citizens formed forecasts by heavily overweighting the recent past. In the next

section we study whether the policy makers can be viewed as solving a Phelps problem in

light of this rapid adjustment.

11 Thus, there is one λi for each subject.
12 Here there is one λ for each experiment for each individual.
13 See Klein (1958).
14 In experiment 3 there is a fifth private agent. His/her estimate of λi is .2303(.0314) with an R2 of .9938.
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Table 6.1: Estimates of λi in (6.1).

Exp. Agent 1 Agent 2 Agent 3 Agent 4 Average

1 λ 0.1395 0.0942 0.3136 0.1618 0.1896

s.e. (0.0350) (0.0828) (0.0549) (0.0436) (0.0322)

R2 0.9983 0.9919 0.9952 0.9972 0.9986

2 λ 0.1698 0.1366 0.2501 0.0007 0.1950

s.e. (0.0915) (0.0885) (0.0506) (0.0015) (0.0382)

R2 0.9475 0.9736 0.9656 0.9692 0.9912

3 λ 0.3278 0.4007 0.3363 0.4627 0.3556

s.e. (0.0649) (0.0452) (0.0381) (.0359) (0.0278)

R2 0.9737 0.9809 0.9897 0.9862 0.9938

4 λ 0.7345 0.3849 0.2635 0.4126

s.e. (0.0805) (0.0641) (0.0638) (0.0547)

R2 0.9755 0.9852 0.9820 0.9893

5 λ 0.5059 0.3644 0.2605 0.7918 0.5006

s.e. (0.0493) (0.0609) (0.0605) (0.0343) (0.0360)

R2 0.9569 0.9498 0.9539 0.9092 0.9846

6 λ 0.8413 0.7829 0.7059 0.6335 0.7452

s.e. (0.0232) (0.0635) (0.0147) (0.0292) (0.0137)

R2 0.7844 0.5853 0.8761 0.8569 0.9461

7 λ 0.2585 0.3362 0.7562 0.3124 0.4160

s.e. (0.0409) (0.0295) (0.0368) (0.0505) (0.0746)

R2 0.9840 0.9929 0.6209 0.9801 0.9692

8 λ 0.4893 0.4200 0.2788 0.3632 0.3935

s.e. (0.0370) (0.0329) (0.0014) (0.0048) (0.0236)

R2 0.9544 0.9691 0.9696 0.9769 0.9872

9 λ 0.5649 0.1233 0.2662 0.2073 0.3392

s.e. (0.0214) (0.0730) (0.0405) (0.0503) (0.0201)

R2 0.9960 0.9907 0.9940 0.9875 0.9983

10 λ 0.1300 0.2877 0.4176 0.6609 0.3800

s.e. (0.0476) (0.1145) (0.0322) (0.0438) (0.0442)

R2 0.9368 0.4668 0.9667 0.9151 0.9393

11 λ 0.4796 0.4856 0.5322 0.4378 0.5109

s.e. (0.0244) (0.0422) (0.1162) (0.0356) (0.0367)

R2 0.9966 0.9861 0.8596 0.9915 0.9888

12 λ 0.7083 0.0663 0.7136 0.4836 0.4776

s.e. (0.0366) (0.0222) (0.0476) (0.0410) (0.0264)

R2 0.8338 0.9533 0.9249 0.9255 0.9708

6.1. Adaptive expectations with heteroskedasticity

Table 6.2 and Table 6.3 summarize some of the results of re-estimating the adaptive

expectations model (6.1) by maximum likelihood while allowing the variance of the dis-

turbance uit to vary across the two halves of an experiment defined the same way as for
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Table 6.2: Estimates of λi with heteroskedasticity

Economy Agent 1 Agent 2 Agent 3 Agent 4 Average

1 λ 0.1107 0.0100 0.3409 0.0698 0.1374

s.e. (0.0229) (0.0073) (0.0473) (0.0433) (0.0203)

2 λ 0.1842 0.1645 0.3222 0.0364 0.2176

s.e. (0.0522) (0.0454) (0.0573) (0.0602) (0.0373)

3 λ 0.2675 0.4102 0.3312 0.4499 0.3616

s.e. (0.0508) (0.0444) (0.0408) (0.0344) (0.0277)

4 λ 0.5592 0.3642 0.2519 0.3727

s.e. (0.1141) (0.0564) (0.0586) (0.0548)

5 λ 0.5582 0.3690 0.2750 0.6021 0.5030

s.e. (0.0436) (0.0598) (0.0671) (0.0657) (0.0307)

6 λ 0.8220 0.0009 0.7153 0.7187 0.7571

s.e. (0.0183) (0.0815) (0.0156) (0.0347) (0.0154)

7 λ 0.2075 0.3321 0.3259 0.3076 0.3288

s.e. (0.0288) (0.0274) (0.0728) (0.0468) (0.0397)

8 λ 0.5618 0.4133 0.2981 0.3466 0.4087

s.e. (0.0264) (0.0327) (0.0347) (0.0317) (0.0207)

9 λ 0.5625 0.2461 0.3094 0.2021 0.3574

s.e. (0.0224) (0.0509) (0.0425) (0.0369) (0.0210)

10 λ 0.1639 0.3319 0.3958 0.6542 0.3866

s.e. (0.0478) (0.0744) (0.0327) (0.0438) (0.0458)

11 λ 0.4917 0.5969 0.4790 0.3748 0.5323

s.e. (0.0234) (0.0242) (0.0307) (0.0367) (0.0203)

12 λ 0.8196 0.0169 0.7855 0.4647 0.4696

s.e. (0.0175) (0.0160) (0.0307) (0.0391) (0.0253)

Table 5.3.15 Table 6.3 reports estimates of the variances across the two halves, denoted

σ21, σ
2
2, respectively, as well as the an estimate σ2 that imposed homoskedasticity across

the two halves. An asterisk by σ22 denotes that the difference across the two halves is sta-

tistically significant at the 5% level according to a Chi-square test. In most experiments

and for most of the private agents, there is evidence that the variance of uit fell across the

two halves of an experiment.

15 There is a fifth agent in experiment 3, with estimated λ = .2310 (.0276). For the fifth agent, we
estimated σ2 = .0168, σ2

1 = .0199, σ)22 = .0097. The difference in disturbance variances across halves is not
statistically significant at the .05 level.
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Table 6.3: Restricted v. Unrestricted MLE

Economy Agent 1 Agent 2 Agent 3 Agent 4 Average

σ2 0.0321 0.1544 0.0906 0.0541 0.0265

1 σ2
1 0.0367 0.1816 0.1015 0.0622 0.0312

σ2
2 0.0085∗ 0.0165∗ 0.0330∗ 0.0182∗ 0.0043∗

σ2 0.3784 0.1903 0.2476 0.2208 0.0635

2 σ2
1 1.1004 0.5318 0.6957 0.6105 0.2080

σ2
2 0.0034∗ 0.0042∗ 0.0057∗ 0.0043∗ 0.0017∗

σ2 0.0659 0.0477 0.0257 0.0345 0.0154

3 σ2
1 0.0791 0.0499 0.0252 0.0303 0.0161

σ2
2 0.0141∗ 0.0389 0.0278 0.0515 0.0129

σ2 0.0574 0.0348 0.0421 0.0250

4 σ2
1 0.0713 0.0410 0.0492 0.0298

σ2
2 0.0343 0.0226 0.0283 0.0160

σ2 0.3089 0.3603 0.3304 0.6516 0.1102

5 σ2
1 0.4310 0.4824 0.3543 1.3211 0.1674

σ2
2 0.2168∗ 0.2635 0.3118 0.2209∗ 0.0649∗

σ2 2.4741 4.7589 1.4214 1.6426 0.6182

6 σ2
1 2.6390 5.8032 1.6929 1.9862 0.7254

σ2
2 1.8053 0.4827∗ 0.3028∗ 0.3424∗ 0.1787∗

σ2 0.0492 0.0220 1.1652 0.0613 0.0945

7 σ2
1 0.0666 0.0198 1.8567 0.0577 0.1306

σ2
2 0.0106∗ 0.0269 0.0238 0.0693 0.0135∗

σ2 0.0574 0.0384 0.0380 0.0278 0.0153

8 σ2
1 0.0879 0.0440 0.0482 0.0332 0.0209

σ2
2 0.0131∗ 0.0298 0.0228∗ 0.0195∗ 0.0070∗

σ2 0.1474 0.3448 0.2236 0.4676 0.0641

9 σ2
1 0.1823 0.5061 0.3063 0.6947 0.0901

σ2
2 0.0816∗ 0.0534∗ 0.0710∗ 0.0395∗ 0.0157∗

σ2 0.7407 6.2520 0.3909 0.9958 0.7112

10 σ2
1 0.5203 8.9559 0.2525 0.8240 0.8237

σ2
2 1.1613 1.2152∗ 0.6536 1.3176 0.5013

σ2 0.0441 0.1870 1.8837 0.1137 0.1499

11 σ2
1 0.0377 0.3194 3.6244 0.0818 0.2655

σ2
2 0.0509 0.0567∗ 0.0740∗ 0.1487 0.0298∗

σ2 1.6382 0.4612 0.7400 0.7296 0.2879

12 σ2
1 2.5643 0.6409 0.9146 0.5356 0.2661

σ2
2 0.3454∗ 0.2042∗ 0.4928∗ 1.0261 0.3213

6.2. Phelps problem

In the row labelled L.S., Table 6.4 records least squares estimates of the government’s

rule (3.3). In the row labeled Phelps the table also reports the rule that solves the Phelps

problem for δ = .98 and the value of λ from Table 6.1 for the averaged-across-individuals
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values of x̂t. The least squares estimates of (3.3) show that the policy makers seems

to have adjusted inflation downward too slowly relative to the solution of the Phelps

problem. In particular, the least squares values of f2 are always substantially larger than

those associated with the optimal rule from the Phelps problem. If policy makers are to be

interpreted as solving a Phelps problem, then they must be regarded as acting as though

they think that members of the public adjust much more slowly (have higher λ’s) than

they apparently do.

7. Session dependence

Fig. C.1 – Fig. C.12 display some visual evidence of what we can call ‘session depen-

dence’, a tendency of the monetary authority to set the systematic part of inflation equal

to its value at the end of the preceding session within an experiment. A regression of

beginning of session setting of x against the previous session’s last setting of x pooled

across sessions and experiments shows that there is some such tendency, but it is weak:

x1(j) = 1.71(.70)+ .67(.25)xT (j−1) where standard errors are in parentheses, R2 = .14, x1(j)

is the first-period setting of x within session j ≥ 2 and xT (j−1) is the last period setting of

x within session j − 1.

8. Dispersion

Fig. C.13 displays sample variances of individual forecasts of inflation x̂it around aver-

age forecasts x̂t across sessions for each experiment. If there is a pattern, it is for inflation

diversity to fall, at least in early sessions of an experiment. Fig. C.14–Fig. C.17 display

time series of maxi x̂it−mini x̂it for each experiment. Vertical lines denote inaugurations of

new sessions. Generally, diversity of forecasts is highest at the beginning of an experiment,

and there is some tendency for increased dispersion at the inauguration of a new session

within an experiment. Only occasionally is there a within-session increase in dispersion.
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Table 6.4: Estimates of Phelps rule (3.3).

Experiment f1 f2 n R2 λ

1 L.S. 0.0515 0.9798 191 0.9172 0.1896
s.e. (0.0944) (0.0214)

Phelps 0.0779 0.3655

2 L.S. 0.0672 0.9480 162 0.8800 0.1950
s.e. (0.0743) (0.0277)

Phelps 0.0785 0.3649

3 L.S. 0.0238 0.9627 202 0.8630 0.3556
s.e. (0.0425) (0.0271)

Phelps 0.0997 0.3504

4 L.S. 0.0349 0.9127 111 0.8984 0.4126
s.e. (0.0480) (0.0294)

Phelps 0.1099 0.3456

5 L.S. 0.1190 0.8410 139 0.6914 0.5006
s.e. (0.1373) (0.0480)

Phelps 0.1298 0.3386

6 L.S. 0.2215 0.8243 541 0.4649 0.7452
s.e. (0.1183) (0.0381)

Phelps 0.2509 0.3233

7 L.S. 0.0488 0.9051 251 0.8787 0.4160
s.e. (0.0398) (0.0213)

Phelps 0.1105 0.3453

8 L.S. 0.0771 0.8508 347 0.9467 0.3935
s.e. (0.0134) (0.0109)

Phelps 0.1063 0.3472

9 L.S. 0.5250 0.9213 203 0.7038 0.3392
s.e. (0.2564) (0.0422)

Phelps 0.0971 0.3519

10 L.S. 0.5248 0.7622 133 0.4204 0.3800
s.e. (0.2551) (0.0782)

Phelps 0.1038 0.3484

11 L.S. 1.1289 0.6848 401 0.4486 0.5109
s.e. (0.1420) (0.0380)

Phelps 0.1326 0.3378

12 L.S. 0.8612 0.6782 347 0.2191 0.4776
s.e. (0.2036) (0.0689)

Phelps 0.1240 0.3404

9. Concluding Discussion

Before our experiments, we were skeptical that chanting ‘just do it’ would solve the

time consistency problem posed by an expectational Phillips curve. Our experiments have

softened but not fully arrested our skepticism. A supermajority of experimental sample
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paths show the monetary authority gradually reaching for the Ramsey value. This might

reflect the working of the ‘just do it’ spirit. We think it more probable that it reflects

a Phelps-Cho-Matsui monetary authority who imputes an ‘induction hypothesis’16 to the

private forecasters, and who sets out to manipulate those expectations by its actions.

However, there is a big gap between estimated feedback rules from those that would have

been chosen by the optimal Phelps planner who knows the value of citizens’ adaptive

expectations coefficient: our policy makers exploit the ‘induction hypothesis’ too slowly,

when they do seem to exploit it at all. And there are more than enough deviations

from Ramsey for us not to take the solution of the time consistency problem for granted.

In addition to occasional backsliding, our experimental economy can be stuck with an

incompetent policy maker.

16 I.e, adaptive expectations.



Appendix A.

Instructions for Policy Maker

Today you will participate in an experiment in economic decision making. Various research foundations have
provided funds for the conduct of this research. The instructions are simple, and if you follow them carefully and
make good decisions you can earn up to $20 that will be paid to you in cash at the end of this experiment.

You will be assigned a role of a policy maker. In each period of the experimental economy, your job will be to
choose the target inflation rate. As a policy maker, you are concerned about the values of inflation and unemployment.
However, you can directly affect only the inflation rate.

You will play a series of experimental sessions. An experimental session will consist of a number of experimental
periods. At the beginning of each period of an experimental session, you will be asked to choose the target inflation
rate. The actual inflation rate will then be determined by adding a stochastic shock to the target inflation rate. This
reflects the fact that you, as the policy maker, do not have complete control over the inflation rate.

The stochastic shock is normally distributed and has the mean value equal to 0 and the standard deviation equal
to 0.3. This means that approximately 68% of the values of the shock will be between −0.3 and 0.3. In addition,
approximately 95% of the values will be between −0.6 and 0.6. Almost all the values, 99.7%, will be between -0.9
and 0.9

At the beginning of each time period, private agents will forecast the inflation rate for that time period.
At the end of each experimental period, you will see the average forecasted inflation rate (averaged over the

forecasts of all private agents) on your computer screen. You will also see the actual rate of inflation and the rate of
unemployment for that experimental time period.

The actual inflation rate and the average forecasted inflation rate play the role in determining the rate of
unemployment in the economy. The rate of unemployment is calculated in the following way:

unemployment = u∗ - (inflation - av. forecasted inflation) + shock

where u∗ is the natural rate of unemployment which prevails in the economy if the actual rate of inflation is equal to
average forecasted inflation rate, av. exp. inflation is the rate computed as the average of private agents’ expected
rates, and shock is a stochastic shock normally distributed, with mean value 0 and the standard deviation equal to
0.3.

At the end of every experimental period, you will also see the payoff that you earned in that period. The payoff
is calculated in the following way:

payoff = - 0.5 ( inflation2 + unemployment2).

Thus your payoff decreases with increases in both the inflation and unemployment.
At any given experimental period, the probability that the current session continues for one more period is equal

to 0.98. Whether or not the session is played for one more period is determined in the following way. A random
number between 0 and 1 is drawn from a uniform distribution. If the number is less or equal to 0.98, the current
session continues into the next period. If the number is greater than 0.98, the session is over. This number will
appear in the last column of your screen at the end of each experimental time period. Once the number randomly
drawn is greater than 0.98, the session will be automatically terminated.

You will start every experimental session by running a computer program. The experimenter will give you the
name of the program.

Once you start the program, you will be prompted to enter the session number. You will enter these numbers
in the consecutive order, starting with 1 for the first session, 2 for the second, etc.

After entering the session number, you will be prompted to enter the probability that a particular session ends at
any given experimental time period. Enter the number 0.98 for this question. Once you answer these two questions,
an experimental session begins.

Earnings
The experiment will last for two hours. If you complete this 2-hour experiment, you are guaranteed to receive

a $10 payment. Moreover, you can earn additional $10, for a total of $20.
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At the end of each session, a probability of winning a prize of additional $10 will be computed in the following
way.

1. For every time period of the session, the number period points is calculated by adding 100 points to the payoff
that you obtained in that time period.

2. The number total points is calculated by adding up the period points earned in all time periods of a given
experimental session. If this number turns out to be less than 0, it is set equal to 0.

3. The number max points is calculated by multiplying the total number of periods of the session by 100. This
number is the number of total points that you would earn in an experimental session if your payoff were equal to 0
in every experimental period.

4. The probability of winning the prize is then calculated in the following way:

1− (maxpoints− totalpoints) /maxpoints.

Table B.1 1 presents an example of how the total points, maxpoints, and the probability are calculated in a
hypothetical experimental session. The length of session is 5 experimental periods.

period payoff period points

1 -20.25 79.75

2 -115.25 - 15.25

3 -5.16 94.84

4 -10.37 89.63

5 -30.25 69.75

total points 318.72

maxpoints = 100 x 5 periods = 500
Thus, the probability of winning the prize in this session is:

1− (500 − 318.72)
500

= 0.64

Note that higher values of your payoff in each time period (lower in absolute terms) result in higher period and
total points. Higher values of total points result, in turn, in higher probability of winning the prize.

5. If your total points happen to be less than zero, then your probability of winning the prize in that session is
set equal to zero.

At the end of the experiment, one of the sessions that you played will be randomly selected. Each session will
have equal chance of being selected. The session will be selected by running the program draw.exe at the DOS prompt.

Once you type draw and press enter, you will be asked to enter your id number. Your id number as the policy
maker is 5. Once you entered it, you will be prompted to enter the total number of sessions played in the experiment.
When you enter this number, the computer will randomly choose a number between 1 and the number of sessions
played. This number will appear on your computer screen and will indicate the number of the selected session.

The second number that will appear will be the number between 0 and 1, rand, drawn from the uniform
distribution. You will take that number and compare it to the probability of winning the prize for the selected
session. If rand is less or equal to the probability of winning a lottery, you win additional $10.00. If rand is greater
than the probability, you do not win the additional $10.00 prize. Thus the higher the probability of winning the
prize, the higher your chances that rand will be less or equal to the probability.

ARE THERE ANY QUESTIONS?
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Instructions for forecasters

Today you will participate in an experiment in economic decision making. Various research foundations have
provided funds for the conduct of this research. The instructions are simple, and if you follow them carefully and
make good decisions you can earn up to $20 that will be paid to you in cash at the end of this experiment.

You are assigned a role of a private agent whose task is to forecast the rate of inflation in the economy in each
experimental time period. The target inflation rate in the economy is set by a policy maker.

The actual rate of inflation is determined by adding a stochastic shock to the target inflation rate which reflects
the fact that the policy maker does not have the total control over the inflation rate. The shock is normally distributed
and has the mean value equal to 0 and the standard deviation equal to 0.3 This means that approximately 68% of
the values of the shock will be between −0.3 and 0.3. In addition, approximately 95% of the values will be between
−0.6 and 0.6. Almost all the values, 99.7%, will be between -0.9 and 0.9

Your payoff will depend on how close your forecast is to the actual rate of inflation.
You will play a series of experimental sessions. An experimental session will consist of a number of experimental

periods. At the beginning of each experimental time period, you will be prompted to forecast the inflation rate. At
the end of each experimental period, you will see the actual rate of inflation and the rate of unemployment for that
time period on your computer screen.

At the end of every experimental period, you will also see your payoff for that period. The payoff is given by:
payoff = - 5 ×(inflation - forecast)2.

Thus the higher the squared difference between the actual rate of inflation and your forecast, the lower your payoff.
At any given experimental period, the probability that the session continues for another period is equal to 0.98.

This will be determined in the following way. A random number between 0 and 1 will be drawn from a uniform
distribution. If the number is less or equal to 0.98, the current session continues into the next period. If the number
is greater than 0.98, the session is over. This number will appear in the last column of your screen at the end of each
experimental time period. Once the number randomly drawn is greater than 0.98, the session will be automatically
terminated.

You will start every experimental session by running a computer program. The experimenter will give you the
name of the program. At the beginning of the experiment you will be assigned your identification number. You will
keep the same identification number in all experimental sessions and will be prompted to type it at the start of each
session. You will also be prompted to enter the probability that the session will end. Enter 0.98 for this question.

Earnings
The experiment will last for two hours. If you complete this 2-hour experiment, you are guaranteed to receive

a $10 payment. Moreover, you can earn additional $10, for a total of $20.
At the end of each session, a probability of winning a prize of additional $10 will be computed in the following

way.
1. For every time period of the session, the number period points is calculated by adding 100 points to the payoff

that you obtained in that time period.
2. The number total points is calculated by adding up the period points earned in all time periods of a given

experimental session. If this number turns out to be less than 0, it is set equal to 0.
3. The number max points is calculated by multiplying the total number of periods of the session by 100. This

number is the number of total points that you would earn in an experimental session if your payoff were equal to 0
in every experimental period.

4. The probability of winning the prize is then calculated in the following way:

1− (maxpoints− totalpoints) /maxpoints.

Table A.1 presents an example of how the total points, maxpoints, and the probability are calculated in a
hypothetical experimental session. The length of session is 5 experimental periods.

maxpoints = 100 x 5 periods = 500
Thus, the probability of winning the prize in this session is:

1− (500 − 318.72)
500

= 0.64
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period payoff period points

1 -20.25 79.75

2 -115.25 - 15.25

3 -5.16 94.84

4 -10.37 89.63

5 -30.25 69.75

total points 318.72

Note that higher values of your payoff in each time period (lower in absolute terms) result in higher period and
total points. Higher values of total points result, in turn, in higher probability of winning the prize.

5. If your total points happen to be less than zero, then your probability of winning the prize in that session is
set equal to zero.

At the end of the experiment, one of the sessions that you played will be randomly selected. Each session will
have equal chance of being selected. The session will be selected by running the program draw.exe at the DOS prompt.

Once you type draw and press enter, you will be asked to enter your id number. Once you entered it, you will be
prompted to enter the total number of sessions played in the experiment. When you enter this number, the computer
will randomly choose a number between 1 and the number of sessions played. This number will appear on your
computer screen and will indicate the number of the selected session.

The second number that will appear will be the number between 0 and 1, rand, drawn from the uniform
distribution. You will take that number and compare it to the probability of winning the prize for the selected
session. If rand is less or equal to the probability of winning a lottery, you win additional $10.00. If rand is greater
than the probability, you do not win the additional $10.00 prize. Thus the higher the probability of winning the
prize, the higher your chances that rand will be less or equal to the probability.

ARE THERE ANY QUESTIONS?
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Figures
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Figure C.1: Economy 1. The x̂t (dotted) and xt solid.
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Figure C.2: Economy 2. The x̂t (dotted) and xt solid.
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Figure C.3: Economy 3. The x̂t (dotted) and xt solid.
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Figure C.4: Economy 4. x̂t (dotted) and xt (solid).
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Figure C.5: Economy 5. x̂t (dotted) and xt (solid).
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Figure C.6: Economy 6. x̂t (dotted) and xt (solid).
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Figure C.7: Economy 7. x̂t (dotted) and xt (solid).
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Figure C.8: Economy 8. x̂t (dotted) and xt (solid).
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Figure C.9: Economy 9. x̂t (dotted) and xt (solid).
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Figure C.10: Economy 10. x̂t (dotted) and xt solid.
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Figure C.11: Economy 11. x̂t (dotted) and xt (solid).
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Figure C.12: Economy 12. x̂t (dotted) and xt (solid).
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Figure C.13: Dispersion of inflation forecasts across agents ( 1T
∑

t

∑
i(x̂it−

x̂t)2 ) for twelve experiments; experiments 1-12 appear from top to bottom,
left to right.
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Figure C.14: maxi x̂it −mini x̂it.
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Figure C.15: maxi x̂it −mini x̂it.
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Figure C.16: maxi x̂it −mini x̂it.
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Figure C.17: maxi x̂it −mini x̂it.
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