
COMPLETELY ABSTRACT DYNAMIC PROGRAMMING

THOMAS J. SARGENT AND JOHN STACHURSKI

Abstract. We introduce a “completely abstract” dynamic programming frame-
work in which dynamic programs are sets of policy operators acting on a partially
ordered space. We provide an optimality theory based on high-level assumptions.
We then study symmetric and asymmetric relationships between dynamic programs,
and show how these relationships transmit optimality properties. Our formulation
includes and extends applications of dynamic programming across many fields.

1. Introduction

Dynamic programming is a form of optimization with a vast array of applications,
from finance and artificial intelligence to the sequencing of DNA (Powell et al. (2012),
Bertsekas (2021), Kochenderfer et al. (2022)). Dynamic programs control aircraft,
route shipping, test products, recommend information on media platforms, and solve
frontier research problems. Within economics, dynamic programming is applied to
topics ranging from unemployment, monetary policy, and fiscal policy to asset pricing,
firm investment, wealth dynamics, inventory control, commodity pricing, sovereign
default, the division of labor, natural resource extraction, human capital accumula-
tion, retirement decisions, portfolio choice, and dynamic pricing.

One impediment to progress in the field of dynamic programming has been ab-
sence of a common framework that can span the full range of traditional and modern
applications. Abstract dynamic programming (ADP) is a major step towards remov-
ing this obstruction. The ADP framework has been driven primarily by Bertsekas
(2022), although early ideas date back to Denardo (1967). ADP starts with a gener-
alization of the Bellman equation, which is a recursive statement of optimality that
exploits a temporal structure at the heart of dynamic programming. By abstracting
the Bellman equation, one can closely analyze sets of properties required for standard
optimality results. This idea has already been exploited in numerous applications
(see, e.g., Ren and Stachurski (2021) and Bloise et al. (2023)).

Date: August 9, 2023.
The authors thank Jingni Yang and Shu Hu for valuable comments and suggestions. Financial

support from Schmidt Futures and ARC grant FT160100423 is gratefully acknowledged.
1



2 THOMAS J. SARGENT AND JOHN STACHURSKI

In this paper we raise the level of abstraction over and beyond that found in existing
ADP. While in Bertsekas (2022) value functions are functions and the Bellman equa-
tion is a relationship between elements of a function space, here we replace functions
with elements of an abstract partially ordered set 𝑉. Policies are just indices over a
family of “policy operators”. The Bellman equation in Bertsekas (2022) is replaced
by a fixed point problem for an order-preserving self-map on 𝑉.

This approach brings two main benefits. One is additional generality. Too see
why this extra generality is valuable, consider the many modifications that have been
made to standard Bellman equations across the spectrum of applications of dynamic
programming. These include the “action-value” or “𝑄-factor” form of the Bellman
equation (see, e.g., Kochenderfer et al. (2022)), the “expected value functions” and
their corresponding Bellman equations in the literature on dynamic structural esti-
mation (see, e.g., Rust (1994)), the “integrated value function” approach discussed in
(Mogensen, 2018), and the “exponential 𝑄-factor risk-sensitive” Bellman equations
in Fei et al. (2021). Further examples can be found in Ma and Stachurski (2021) and
many other sources. All of these variations can be viewed as dynamic programs in
their own right under the “completely abstract” framework introduced here.

A second benefit of the “completely abstract” policy operator approach is that
high level abstraction clarifies relationships between different dynamic programs. To
facilitate analysis, we introduce two relationships: isomorphic (and anti-isomorphic)
dynamic programs and subordinate dynamic programs. For example, we show that
𝑄-factor dynamic programs are subordinate to their traditional counterparts and
exponential 𝑄 factor dynamic programs are isomorphic to 𝑄-factor dynamic pro-
grams. By classifying and illuminating relationships between dynamic programs, we
can closely monitor how optimality in one setting translates into optimality in an-
other, or whether convergence of a particular algorithm for one variation of a dynamic
program implies convergence for another.

The framework developed below focuses on dynamics associated with policy op-
erators. We study relationships between dynamic programs using a concept similar
to topological conjugacy—a standard method for understanding connections between
discrete and continuous time dynamical systems. Because order, rather than topol-
ogy, is the essential structure that our analysis requires, we replace topological con-
jugacy with what we call “order conjugacy.” This allows us to state straightforward
optimality results and then to explore how these results transfer across closely related
dynamic programs.



COMPLETELY ABSTRACT DYNAMIC PROGRAMMING 3

Section 2 introduces order conjugacy and discusses its properties. Sections 3–
5 introduce “completely abstract” dynamic programs and prove various optimality
properties. Section 6 introduces isomorphisms between abstract dynamic programs
and shows how isomorphisms preserve optimality properties. Section 7 does the same
for “subordinate” dynamic programs. Section 8 provides applications. Section 9
concludes.

2. Preliminaries

A dynamical system is a pair (𝑉, 𝑆) where 𝑉 is a set and 𝑆 is a self-map on 𝑉. A
system (𝑉, 𝑆) is called asymptotically stable whenever 𝑉 has a topology and 𝑆 has a
unique fixed point 𝑣 in 𝑉 and lim𝑘→∞ 𝑆𝑘𝑣 = 𝑣 for all 𝑣 ∈ 𝑆. Two dynamical systems
(𝑉, 𝑆) and (𝑉, 𝑆) are called topologically conjugate under 𝐹 if both 𝑉 and 𝑉 have
topologies and there exists a homeomorphism 𝐹 from 𝑉 to 𝑉 such that 𝐹 ◦ 𝑆 = 𝑆 ◦ 𝐹.
The following results are elementary (see, e.g., Sternberg (2014) or Layek (2015)).

Lemma 2.1. If (𝑉, 𝑆) and (𝑉, 𝑆) are topologically conjugate under 𝐹 and 𝑆 has a
unique fixed point in 𝑣 ∈ 𝑉, then 𝐹𝑣 is the unique fixed point of 𝑆 in 𝑉. Moreover,
(𝑉, 𝑆) is asymptotically stable if and only if (𝑉, 𝑆) is asymptotically stable.

While some of the ideas in Lemma 2.1 are central to our methodology, the founda-
tional aspects of dynamic programming are driven by order, not topology. For this
reason, we now drop the assumption that 𝑉, 𝑉 have topologies and propose order-
theoretic counterparts of these ideas.1

Let (𝑉, 𝑆) be a dynamical system where 𝑉 is partially ordered by ⪯ and 𝑆 has a
unique fixed point 𝑣 in 𝑉. In this setting, we call (𝑉, 𝑆)

(i) upward stable if 𝑣 ∈ 𝑉 and 𝑣 ⪯ 𝑆 𝑣 implies 𝑣 ⪯ 𝑣,
(ii) downward stable if 𝑣 ∈ 𝑉 and 𝑆 𝑣 ⪯ 𝑣 implies 𝑣 ⪯ 𝑣, and
(iii) order stable if upward and downward stability both hold.

(Unless otherwise specified, in what follows, we use ⪯ to represent the partial order
on all partially ordered spaces.)

Order stability can be thought of as an extension of asymptotic stability to dy-
namics on partially ordered sets. It is implied by asymptotic stability when 𝑆 is
order-preserving and the space 𝑉 has both a topology and a partial order:

1For definitions of basic order-theoretic concepts used below, see, e.g., Davey and Priestley (2002).



4 THOMAS J. SARGENT AND JOHN STACHURSKI

Example 2.1. Let (𝑉, ⪯, 𝜌) be a partially ordered space (i.e., a metric space (𝑉, 𝜌)
where ⪯ is closed under limits). If (𝑉, 𝑆) is asymptotically stable and 𝑆 is order-
preserving, then (𝑉, 𝑆) is order stable. To see this let 𝑣 be the unique fixed point
of 𝑆 in 𝑉. Upward stability holds because if 𝑣 ∈ 𝑉 and 𝑣 ⪯ 𝑆 𝑣, then, iterating on
this inequality and using the fact that 𝑆 is order-preserving, we have 𝑣 ⪯ 𝑆𝑘 𝑣 for all
𝑘 ∈ N. Applying asymptotic stability and taking the limit gives 𝑣 ⪯ 𝑣. Hence upward
stability holds. The proof of downward stability is similar.

Given partially ordered set 𝑉 = (𝑉, ⪯), let 𝑉𝜕 = (𝑉, ⪯𝜕) be the order dual, so that,
for 𝑢, 𝑣 ∈ 𝑉, we have 𝑢 ⪯𝜕 𝑣 if and only if 𝑣 ⪯ 𝑢.

Lemma 2.2. (𝑉, 𝑆) is order stable if and only if (𝑉𝜕, 𝑆) is order stable.

Proof. Let (𝑉, 𝑆) be order stable. By definition, 𝑆 has a unique fixed point 𝑣 ∈ 𝑉.
We claim that (𝑉𝜕, 𝑆) is upward and downward stable. Regarding upward stability,
suppose 𝑣 ∈ 𝑉 and 𝑣 ⪯𝜕 𝑆𝑣. Then 𝑆𝑣 ⪯ 𝑣 and hence 𝑣 ⪯ 𝑣, by downward stability of
(𝑉, 𝑆). But then 𝑣 ⪯𝜕 𝑣, so (𝑉𝜕, 𝑆) is upward stable. The proof of downward stability
is similar. Hence order stability of (𝑉, 𝑆) is sufficient for order stability of (𝑉𝜕, 𝑆).
Necessity follows from sufficiency, since the dual of (𝑉𝜕, 𝑆) is (𝑉, 𝑆). □

A bijective map 𝐹 : 𝑉 → 𝑉 is called an order isomorphism if 𝑢 ⪯ 𝑣 if and only if
𝐹𝑢 ⪯ 𝐹𝑣. Let (𝑉, 𝑆) and (𝑉, 𝑆) be two dynamical systems where 𝑉 and 𝑉 are partially
ordered. We call (𝑉, 𝑆) and (𝑉, 𝑆) order conjugate under 𝐹 when there exists an order
isomorphism 𝐹 from 𝑉 to 𝑉 such that 𝐹 ◦ 𝑆 = 𝑆 ◦ 𝐹. It is easy to verify that order
conjugacy is an equivalence relation on the set of dynamical systems over partially
ordered sets. The next lemma modifies Lemma 2.1 to an order setting.

Lemma 2.3. If (𝑉, 𝑆) and (𝑉, 𝑆) are order conjugate under 𝐹 and 𝑆 has a unique
fixed point in 𝑣 ∈ 𝑉, then 𝐹𝑣 is the unique fixed of 𝑆 in 𝑉. Moreover, (𝑉, 𝑆) is order
stable if and only if (𝑉, 𝑆) is order stable.

Proof. Let (𝑉, 𝑆) and (𝑉, 𝑆) be order conjugate under 𝐹, let fix(𝑆), the set of fixed
points of 𝑆, be equal to {𝑣} and let 𝑣 = 𝐹𝑣. Clearly 𝑣 ∈ fix(𝑆) because 𝑆𝐹𝑣 = 𝐹𝑆𝑣 = 𝐹𝑣.
Also, if �̂� is any fixed point of 𝑆 in 𝑉, then 𝐹−1�̂� ∈ fix(𝑆), since 𝑆𝐹−1�̂� = 𝐹−1𝑆�̂� = 𝐹−1�̂�.
Hence 𝐹−1�̂� = 𝑣 and, therefore, �̂� = 𝐹𝑣 = 𝑣. It follows that fix(𝑆) = {𝑣}.

Regarding stability, let (𝑉, 𝑆) be order stable and let �̂� be an element of 𝑉 satisfying
𝑆�̂� ⪯ �̂�. Then 𝐹−1𝑆�̂� ⪯ 𝐹−1�̂� and hence 𝑆𝐹−1�̂� ⪯ 𝐹−1�̂�. But then 𝑣 ⪯ 𝐹−1�̂�, by
downward stability of (𝑉, 𝑆). Applying 𝐹 gives 𝑣 ⪯ �̂�. Hence (𝑉, 𝑆) is downward
stable. Similarly, if �̂� is an element of 𝑉 satisfying �̂� ⪯ 𝑆�̂�, then 𝐹−1�̂� ⪯ 𝐹−1𝑆�̂� =



COMPLETELY ABSTRACT DYNAMIC PROGRAMMING 5

𝑆𝐹−1�̂�. By upward stability of (𝑉, 𝑆), we have 𝐹−1�̂� ⪯ 𝑣. Applying 𝐹 gives �̂� ⪯ 𝑣, so
(𝑉, 𝑆) is upward stable. Together, these results show that (𝑉, 𝑆) is order stable. □

Let (𝑉, 𝑆) and (𝑉, 𝑆) be a pair of dynamical systems, where 𝑉 and 𝑉 are partially
ordered sets. We call (𝑉, 𝑆) and (𝑉, 𝑆) mutually (order) semiconjugate if there exist
order-preserving maps 𝐹 : 𝑉 → 𝑉 and 𝐺 : 𝑉 → 𝑉 such that

𝑆 = 𝐺 ◦ 𝐹 and 𝑆 = 𝐹 ◦ 𝐺 (1)

The “order semiconjugate” terminology comes from the fact that, when (1) holds,

𝐹 ◦ 𝑆 = 𝑆 ◦ 𝐹 and 𝐺 ◦ 𝑆 = 𝑆 ◦ 𝐺. (2)

(Evidently, if either 𝐹 or 𝐺 is also an order isomorphism, then (𝑉, 𝑆) and (𝑉, 𝑆) are
order conjugate.)

Lemma 2.4. Let (𝑉, 𝑆) and (𝑉, 𝑆) be mutually semiconjugate under 𝐹, 𝐺 in (1). If,
in this setting, 𝑆 has a unique fixed point in 𝑣 ∈ 𝑉, then 𝐹𝑣 is the unique fixed point
of 𝑆 in 𝑉. If, in addition, (𝑉, 𝑆) is order stable, then (𝑉, 𝑆) is order stable.

Proof. Suppose fix(𝑆) = {𝑣}. Then 𝑆𝐹𝑣 = 𝐹𝑆𝑣 = 𝐹𝑣, so 𝐹𝑣 ∈ fix(𝑆). Now suppose
𝑣 ∈ fix(𝑆). Then 𝐹𝐺𝑣 = 𝑣 and hence 𝐺𝐹𝐺𝑣 = 𝐺𝑣, or 𝑆𝐺𝑣 = 𝐺𝑣. But fix(𝑆) = {𝑣}, so
then 𝐺𝑣 = 𝑣. Applying 𝐹 gives 𝑆𝑣 = 𝐹𝑣. But 𝑣 ∈ fix(𝑆), so 𝑣 = 𝐹𝑣. This proves the
first claim in Lemma 2.4.

Now suppose that (𝑉, 𝑆) is order stable, with unique fixed point 𝑣 ∈ 𝑉. Then, by
the preceding argument, 𝐹𝑣 is the unique fixed point of 𝑆 in 𝑉. The pair (𝑉, 𝑆) is
upward stable because if 𝑣 ∈ 𝑉 and 𝑣 ⪯ 𝑆𝑣, then 𝐺𝑣 ⪯ 𝐺𝑆𝑣 = 𝑆𝐺𝑣 and so, by upward
stability of (𝑉, 𝑆), 𝐺𝑣 ⪯ 𝑣. Applying 𝐹 gives 𝑆𝑣 ⪯ 𝐹𝑣, so (𝑉, 𝑆) is upward stable. The
proof of downward stability is similar. □

3. Abstract Dynamic Programs

In this section we represent dynamic programs in terms of their policy operators.
This abstract representation allows us to apply the notion of (order) conjugacy to
study relationships between dynamic programs.

3.1. Definition and Examples. We define an abstract dynamic program (ADP) to
be a pair 𝒜 = (𝑉, {𝑇𝜎}𝜎∈Σ), where

(i) 𝑉 = (𝑉, ⪯) is a partially ordered set and
(ii) {𝑇𝜎}𝜎∈Σ is a family of self-maps on 𝑉, indexed by 𝜎 ∈ Σ.



6 THOMAS J. SARGENT AND JOHN STACHURSKI

Elements of the index set Σ will be referred to as policies and elements of {𝑇𝜎} are
called policy operators. When Σ is understood, we often write {𝑇𝜎}𝜎∈Σ as {𝑇𝜎}.

In all applications, the significance of policy operator 𝑇𝜎 is that its fixed point rep-
resents the lifetime value (or cost) of following policy 𝜎. (Below we impose conditions
to ensure existence and uniqueness of fixed points.) The objective of the ADP is to
maximize (or minimize) this lifetime value. This point is clarified in Section 3.2.

Example 3.1 (MDPs). Consider a Markov decision process (MDP; see, e.g., Puter-
man (2005)) where the objective is to maximize E∑

𝑡⩾0 𝛽
𝑡𝑟(𝑋𝑡, 𝐴𝑡) when

• 𝑋𝑡 takes values in finite set X (the state space),
• 𝐴𝑡 takes values in finite set A (the action space),
• Γ is a nonempty correspondence from X to A (feasible correspondence),
• G := {(𝑥, 𝑎) ∈ X × A : 𝑎 ∈ Γ(𝑥)} denotes the feasible state-action pairs,
• 𝑟 is a reward function defined on G,
• 𝛽 ∈ (0, 1) is a discount factor, and
• 𝑃 : G × X→ [0, 1] provides transition probabilities and ∑

𝑥 ′ 𝑃(𝑥, 𝑎, 𝑥′) = 1 .

The Bellman equation for this problem is

𝑣(𝑥) = max
𝑎∈Γ(𝑥)

{
𝑟(𝑥, 𝑎) + 𝛽

∑
𝑥 ′
𝑣(𝑥′)𝑃(𝑥, 𝑎, 𝑥′)

}
(𝑥 ∈ X). (3)

We define the set of feasible policies to be Σ := {𝜎 ∈ AX : 𝜎(𝑥) ∈ Γ(𝑥) for all 𝑥 ∈ X}.
We combine RX (the set of all real-valued functions on X) with the pointwise partial
order ⩽ and, for 𝜎 ∈ Σ and 𝑣 ∈ RX, define the MDP policy operator

(𝑇𝜎 𝑣)(𝑥) = 𝑟(𝑥, 𝜎(𝑥)) + 𝛽
∑
𝑥 ′
𝑣(𝑥′)𝑃(𝑥, 𝜎(𝑥), 𝑥′) (4)

The pair (RX, {𝑇𝜎}) is an ADP. The main significance of 𝑇𝜎 is that the lifetime value
of the policy 𝜎 is the unique fixed point of this operator, a point we return to below.

Example 3.2 (MDPs with minimization). If 𝑟(𝑥, 𝑎) is instead interpreted as a cost
function and our aim is to minimize lifetime costs, we still have an identical expression
for the lifetime value of a policy and the policy operators are still given by (4). Hence,
for this MDP minimization problem, we work with the same ADP (RX, {𝑇𝜎}).

Example 3.3 (𝑄-learning). Continuing with the MDP setting of Example 3.1, the
𝑄-learning literature studies the 𝑄-factor Bellman equation, which is given by

𝑓 (𝑥, 𝑎) = 𝑟(𝑥, 𝑎) + 𝛽
∑
𝑥 ′

max
𝑎′∈Γ(𝑥 ′)

𝑓 (𝑥′, 𝑎′)𝑃(𝑥, 𝑎, 𝑥′) ((𝑥, 𝑎) ∈ G). (5)



COMPLETELY ABSTRACT DYNAMIC PROGRAMMING 7

Here 𝑓 ∈ RG is called the 𝑄-factor. The policy operators over 𝑄-factors take the form

(𝑄𝜎 𝑓 ) (𝑥, 𝑎) = 𝑟(𝑥, 𝑎) + 𝛽
∑
𝑥 ′

𝑓 (𝑥′, 𝜎(𝑥′))𝑃(𝑥, 𝑎, 𝑥′), (6)

where 𝑓 ∈ RG and 𝜎 ∈ Σ. If we pair RG (the set of all real-valued functions on G)
with the pointwise partial order ⩽ and 𝑄𝜎 as in (6), then (RG, {𝑄𝜎}) is an ADP.

Example 3.4 (Risk-sensitive MDPs). Risk-sensitive MDPs (Howard and Matheson,
1972) modify the MDP model in Example 3.1 so that the policy operators take the
form

(𝑇𝜃𝜎 𝑣)(𝑥) = 𝑟(𝑥, 𝜎(𝑥)) + 𝛽
𝜃

ln
[∑
𝑥 ′

exp(𝜃𝑣(𝑥′))𝑃(𝑥, 𝜎(𝑥), 𝑥′)
]

where 𝜃 is some fixed value in Θ := R \ {0}. The pair (RX, {𝑇𝜃𝜎 }) is an ADP.

Example 3.5 (Risk-sensitive 𝑄-learning). It has become popular in reinforcement
learning and related fields to extend the 𝑄-factor approach from Example 3.3 to risk-
sensitive decision processes (see, e.g., Fei et al. (2021). The corresponding 𝑄-factor
Bellman equation is given by

𝑓 (𝑥, 𝑎) = 𝑟(𝑥, 𝑎) + 𝛽
𝜃

ln
{∑

𝑥 ′
exp

[
𝜃 max
𝑎′∈Γ(𝑥 ′)

𝑓 (𝑥′, 𝑎′)
]
𝑃(𝑥, 𝑎, 𝑥′)

}
((𝑥, 𝑎) ∈ G). (7)

The policy operators over risk-sensitive 𝑄-factors take the form

(𝑄𝜃
𝜎 𝑓 )(𝑥, 𝑎) = 𝑟(𝑥, 𝑎) + 𝛽

𝜃
ln

[∑
𝑥 ′

exp [𝜃 𝑓 (𝑥′, 𝜎(𝑥′))] 𝑃(𝑥, 𝑎, 𝑥′)
]

(8)

where 𝑓 ∈ RG and 𝜎 ∈ Σ. The pair (RG, {𝑄𝜃
𝜎}) is an ADP.

Example 3.6 (MDPs via expected values). Returning again to the MDP setting of
Example 3.1, the literature on dynamic structural estimation often works with the
expected value function 𝑔(𝑥, 𝑎) :=

∑
𝑥 ′ 𝑣(𝑥′)𝑃(𝑥, 𝑎, 𝑥′) rather than the value function

𝑣, partly because the corresponding Bellman equation

𝑔(𝑥, 𝑎) =
∑
𝑥 ′

{
max
𝑎′∈Γ(𝑥 ′)

[𝑟(𝑥′, 𝑎′) + 𝛽𝑔(𝑥′, 𝑎′)]
}
𝑃(𝑥, 𝑎, 𝑥′) ((𝑥, 𝑎) ∈ G)

shifts the expectation outside the maximum (which facilitates the “Gumbel max
trick”—see, e.g., Rust (1987, 1994)). We can set this problem up as an ADP by
introducing the expected value policy operator

(𝑅𝜎𝑔)(𝑥, 𝑎) =
∑
𝑥 ′
{𝑟(𝑥′, 𝜎(𝑥′)) + 𝛽𝑔(𝑥′, 𝜎(𝑥′))} 𝑃(𝑥, 𝑎, 𝑥′) (9)

The pair (RG, {𝑅𝜎}) is an ADP.



8 THOMAS J. SARGENT AND JOHN STACHURSKI

3.2. Lifetime Values. The objective of dynamic programming is to maximize or
minimize lifetime value. In the present setting, we identify lifetime value of policy 𝜎

as the unique fixed point of 𝑇𝜎 whenever it exists. When it does exist, we denote it
by 𝑣𝜎 and call it the 𝜎-value function.

To illustrate, consider the MDP setting of Example 3.1. Let 𝑟𝜎 and 𝑃𝜎 be defined
by

𝑃𝜎(𝑥, 𝑥′) := 𝑃(𝑥, 𝜎(𝑥), 𝑥′) and 𝑟𝜎(𝑥) := 𝑟(𝑥, 𝜎(𝑥)). (10)
The lifetime value of policy 𝜎 given 𝑋0 = 𝑥 is 𝑣𝜎(𝑥) = E

∑
𝑡⩾0 𝛽

𝑡𝑟(𝑋𝑡, 𝜎(𝑋𝑡)), where
(𝑋𝑡)𝑡⩾0 is a Markov chain generated by 𝑃𝜎 with initial condition 𝑋0 = 𝑥 ∈ X. Pointwise
on X, we can express 𝑣𝜎 as

𝑣𝜎 =
∑
𝑡⩾0
(𝛽𝑃𝜎)𝑡𝑟𝜎 = (𝐼 − 𝛽𝑃𝜎)−1𝑟𝜎 (11)

(see, e.g., Puterman (2005), Theorem 6.1.1). Equivalently, 𝑣𝜎 is the unique solution
to the equation 𝑣 = 𝑟𝜎 + 𝛽𝑃𝜎 𝑣. Inspecting the definition of 𝑇𝜎 in (4), we see this is
also equivalent to the statement that 𝑣𝜎 is the unique fixed point of 𝑇𝜎.

We discuss other examples below.

3.3. Greedy Policies. Given 𝑣 ∈ 𝑉, a policy 𝜎 in Σ is called

• 𝑣-min-greedy if 𝑇𝜎 𝑣 ⪯ 𝑇𝜏 𝑣 for all 𝜏 ∈ Σ, and
• 𝑣-max-greedy if 𝑇𝜎 𝑣 ⪰ 𝑇𝜏 𝑣 for all 𝜏 ∈ Σ.

In the context of Example 3.1, a max-greedy policy can be constructed as follows:
Given 𝑣 ∈ 𝑉, let 𝜎 be any policy satisfying

𝜎(𝑥) ∈ arg max
{
𝑟(𝑥, 𝑎) + 𝛽

∑
𝑥 ′
𝑣(𝑥′)𝑃(𝑥, 𝑎, 𝑥′)

}
(12)

for all 𝑥 ∈ 𝑋 . This policy satisfies 𝑇𝜎 𝑣 ⩾ 𝑇𝜏 𝑣 for all 𝜏 ∈ Σ, and hence is 𝑣-max-greedy.
A 𝑣-min-greedy policy can be constructed by replacing arg max with arg min.

3.4. Bellman Operators. For a generic ADP (𝑉, {𝑇𝜎}), we define the Bellman min-
operator and the Bellman max-operator via

𝑇⊥ 𝑣 :=
∧
𝜎

𝑇𝜎 𝑣 and 𝑇⊤ 𝑣 :=
∨
𝜎

𝑇𝜎 𝑣 (13)

whenever the infimum (resp., supremum) exists. We say that 𝑣 ∈ 𝑉 satisfies the
Bellman max-equation (resp., the Bellman min-equation) if it is a fixed point of 𝑇⊤
(resp., 𝑇⊥). Notice that 𝜎 ∈ Σ is



COMPLETELY ABSTRACT DYNAMIC PROGRAMMING 9

(i) 𝑣-max-greedy if and only if 𝑇𝜎 𝑣 = 𝑇⊤ 𝑣, and
(ii) 𝑣-min-greedy if and only if 𝑇𝜎 𝑣 = 𝑇⊥ 𝑣.

To illustrate, consider the MDP setting of Example 3.1. Traditionally, the Bellman
operator for this model is given by

(𝑇𝑣) (𝑥) = max
𝑎∈Γ(𝑥)

{
𝑟(𝑥, 𝑎) + 𝛽

∑
𝑥 ′
𝑣(𝑥′)𝑃(𝑥, 𝑎, 𝑥′)

}
(𝑥 ∈ X). (14)

For the ADP (RX, {𝑇𝜎}) generated by this MDP, this Bellman operator exactly co-
incides with the Bellman max-operator 𝑇⊤ in (13). Replacing max with min in (14)
produces the Bellman min-operator from (13).

4. Properties

To obtain optimality results, we need to place structure on ADPs. Here and below,
we call an ADP 𝒜 = (𝑉, {𝑇𝜎})

• well-posed if 𝑇𝜎 has a unique fixed point 𝑣𝜎 in 𝑉 for each 𝜎 ∈ Σ,
• order stable if (𝑉, 𝑇𝜎) is order stable for each 𝜎 ∈ Σ,
• max-stable if 𝒜 is order stable, each 𝑣 ∈ 𝑉 has at least one max-greedy policy,

and 𝑇⊤ has at least one fixed point in 𝑉, and
• min-stable if 𝒜 is order stable, each 𝑣 ∈ 𝑉 has at least one min-greedy policy,

and 𝑇⊥ has at least one fixed point in 𝑉.

Well-posedness is a minimum regularity condition for ADPs. Without it, we cannot
be sure that policies have well-defined lifetime values. Well-defined lifetime values are
essential because maximizing (or minimizing) lifetime value over the set of all policies
is the objective of dynamic programming.

Example 4.1 (Continuous time MDPs). We return to the MDP setting of Exam-
ple 3.1 but replacing the discount factor 𝛽 with a discount rate 𝛿 > 0 and the stochastic
kernel 𝑃 with an intensity kernel 𝑄 from G × X → R satisfying ∑

𝑥 ′∈X 𝑄(𝑥, 𝑎, 𝑥′) = 0
for all (𝑥, 𝑎) in G and 𝑄(𝑥, 𝑎, 𝑥′) ⩾ 0 whenever 𝑥 ≠ 𝑥′. Lifetime value of policy 𝜎 is
given by

𝑣𝜎(𝑥) = E𝑥

∫ ∞

0
exp(−𝛿𝑡)𝑟(𝑋𝑡, 𝜎(𝑋𝑡)) d𝑡. (15)

where 𝑄𝜎(𝑥, 𝑥′) := 𝑄(𝑥, 𝜎(𝑥), 𝑥′) is the infinitesimal generator of the continuous
time Markov chain (𝑋𝑡)𝑡⩾0 and 𝑟𝜎(𝑥) := 𝑟(𝑥, 𝜎(𝑥)). The function 𝑣𝜎 can alterna-
tively be written as 𝑣𝜎 = (𝛿𝐼 − 𝑄𝜎)−1𝑟𝜎 (see, e.g., Guo and Hernández-Lerma (2009),



10 THOMAS J. SARGENT AND JOHN STACHURSKI

Lemma 4.16). Rearranging this expression and using the fact that 𝛿𝐼 −𝑄𝜎 is bijective
shows that 𝑣𝜎 is the unique fixed point of 𝑇𝜎 𝑣 = 𝑟𝜎 + (𝑄𝜎 + (1 − 𝛿) 𝐼)𝑣 in RX. Hence
(RX, {𝑇𝜎}) is a well-posed ADP.

Order stability is a natural regularity assumption for ADPs. To understand this,
suppose 𝒜 is well-posed and consider upward stability for an arbitrary policy operator
𝑇𝜎 with fixed point 𝑣𝜎. If 𝑣 ⪯ 𝑇𝜎 𝑣, then following policy 𝜎 for one period offers an
improvement in value. Since the problem is stationary, this suggests that following
the policy forever will also be an improvement. Thus, we expect 𝑣 ⪯ 𝑣𝜎, in which
case upward stability holds. Intuition for downward stability is similar.

Example 4.2. Consider the MDP setting of Example 3.1 and fix 𝜎 ∈ Σ. Recall that
the policy operator 𝑇𝜎 has unique fixed point 𝑣𝜎 := (𝐼 − 𝛽𝑃𝜎)−1𝑟𝜎. If 𝑇𝜎 𝑣 ⩾ 𝑣, then
𝑟𝜎 + 𝛽𝑃𝜎 𝑣 ⩾ 𝑣 and hence (𝐼 − 𝛽𝑃𝜎)𝑣 ⩽ 𝑟𝜎. Since (𝐼 − 𝛽𝑃𝜎)−1 is positive, we get 𝑣 ⩽ 𝑣𝜎.
Hence (𝑉, 𝑇𝜎) is upward stable. A similar proof shows that (𝑉, 𝑇𝜎) is downward stable,
and therefore order stable.

Example 4.3. Consider the ADP (RX, {𝑇𝜎}) from the MDP setting of Example 3.1.
For this case 𝑇⊤ is given by (14). Since 𝑇⊤ is a contraction on RX, it has a unique
fixed point in RX. Since max-greedy policies always exist, and since (RX, {𝑇𝜎}) is
order stable by Example 4.2, we see that (RX, {𝑇𝜎}) is max-stable.

Regarding the definition of max-stability (resp., min-stability), the Bellman min-
and max-operators are often contraction maps and existence of a fixed point is easily
verified (see, e.g, (Denardo, 1967) or Chapter 2 of Bertsekas (2022)). Here is another
useful condition, which covers the case where state and action spaces are finite.

Proposition 4.1. Let 𝒜 be order stable and suppose the set of policies is finite. In
this setting,

(i) if max-greedy always exist, then 𝒜 is max-stable, and
(ii) if min-greedy always exist, then 𝒜 is min-stable.

Proposition 4.1 is proved in the appendix (page 26).

Example 4.4. The risk-sensitive MDP from Example 3.4 is max-stable. Evidently
𝑇𝜎 is order-preserving on 𝑉 = RX. Moreover, (𝑉, 𝑇𝜎) is asymptotically stable (see, e.g.,
Bäuerle and Jaśkiewicz (2018)) and hence order stable, by Example 2.1. This shows
that (𝑉, {𝑇𝜎}) is an order stable ADP. Given 𝑣 ∈ 𝑉, we can construct a 𝑣-max-greedy



COMPLETELY ABSTRACT DYNAMIC PROGRAMMING 11

policy 𝜎 by setting

𝜎(𝑥) ∈ arg max
{
𝑟(𝑥, 𝑎) + 𝛽

𝜃
ln

[∑
𝑥 ′

exp(𝜃𝑣(𝑥′))𝑃(𝑥, 𝑎, 𝑥′)
]}

for all 𝑥 ∈ 𝑋 . As the policy set Σ is finite (since X and the choice sets are all finite),
Proposition 4.1 implies that (𝑉, {𝑇𝜎}) is max-stable.

5. Optimality

In this section we provide conditions for optimality in our abstract setting. While
these conditions are interesting in their own right, our main purpose is to study
how optimality properties are preserved under transformations (which is the task of
Sections 6–7).

5.1. Max-Optimality. Let 𝒜 be a well-posed ADP. We let 𝑉Σ := {𝑣𝜎}𝜎∈Σ denote the
set of 𝜎-value functions. If 𝑉Σ has a greatest element, then we denote it by 𝑣⊤ and
call it the max-value function. A policy 𝜎 ∈ Σ is called max-optimal for 𝒜 if 𝑣𝜎 is a
greatest element of 𝑉Σ; that is, if 𝑣⊤ exists and 𝑣𝜎 = 𝑣⊤.

We define a map 𝐻⊤ from 𝑉 to {𝑣𝜎} via 𝐻⊤ 𝑣 = 𝑣𝜎 where 𝜎 is 𝑣-max-greedy. Iterating
with 𝐻⊤ is an abstraction of Howard policy iteration.2 In what follows, we call 𝐻⊤
the Howard max-operator generated by the ADP.

In the following result, we take 𝒜 to be an ADP with Bellman operator 𝑇⊤.

Theorem 5.1 (Max-optimality). If 𝒜 is max-stable, then

(i) the max-value function 𝑣⊤ exists in 𝑉,
(ii) 𝑣⊤ is the unique solution to the Bellman max-equation in 𝑉,
(iii) a policy is max-optimal if and only if it is 𝑣⊤-max-greedy.
(iv) at least one max-optimal policy exists.

If, in addition, Σ is finite, then Howard max-policy iteration converges to 𝑣⊤ in finitely
many steps.

The last statement means that, for all 𝑣 ∈ 𝑉, there exists a 𝐾 ∈ N such that 𝑘 ⩾ 𝐾

implies 𝐻𝑘
⊤𝑣 = 𝑣⊤. The proof of Theorem 5.1 is given in the appendix.

2For 𝐻⊤ to be well-defined, we must always select the same 𝑣-greedy policy when the operator
is applied to 𝑣. We can use the axiom of choice to assign to each 𝑣 a designated 𝑣-greedy policy,
although, in applications, a simple rule usually suffices. For example, if Σ is finite, we can enumerate
the policy set Σ and choose the first 𝑣-greedy policy.



12 THOMAS J. SARGENT AND JOHN STACHURSKI

5.2. Min-Optimality. In the present abstract setting, minimization results are read-
ily recovered from maximization results by order duality. This section illustrates.

We call a policy 𝜎 ∈ Σ min-optimal for 𝒜 if 𝑣𝜎 is a least element of 𝑉Σ. When 𝑉Σ
has a least element we denote it by 𝑣⊥ and call it the min-value function We define
𝐻⊥ from 𝑉 to {𝑣𝜎} via 𝐻⊥ 𝑣 = 𝑣𝜎 where 𝜎 is 𝑣-min-greedy and call 𝐻⊥ the Howard
min-operator generated by 𝒜.

Below, if 𝒜 := (𝑉, {𝑇𝜎}) is an ADP then its dual 𝒜𝜕 is the ADP (𝑉𝜕, {𝑇𝜎}) where
the partial order ⪯ on 𝑉 is replaced with its dual ⪯𝜕. In this setting, we let 𝑇𝜕⊤ be the
Bellman max-operator for 𝒜𝜕, 𝑣𝜕⊤ be the max-value function for 𝒜𝜕, and so on.

Lemma 5.2. 𝒜 is min-stable if and only if 𝒜𝜕 is max-stable, in which case 𝑇⊥ = 𝑇𝜕⊤
and 𝐻⊥ = 𝐻𝜕

⊤. A policy 𝜎 is max-optimal for 𝒜 if and only if 𝜎 is min-optimal for
𝒜𝜕.

Proof. Let 𝒜 be min-stable. Then 𝒜𝜕 is order stable, by Lemma 2.2. Now fix 𝑣 ∈ 𝑉
and suppose that 𝜎 is min-greedy for 𝒜, so that 𝑇𝜎 𝑣 ⪯ 𝑇𝜏 𝑣 for all 𝜏 ∈ Σ. Then
𝑇𝜎 𝑣 ⪰𝜕 𝑇𝜏 𝑣 for all 𝜏 ∈ Σ, so 𝜎 is 𝑣-max-greedy for 𝒜𝜕 and 𝑇𝜕⊤𝑣 = 𝑇𝜎𝑣 = 𝑇⊥𝑣. We have
proved that 𝒜𝜕 is max-stable and 𝑇𝜕⊤ = 𝑇⊥. The remaining steps follow easily from
the definitions. □

Results analogous to Theorem 5.1 hold for minimization.

Theorem 5.3 (Min-optimality). If 𝒜 is min-stable, then

(i) the min-value function 𝑣⊥ exists in 𝑉,
(ii) 𝑣⊥ is the unique solution to the Bellman min-equation in 𝑉,
(iii) a policy is min-optimal if and only if it is 𝑣⊥-min-greedy.
(iv) at least one min-optimal policy exists.

If, in addition, Σ is finite, then Howard min-policy iteration converges to 𝑣⊥ in finitely
many steps.

Proof. Let 𝒜 be min-stable. By Lemma 5.2, the dual 𝒜𝜕 is max-stable. Hence,
by Theorem 5.1, 𝑣𝜕⊤ exists in 𝑉. But then 𝑣⊥ exists in 𝑉 and is equal to 𝑣𝜕⊤, since
𝑣⊥ =

∧
𝜎 𝑣𝜎 =

∨𝜕
𝜎 𝑣𝜎 = 𝑣𝜕⊤. Also, by Theorem 5.1, 𝑣𝜕⊤ is the unique solution to

𝑇𝜕⊤𝑣
𝜕
⊤ = 𝑣𝜕⊤. Applying Lemma 5.2, we see that 𝑇⊥ 𝑣⊥ = 𝑣⊥. The result of the proof is

similar. □



COMPLETELY ABSTRACT DYNAMIC PROGRAMMING 13

6. Isomorphic ADPs

In this section we introduce isomorphic relationships between ADPs and explore
their implications for optimality. True to their name, isomorphic relationships are
symmetric, transitive and reflexive. We show that isomorphic ADPs have identical
optimality properties.

6.1. Definition and Properties. Let 𝒜 = (𝑉, {𝑇𝜎}) and 𝒜 = (𝑉, {𝑇𝜎}) be two
ADPs. We call 𝒜 and 𝒜 isomorphic under 𝐹 if these two ADPs have the same policy
set Σ and 𝐹 is an order isomorphism from 𝑉 to 𝑉 such that

𝐹 ◦ 𝑇𝜎 = 𝑇𝜎 ◦ 𝐹 on 𝑉 for all 𝜎 ∈ Σ. (16)

In other words, (𝑉, 𝑇𝜎) and (𝑉, 𝑇𝜎) are order conjugate under 𝐹 for all 𝜎 ∈ Σ.3

Example 6.1. Fei et al. (2021) work with an “exponential” risk-sensitive 𝑄-factor
Bellman equation that has policy operator

(𝑀𝜎 ℎ)(𝑥, 𝑎) = exp
{
𝜃𝑟(𝑥, 𝑎) + 𝛽 ln

[∑
𝑥 ′
ℎ(𝑥′, 𝜎(𝑥′))𝑃(𝑥, 𝑎, 𝑥′)

]}
that maps RG

++, the set of strictly positive functions in RG, into itself. All primitives
are as in the risk-sensitive 𝑄-factor ADP 𝒜 := (RG, {𝑄𝜎}) in Example 3.5. Let 𝐹 be
the order isomorphism from R

G to RG
++ defined by (𝐹ℎ)(𝑥, 𝑎) = exp(𝜃ℎ(𝑥, 𝑎)). Then,

for 𝑄𝜎 defined in (8), ℎ ∈ RG and (𝑥, 𝑎) ∈ G,

(𝐹𝑄𝜎 ℎ)(𝑥, 𝑎) = exp
{
𝜃𝑟(𝑥, 𝑎) + 𝛽 ln

[∑
𝑥 ′

exp [𝜃ℎ(𝑥′, 𝜎(𝑥′))] 𝑃(𝑥, 𝑎, 𝑥′)
]}

,

which is equal to (𝑀𝜎𝐹ℎ) (𝑥, 𝑎). Thus, 𝐹 ◦𝑄𝜎 = 𝑀𝜎 ◦ 𝐹 on RG. Hence 𝒜 := (RG
++, {𝑀𝜎})

is an ADP and 𝒜 and 𝒜 are isomorphic.

For ADPs 𝒜,𝒜, let 𝒜 ∼ 𝒜 indicate that 𝒜 and 𝒜 are isomorphic. It is elementary
to show that the relation ∼ is reflexive, symmetric and transitive. Hence ∼ is an
equivalence relation on the set of all ADPs.

3While the definition require that the two ADPs have the same policy set Σ, it suffices that the
policy sets can be put in one-to-one correspondence with each other.



14 THOMAS J. SARGENT AND JOHN STACHURSKI

6.2. Isomorphisms and Optimality. We seek a connection between value func-
tions and optimality properties of isomorphic ADPs. The theory below provides this
relationship. For all of this section, we take 𝒜 = (𝑉, {𝑇𝜎}) and 𝒜 = (𝑉, {𝑇𝜎}) to be
two ADPs with the same policy set. When they exist, we let

• 𝑣𝜎 (resp., 𝑣𝜎) be the unique fixed point of 𝑇𝜎 (resp., 𝑇𝜎)
• 𝑇⊤ (resp., 𝑇⊤) be the max-Bellman operator of 𝒜 (resp., 𝒜)
• 𝑇⊥ (resp., 𝑇⊥) be the min-Bellman operator of 𝒜 (resp., 𝒜)
• 𝑣⊤ (resp., 𝑣⊤) be the max-value function of 𝒜 (resp., 𝒜)
• 𝑣⊥ (resp., 𝑣⊥) be the min-value function of 𝒜 (resp., 𝒜)

Isomorphic ADPs share the same regularity properties:

Theorem 6.1. If 𝒜 and 𝒜 are isomorphic under 𝐹, then

(i) 𝒜 is well-posed if and only if 𝒜 is well-posed.
(ii) 𝒜 is order stable if and only if 𝒜 is order stable.
(iii) 𝒜 is max-stable if and only if 𝒜 is max-stable. In this case,

𝐹 ◦ 𝑇⊤ = 𝑇⊤ ◦ 𝐹 and 𝑣⊤ = 𝐹 𝑣⊤. (17)

Moreover, 𝒜 and 𝒜 have the same max-optimal policies.
(iv) 𝒜 is min-stable if and only if 𝒜 is min-stable. In this case,

𝐹 ◦ 𝑇⊥ = 𝑇⊥ ◦ 𝐹 and 𝑣⊥ = 𝐹 𝑣⊥. (18)

Moreover, 𝒜 and 𝒜 have the same min-optimal policies.

Proof. Claims (i)–(ii) follow directly from Lemma 2.3. Regarding (iii), suppose 𝒜

is max-stable. We claim that, for 𝒜, max-greedy policies always exist. To see this,
fix 𝑣 ∈ 𝑉. Since 𝒜 is max-stable, we can choose 𝜎 to be 𝐹−1𝑣-max-greedy, so that
𝑇𝜏 𝐹−1𝑣 ⪯ 𝑇𝜎 𝐹−1𝑣 for all 𝜏 ∈ Σ. Then 𝐹−1𝑇𝜏 𝑣 ⪯ 𝐹−1𝑇𝜎 𝑣 and hence 𝑇𝜏 𝑣 ⪯ 𝑇𝜎 𝑣 for all
𝜏 ∈ Σ. In particular, 𝜎 is 𝑣-max-greedy.

Continuing to assume that 𝒜 is max-stable, we now prove (17). For given 𝑣 ∈ 𝑉,
applying the order conjugacy (16) yields

𝑇⊤𝑣 =
∨
𝜎

𝑇𝜎 𝑣 =
∨
𝜎

𝐹−1𝑇𝜎 𝐹 𝑣 = 𝐹−1
∨
𝜎

𝑇𝜎 𝐹 𝑣 = 𝐹−1𝑇⊤ 𝐹 𝑣,

which is equivalent to 𝐹 ◦ 𝑇⊤ = 𝑇⊤ ◦ 𝐹 from (17), and implies that (𝑉, 𝑇⊤) and (𝑉, 𝑇⊤)
are order conjugate under 𝐹. By max-stability of 𝒜 and Theorem 5.1, the operator 𝑇⊤
has unique fixed point 𝑣⊤ in 𝑉. Lemma 2.3 then implies that 𝑇⊤ has unique fixed point



COMPLETELY ABSTRACT DYNAMIC PROGRAMMING 15

𝐹𝑣⊤ in 𝑉. This completes the proof that 𝒜 is max-stable. By max-stability of 𝒜, the
unique fixed point of 𝑇⊤ in 𝑉 is 𝑣⊤, so 𝐹𝑣⊤ = 𝑣⊤ and both claims in (17) are verified.
Finally, note that 𝜎 is max-optimal for 𝒜 if and only if 𝑇𝜎 𝑣⊤ = 𝑣⊤, which, by the
bijection property of 𝐹, is also equivalent to 𝐹 𝑇𝜎 𝑣⊤ = 𝑣⊤. Using 𝐹 ◦𝑇𝜎 = 𝑇𝜎 ◦ 𝐹, we can
write this as 𝑇𝜎 𝑣⊤ = 𝑣⊤, which is equivalent to the statement that 𝜎 is max-optimal
for 𝒜. We have now confirmed all the claims in (iii).

The proof of (iv) is identical after replacing max with min and ∨ with ∧. (Alter-
natively, the proof can be derived from (v) and duality.) □

6.3. Anti-Isomorphic ADPs. Let 𝒜 = (𝑉, {𝑇𝜎}) and 𝒜 = (𝑉, {𝑇𝜎}) be two ADPs.
We call 𝒜 and 𝒜 anti-isomorphic under 𝐹 if they have the same policy set Σ and, in
addition, there exists an order anti-isomorphism 𝐹 from 𝑉 to 𝑉 such that (16) holds.
Equivalently, 𝒜 and 𝒜 are anti-isomorphic if 𝒜 is isomorphic to 𝒜𝜕, the dual of 𝒜.

If 𝒜 𝑎∼ 𝒜 indicates that 𝒜 and 𝒜 are anti-isomorphic, then 𝑎∼ is symmetric and
transitive but, in general, not reflexive.

Here is an optimality result for anti-isomorphic ADPs that parallels Theorem 6.1.

Theorem 6.2. If 𝒜 and 𝒜 are anti-isomorphic under 𝐹, then

(i) 𝒜 is well-posed if and only if 𝒜 is well-posed.
(ii) 𝒜 is order stable if and only if 𝒜 is order stable.
(iii) 𝒜 is max-stable if and only if 𝒜 is min-stable. In this case,

𝐹 ◦ 𝑇⊤ = 𝑇⊥ ◦ 𝐹 and 𝑣⊥ = 𝐹 𝑣⊤. (19)

Moreover, 𝜎 ∈ Σ is max-optimal for 𝒜 if and only if 𝜎 is min-optimal for 𝒜.

Proof. Let 𝒜 and 𝒜 be anti-isomorphic, so that 𝒜 is isomorphic to 𝒜𝜕. If 𝒜 is
well-posed, then, by Theorem 6.1, 𝒜𝜕 is well-posed, so 𝑇𝜎 has a unique fixed point in
𝑉 for all 𝜎 ∈ Σ. This implies that 𝒜 is likewise well-posed, completing the proof of
(i). Similarly, If 𝒜 is order stable, then, by Theorem 6.1, 𝒜𝜕 is order stable, in which
case 𝒜 is order stable, by Lemma 2.2. This proves (ii).

Now suppose 𝒜 is max-stable. Then, by 𝒜 ∼ 𝒜𝜕 and Theorem 6.1, 𝒜𝜕 is max-
stable with 𝐹 ◦ 𝑇⊤ = 𝑇𝜕⊤ ◦ 𝐹 and 𝑣𝜕⊤ = 𝐹 𝑣⊤. As with our discussion of duality in
Section 5.2, this is equivalent to 𝐹 ◦ 𝑇⊤ = 𝑇⊥ ◦ 𝐹 and 𝑣⊥ = 𝐹 𝑣⊤, which proves (19).

Finally, Theorem 6.1 tells us that 𝒜 and 𝒜𝜕 have the same max-optimal policies.
Applying Lemma 5.2, we see that the max-optimal policies of 𝒜 are the same as the
min-optimal policies of 𝒜. □



16 THOMAS J. SARGENT AND JOHN STACHURSKI

7. Subordinate ADPs

Next we introduce an asymmetric relationship called subordination between ADPs.
In essence, a subordinate ADP is an ADP that is derived from another ADP, typically
via some kind of rearrangement. Often the associated transformations are not bijec-
tive, since one dynamic program evolves in a higher dimensional space than another.
Nonetheless, subordination provides valuable optimality connections between ADPs.

7.1. Definition and Properties. Let 𝒜 := (𝑉, {𝑇𝜎}) and 𝒜 := (𝑉, {𝑇𝜎}) be ADPs.
We say that 𝒜 is subordinate to 𝒜 if there exists an order-preserving map 𝐹 from 𝑉

onto 𝑉 and a family of order-preserving maps {𝐺𝜎}𝜎∈Σ from 𝑉 to 𝑉 such that

𝑇𝜎 = 𝐺𝜎 ◦ 𝐹 and 𝑇𝜎 = 𝐹 ◦ 𝐺𝜎 for all 𝜎 ∈ Σ. (20)

In other words, (𝑉, 𝑇𝜎) and (𝑉, 𝑇𝜎) are mutually semiconjugate for all 𝜎 ∈ Σ.

Many dynamic programs investigated in the recent literature are subordinate to a
more traditional dynamic program.

Example 7.1. Let 𝒜 = (RX, {𝑇𝜎}) be the ADP associated with the MDP from
Example 3.1 and let 𝐹 be defined by

(𝐹𝑣)(𝑥, 𝑎) = 𝑟(𝑥, 𝑎) + 𝛽
∑
𝑥 ′
𝑣(𝑥′)𝑃(𝑥, 𝑎, 𝑥′) (𝑣 ∈ RX) (21)

If 𝑉 := 𝐹(RX) ⊂ RG and {𝑄𝜎} is the policy operators from the 𝑄-factor MDP defined
in (6), then 𝒜 := (𝑉, {𝑄𝜎}) is an ADP. Note that 𝐹 is the order preserving and, by
construction, maps 𝑉 := RX onto 𝑉. Also, the maps {𝐺𝜎} defined by

(𝐺𝜎 𝑓 ) (𝑥) = 𝑓 (𝑥, 𝜎(𝑥)) ( 𝑓 ∈ RG)

are order-preserving and, for each 𝜎, the operator 𝑇𝜎 satisfies

(𝑇𝜎 𝑣)(𝑥) = 𝑟(𝑥, 𝜎(𝑥)) + 𝛽
∑
𝑥 ′
𝑣(𝑥′)𝑃(𝑥, 𝜎(𝑥), 𝑥′) = (𝐺𝜎 𝐹 𝑣) (𝑥),

for all 𝑣 ∈ RX and 𝑥 ∈ X, while the 𝑄-factor policy operator satisfies

(𝑄𝜎 𝑓 ) (𝑥, 𝑎) = 𝑟(𝑥, 𝑎) + 𝛽
∑
𝑥 ′

𝑓 (𝑥′, 𝜎(𝑥′))𝑃(𝑥, 𝑎, 𝑥′) = (𝐹 𝐺𝜎 𝑓 )(𝑥, 𝑎)

for all 𝑓 ∈ 𝑉. Hence 𝑇𝜎 = 𝐺𝜎 ◦ 𝐹 and 𝑄𝜎 = 𝐹 ◦ 𝐺𝜎, so 𝒜 is subordinate to 𝒜.



COMPLETELY ABSTRACT DYNAMIC PROGRAMMING 17

Example 7.2. The risk-sensitive 𝑄-factor ADP in Example 3.5 is subordinate to the
standard risk-sensitive ADP in Example 3.4. The proof is almost identical to the
argument in Example 7.1, after replacing 𝐹 in (21) with

(𝐹𝑣) (𝑥, 𝑎) = 𝑟(𝑥, 𝑎) + 𝛽
𝜃

ln
[∑
𝑥 ′

exp(𝜃𝑣(𝑥′))𝑃(𝑥, 𝑎, 𝑥′)
]
.

Example 7.3. Let 𝒜 = (RX, {𝑇𝜎}) be an ADP generated by the MDP model from
Example 3.1 and let 𝐹 be the order-preserving map defined by

(𝐹𝑣) (𝑥, 𝑎) =
∑
𝑥 ′
𝑣(𝑥′)𝑃(𝑥, 𝑎, 𝑥′) (𝑣 ∈ RX). (22)

If 𝑉 := 𝐹(RX) ⊂ RG and {𝑅𝜎} is the policy operators from the expected value MDP
described in Example 3.6, then 𝒜 := (𝑉, {𝑅𝜎}) is subordinate to 𝒜. Indeed, 𝐹 is
order-preserving and, by construction, maps 𝑉 := RX onto 𝑉. Moreover, the maps
{𝐺𝜎} defined by

(𝐺𝜎 𝑔) (𝑥) = 𝑟(𝑥, 𝜎(𝑥)) + 𝛽𝑔(𝑥, 𝜎(𝑥)) (𝑔 ∈ RG). (23)

are order-preserving and the MDP policy operator 𝑇𝜎 satisfies

(𝑇𝜎 𝑣)(𝑥) = 𝑟(𝑥, 𝜎(𝑥)) + 𝛽
∑
𝑥 ′
𝑣(𝑥′)𝑃(𝑥, 𝜎(𝑥), 𝑥′) = (𝐺𝜎 𝐹 𝑣) (𝑥),

while the expected value policy operator 𝑅𝜎 from (9) satisfies

(𝑅𝜎 𝑔) (𝑥, 𝑎) =
∑
𝑥 ′
{𝑟(𝑥′, 𝜎(𝑥′)) + 𝛽𝑔(𝑥′, 𝜎(𝑥′))} 𝑃(𝑥, 𝑎, 𝑥′) = (𝐹 𝐺𝜎 𝑔) (𝑥, 𝑎).

7.2. Stability. Let 𝒜 and 𝒜 represent ADPs with with respective 𝜎-value functions
{𝑣𝜎} and {𝑣𝜎}. Below, if 𝒜 is subordinate to 𝒜, then 𝐹 and {𝐺𝜎} always represent
the order-preserving maps in (20).

Proposition 7.1. If 𝒜 is subordinate to 𝒜, then

(i) 𝒜 is well-posed if and only if 𝒜 is well-posed, and
(ii) 𝒜 is order stable if and only if 𝒜 is order stable.

In either case, the 𝜎-value functions are linked by

𝑣𝜎 = 𝐹𝑣𝜎 and 𝑣𝜎 = 𝐺𝜎 𝑣𝜎 for all 𝜎 ∈ Σ.

Proof. All claims follow from Lemma 2.4 and the observation that (𝑉, 𝑇𝜎) and (𝑉, 𝑇𝜎)
are mutually semiconjugate at every 𝜎 ∈ Σ. □



18 THOMAS J. SARGENT AND JOHN STACHURSKI

7.3. Optimality. In this section we consider whether optimality properties in The-
orem 5.1 can be inferred under a subordinate relationship. Below, when 𝒜 and 𝒜

are max-stable, 𝑣⊤ and 𝑣⊤ represent their max-value functions, while 𝑇⊤ (resp., 𝑇⊤)
denotes the Bellman operator for 𝒜 (resp., 𝒜).

Note that, when 𝒜 is max-stable and 𝑇𝜎 = 𝐺𝜎 ◦ 𝐹, as in (20), then {𝐺𝜎 𝑣}𝜎∈Σ has a
greatest element for every 𝑣 ∈ 𝑉. Indeed, if 𝑣 ∈ 𝑉, then, since 𝐹 is onto, there exists
a 𝑣 ∈ 𝑉 with 𝐹𝑣 = 𝑣. Moreover, by max-stability, there exists a policy 𝜎 ∈ Σ such
that 𝑇𝜎 𝑣 = 𝐺𝜎 𝑣 dominates 𝑇𝜏𝑣 = 𝐺𝜏 𝑣 for all 𝜏 ∈ Σ. This confirms that {𝐺𝜎 𝑣}𝜎∈Σ has
a greatest element.

In the setting where 𝒜 is max-stable, which we consider below, we take 𝐺⊤ to be
the order-preserving map from 𝑉 to 𝑉 defined by

𝐺⊤ 𝑣 :=
∨
𝜎

𝐺𝜎 𝑣. (24)

Theorem 7.2. If 𝒜 is max-stable and 𝒜 is subordinate to 𝒜, then 𝒜 is also max-
stable and the Bellman max-operators are related by

𝑇⊤ = 𝐺⊤ ◦ 𝐹 and 𝑇⊤ = 𝐹 ◦ 𝐺⊤, (25)

while the max-value functions are related by

𝑣⊤ = 𝐺⊤ 𝑣⊤ and 𝑣⊤ = 𝐹 𝑣⊤. (26)

Moreover,

(i) if 𝜎 is max-optimal for 𝒜, then 𝜎 is max-optimal for 𝒜, and
(ii) if 𝐺𝜎 𝑣⊤ = 𝐺⊤ 𝑣⊤, then 𝜎 is max-optimal for 𝒜.

Note the asymmetry in (i) of Theorem 7.2. This implication cannot be reversed
without additional conditions, as confirmed by Example A.1 in the appendix. Still, if
we want to use 𝒜 to find optimal policies for 𝒜, we can do so via (ii) of Theorem 7.2.

Proof. Fix 𝑣 ∈ 𝑉 and let 𝜎 ∈ Σ be such that 𝐺𝜎 𝑣 ⪰ 𝐺𝜏 𝑣 for all 𝜏 ∈ Σ. Applying 𝐹

gives 𝑇𝜎 𝑣 ⪰ 𝑇𝜏 𝑣 for all 𝜏 ∈ Σ, so a 𝑣-max-greedy policy exists. Also, given 𝑣 ∈ 𝑉, we
have 𝑇⊤ 𝑣 =

∨
𝜎 𝐺𝜎 𝐹𝑣 = 𝐺⊤𝐹𝑣. This proves the first claim in (25). The second claim

in (25) follows from
𝑇⊤𝑣 =

∨
𝜎

𝐹𝐺𝜎 𝑣 = 𝐹
∨
𝜎

𝐺𝜎 𝑣 = 𝐹𝐺⊤𝑣,

where the second equality holds because {𝐺𝜎 𝑣}𝜎∈Σ has a greatest element. This proves
(25), so (𝑉, 𝑇⊤) and (𝑉, 𝑇⊤) are mutually semiconjugate under 𝐹, 𝐺⊤.



COMPLETELY ABSTRACT DYNAMIC PROGRAMMING 19

In view of Lemma 2.4, combined with the fact that 𝑣⊤ is a fixed point of 𝑇⊤ (by
Theorem 5.1), we see that 𝑇⊤ has a fixed point in 𝑉. This proves that 𝒜 is max-
stable. Therefore, applying Theorem 5.1 to 𝒜, the supremum 𝑣⊤ :=

∨
𝜎 𝑣𝜎 exists and

is the unique fixed point of 𝑇⊤ in 𝑉. The equalities in (26) now follow from mutual
semiconjugacy of (𝑉, 𝑇⊤) and (𝑉, 𝑇⊤) under 𝐹, 𝐺⊤.

Regarding (i) of the last part of Theorem 7.2, let 𝜎 be max-optimal for 𝒜. Since
𝒜 is max-stable, Theorem 5.1 implies that 𝜎 is 𝑣⊤-max-greedy for 𝒜 (𝑇𝜎𝑣⊤ = 𝑇⊤𝑣⊤)
and 𝑣⊤ = 𝑇⊤𝑣⊤. Also, by (26), we have 𝑣⊤ = 𝐹𝑣⊤. Therefore,

𝑇𝜎 𝑣⊤ = 𝑇𝜎 𝐹𝑣⊤ = 𝐹 𝑇𝜎 𝑣⊤ = 𝐹𝑣⊤ = 𝑣⊤ = 𝑇⊤𝑣⊤.

(The last equality uses the fact that stability of 𝒜 implies stability of 𝒜 combined
with Theorem 5.1.) In other words, 𝜎 is 𝑣⊤-max-greedy for 𝒜. But 𝒜 is max-stable,
so another application of Theorem 5.1 confirms that 𝜎 is max-optimal for 𝒜.

Regarding (ii) of the last part of Theorem 7.2, let 𝜎 ∈ Σ be such that 𝐺𝜎 𝑣⊤ = 𝐺⊤ 𝑣⊤.
Applying (26) yields 𝐺𝜎 𝐹𝑣⊤ = 𝐺⊤𝐹𝑣⊤, or 𝑇𝜎 𝑣⊤ = 𝑇⊤ 𝑣⊤. Thus, 𝜎 is 𝑣⊤-max-greedy for
𝒜. Since 𝒜 is max-stable, Theorem 5.1 implies that 𝜎 is max-optimal for 𝒜. □

Example 7.4. To find optimal policies for the standard MDP model in Example 3.1,
with associated ADP 𝒜 := (RX, {𝑇𝜎}), we can study instead the expected value varia-
tion in Example 3.6, with subordinate ADP 𝒜 := (𝑉, {𝑅𝜎}) for 𝑉 = 𝐹RG with 𝐹 defined
in (22) and 𝑅𝜎 defined in (9). (Subordination is established in Example 7.3.) In view
of Theorem 7.2, we can do this by computing the fixed point �̄� of the corresponding
Bellman operator 𝑅 :=

∨
𝜎 𝑅𝜎 and then finding a policy 𝜎 obeying 𝐺𝜎 �̄� = 𝐺⊤ �̄�. By the

definition of 𝐺𝜎 in (23), this means that we solve for 𝜎 satisfying

𝜎(𝑥) ∈ arg max
𝑎∈Γ(𝑥)

{𝑟(𝑥, 𝑎) + 𝛽�̄�(𝑥, 𝑎)} (𝑥 ∈ X).

7.4. Minimization and Subordination. The minimization case is identical to the
maximization setting after the obvious modifications. In the setting where 𝒜 is min-
stable, we take 𝐺⊥ to the order-preserving map from 𝑉 to 𝑉 defined by

𝐺⊥ 𝑣 :=
∧
𝜎

𝐺𝜎 𝑣. (27)

We can then state the following minimization version of Theorem 7.2.

Theorem 7.3. If 𝒜 is min-stable and 𝒜 is subordinate to 𝒜, then 𝒜 is also min-
stable and the Bellman min-operators are related by

𝑇⊥ = 𝐺⊥ ◦ 𝐹 and 𝑇⊥ = 𝐹 ◦ 𝐺⊥, (28)



20 THOMAS J. SARGENT AND JOHN STACHURSKI

while the min-value functions are related by

𝑣⊥ = 𝐺⊥ 𝑣⊥ and 𝑣⊥ = 𝐹 𝑣⊥. (29)

Moreover,

(i) if 𝜎 is min-optimal for 𝒜, then 𝜎 is min-optimal for 𝒜, and
(ii) if 𝐺𝜎 𝑣⊥ = 𝐺⊥ 𝑣⊥, then 𝜎 is min-optimal for 𝒜.

The proof of Theorem 7.3 is the same as that of Theorem 7.2, after replacing max
with min and ∨ with ∧. It can also be obtained by applying Theorem 7.2 to the duals
of 𝒜 and 𝒜.

8. Applications

In this section we show how isomorphic and subordinate relationships can simplify
or illuminate dynamic programming problems. We begin in Section 8.1 with a spe-
cific dynamic program and apply a series of transformations. We connection these
transformations to isomorphic and subordinate relationships and deduce some new
results on optimality.

8.1. Modified Epstein–Zin Equations. Consider an Epstein–Zin version of the
MDP in Example 3.1 (see, e.g., Epstein and Zin (1989) or Weil (1990)), in which a
Bellman max-equation takes the form

𝑣(𝑥) = max
𝑎∈Γ(𝑥)

𝑟(𝑥, 𝑎)𝛼 + 𝛽(𝑥)
(∑
𝑥 ′
𝑣(𝑥′)𝛾𝑃(𝑥, 𝑎, 𝑥′)

)𝛼/𝛾
1/𝛼

.

Following much of the recent literature, we allow the rate of time preference 𝛽 to
depend on the state (see, e.g., Albuquerque et al. (2016), Schorfheide et al. (2018),
de Groot et al. (2018), Gomez-Cram and Yaron (2020)). The function 𝛽 maps X to
R+ and 𝛾 and 𝛼 are nonzero parameters. Other details are as in Example 3.1. Using
the symbols 𝑟𝜎 and 𝑃𝜎 from (10), the policy operator 𝑇𝜎 can be written as

𝑇𝜎 𝑣 =
{
𝑟𝛼𝜎 + 𝛽 (𝑃𝜎 𝑣𝛾)𝛼/𝛾

}1/𝛼
, (30)

where powers are taken pointwise. Since 𝛾 and 𝛼 can be negative, we assume 𝑟 is
positive. We also suppose that 𝑃𝜎 is irreducible for all 𝜎 ∈ Σ. Under these assumptions,
𝑇𝜎 is an order-preserving self-map on (𝑉, ⩽), the set of all strictly positive functions
on X paired with the pointwise partial order, and 𝒜 := (𝑉, {𝑇𝜎}) is an ADP.



COMPLETELY ABSTRACT DYNAMIC PROGRAMMING 21

Now set
𝜃 := 𝛾

𝛼
and 𝑇𝜎 𝑣 :=

{
𝑟𝛼𝜎 + 𝛽 (𝑃𝜎𝑣)1/𝜃

}𝜃
. (31)

The pair 𝒜 = (𝑉, {𝑇𝜎}) is also an ADP.

Lemma 8.1. The following relationships hold:

(i) If 𝛾 > 0, then 𝒜 and 𝒜 are isomorophic.
(ii) If 𝛾 < 0, then 𝒜 and 𝒜 are anti-isomorophic.

Proof. Let 𝐹 : 𝑉 → 𝑉 be the bijective map 𝐹𝑣 = 𝑣𝛾. Fixing 𝜎 and applying (30) yields

𝐹 𝑇𝜎 𝑣 = (𝑇𝜎 𝑣)𝛾 =
{
𝑟𝛼𝜎 + 𝛽 (𝑃𝜎 𝑣𝛾)𝛼/𝛾

}𝛾/𝛼
=

{
𝑟𝛼𝜎 + 𝛽 (𝑃𝜎 𝑣𝛾)1/𝜃

}𝜃
.

Inspection of (31) shows that 𝑇𝜎 𝐹𝑣 is identical to the last expression. Hence 𝐹 ◦ 𝑇𝜎 =
𝑇𝜎 ◦ 𝐹 on 𝑉. If 𝛾 > 0, then 𝐹 is order-preserving, so 𝒜 and 𝒜 are isomorophic. If
𝛾 < 0, then 𝐹 is order-reversing, so 𝒜 and 𝒜 are anti-isomorophic. □

Lemma 8.1 gives us a way to solve for max-optimal policies of 𝒜 by studying 𝒜

(and applying either Theorem 6.1 or Theorem 6.2). This is convenient because 𝒜 is
easier to analyze. The next section illustrates.

8.2. Characterizing Optimality. Suppose that 𝛽 depends on 𝑥 through a purely
exogenous state component (as in, say, de Groot et al. (2018) and Schorfheide et al.
(2018)). Specifically, X = Y × Z and 𝑥 = (𝑦, 𝑧), where

𝑃(𝑥, 𝑎, 𝑥′) = 𝑅(𝑦, 𝑎, 𝑦′)𝑄(𝑧, 𝑧′) and 𝛽(𝑥) = 𝛽(𝑧).

Here 𝑅(𝑦, 𝑎, ·) is a distribution over 𝑦 for each feasible (𝑦, 𝑎) pair and 𝑄 is a stochastic
matrix over Z. For each 𝑧 ∈ Z, let (𝑍𝑡 (𝑧)) 𝑡⩾0 be a Markov chain on Z generated by 𝑄

and starting at 𝑧. Define

E(𝛽, 𝑄, 𝜃) := lim
𝑘→∞

{
sup
𝑧∈Z
E

𝑘−1∏
𝑡=0

𝛽(𝑍𝑡 (𝑧))𝜃
}1/𝑘

. (32)

We can now state the following exact result.

Theorem 8.2. The Epstein–Zin ADP 𝒜 is max-stable if and only if

E(𝛽, 𝑄, 𝜃)1/𝜃 < 1 (33)

Hence, under (33), all of the optimality results in Theorem 5.1 apply. Conversely, if
(33) fails, then 𝒜 is not well-posed and optimality is undefined.



22 THOMAS J. SARGENT AND JOHN STACHURSKI

The sufficiency of (33) for optimality properties is related to an earlier result in
Stachurski and Zhang (2021). The converse result is new. The proof of Theorem 8.2
proceeds by studying the simpler ADP 𝒜 introduced in Section 8.1, which we show is
either isomorphic or anti-isomorphic, depending on the sign of 𝛾. These relationships
imply that one can solve 𝒜 by, say, applying Howard policy iteration to 𝒜 rather
than 𝒜, with the better choice depending on relative numerical stability.

The proof of Theorem 8.2 can be found in Section A.2 of the appendix.

8.3. Efficiency from Subordination. Consider a specific Epstein–Zin dynamic
program with Bellman equation

𝑣(𝑤, 𝑒) = max
0⩽𝑠⩽𝑤

𝑟(𝑤, 𝑠, 𝑒)𝛼 + 𝛽
(∑
𝑒′
𝑣(𝑠, 𝑒′)𝛾𝜑(𝑒′)

)𝛼/𝛾
1/𝛼

. (34)

Here 𝑤 is current wealth, 𝑠 is savings and 𝑒 is an endowment shock that we take to
be iid with common distribution 𝜑 and range E. We take 𝛽 to be constant in (0, 1)
and restrict 𝑤, 𝑠 to a finite set W. To ensure that (34) is well-defined at all parameter
values, we assume 𝑟 > 0. The policy operator corresponding to 𝜎 ∈ Σ is

(𝑇𝜎 𝑣)(𝑤, 𝑒) =
𝑟(𝑤, 𝜎(𝑤), 𝑒)𝛼 + 𝛽

(∑
𝑒′
𝑣(𝜎(𝑤), 𝑒′)𝛾𝜑(𝑒′)

)𝛼/𝛾
1/𝛼

. (35)

If X := W × E and 𝑉 := (0,∞)X, then 𝒜 = (𝑉, {𝑇𝜎}) is a special case of the ADP
introduced in Section 8.1. Since 𝛽 is constant, we have E(𝛽, 𝑄, 𝜃)1/𝜃 = 𝛽 < 1. Hence
𝒜 is max-stable (Theorem 8.2).

Next consider the operator

(𝐵𝜎 ℎ)(𝑤) =
{∑

𝑒

{𝑟(𝑤, 𝜎(𝑤), 𝑒)𝛼 + 𝛽ℎ(𝜎(𝑤))𝛼}𝛾/𝛼 𝜑(𝑒)
}1/𝛾

, (36)

where ℎ is an element of (0,∞)W. If 𝐹 is defined at 𝑣 ∈ 𝑉 by

(𝐹𝑣) (𝑤) =
{∑

𝑒

𝑣(𝑤, 𝑒)𝛾𝜑(𝑒)
}1/𝛾

(𝑤 ∈ W)

and 𝐻 := 𝐹(𝑉) ⊂ (0,∞)W, then ℬ = (𝐻, {𝐵𝜎}) is an ADP. Moreover, ℬ is subordinate
to 𝒜, since, with 𝐺𝜎 defined at ℎ ∈ 𝐻 by

(𝐺𝜎 ℎ)(𝑤, 𝑒) = {𝑟(𝑤, 𝜎(𝑤), 𝑒)𝛼 + 𝛽ℎ(𝜎(𝑤))𝛼}1/𝛼 ((𝑤, 𝑒) ∈ X),



COMPLETELY ABSTRACT DYNAMIC PROGRAMMING 23

we can see that 𝐹 and 𝐺𝜎 are both order-preserving, that 𝑇𝜎 in (35) is equal to 𝐺𝜎 ◦ 𝐹,
and that 𝐵𝜎 in (36) is equal to 𝐹 ◦ 𝐺𝜎.

The benefit of working with ℬ is that 𝐵𝜎 acts on functions that depending only
on 𝑤, rather than both 𝑤 and 𝑒 (as is the case for 𝑇𝜎). These lower dimensional
operations are significantly more efficient, even when the range E of 𝑒 is relatively
small.

Since ℬ is subordinate to 𝒜, Theorem 7.2 implies that ℬ is max-stable and we
can obtain a max-optimal policy for 𝒜 by finding the max-value function ℎ⊤ for ℬ

and then calculating a policy 𝜎 obeying 𝐺𝜎 ℎ⊤ = 𝐺⊤ ℎ⊤ (see (ii) in Theorem 7.2). By
the definition of 𝐺𝜎 in (23), this means that we solve for 𝜎 satisfying

𝜎(𝑤, 𝑒) ∈ arg max
0⩽𝑠⩽𝑤

{𝑟(𝑤, 𝑠, 𝑒)𝛼 + 𝛽ℎ(𝑠)𝛼}1/𝛼 (37)

with ℎ = ℎ⊤ at each (𝑤, 𝑒) ∈ X. To compute ℎ⊤, we can use Theorem 5.1, which
tells us that Howard max-policy iteration converges to ℎ⊤ in finitely many steps.
Summarizing this analysis, an optimal policy for 𝒜 can be computed via Algorithm 1.

Algorithm 1: Solving 𝒜 via ℬ

1 input 𝜎0 ∈ Σ, set 𝑘← 0 and 𝜀← 1
2 while 𝜀 > 0 do
3 ℎ𝑘 ← the fixed point of 𝐵𝜎𝑘
4 𝜎𝑘+1 ← an ℎ𝑘-max-greedy policy, satisfying

𝜎𝑘+1(𝑤) ∈ arg max
0⩽𝑠⩽𝑤

{∑
𝑒

{𝑟(𝑤, 𝑠, 𝑒)𝛼 + 𝛽ℎ(𝑠)𝛼}𝛾/𝛼 𝜑(𝑒)
}1/𝛾

5 𝜀← 1{𝜎𝑘 ≠ 𝜎𝑘+1}
6 𝑘← 𝑘 + 1
7 end
8 return the 𝜎 in (37) with ℎ = ℎ𝑘

Figure 1 shows 𝑤 ↦→ 𝜎∗(𝑤, 𝑒) for two values of 𝑒 (smallest and largest) when 𝜎∗ is the
optimal policy, calculated using Algorithm 1. In the figure we set 𝑟(𝑤, 𝑠, 𝑒) = (𝑤−𝑠+𝑒)
and choose 𝛼 and 𝛾 to match values used in Schorfheide et al. (2018). The full
parameterization is at https://github.com/jstac/adps_public.

In Figure 2 we display the relative speed gain from using the lower-dimensional
model ℬ instead of 𝒜 across multiple choices of |W| and |E|. The speed gain is

https://github.com/jstac/adps_public


24 THOMAS J. SARGENT AND JOHN STACHURSKI

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
45

σ∗(·, e1)

σ∗(·, eN)

Figure 1. Optimal savings policy with Epstein–Zin preference

20 30 40 50 60 70 80 90 100

size of E

2

4

6

8

10

12

14

16

18

speed gain with β = 0.96

speed gain with β = 0.98

Figure 2. Speed gain from replacing 𝒜 with subordinate model ℬ

the time required to solve an optimal policy for 𝒜 using HPI applied to 𝒜 (as in
Theorem 5.1), divided by the time required to solve for the same optimal policy via
Algorithm 1. The speed gain increases linearly in the size of E. Code (in Julia) and
full details can be found at https://github.com/jstac/adps_public.

https://github.com/jstac/adps_public


COMPLETELY ABSTRACT DYNAMIC PROGRAMMING 25

9. Conclusion

We have studied dynamic programming in a setting that abstracts further than
Bertsekas (2022). We formulated a dynamic program as a family of self-maps on a
partially ordered space. The framework is sufficient to define and study optimality and
includes all dynamic programming applications with which we are familiar, ranging
from discrete to continuous time and from finite to infinite horizons.

After constructing and defining abstract dynamic programs, we studied relation-
ships between dynamic programs, including isomorphic dynamic programs and sub-
ordinate dynamic programs. We showed how optimality transmits across dynamic
programs that are paired by these relationships, and how these ideas simplify analy-
sis and open efficient new angles of attack.

Many interesting questions remain unanswered. For example, it would be helpful
to uncover more conditions under which max- and min-stability hold across particular
classes of applications. Other useful relationships may wait to be uncovered, some of
which can, we hope, be seen more clearly from our abstract perspective.

Appendix A. Remaining Proofs

A.1. Proof of Optimality Results. Let 𝒜 = (𝑉, {𝑇𝜎}) be an ADP. When max-
greedy policies exist, we let 𝑇⊤ be the Bellman max-operator and 𝐻⊤ be the Howard
max-operator. As above, we denote the greatest element of 𝑉Σ by 𝑣⊤ whenever it
exists.

Lemma A.1. If every 𝑣 ∈ 𝑉 has at least one max-greedy policy, then the following
statements are true:

(i) 𝐻⊤ obeys 𝑣𝜎 ⪯ 𝐻⊤ 𝑣𝜎 for all 𝜎 ∈ Σ.
(ii) If 𝜎 ∈ Σ and 𝑇𝑣𝜎 = 𝑣𝜎, then 𝑣⊤ exists in 𝑉 and 𝑣𝜎 = 𝑣⊤.
(iii) If 𝑣 ∈ 𝑉 and 𝐻⊤ 𝑣 = 𝑣, then 𝑣 = 𝑣⊤ and 𝑇⊤ 𝑣⊤ = 𝑣⊤.
(iv) If 𝑣 ∈ 𝑉 and Σ is finite, then 𝑣⊤ exists, 𝐻⊤ 𝑣⊤ = 𝑣⊤ and and (𝐻𝑘

⊤𝑣)𝑘⩾0 converges
to 𝑣⊤ in finitely many steps.

Proof. As for (i), fix 𝜎 ∈ Σ and let 𝜏 be such that 𝐻⊤𝑣𝜎 = 𝑣𝜏. Since 𝜏 is 𝑣𝜎-greedy, we
have 𝑣𝜎 = 𝑇𝜎 𝑣𝜎 ⪯ 𝑇⊤ 𝑣𝜎 = 𝑇𝜏 𝑣𝜎. Upward stability of 𝑇𝜏 gives 𝑣𝜎 ⪯ 𝑣𝜏 = 𝐻⊤𝑣𝜎.

As for (ii), suppose 𝜎 ∈ Σ and 𝑇⊤ 𝑣𝜎 = 𝑣𝜎. Fix 𝜏 ∈ Σ and note that 𝑣𝜎 = 𝑇⊤ 𝑣𝜎 ⪰ 𝑇𝜏 𝑣𝜎.
Downward stability of 𝑇𝜏 implies 𝑣𝜎 ⪰ 𝑣𝜏. Since 𝜏 ∈ Σ was arbitrary, 𝑣𝜎 = 𝑣⊤.



26 THOMAS J. SARGENT AND JOHN STACHURSKI

As for (iii), fix 𝑣 ∈ 𝑉 with 𝐻⊤ 𝑣 = 𝑣 and let 𝜎 be such that 𝐻⊤ 𝑣 = 𝑣𝜎. Then 𝑣𝜎 = 𝑣,
and, since 𝜎 is 𝑣-max-greedy, 𝑇𝜎 𝑣 = 𝑇⊤ 𝑣. But then 𝑇𝜎 𝑣𝜎 = 𝑇⊤ 𝑣𝜎, and, since 𝑣𝜎 = 𝑇𝜎 𝑣𝜎,
we have 𝑣𝜎 = 𝑇⊤ 𝑣𝜎. Part (ii) now implies 𝑣 = 𝑣𝜎 = 𝑣⊤. This proves the first claim.
Regarding the second, substituting 𝑣𝜎 = 𝑣⊤ into 𝑣𝜎 = 𝑇⊤ 𝑣𝜎 yields 𝑣⊤ = 𝑇⊤ 𝑣⊤.

For (iv), it suffices to show that 𝐻⊤ 𝑣⊤ = 𝑣⊤ and there exists a 𝐾 ∈ N such that
𝐻𝐾
⊤𝑣 = 𝑣⊤. To this end, let 𝑣𝑘 = 𝐻𝑘

⊤𝑣 and note that 𝑣𝑘 ∈ 𝑉Σ for all 𝑘 ⩾ 1. Part (i)
implies that 𝑣𝑘+1 ⪰ 𝑣𝑘 for all 𝑘 ∈ N. Since the sequence (𝑣𝑘) is contained in the finite
set 𝑉Σ, it must be that 𝑣𝐾+1 = 𝑣𝐾 for some 𝐾 ∈ N (since otherwise 𝑉Σ contains an
infinite sequence of distinct points). But then 𝐻⊤ 𝑣𝐾 = 𝑣𝐾+1 = 𝑣𝐾, so 𝑣𝐾 is a fixed
point of 𝐻⊤. Part (iii) now implies that 𝑣𝐾 = 𝑣⊤. □

Proof of Proposition 4.1. If 𝒜 is an ADP such that max-greedy policies exist and Σ is
finite, then, by (iii)–(iv) of Lemma A.1, the point 𝑣⊤ is a fixed point of 𝑇⊤. This proves
the max version of Proposition 4.1. The proof of the min version is analogous. □

Lemma A.2. If 𝒜 is max-stable, then the following statements hold.

(i) 𝑉Σ has a greatest element 𝑣⊤ and
(ii) 𝑣⊤ is the unique fixed point of 𝑇⊤ in 𝑉.
(iii) a policy is max-optimal if and only if it is 𝑣⊤-max-greedy.
(iv) at least one optimal policy exists.

Proof. As for parts (i)–(ii), we observe that, by max-stability, 𝑇⊤ has a fixed point 𝑣 in
𝑉. By existence of max-greedy policies, we can find a 𝜎 ∈ Σ such that 𝑣 = 𝑇⊤ 𝑣 = 𝑇𝜎 𝑣.
But 𝑇𝜎 has a unique fixed point in 𝑉, equal to 𝑣𝜎, so 𝑣 = 𝑣𝜎. Moreover, if 𝜏 is any
policy, then 𝑇𝜏 𝑣 ⪯ 𝑇⊤ 𝑣 = 𝑣 and hence, by downward stability, 𝑣𝜏 ⪯ 𝑣. These facts
imply that 𝑣⊤ := 𝑣 is the greatest element of 𝑉Σ and a fixed point of 𝑇⊤. Since greatest
elements are unique, 𝑣⊤ is the only fixed point of 𝑇⊤ in 𝑉.

For (iii), parts (i)–(ii) give 𝑣⊤ ∈ 𝑉 and 𝑇⊤ 𝑣⊤ = 𝑣⊤. Now recall that 𝜎 is optimal
if and only if 𝑣𝜎 = 𝑣⊤. Since 𝑣𝜎 is the unique fixed point of 𝑇𝜎, this is equivalent to
𝑇𝜎 𝑣⊤ = 𝑣⊤. Since 𝑇⊤ 𝑣⊤ = 𝑣⊤, the last statement is equivalent to 𝑇𝜎 𝑣⊤ = 𝑇⊤𝑣⊤, which
is, in turn equivalent to the statement that 𝜎 is 𝑣⊤-greedy. This proves the first claim
in the proposition.

Part (iv) follows from part (iii) and existence of a 𝑣⊤-greedy policy. □

Proof of Theorem 5.1. Parts (i)–(iv) of Theorem 5.1 follow from Lemma A.2. The
last claim follows from Lemma A.1. □



COMPLETELY ABSTRACT DYNAMIC PROGRAMMING 27

Example A.1. Let 𝑉 = {𝑎, 𝑏} and 𝑉 = {𝑎, 𝑏} where 𝑎 ⪯ 𝑏 and 𝑎 ⪯ 𝑏. Let

𝐹 𝑎 = 𝐹 𝑏 = 𝑎, 𝐺1 𝑎 = 𝐺1 𝑏 = 𝑏 and 𝐺2 𝑎 = 𝐺2 𝑏 = 𝑎.

Being constant functions, 𝐹, 𝐺1 and 𝐺2 are order-preserving. Setting 𝑇𝑖 := 𝐺𝑖 ◦ 𝐹
and 𝑇𝑖 = 𝐹 ◦ 𝐺𝑖 forms ADPs 𝒜 = (𝑉, {𝑇𝑖}) and 𝒜 = (𝑉, {𝑇𝑖}). By construction,
𝒜 is subordinate to 𝒜. For 𝒜 we have 𝑇1𝑎 = 𝑇1𝑏 = 𝑏, so 𝑇1 is order stable and
𝑣1 = 𝑏. Similarly, 𝑇2 is order stable and 𝑣2 = 𝑎. Hence 𝒜 is order stable and
𝑣⊤ = 𝑣1 = 𝑏. Letting Σ∗ be the set of optimal policies, we have Σ∗ = {1}. For 𝒜 we
have 𝑇𝑖 𝑎 = 𝑇𝑖 𝑏 = 𝑎 for 𝑖 = 1, 2, so 𝑣1 = 𝑣2 = 𝑎. Hence 𝑣⊤ = 𝑎 and the set of optimal
policies is Σ̂∗ = {1, 2}. This shows that the reverse implication in the final part of
Theorem 7.2 is invalid: the fact that 𝜎 is max-optimal for 𝒜 does not imply that if
𝜎 is max-optimal for 𝒜.

A.2. Proofs of Epstein–Zin Optimality Results. This section offers a proof of
Theorem 8.2. To do so, we establish the following.

(C1) If E(𝛽, 𝑄, 𝜃)1/𝜃 < 1 and 𝛾 < 0, then 𝒜 is min-stable.
(C2) If E(𝛽, 𝑄, 𝜃)1/𝜃 < 1 and 𝛾 > 0, then 𝒜 is max-stable.
(C3) If E(𝛽, 𝑄, 𝜃)1/𝜃 ⩾ 1, then 𝒜 is not well-posed.

Together these facts establish Theorem 8.2. Indeed, if (C1) holds, then, since 𝒜 and
𝒜 are anti-isomorphic (see Lemma 8.1), it follows that 𝒜 is max-stable (Theorem 6.2).
If (C2) holds, then, since 𝒜 and 𝒜 are isomorphic (see Lemma 8.1), it follows that
𝒜 is max-stable (Theorem 6.1). Finally, if (C3) holds, then 𝒜 is also not well-posed
(by Theorem 6.1 or Theorem 6.2, depending on whether 𝛾 > 0 or 𝛾 < 0.) When 𝒜 is
not well-posed, recursive utility does not exist, so the dynamic program is undefined.

In what follows, given 𝜎 ∈ Σ and defining 𝑃𝜎 as in (10), we set

𝐴𝜎(𝑥, 𝑥′) := 𝛽(𝑥)𝜃𝑃𝜎(𝑥, 𝑥′) (𝑥, 𝑥′ ∈ X).

Also, for any linear operator 𝐵, the symbol 𝜌(𝐵) represents the spectral radius.

Lemma A.3. For all 𝜎 ∈ Σ, we have 𝜌(𝐴𝜎) = E(𝛽, 𝑄, 𝜃).

Proof. Fix 𝑧 ∈ Z and let 1 be a vector of ones. An inductive argument shows that

(𝐴𝑘𝜎1)(𝑥) = (𝐴𝑘𝜎1)(𝑧) = E
𝑘−1∏
𝑡=0

𝛽(𝑍𝑡 (𝑧))𝜃. (38)



28 THOMAS J. SARGENT AND JOHN STACHURSKI

Combining (38) with Theorem 9.1 of Krasnosel’skii et al. (1972), we have

𝜌(𝐴𝜎) = lim
𝑘→∞

{
sup
𝑧
(𝐴𝑘𝜎1) (𝑧)

}1/𝑘
= lim

𝑘→∞

{
sup
𝑧∈Z
E

𝑘−1∏
𝑡=0

𝛽(𝑍𝑡 (𝑧))𝜃
}1/𝑘

,

as was to be shown. □

Lemma A.4. The ADP 𝒜 is order stable if and only if E(𝛽, 𝑄, 𝜃)1/𝜃 < 1. Moreover,
if this condition fails, then 𝒜 is not well posed.

Proof. Fix 𝜎 ∈ Σ and let 𝑉 and 𝑇𝜎 be as defined in Section 8.1. By Theorem 3.1 of
Stachurski et al. (2022),

(i) 𝜌(𝐴𝜎)1/𝜃 < 1 =⇒ (𝑉, 𝑇𝜎) is asymptotically stable on 𝑉, and
(ii) 𝜌(𝐴𝜎)1/𝜃 ⩾ 1 =⇒ 𝑇𝜎 has no fixed point in 𝑉.

We saw in Lemma A.4 that 𝜌(𝐴𝜎) = E(𝛽, 𝑄, 𝜃), so E(𝛽, 𝑄, 𝜃)1/𝜃 < 1 if and only if
(i) holds. In this case, (𝑉, 𝑇𝜎) is asymptotically stable and hence order stable (by
Example 2.1). Therefore 𝒜 is order stable.

If, on the other hand, E(𝛽, 𝑄, 𝜃)1/𝜃 ⩾ 1, then (ii) holds and 𝒜 is not well-posed
(and therefore not order stable). □

Now we return to (C1)–(C3) above. Assume the conditions in (C1). Then 𝒜 is
order stable by Lemma A.4. Also, 𝑣 ∈ 𝑉, we construct a 𝑣-min-greedy policy 𝜎 by
taking

𝜎(𝑥) ∈ arg min
𝑟(𝑥, 𝑎)𝛼 + 𝛽(𝑥)

[∑
𝑥 ′∈X

𝑣(𝑥′)𝑃(𝑥, 𝑎, 𝑥′)
]1/𝜃

𝜃

for all 𝑥 ∈ X. Since the policy set is finite, Proposition 4.1 implies that 𝒜 is min-
stable. Hence (C1) holds. The proof of (C2) is analogous. Finally, (C3) follows
directly from Lemma A.4.

References

Albuquerque, R., Eichenbaum, M., Luo, V. X., and Rebelo, S. (2016). Valuation risk
and asset pricing. The Journal of Finance, 71(6):2861–2904.

Bäuerle, N. and Jaśkiewicz, A. (2018). Stochastic optimal growth model with risk
sensitive preferences. Journal of Economic Theory, 173:181–200.

Bertsekas, D. (2021). Rollout, policy iteration, and distributed reinforcement learning.
Athena Scientific.



COMPLETELY ABSTRACT DYNAMIC PROGRAMMING 29

Bertsekas, D. P. (2022). Abstract dynamic programming. Athena Scientific, 3 edition.
Bloise, G., Le Van, C., and Vailakis, Y. (2023). Do not blame bellman: It is koopmans’

fault. Econometrica, in press.
Davey, B. A. and Priestley, H. A. (2002). Introduction to lattices and order. Cambridge

University Press.
de Groot, O., Richter, A. W., and Throckmorton, N. A. (2018). Uncertainty shocks

in a model of effective demand: Comment. Econometrica, 86(4):1513–1526.
Denardo, E. V. (1967). Contraction mappings in the theory underlying dynamic

programming. Siam Review, 9(2):165–177.
Epstein, L. G. and Zin, S. E. (1989). Risk aversion and the temporal behavior of

consumption and asset returns: A theoretical framework. Econometrica, 57(4):937–
969.

Fei, Y., Yang, Z., Chen, Y., and Wang, Z. (2021). Exponential bellman equation
and improved regret bounds for risk-sensitive reinforcement learning. Advances in
Neural Information Processing Systems, 34:20436–20446.

Gomez-Cram, R. and Yaron, A. (2020). How Important Are Inflation Expectations
for the Nominal Yield Curve? The Review of Financial Studies, 34(2):985–1045.

Guo, X. and Hernández-Lerma, O. (2009). Continuous-time Markov decision pro-
cesses. Springer.

Howard, R. A. and Matheson, J. E. (1972). Risk-sensitive Markov decision processes.
Management science, 18(7):356–369.

Kochenderfer, M. J., Wheeler, T. A., and Wray, K. H. (2022). Algorithms for decision
making. The MIT Press.

Krasnosel’skii, M. A., Vainikko, G. M., Zabreiko, P. P., Rutitskii, Y. B., and Stet-
senko, V. Y. (1972). Approximate Solution of Operator Equations. Springer Nether-
lands.

Layek, G. (2015). An Introduction to Dynamical Systems and Chaos. Springer.
Ma, Q. and Stachurski, J. (2021). Dynamic programming deconstructed: Transforma-

tions of the bellman equation and computational efficiency. Operations Research,
69(5):1591–1607.

Mogensen, P. K. (2018). Solving dynamic discrete choice models: Integrated or
expected value function? arXiv preprint arXiv:1801.03978.

Powell, W. B., Simao, H. P., and Bouzaiene-Ayari, B. (2012). Approximate dynamic
programming in transportation and logistics: a unified framework. EURO Journal
on Transportation and Logistics, 1(3):237–284.

Puterman, M. L. (2005). Markov decision processes: discrete stochastic dynamic
programming. Wiley Interscience.



30 THOMAS J. SARGENT AND JOHN STACHURSKI

Ren, G. and Stachurski, J. (2021). Dynamic programming with value convexity.
Automatica, 130:109641.

Rust, J. (1987). Optimal replacement of gmc bus engines: An empirical model of
harold zurcher. Econometrica, pages 999–1033.

Rust, J. (1994). Structural estimation of markov decision processes. Handbook of
econometrics, 4:3081–3143.

Schorfheide, F., Song, D., and Yaron, A. (2018). Identifying long-run risks: A bayesian
mixed-frequency approach. Econometrica, 86(2):617–654.

Stachurski, J., Wilms, O., and Zhang, J. (2022). Unique solutions to power-
transformed affine systems. arXiv preprint arXiv:2212.00275.

Stachurski, J. and Zhang, J. (2021). Dynamic programming with state-dependent
discounting. Journal of Economic Theory, 192:105190.

Sternberg, S. (2014). Dynamical Systems. Dover Publications.
Weil, P. (1990). Nonexpected utility in macroeconomics. The Quarterly Journal of

Economics, 105(1):29–42.

Department of Economics, New York University

Email address: ts43@nyu.edu

Research School of Economics, Australian National University

Email address: john.stachurski@anu.edu.au


	1. Introduction
	2. Preliminaries
	3. Abstract Dynamic Programs
	3.1. Definition and Examples
	3.2. Lifetime Values
	3.3. Greedy Policies
	3.4. Bellman Operators

	4. Properties
	5. Optimality
	5.1. Max-Optimality
	5.2. Min-Optimality

	6. Isomorphic ADPs
	6.1. Definition and Properties
	6.2. Isomorphisms and Optimality
	6.3. Anti-Isomorphic ADPs

	7. Subordinate ADPs
	7.1. Definition and Properties
	7.2. Stability
	7.3. Optimality
	7.4. Minimization and Subordination

	8. Applications
	8.1. Modified Epstein–Zin Equations
	8.2. Characterizing Optimality
	8.3. Efficiency from Subordination

	9. Conclusion
	Appendix A. Remaining Proofs
	A.1. Proof of Optimality Results
	A.2. Proofs of Epstein–Zin Optimality Results

	References

