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Abstract

Previous studies have interpreted the rise and fall of U.S. inflation after
World War II in terms of the Fed’s changing views about the natural rate
hypothesis but have left an important question unanswered. Why was the Fed
so slow to implement the low-inflation policy recommended by a natural rate
model even after economists had developed statistical evidence strongly in its
favor? Our answer features model uncertainty. Each period a central bank sets
the systematic part of the inflation rate in light of updated probabilities that
it assigns to three competing models of the Phillips curve. Cautious behavior
induced by model uncertainty can explain why the central bank presided over
the inflation of the 1970s even after the data had convinced it to place much
the highest probability on the natural rate model.

1 Introduction

This paper uses a model of an adaptive monetary authority to interpret the rise
and fall of U.S. inflation in the 1960s, 1970s, and 1980s.1 Following DeLong (1997),

1The model is what David Kreps (1998) called an anticipated utility model. In an anticipated
utility model, a decision maker recurrently maximizes an expected utility function that depends on
a stream of future outcomes, with respect to a model that is recurrently reestimated. Although an
anticipated utility agent learns, he does not purposefully experiment in order to learn more later.
But as data accrue, he adapts and possibly even respecifies the model that he uses to evaluate
expected utility.

1



Taylor (1997), and Sargent (1999), we explore whether the rise and fall of U.S. in-
flation can be attributed to policy makers’ changing beliefs about the natural rate
hypothesis. One story that emphasizes changing beliefs goes as follows. Samuelson
and Solow (1960) taught policy makers that there was an exploitable long-run trade-
off between inflation and unemployment, and inflation rose as the authorities tried
to exploit the tradeoff. But that misguided policy experiment generated observations
that taught the authorities the natural rate hypothesis, which eventually convinced
them to reduce inflation.

The adverb “eventually” significantly qualifies this story because the data indicate
that the authorities should have learned the natural rate long before they acted upon
it. Sims (2001) and Cogley and Sargent (2001) demonstrate that the natural rate hy-
pothesis should have been learned by the early 1970s, yet inflation remained high until
the early 1980s.2 If the rise and fall of U.S. inflation reflected only changing beliefs
about the natural rate hypothesis, and not, say, altered purposes or decision mak-
ing arrangements, then it is puzzling that inflation remained high for a decade after
substantial statistical evidence favoring the natural rate hypothesis had accumulated.
By the early 1970s, average inflation was on the rise, yet average unemployment had
not fallen, contrary to the Samuelson-Solow model. The events of the early 1970s
turned the economics profession away from the Samuelson-Solow model. Why did
policy makers wait a decade to act on this lesson?

A number of alternative explanations for the high U.S. inflation of the 1970s
refrain from assigning an important role to policy makers’ changing beliefs about
the natural rate hypothesis. For example, DeLong (1997) questions the motives
of Arthur Burns. Parkin (1993) and Ireland (1999) say that discretionary policy
making combined with a higher natural rate of unemployment resulted in a higher
inflationary bias. Chari, Christiano, and Eichenbaum (1998) and Albanesi, Chari,
and Christiano (2002) ascribe the high inflation to an expectations trap. Orphanides
(1999), Lansing (1999), and Romer and Romer (2002) emphasize that the Federal
Reserve was slow to detect the productivity slowdown and the rise in the natural
rate of unemployment.3 Primiceri (2003) emphasizes evolution in the Fed’s estimates
not only of the natural rate but also of the slope of the short-term trade-off between
inflation and unemployment.4 We believe that there is some truth in all of these ideas
but explore a different explanation. We show that concerns about the robustness of a
proposed inflation-stabilization policy across alternative models would have induced

2Sims credits Albert Ando for first making this point.
3See Christiano and Fitzgerald (2003) and Velde (2003) for critical surveys of these and other

theories of the Great Inflation. See John Taylor (2002) for an account that emphasizes the Fed’s
learning about theories of the natural unemployment rate.

4Erceg and Levin (2003) investigate how the public’s learning about the Fed’s motives can explain
the recession that accompanied by the reduction of inflation that the Fed engineered under Paul
Volcker.
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policy makers to choose high inflation even though the data favored a model that
recommended low inflation.5

Our calculations confirm that by the mid 1970s, zero inflation would have been
optimal according to the model that was most probable among the ones that we
consider. But because the optimal policy takes model uncertainty into account via
Bayesian model averaging, that was not enough to convince our Bayesian policy maker
to abstain from trying to exploit the Phillips curve. In two competing models that had
smaller but still non-zero probability weights, a policy of quickly reducing inflation
would have been calamitous. If very bad results are associated with a particular policy
according to any of the models that retain a positive but small posterior probability,
our Bayesian policy maker refrains from that policy. When outcomes from following a
recommendation to stabilize inflation become worse under some particular worst-case
model, the ultimate decisions tend to track the recommendations of that worst-case
model. In this way, our statistical model rationalizes the idea that the high inflation
of the 1970s reflected the Fed’s desire to guard against the bad outcomes that would
have come from a low-inflation policy under models that by the 1970s should have
had low posterior probabilities.

2 Learning and policy making with multiple ap-

proximating models

2.1 Preliminary adaptive setup with a single approximating

model

We model the U.S. monetary authority as an adaptive decision maker like ones
described by Kreps (1998) and Sargent (1999) in the context of models of the Phillips
curve like ones in Sargent (1999), augmented with features that introduce a concern
for robustness to model uncertainty. The models in Sargent’s monograph work as
follows. In truth, but unbeknownst to the central bank, a natural rate version of a
Phillips curve relates unemployment to surprise inflation,

ut − u∗
t = −θ(yt − xt) + ρ(L)ut−1 + ηt, (1)

where ut is unemployment, u∗
t is the natural rate, yt is actual inflation, xt is both the

expected inflation and the systematic part of inflation and ηt is an iid normal shock
with mean zero and variance σ2

η. The central bank sets xt with a decision rule that is
described below; xt is related to actual inflation according to

yt = xt + ξt, (2)

5Blinder (1998, p. 12-13) recounts how he used multiple models to evaluate alternative policies
when he was Vice Chairman of the Federal Reserve Board.
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where ξt is an iid normal shock with mean zero and variance σ2
ξ .

The central bank does not know equation (1), and instead bases its decisions on
a statistical approximating model,

Yt = X ′
tθ + νt, (3)

where Xt and Yt represent generic right- and left-hand variables in a regression, and
θ is a vector of regression parameters.

The central bank starts date t with an estimated approximating model carried
over from date t − 1. It forms a decision rule for xt by minimizing a discounted
quadratic loss function,

L = Et

∑∞

j=0
βj(u2

t+j + λy2

t+j), (4)

subject to a constraint implied by its time t− 1 estimates of model (3). This induces
a best-response mapping from the loss function and the time t − 1 estimates of the
parameters of its approximating model to those of a time t policy rule, the first
period outcome of which is a time t policy action xt. To emphasize its dependence
on predetermined state variables, we denote it as xt|t−1. The policy action xt = xt|t−1

influences outcomes through equation (1). After observing outcomes Yt, Xt at t, the
central bank re-estimates the parameters of its policy model (equation (3)), preparing
to repeat the same decision process in the next period.

As the central bank’s beliefs (i.e., the parameters of its approximating model)
evolve with the accumulation of data, so too does its policy rule.

2.2 Our three-model model

In contrast to Sargent (1999), we take no stand on the true data generating process.
We drop Sargent’s (1999) assumption that the central bank has a unique approximat-
ing model and instead assume that the central bank acknowledges multiple models.6

Model uncertainty affects the bank’s deliberations and induces a Bayesian form of
robustness of decision rules at least across the domain of alternative models that are
on the table. Our central bank adopts a ‘blue-collar’ version of the approach to policy
making presented in Brock, Durlauf, and West (2003).

We choose three approximating models to represent Phillips curve specifications
that have been influential since the mid to late 1960’s. The first model allows a
permanently exploitable Phillips curve, the second a temporarily exploitable one,
and the third a statistical Phillips curve that is not exploitable even temporarily.
The first statistical model is inspired by Samuelson and Solow (1960),

yt = γ0 + γ1(L)yt−1 + γ2(L)ut + η1t, (5)

6The sense in which the central bank has ‘a model’ is as a weighted average across several models.
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where η1t is iid N(0, σ2
1). Its key feature is that it permits a long-run tradeoff unless

the parameter values take special configurations. We assume that the central bank
considers an unrestricted parameter configuration in order to allow the possibility
of a long-run trade-off. The bank also makes the identifying assumption that η1t is
orthogonal to the right hand variables, including current unemployment.7 This makes
equation (5) a regression.

Model 2 is a restricted form of model 1, inspired by Solow’s (1968) and Tobin’s
(1968) suggestion about how to represent the natural rate hypothesis:

∆yt = δ1(L)∆yt−1 + δ2(L)(ut − u∗
t ) + η2t. (6)

Like the Samuelson-Solow model, this features an exploitable short-run tradeoff be-
tween inflation and unemployment, but it recognizes a distinction between actual
unemployment and the natural rate, and it imposes Solow and Tobin’s version of
long-run neutrality. The restriction that the intercept is zero and that the sum of
the lag weights on yt equals one enforces that the long-run Phillips curve is verti-
cal, located at u∗

t if the roots of δ2(L) are outside the unit circle. We assume that
the authorities make the identifying assumption that η2t is uncorrelated with current
unemployment, so that equation (6) is also a regression.

Our third model is inspired by Lucas (1972) and Sargent (1973), and it enforces
both long-run neutrality and the policy ineffectiveness proposition,

ut − u∗
t = φ1(yt − xt|t−1) + φ2(L)(ut−1 − u∗

t ) + η3t. (7)

This model says that only unexpected inflation matters for unemployment. When
updating estimates of this model, the latent variable xt|t−1 is measured recursively as
the optimal policy of a Bayesian linear regulator who solves a discounted quadratic
control problem taking all three approximating models into account. We describe
how the bank chooses xt|t−1 in detail below.

This model also reverses the direction of fit, putting unemployment on the left side
and inflation on the right. When entertaining this representation, the central bank
makes the identifying assumption that η3t is orthogonal to current inflation. This
identifying assumption differs from those of the other two models, but what matters
for updating is the internal logic of each. Thus, we can proceed with regression
updates for this model as well.8

7Sargent (1999) had more success tracking actual inflation with this ‘Keynesian’ direction of fit.
In contrast, a ‘classical’ direction of fit would put unemployment on the left-hand side, as in equation
(1). See King and Watson (1994) and Sargent (1999) for background on how the direction of fit
matters for the properties of Phillips curves.

8This direction of fit issue is important in understanding some of Primiceri’s results. Like us,
Primiceri (2003) emphasizes how monetary policy changed as the authorities updated their estimates,
and he also attributes the inflation of the 1970s to the high perceived sacrifice ratio that Keynesian
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Associated with each model and date is a posterior probability, αit, i = 1, 2, 3.
We assume the authorities entertain no other possibilities, so α1t + α2t + α3t = 1 for
all t. One obvious shortcoming of this approach is the assumption of an exhaustive
list of explicitly specified possible models. This has led Hansen and Sargent (2001
and 2002) and others to specify a single approximating model, to surround it with an
uncountable cloud of alternative models each of whose entropy relative to the approx-
imating model is bounded, and to use a minimax decision rule because the decision
maker cannot put a unique prior over that huge set of models. Relative to Hansen
and Sargent’s robust decision maker and his continuum of vaguely specified models,
our three-model decision maker knows much more. He can construct a posterior over
his three models, then make decisions by an appropriate form of model averaging.
Nevertheless, a minimax flavor emerges from our Bayesian calculations with three
models.

The central bank’s decision process is similar to the one in Sargent’s (1999) model
that we described above, but with an extra step. At each date, the central bank
implements the action recommended by last period’s policy rule. Next, it gets new
data and updates the estimates of each of its three models according to Bayes’ theo-
rem. It also recalculates the model weights αit by evaluating the marginal likelihood
associated with each model. Then it re-optimizes in light of its revised view of the
world, preparing a contingency plan for the next period.9

Phillips curve models presented to policy makers. In the early 1970s, the covariance between inflation
and unemployment moved downward toward zero, altering perceptions about the cost of disinflation
in both the Keynesian and Classical Phillips curve models. (Again, see King and Watson (1994)
for a critical discussion of Keynesian and Classical directions of fit.) In a Keynesian Phillips curve,
this diminished covariance flattens the short-term tradeoff, making the authorities believe that a
long spell of high unemployment would be needed to bring down inflation, prompting Keynesian
modelers to be less inclined to disinflate. But for a classical Phillips curve, the shift toward a zero
covariance steepens the short-term tradeoff, making the authorities believe that inflation could be
reduced at less cost in terms of higher unemployment. Thus, a classically-oriented policy maker
would be more inclined to disinflate. Classical versions of the Phillips curve were competitive in
terms of fit, so it appears puzzling that so much weight would be put on the lessons of one model
and so little on the other. Our story explains this by emphasizing a concern for robustness.

9The observational equivalence of natural and unnatural rate models pointed out by Sargent
(1976) pertains to our calculations in an important way. Using the Wold decomposition theorem,
Sargent demonstrated that under a time-invariant decision rule for the systematic part of infla-
tion, models that make unemployment depend on a distributed lag of inflation are observationally
equivalent with ones that make unemployment depend on a distributed lag of surprises in inflation.
That result seems to suggest that our three models should be difficult to distinguish, but in fact
there are two sources of information that inform the posterior probabilities αit. One involves a
distinction between variation within and across monetary regimes. Although our models are obser-
vationally equivalent within a monetary regime, they are not equivalent across regimes, because the
Lucas-Sargent model says that the equilibrium law of motion for unemployment is invariant across
policy rules while the Keynesian models say it is not. In the calculations reported below, xt|t−1 is
formed not from a time-invariant decision rule but from one that changes from period to period.
The weight on the Lucas-Sargent model rises when new data support the invariance property, and
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Notice that with this timing protocol, the Lucas-Sargent model always recom-
mends xt|t−1 = 0. There is no inflation bias because the central bank moves first,
setting policy for date t based on information available at t−1, and there is no reason
to vary xt|t−1 to stabilize ut because systematic policy is neutral. Because variation
in yt is costly and there are no offsetting benefits in terms of reduced variation in ut,
the optimal policy within this model is xLS

t|t−1
= 0.10

Now we turn to the details of the central bank’s decision process. The first of
the bank’s three tasks is to update parameter estimates for each of its approximat-
ing models. Within each model, the central bank’s identifying assumptions make
equations (5), (6), and (7) regressions. In each case, we assume the bank adopts a
normal-inverse gamma prior,

p(θ, σ2) = p(θ|σ2)p(σ2), (8)

where σ2 is the variance of Phillips curve residuals. The marginal prior p(σ2) makes
the error variance an inverse gamma variate, and the conditional prior p(θ|σ2) makes
the regression parameters a normal random vector. Along with this, we assume
that the Phillips curve residuals ηit are identically and independently distributed
and conditionally normal given the right-hand variables. These assumptions make
the conditional likelihood function normal. With a normal-inverse gamma prior and
a Gaussian conditional likelihood, the posterior also belongs to the normal-inverse
gamma family, and its parameters can be updated recursively.

In particular, let Zt summarize the joint history of (Xt, Yt) up to date t. Before
seeing data at t, the central bank’s prior is

p(θ|σ2, Zt−1) = N(θt−1, σ
2P−1

t−1), (9)

p(σ2|Zt−1) = IG(st−1, vt−1),

where θt−1, Pt−1, st−1, and νt−1 represent estimates based on data through period t−1.
The variable Pt−1 is a precision matrix, st−1 is a scale parameter for the inverse-gamma
density, and vt−1 counts degrees of freedom. The estimate of σ2 is just st−1/vt−1. After

it falls when they do not. The second force for change in αit is parsimony. The Solow-Tobin model
is nested within the Samuelson-Solow model but has fewer parameters, and our calculations credit
that parsimony. If new data suggest the Solow-Tobin model fits about as well, then its posterior
weight will rise relative to the Samuelson-Solow model. During an age before the advent of non-
parametric (i.e., infinite-parametric) models, Arthur Goldberger is reputed often to have warned
against proliferating free parameters. Robert Lucas (1981, p. 188) said that “ . . . it is useful, in a
general way, to be hostile toward theorists bearing free parameters.” Our Bayesian calculations are
hostile toward additional free parameters.

10See Stokey (1989) for a lucid discussion of time inconsistency problems in terms of alternative
timing protocols. See Sargent (1999, chapter 3) for an application of Stokey’s analysis to the Phillips
curve.

7



seeing outcomes at t, the central bank’s updated beliefs are

p(θ|σ2, Zt) = N(θt, σ
2P−1

t ), (10)

p(σ2|Zt) = IG(st, vt),

where

Pt = Pt−1 + XtX
′
t, (11)

θt = P−1

t (Pt−1θt−1 + XtYt),

st = st−1 + Y ′
t Yt + θ′t−1Pt−1θt−1 − θ′tPtθt,

vt = vt−1 + 1.

The posterior for date t becomes the prior for date t + 1.
The second task the central bank performs each period is to revise the model

probability weights. For the normal-inverse gamma family, this can also be done
recursively. Let αi0 = p(Mi) represent the prior probability on model i. According
to Bayes’ theorem, the posterior probability is

p(Mi|Y
t, X t) ∝ mit · p(Mi) ≡ wit, (12)

where mit is the marginalized likelihood function for model i at date t. The conditional
likelihood for model i through date t is defined via a prediction error decomposition
as

l(Y t, X t, θ, σ2) =
∏t

s=1
p(Ys|Xs, θ, σ

2). (13)

Then the marginalized likelihood is

mit =

∫∫

l(Y t
i , X t

i , θi, σ
2

i )p(θi, σ
2

i )dθidσ2

i . (14)

Notice that mit is the normalizing constant in Bayes’ theorem. Therefore, it can also
be expressed as

mit =
l(Y t

i , X t
i , θi, σ

2
i )p(θi, σ

2
i )

p(θi, σ2
i |Z

t
i )

. (15)

For the models described above, analytical expressions are available for all the func-
tions on the right-hand side, so the marginal likelihood can be calculated simply
by evaluating (15), e.g. at the posterior mean of θi, σ

2
i . This is helpful because it

side-steps the integration in (14).
To develop a recursion for the unnormalized model weights wit, take the ratio of

wit+1 to wit,

wit+1

wit

=
mit+1 · p(Mi)

mit · p(Mi)
, (16)

=
l(Y t+1

i , X t+1

i , θi, σ
2
i )p(θi, σ

2
i )

p(θi, σ2
i |Z

t+1

i )

p(θi, σ
2
i |Z

t
i )

l(Y t
i , X t

i , θi, σ2
i )p(θi, σ2

i )
.
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Next, factor the conditional likelihood as

l(Y t+1, X t+1, θ, σ2) = p(Yt+1|Xt+1, θ, σ
2)l(Y t, X t, θ, σ2). (17)

After substituting this expression into the previous equation and simplifying, one
finds

wit+1

wit

= p(Yit+1|Xit+1, θi, σ
2

i )
p(θi, σ

2
i |Z

t
i )

p(θi, σ2
i |Z

t+1

i )
, (18)

or

log wit+1 = log wit + log p(Yit+1|Xit+1, θi, σ
2

i ) − log
p(θi, σ

2
i |Z

t+1

i )

p(θi, σ2
i |Z

t
i )

. (19)

The term log p(Yit+1|Xit+1, θi, σ
2
i ) is the conditional log-likelihood for observation t+1,

and log p(θi, σ
2
i |Z

t+1

i ) − log p(θi, σ
2
i |Z

t
i ) is the change in the log posterior that results

from a new observation. These are easy to calculate for the normal-inverse gamma
family.11

A renormalization enforces that the model weights sum to 1,

αit =
wit

w1t + w2t + w3t

. (20)

An equivalent expression for αit relates it to the sum of log posterior odds ratios,

αit = [exp R1i(t) + exp R2i(t) + exp R3i(t)]
−1 , (21)

where Rji(t) = (log wjt − log wit) summarizes the weight of the evidence favoring
model j relative to model i. Equation (21) says that αit is inversely proportional to
the weight of the evidence that can be advanced against model i. The central bank
uses the probability weights αit in its policy deliberations.

From conditions (11) and (19), one can see that the central bank’s approximating
models are built for tractability. So long as the models remain within the normal-
inverse gamma family, updates of parameters and model weights are quite simple.
Stepping outside this family would significantly complicate the calculations because
then we would have to tackle the integral in (14), which is often costly to compute.12

The central bank’s third task each period is to solve an optimal control problem
that takes the form of an optimal linear regulator problem. In forming this prob-
lem, we ascribe the type of adaptive behavior contained in models of Kreps (1998)
and Sargent (1999). In particular, when reformulating its policy rule, we assume the
central bank treats the estimated parameters of its approximating models as if they
were constants rather than random variables that come from a sequential estimation

11An analytical expression for the normal-inverse gamma density can be found in appendix A.2.4
of Bauwens, Lubrano, and Richard (2000).

12More precisely, for tractability we want to remain within a conjugate family, and this is the
most natural conjugate family for this problem.

9



process. This behavioral assumption has two consequences. First, it means that
decision rules depend only on point estimates and not posterior variances or higher
moments, so it deactivates a concern for parameter uncertainty within each approxi-
mating model, an element of the problem emphasized by Brainard (1967). Second, it
also ignores the connection between today’s policy and tomorrow’s information flow,
a link that provides a motive for experimentation in the models of Wieland (2000a,b)
and Beck and Wieland (2002). Thus, our central bank adheres to the prescriptions
of Blinder (1998) and Lucas (1981) that the central bank should resist the tempta-
tion to run experiments that will help it learn about the structure of the economy.13

Nevertheless, experimentation that emerges from benevolent motives but mistaken
beliefs is a decisive feature of our story.

To cast the central bank’s problem as an optimal linear regulator, we first write
the approximating models as

Sit+j = Ai(t − 1)Sit+j−1 + Bi(t − 1)xt+j|t−1 + Ci(t − 1)ηit+j (22)

where (Sit, Ai(t − 1), Bi(t − 1), Ci(t − 1)) are the state vector and system arrays for
model i at time t. The system arrays are evaluated at the point estimates that emerge
from equation (11). The details for each model are spelled out in the appendix. One
point that bears emphasis is that arriving at this specification involves inverting the
Keynesian Phillips curves to express them in terms of the classical direction of fit. In
other words, after estimating (5) and (6), we re-arrange to put unemployment on the
left-hand side and current inflation on the right. This puts the Keynesian models in
a form in which it is sensible to imagine controlling ut and yt via settings for xt|t−1.
We emphasize that although the regressions that produce the Samuelson-Solow and
the Solow-Tobin models both have yt on the left side, the government always regards
inflation as under its control via equation (2).14 Thus, xt|t−1 is the common time t

instrument of the monetary authority in all three of the models. The mechanics are
spelled out in the appendix.

The loss function for model i can be expressed as

L(Mi) = Et

∑∞

j=0
βj(S ′

it+jM
′
si
QMsi

Sit+j + x′
t+j|t−1Rxt+j|t−1), (23)

13Blinder (p. 11) states “while there are some fairly sophisticated techniques for dealing with
parameter uncertainty in optimal control models with learning, those methods have not attracted
the attention of either macroeconomists or policymakers. There is a good reason for this inattention,
I think: You don’t conduct policy experiments on a real economy solely to sharpen your econometric
estimates.” Lucas (1981, p. 288) remarks: “Social experiments on the grand scale may be instructive
and admirable, but they are best admired at a distance. The idea, if the marginal social product
of economics is positive, must be to gain some confidence that the component parts of the program
are in some sense reliable prior to running it at the expense of our neighbors.”

14Again, see King and Watson (1994) for a discussion of the consequences and interpretations of
alternative directions of fit in the empirical Phillips curve literature.
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where Msi
is a selection matrix that picks out the targets (yt, ut) from the state vector

Sit, Q and R are positive semidefinite weighting matrices that penalize deviations from
the target and variation in the instrument, and xt+j|t−1 is the expected value of xt+j

conditioned on the model estimated at time t − 1. We set

Q =

(

1 0
0 λ

)

, (24)

to reflect the relative weights on unemployment and inflation, respectively. We also
set R equal to 0.001, mostly for computational reasons.15

To put the problem in the standard form for an optimal linear regulator, stack
the model-specific constraints as





S1t+j

S2t+j

S3t+j



 =





A1(t − 1) 0 0
0 A2(t − 1) 0
0 0 A3(t − 1)









S1t+j−1

S2t+j−1

S3t+j−1



 (25)

+





B1(t − 1)
B2(t − 1)
B3(t − 1)



xt+j|t−1

+





C1(t − 1) 0 0
0 C2(t − 1) 0
0 0 C3(t − 1)









η1t

η2t

η3t





or in a more compact notation

SEt+j = AE(t − 1)SEt+j−1 + BE(t − 1)xt+j|t−1 + CE(t − 1)ηt (26)

where SEt = [S ′
1t, S

′
2t, S

′
3t]

′ and so on. This composite transition equation encompasses
the three submodels. The central bank’s loss function can also be written in this
notation. After averaging across models, the expected loss is

LE = α1tL(M1) + α2tL(M2) + α3tL(M3), (27)

= Et

∑3

i=1
αit

∑∞

j=0
βj(S ′

it+jM
′
si
QMsi

Sit+j + x′
t+j|t−1Rxt+j|t−1),

= Et

∑∞

j=0
βj(S ′

E,t+jQEtSE,t+j + x′
t+j|t−1Rxt+j|t−1),

where

QEt =





α1tM
′
s1

QMs1
0 0

0 α2tM
′
s2

QMs2
0

0 0 α3tM
′
s3

QMs3



 . (28)

15This allows us to use a doubling algorithm to solve the optimal linear regulator problem. The
doubling algorithm requires a positive definite R, and we would have to use slower algorithms if R

were 0. See Anderson et.al. (1996) for a discussion of the doubling algorithm and its properties vis

a vis alternative algorithms.
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Notice how QEt, the weighting matrix in the complete model, counts each model in
proportion to its posterior probability. The weights vary from period to period as the
models become more or less plausible in light of new data.

The central bank chooses a decision rule for xt|t−1 by minimizing its expected loss
(equation 27) subject to the constraint implied by the composite transition equation
(equation 26). The central bank’s Bellman equation at time t is

vt(SE) = max
x

{−S ′
EQEtSE − x′Rx + βEvt(S

∗
E)} (29)

where the maximization is subject to (26) and the expectation Et−1 is with respect
to the distribution of ηt in (26). This problem takes the form of an optimal linear
regulator. The optimal decision rule takes the form

xt|t−1 = −fE(t−1) ·SEt−1 = −fE(t−1)1S1t−1−f 2

E(t−1)S2t−1−f 3

E(t−1)S3t−1. (30)

If the composite model is ‘detectable’ and ‘stabilizable,’ then the policy rule fE can be
computed using standard algorithms (e.g., see Sargent 1980 and Anderson, Hansen,
McGratten, and Sargent 1996).16

Detectability and stabilizability also guarantee that the closed-loop matrix (AE −
BEfE) has eigenvalues less than β−1/2 in magnitude, thus ensuring that LE is finite.
Assuming that the posterior probability weights are all strictly positive, this means
that each submodel also has finite expected loss under the optimal rule. In other
words, an optimal policy simultaneously stabilizes all the submodels.

This is not necessarily the case under an arbitrary policy rule. If a policy fails
to stabilize one of the submodels, so that the closed-loop matrix associated with
that model has an eigenvalue greater than β−1/2 in absolute value, then the expected
loss is infinite, both for that submodel and for the complete model. A Bayesian
linear regulator avoids such rules, even if the unstable submodel has a low probability
weight, because a small probability weight cannot counterbalance an infinite expected
loss.

From this observation there emerges a connection with the minimax approach. An
unstabilized submodel represents a worst-case possibility against which a Bayesian
linear regulator wants to guard. That submodel exerts an influence on the choice of
policy that is disproportionate to its probability weight. As in the minimax approach,
preventing disasters, even those expected to occur with low probability, is the first
priority for policy.

A Bayesian linear regulator who is permitted endlessly to proliferate submodels
could become paralyzed because the encompassing model may become unstabilizable
if too many exotic components are added to the mix. That is, if the composite model
contains several unusual elements, there may exist no f that simultaneously stabilizes

16Our programs always check these conditions.
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them all. One solution, proposed by Madigan and Raftery (1994), uses ‘Occam’s
window’ to exclude submodels with posterior probability below some threshold. This
threshold is the analog to the parameter that restrains the activity of the ‘evil agent’
in the minimax approach.

The problem of paralysis does not arise in our application because we consider
three conventional Phillips curve specifications. For the calculations reported below,
the composite model is always detectable and stabilizable. But it could be relevant
in other applications.

3 A statistical history of thought and policy

The free parameters in this model are the initial probability weights, αi0, the
central bank’s initial priors on parameters of each approximating model, and the
parameters β and λ that govern its loss function. Everything else is updated recur-
sively, via equations (11) and (19). In principle, these parameters could be estimated
by GMM or MLE, but we begin our empirical exploration with a calibration. For
preliminary evidence, we set plausible values for the free parameters, turn on the
recursions with actual data for inflation and unemployment, and see what we get.

The data are standard. Inflation is measured by the log difference in the chain-
weighted GDP deflator, and unemployment is the civilian unemployment rate.17

Both series are quarterly and seasonally adjusted, and they span the period 1948.Q1
through 2002.Q4.

To set initial priors for the central bank’s approximating models, we use estimates
taken from the first 12 years of data, 1948-1959, with an allowance for lags at the
beginning of the sample.18 The lag order for each model is summarized in table
1. The current value plus 4 lags of inflation enter the two Keynesian models along
with the current value plus two lags of unemployment. In the Lucas-Sargent model,
unemployment is assumed to be AR(2), perturbed by the current value of unexpected
inflation, yt − xt|t−1. These choices of lag length emerged after some experimentation
and they compromise parsimony and fit.

17We also tried CPI inflation and the unemployment rate for white males aged 20 years or more,
but they resulted in undetectable, unstabilizable systems, which undermines theorems guaranteeing
convergence of Riccati equation iterations.

18The Lucas-Sargent model requires that we make an assumption about the evolution of xt in the
training sample. Within the training sample, we generate xt from xt = xt−1 + .075(yt − xt−1) with
initial condition x0 set to the initial rate of inflation y0 in the sample. Outside the training sample,
we use our model-generated xt|t−1 as xt in the Lucas-Sargent Phillips curve.
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Table 1: Lag Order in Central Bank Approximating Models

Inflation Unemployment
Samuelson-Solow γ1 : 4 γ2 : 2

Solow-Tobin δ1 : 3 δ2 : 2
Lucas-Sargent φ1 : 0 φ2 : 2

The Solow-Tobin and Lucas-Sargent specifications involve ut − u∗
t , the gap be-

tween actual unemployment and the natural rate. It would be best to treat u∗
t as

unobservable, adding an optimal filtering step to the bank’s deliberations, but doing
so would substantially complicate our updating procedure. Instead, we prefer to con-
struct an observable proxy. Thus, we measure the natural rate of unemployment by
exponentially smoothing actual unemployment,

u∗
t = u∗

t−1 + g(ut − u∗
t−1), (31)

with the gain parameter g = 0.075.19 The natural rate series was initialized by setting
u∗

t = ut in 1948.Q1. This is a rough and ready way to track movements in the natural
rate.20 In its defense, one important feature is that it is a one-sided low-pass filter
that preserves the integrity of the information flow to the central bank. In contrast,
a two-sided filter would allow the authorities to peek at the future of unemployment.

The parameters θi0, i = 1, 2, 3, were set equal to the point estimates from the
initial regressions, the precision matrix Pi0 equal to the appropriate X ′X matrix;
si0 is the residual sum of squares and νi0 is the degrees of freedom. Since the first
12 years of the sample are used to set priors, 1959.Q4 becomes date zero, and the
recursions begin in 1960.Q1.

In addition to setting the parameters of the central bank’s prior, we must also ini-
tialize the model weights, αi0.

21 Because the Solow-Tobin and Lucas-Sargent models
were yet to be invented, we put most of the initial weight on the Samuelson-Solow
model. Thus, we set α10 = 0.98 and α20 = α30 = 0.01. The results are insensi-
tive to this choice, primarily because the data quickly come to dominate posterior
probabilities.

Finally, we adopt standard values for the parameters of the central bank’s loss
function. The discount factor, β, is set at 1.04−1/4, reflecting an annual discount rate
of 4 percent. The weight on inflation, λ, is set equal to 16, reflecting an equal weight

19Note that this is simply a measurement equation that we use. It is not part of the model used
by the central bank. In particular, the central bank does not believe that it can manipulate u∗

t .
20Hall (1999) recommends a sample average as a robust estimator of the natural unemployment

rate.
21The initial regression output cannot be used to set αi0 because it represents a posterior derived

from a flat prior. Relative model weights are indeterminate in this case, an instance of Lindley’s
paradox. Thus, αi0 must be set a priori.
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with unemployment when inflation is measured at an annual rate. The results are
not sensitive to plausible changes in λ or β.22

These parameters initialize the recursions. On the basis of information avail-
able through 1959.Q4, our hypothetical central bank prepares a contingency plan
for 1960.Q1 and sets x1 accordingly. Then we give it data on actual inflation and
unemployment for 1960.Q1. The central bank re-estimates its models in light of the
new information, re-evaluates their probability weights, and revises its policy rule for
xt|t−1. The bank continues in this fashion, updating one quarter at a time, through
2002.Q4. The results of their calculations are summarized below in the figures 1-10.

Figure 1 illustrates the puzzle. The top panel shows the history of inflation, and
the bottom portrays the evolution of model weights. The weight on the Lucas-Sargent
model is depicted by a solid line, the weight on the Samuelson-Solow by a dashed
line, and that on the Solow-Tobin model by a dashed and dotted line.
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Figure 1: Inflation and Posterior Model Probabilities

The main features of the top panel are familiar. Inflation rose gradually during the
1960s, was high and volatile in the 1970s, and fell sharply in the early 1980s. The run-
up in inflation occurred at a time when the Samuelson-Solow model was dominant.

22The discount factor β matters more if one is willing to entertain nonstandard values, for reasons
explained below.
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Indeed, its probability weight is visually indistinguishable from 1 between 1960 and
1970. But in the early 1970s, evidence began to pile up against the model, and within
5 years its probability weight had fallen almost to zero. The data from those years was
persuasive because they contradicted a key prediction of the Samuelson-Solow model,
viz. that lower average unemployment could be attained at the cost of higher average
inflation. Inflation was trending higher in the early 1970s, but so was unemployment.
The policy experiment being run in those years was very informative for testing the
model.

The Lucas-Sargent model emerged to take its place. Its model weight rose from
almost zero in the late 1960s, to approximately 0.5 by 1973, and then to almost 1 by
1975. It remained dominant until the early 1980s, after which it shared top billing
with the Solow-Tobin model. Yet the period of its dominance was also the time
when inflation was highest. As explained above, our version of the Lucas-Sargent
model always recommends zero inflation. How is it that the Federal Reserve, which
presumably weighs policy models according to their empirical plausibility, chose to
follow a high inflation policy, at a time when the most plausible model recommended
low inflation?

Although zero inflation is always the recommendation of the Lucas-Sargent model,
it is not the recommendation of the system as a whole. The policy actions recom-
mended by our Bayesian linear regulator are shown as dashed lines in figure 2, along
with the history of actual inflation, which is portrayed by a solid line. For the most
part, the path for xt|t−1 tracks the general profile of yt, but in the critical, middle
period it is often higher and more volatile than actual inflation. Indeed, for the
1970s, the recommendations of the Bayesian linear regulator are far from those of the
Lucas-Sargent model, even though its weight was close to 1. If anything, this figure
deepens the puzzle.
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Figure 2: Inflation and Optimal Policy

The next two figures provide a clue about why the Bayesian linear regulator
behaves this way. Figure 3 shows the expected loss associated with a zero inflation
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policy (i.e., f = 0) in each of the submodels and for the system as a whole. Solid
lines record the expected loss when it is finite, and open spaces represent an infinite
expected loss. The open spaces are the key feature.
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Figure 3: Expected Loss of a Zero Inflation Policy.

A zero inflation policy may have been optimal for the Lucas-Sargent model, but
it would have been dreadful if implemented in the Keynesian models. Not until 1985
was the expected loss finite under zero inflation in both the Samuelson-Solow and
Solow-Tobin models. The expected loss for the system as a whole is a probability
weighted average of the losses in the submodels, and it is infinite whenever one of the
submodel losses is. Therefore the expected loss under the complete model was also
infinite for most of this period, despite that the Lucas-Sargent model dominated in
terms of its probability weight.

With f = 0, an infinite expected loss occurs when an eigenvalue of Ai exceeds
β−1/2 in magnitude. Figure 4 shows recursive estimates of the dominant eigenvalue
for each submodel, along with the stability boundary β−1/2. The dominant eigenvalue
of AE is the upper envelope of the values for the submodels. The Solow-Tobin model
was unstable under f = 0 prior to 1976, and the Samuelson-Solow model was unstable
for most of the period from 1975 until 1985. Hence, for most of the period prior to
1985, one or both of the Keynesian submodels would have been unstable under a zero
inflation policy, and so the complete model also would have been unstable.23

23Figure 4 reveals that during the 1970’s there is one date at which the dominant eigenvalues of the
Samuelson-Solow and the Solow-Tobin models both exceed β−1/2. At that date, xt|t−1 spikes upward
in Figure 2. A few quarters later, there is a single date at which the eigenvalues of both of those
models become less than β−1/2. At that lonely date, xt|t−1 closely approximates the zero-inflation
recommendation of the Lucas model.
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Figure 4: Dominant Eigenvalue Under Zero Inflation

According to the Keynesian submodels of that vintage, attaining desirable un-
employment outcomes required that policy feedback in the proper way on the state,
and that failing to run policy in an appropriate activist way could destabilize unem-
ployment. DeLong (1997) describes this view as a legacy of the Great Depression.
This view emerges from the following pair of figures that compare expected outcomes
under the optimal policy with those under zero inflation at two points in the 1970s.
In figure 5, the forecast date is 1975.Q4, and in figure 6 it is 1979.Q4. Solid lines
portray forecasts of unemployment under zero inflation, dashed lines depict forecasts
of unemployment under the optimal policy, and the dashed and dotted lines show
expected inflation under the optimal policy.24
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Figure 5: Optimal Policy v. Zero Inflation, 1975.Q4

24Expected inflation is of course zero under a zero inflation policy.
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Figure 6: Optimal Policy v. Zero Inflation, 1979.Q4

In the Lucas-Sargent model, expected unemployment is the same under the two
rules, reflecting the irrelevance of the systematic part of policy for real variables. In
the Keynesian submodels, however, projections for unemployment differ dramatically
across rules. In the Samuelson-Solow and Solow-Tobin models, a zero-inflation policy
triggers Depression levels of unemployment, an outcome that is very costly indeed.
In contrast, Keynesian projections of unemployment are more ordinary under the
optimal policy.

The projection for optimal inflation25 calls for a gradual disinflation. For example,
starting in 1975.Q4 inflation is expected to decline from 7.75 to 6.25 percent over a
period of 2 years. Slightly more disinflation is expected in 1979.Q4, with inflation
forecasts falling from 9.75 to 6.25 percent. But in both cases, inflation remains well
above the Lucas-Sargent optimal value even after 2 years.26

The central bank prefers gradualism because it dramatically improves unemploy-
ment outcomes in the Keynesian scenarios albeit at the cost of worsening the inflation
outlook in the Lucas-Sargent model. The Bayesian linear regulator accepts this trade-
off. From his perspective, a worsening of the inflation outlook is a price worth paying
to prevent a recurrence of the Depression.

Furthermore, notice how closely the composite forecast tracks the Lucas-Sargent
model projection. This reflects the high probability weight on the Lucas-Sargent

25This is the same in all submodels because there is a single policy rule.
26This preference for gradualism helps resolve a puzzle about the correlation between the mean

and persistence of inflation. The escape route models of Sargent (1999) and Cho, Williams, and
Sargent (2002) predict an inverse correlation, but Cogley and Sargent (2001, 2002) estimate a positive
correlation. The model sketched here is broadly consistent with that estimate. The Bayesian linear
regulator wants to reduce inflation in the 1970s, but he moves very slowly. Thus, when inflation
was highest, the optimal policy called for a very gradual adjustment toward the target, making
deviations from the target persistent.
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model at that time. The Bayesian linear regulator accepts higher inflation to prevent
a Depression, even though he thinks it will occur with low probability, because a
Depression is a truly dreadful outcome. One may object that this concern was mis-
placed because it was so unlikely, and judging by the posterior model weights it was
very unlikely. Yet our Bayesian linear regulator was unwilling to risk the possibility
in exchange for the comparatively modest benefits of low inflation. The Bayesian
linear regulator disregards the recommendation of the Lucas-Sargent model because
there is a positive probability that it would have resulted in unbounded loss. The
Lucas-Sargent optimal policy was not robust to the possibility that the data were
generated by a Keynesian model.

In this instance, the Bayesian linear regulator behaves like a minimax controller,
putting more weight on the recommendations of worst-case models than on that of the
most likely model. Figure 7 illustrates this by comparing the optimal Bayesian policy
with that of each submodel. For a discounted quadratic loss function such as ours,
the worst-case scenario under a given policy rule is an unstabilized submodel. Before
1975, the Solow-Tobin model was the worst case, as it was the only submodel unstable
under zero inflation. After 1977, the Samuelson-Solow model became the worst case,
because then it was the unique submodel unstable under zero inflation. Notice how
the optimal Bayesian policy first tracks the recommendations of the Solow-Tobin
model when it is the worst case, and then switches to that of the Samuelson-Solow
model when it becomes unstable. The most likely model has little influence compared
with the worst-case models.27
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Figure 7: Optimal Policy and Policy for Worst-Case Scenarios

27The spike in xt in 1975 represents the central bank’s best response to a special challenge.
The spike occurs during a brief window when both Keynesian submodels were unstable under zero
inflation, forcing the central bank to address two ‘worst-case’ models at the same time. An extreme
setting for xt was needed simultaneously to stabilize both. The spike might seem implausible until
one remembers that inflation actually did reach levels like this in other developed economies. For
example, inflation in the U.K. peaked at 32 percent around that time.
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A linear regulator must cancel explosive roots in order to stabilize a system. A
Bayesian linear regulator pays special attention to the blocks of AE in equation (26)
in which explosive roots reside. All other considerations are secondary in comparison
with losses arising from an unstabilized submodel.

When calculating expected loss at date t, the Bayesian linear regulator imagines he
will follow today’s rule forever, despite knowing that the rule will be revised tomorrow
in light of new information. In other words, he pretends to a permanent commitment
to the rule, when in fact he knows it is only a temporary attachment. A short term
perspective might better reflect the mutability of policy rules. One way to shorten
the planner’s perspective, while remaining within the framework of an optimal linear
regulator, is to reduce the discount factor β. This shifts weight away from losses
expected to occur far into the future, when today’s policy rule is less likely to be in
effect, toward outcomes expected in the near future, when today’s rule is likely to be
more relevant.

In principal, this can matter for robustness because it expands the region within
which a submodel has finite expected loss, thus enlarging the role of model probability
weights. Figure 8 shows, however, that the basic picture is insensitive to changes in
β. The figure portrays the Bayesian choice of xt|t−1 for discount rates of 4, 8, 12, 16,
and 20 percent per annum, respectively.
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Figure 8: Sensitivity of Bayesian Policy to the Discount Factor

The general contour of optimal policy is altered only slightly by an increase in
the discount rate. One difference is that a brief window opens in 1975-76 during
which zero inflation becomes more attractive. This occurs because both Keynesian
submodels cross into the stable region for a few quarters, making the Bayesian linear
regulator less concerned about achieving a bounded loss and more concerned about
performance. As a consequence, he can pursue the Lucas-Sargent policy with less
concern for its down-side risk. For lower values of β, xt|t−1 is also slightly lower in the
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late 1970s and slightly higher after 1985 but none of these differences are especially
important relative to the big picture.

One can of course eliminate a concern for robustness by discounting at a suffi-
ciently high rate. This would require setting the discount factor so that β1/2 times
the largest eigenvalue of AE is always less than 1. In the mid-1970s, the largest eigen-
value of AE was approximately 1.2, so β would have to be around 1.2−2 = 0.69 to
accomplish this. But this corresponds to a 45 percent quarterly discount rate, which
strains the interpretation that policy is set by intertemporal optimization. If we take
the recursive model estimates as given, it seems difficult to dismiss a concern about
unbounded losses in this way.

Why then did inflation finally fall? In part, the answer is that recursive estimates
of the Keynesian submodels eventually crossed into a region in which zero inflation
was safe, so that concerns about robustness no longer dominated the choice of policy
rule. By the 1990s, estimates of the Samuelson-Solow and Solow-Tobin models no
longer predicted that low inflation would result in Depression-level unemployment.
This is shown in figures 9 and 10, which provide two examples of forecasts from the
Greenspan era. They have the same format as figures 5 and 6, but they advance
the forecast dates to 1992.Q4 and 2002.Q4, respectively. By then, circumstances had
become quite different from those in the 1970s.

Unemployment outcomes still differ across policy rules in the Keynesian submod-
els, but the difference is much less dramatic. Unemployment is higher under zero
inflation, but now only by a few percentage points, and the forecasts do not approach
the levels that earlier vintages of the same models predicted. Because the Bayesian
linear regulator is less concerned about the risk of Depression, he is no longer willing
to tolerate high and persistent inflation. Instead, he moves closer to zero inflation.
The Lucas-Sargent model no longer has a probability close to one, however, so the
optimal policy represents a compromise between zero inflation and Keynesian choices.
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Figure 9: Optimal Policy v. Zero Inflation, 1992.Q4
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Figure 10: Optimal Policy v. Zero Inflation, 2002.Q4

According to our calculations, the key difference between the 1970s and 1990s
relates to concerns about a recurrence of the Depression. By the 1990s, this concern
was substantially alleviated, allowing the Bayesian linear regulator to focus more on
inflation.

4 ‘Triumph’ versus ‘vindication’

Our findings blend aspects of two competing stories that Sargent (1999) told about
Volcker’s conquest of U.S. inflation. The ‘triumph of the natural rate’ story has the
monetary authority commit itself to keeping inflation low once it has accepted the
rational expectations version of the natural rate theory. The ‘vindication of econo-
metric policy evaluation’ story has the monetary authority remain unaware of the
rational expectations version of the natural rate theory but nevertheless be induced
to fight inflation after data render revised estimates of a Samuelson-Solow Phillips
curve consistent with an imperfect version of the natural rate hypothesis. The im-
perfect version does not nest the rational expectations version, but it is good enough
to cause an optimal control problem called the Phelps problem28 to recommend low
inflation.29

The triumph story has the central banker being persuaded by theoretical argu-
ments to embrace a dogmatic prior on the rational expectations version of the natural
rate hypothesis. The vindication story is about how the U.S. inflation experience of

28When the probability assigned to the Samuelson-Solow model is one, our Bayesian linear regu-
lator problem becomes identical with the Phelps problem.

29Sargent’s ‘vindication’ story took for granted that the Samuelson-Solow Phillips curve is mis-
specified, that the Phelps problem is subject to the Lucas critique, and that the data truly are
generated by the rational expectations version of the natural rate hypothesis.
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the 1960s and 1970s induces an erroneously specified econometric model coupled with
a control problem that violates the Lucas critique to give approximately correct ad-
vice.

Our empirical results weave together aspects of both stories because even after
the evidence in favor of the Lucas version of the natural rate hypothesis becomes
very strong, our Bayesian linear regulator does not become dogmatic – he still at-
taches positive, albeit small, probabilities to mostly discredited hypotheses. As we
have stressed, those discredited hypotheses continue to exert a powerful influence on
policy so long as they predict that very adverse outcomes would follow from adopt-
ing the policy recommendation that would flow from attaching probability one to
the Lucas model. Our story requires that the Samuelson-Solow and the Solow-Tobin
specifications both have to indicate less than disastrous outcomes before the Bayesian
linear regulator can embrace recommendations that flow from the Lucas theory.30

5 Conclusion

One popular interpretation of the rise and fall of U.S. inflation during the 1960s,
1970s, and 1980s emphasizes the central bank’s changing beliefs about the natural
rate hypothesis: the central bank conquered inflation because data generated by its
own earlier misguided attempts to exploit the Phillips curve convinced it to accept
the natural rate theory. But if the evolution of the central bank’s beliefs were all that
mattered, what postponed the conquest of inflation until the 1980s? The data had
revealed the natural rate property by the early 1970s.

Our paper assembles evidence that confirms this timing puzzle. Using recursive
Bayesian techniques, we find that posterior probabilities strongly favored a version
of the Lucas-Sargent model as early as 1975. Nevertheless, the central bank did
not implement that model’s recommendations for inflation. This paper shows that
a concern for robustness across a variety of models can explain why. According to
our calculations, despite its high probability weight, the Lucas-Sargent model had
little influence on policy because its recommendations were not robust across some

30The present paper is silent about self-confirming equilibria and escape routes, important in-
gredients of the analyses in Sargent (1999), Cho, Williams, and Sargent (2001), and Sargent and
Williams (2003). Those papers endow the government with a single model, the Samuelson-Solow
model. That model is incorrect out of equilibrium but correct in a self-confirming equilibrium. To
conquer inflation, it is necessary to escape from the self-confirming equilibrium. Such escapes recur,
punctuated by returns to the self-confirming equilibrium. Sargent (1999) attempted to interpret the
conquest of U.S. inflation as an escape episode that is bound to be temporary unless the govern-
ment adopts a better specification of the Phillips curve. It would be an interesting and non-trivial
exercise to extend that work to a setting in which the government is endowed with the mixture of
models possessed by our Bayesian linear regulator. In a self-confirming equilibrium, the Lucas and
Samuelson-Solow models are observationally equivalence. That seems to make it possible that the
Samuelson-Solow model would not be discarded in the long run.
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other recently popular models. The central bank could agree with Lucas and Sargent
about the workings of the economy, yet it could also refrain from adopting their policy
recommendations because of its fears about the downside risk. In light of what we
know now, say as represented by smoothed estimates of the approximating models,
those fears may seem silly, but they would not have seemed so silly to decision makers
armed with vintage-1970s estimates of Keynesian approximating models. On the
contrary, those models warned that high and rising unemployment would accompany
low inflation.

In this connection, it is useful to read again the analyses of stagflation that leading
policy economists presented in the late 1970s. For example, the contributors to Okun
and Perry’s (1978) edited collection of essays all assign high probability to what we
would categorize as either the Samuelson-Solow or the Solow-Tobin specification, and
all of them take for granted that using monetary policy to reduce inflation would entail
very large costs in terms of unemployment. Therefore they advocated alternative
policy interventions (e.g., so called tax-based incomes policies). Okun and Perry
(1978) summarize things as follows:

“Thus, the mainline model and its empirical findings reaffirm that there
is a slow-growth, high unemployment cure for inflation, but that it is an
extremely expensive one. ...Using one of Perry’s successful equations as
an example, an extra percentage point of unemployment would lower the
inflation rate by only about 0.3 percentage point after one year and by
0.7 percentage point if maintained for three years. That extra point of
unemployment would cost over a million jobs and some $60 billion of real
production each year.” (page 5)

Okun and Perry also summarize Perry’s reasons for rejecting Fellner’s suggestion that
much lower costs in terms of unemployment that could be attained through a credible
disinflationary policy:

Perry “believes that much of the [inflation] inertia is backward-looking
rather than forward looking, and so is not susceptible to even convincing
demonstrations that demand will be restrained in the future. [Perry’s] own
empirical evidence shows that wage developments are better explained in
terms of the recent past history of wages and prices than on any assump-
tion that people are predicting the future course of wages and prices in a
way that differs from the past.” (page 6)

Perry (1978, pp. 50-51) forcefully elaborates on his argument against an expectational
interpretation of Phillips curve dynamics. Okun (1978a, p.284) says that “recession
will slow inflation, but only at the absurd cost in production of roughly $200 billion

25



per point.”31 At that time, $200 billion amounted to roughly 10 percent of GDP.
Inflation averaged 7.4 percent from 1974 to 1979, and extrapolating to zero inflation
implies a total cost of almost three-quarters of a year’s GDP.

Our Bayesian linear regulator attaches lower probability to such outcomes than
Okun and Perry did. But even so, a prudent central bank would also have been
concerned about these outcomes and would have designed a policy that put a bound
on its losses. Our calculations suggest that the high inflation of the 1970s was part
of such a policy, given the models of the Phillips curve that research in the 1960s had
presented to the central bank.

Our calculations also point to a connection between robust control theory and
Bayesian model averaging. Historically, robust control theory was motivated by con-
cerns about the stability of a system under a given decision rule and a perturbation
to an approximating model. Practical decision makers who used ordinary control the-
ory had found that controls that should have been optimal under the approximating
model actually destabilized a system, resulting in bad payoffs. Because instability has
catastrophic implications for a typical intertemporal objective function with little or
no discounting, control theorists sought decision rules that would assure stability un-
der a largest possible set of perturbations to an approximating model. This quest led
directly to H∞ control theory. It is interesting that concerns about system stability
are also foremost on the mind of our Bayesian linear regulator.

A Transition equations for the approximating mod-

els

The appendix provides details on the specification of (22) for each submodel.
Along the way, we also clarify how the Keynesian approximating models are trans-
formed into a ‘classical’ form, for the purpose of choosing a decision rule for xt|t−1 in
order to control yt and ut.

A.1 Samuelson-Solow model

We estimate a Samuelson-Solow Phillips curve of the form

yt+1 = γ0 + γ1ut+1 + γ2ut + γ3ut−1 + γ4yt + γ5yt−1 + γ6yt−2 + γ7yt−3 + ηss
t+1. (32)

This can be expressed more compactly as

AK0St+1 = AK1St + AK2xt+1|t + ηK,t+1, (33)

31Okun (1978b) lists authors of the models on which this estimate is based. Many distinguished
economists are included.
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where the state vector is defined as

St = [ut, ut−1, yt, yt−1, yt−2, yt−3, 1]′. (34)

The system matrices AK0, AK1, and AK2 are

AK
0 =





















−γ1 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





















, (35)

AK1 =





















γ2 γ3 γ4 γ5 γ6 γ7 γ0

1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1





















, (36)

and
AK2 =

[

0 0 1 0 0 0 0
]′

, (37)

respectively. The matrices AK0 and AK1 are updated recursively using the latest
point estimates of (32). The residual vector is

ηK,t+1 =
[

ηSS
t+1 0 ξt+1 0 0 0 0

]′
. (38)

Before solving the control problem, the model is transformed from a Keynesian to a
classical direction of fit. This is accomplished by dividing the first row of the system
by −γ1, which delivers

AC0 =





















1 0 −1/γ1 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





















, (39)

27



AC1 =





















−γ2/γ1 −γ3/γ1 −γ4/γ1 −γ5/γ1 −γ6/γ1 −γ7/γ1 −γ0/γ1

1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1





















, (40)

AC2 = AK2 =
[

0 0 1 0 0 0 0
]′

,

and
ηC,t+1 =

[

−ηSS
t+1/γ1 0 ξt+1 0 0 0 0

]′
. (41)

In the text, the reduced form transition equation is expressed as

St+1 = ASt + Bxt+1|t + CηK,t+1, (42)

where A = A−1

C0
AC1 = A−1

K0
AK1, B = A−1

C0
AC2 = A−1

K0
AK2, and C = A−1

K0
.32 The

matrix AK0 is invertible if current unemployment has a non-zero coefficient in the
Keynesian direction of fit; i.e., if γ1 6= 0. Finally, the targets are related to the state
vector according to (ut, yt)

′ = MsSt, where the matrix Ms is defined as

Ms =

[

1 0 0 0 0 0 0
0 0 1 0 0 0 0

]

. (43)

A.2 Solow-Tobin model

The Solow-Tobin Phillips curve is a restricted version of the Samuelson-Solow
model, specified so that the lag weights on inflation sum to one. The model also
introduces a distinction between actual unemployment and the natural rate. We
estimate the following version,

∆yt+1 = δ1gt+1 + δ2gt + δ3gt−1 + δ4∆yt + δ5∆yt−1 + δ6∆yt−2 + ηST
t+1, (44)

where gt = ut − u∗
t is the unemployment gap. The natural rate u∗

t is measured by
exponentially smoothed unemployment, as described in the text. With some recycling
of notation, the model can be represented as

AK0St+1 = AK1St + AK2xt+1|t + ηt+1, (45)

where
St = [gt, gt−1, yt, yt−1, yt−2, yt−3, 1]′, (46)

32The extra step involving inversion to a classical form is not necessary for arriving at (42), but
it clarifies the sense in which xt is chosen to control yt and ut.
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AK0 =





















−δ1 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





















, (47)

AK1 =





















δ2 δ3 1 + δ4 δ5 − δ4 δ6 − δ5 −δ6 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1





















, (48)

and
AK2 =

[

0 0 1 0 0 0 0
]′

, (49)

The matrices AK0 and AK1 are updated recursively using estimates of (44). The
residual vector is

ηK,t+1 =
[

ηST
t+1 0 ξt+1 0 0 0 0

]′
. (50)

Once again, we transform to a classical representation before solving the control
problem. The system matrices for the inverted, classical form are

AC0 =





















1 0 −1/δ1 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





















, (51)

AC1 =





















−δ2/δ1 −δ3 −(1 + δ4)/δ1 −(δ5 − δ4)/δ1 −(δ6 − δ5)//δ1 δ6/δ1 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1





















,

(52)
and

AC2 = AK2. (53)
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The transformed residual vector becomes

ηC,t+1 =
[

−ηST
t+1/δ1 0 ξt+1 0 0 0 0

]′
. (54)

The reduced form transition equation is

St+1 = ASt + Bxt+1|t + CηK,t+1, (55)

where A = A−1

C0
AC1 = A−1

K0
AK1, B = A−1

C0
AC2 = A−1

K0
AK2, and C = A−1

K0
. The matrix

AK0 is invertible if δ1 is non-zero. The relation between targets and instruments
differs slightly from that in the previous model, reflecting the distinction between
actual unemployment and the natural rate. Now we have (ut, yt)

′ = MsSt, where

Ms =

[

1 0 0 0 0 0 u∗
t

0 0 1 0 0 0 0

]

. (56)

In this model, Ms is also updated each period to reflect the latest estimate of the
natural rate.

A.3 Lucas-Sargent model

The Lucas-Sargent model is estimated from a classical direction of fit,

gt+1 = φ1(yt+1 − xt+1|t) + φ2gt + φ3gt−1 + ηLS
t+1, (57)

where gt = ut − u∗
t again measures the difference between actual unemployment and

the exponentially smoothed proxy for the natural rate. The variable xt|t−1 is generated
recursively from the solution of the Bayesian linear regulator problem. The transition
equation for this model can be written as

AC0St+1 = AC1St + AC2xt+1|t + ηC,t+1, (58)

where
St = [gt, gt−1, yt, 1]′, (59)

and
ηC,t+1 =

[

ηLS
t+1 0 ξt+1 0

]′
. (60)

The system arrays are

AC0 =









1 0 −φ1 0
0 1 0 0
0 0 1 0
0 0 0 1









, (61)

AC1 =









φ2 φ3 0 0
1 0 0 0
0 0 0 0
0 0 0 1









, (62)
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and
AC2 =

[

−φ1 0 1 0
]′

, (63)

and they are updated using recursive estimates of (57). The residual vector is

ηC,t+1 =
[

ηLS
t+1 0 ξt+1 0

]′
. (64)

The reduced form transition equation is

St+1 = ASt + Bxt+1|t + CηC,t+1, (65)

where A = A−1

C0
AC1, B = A−1

C0
AC2, and C = I. The relation between targets and the

state is (ut, yt)
′ = MsSt where

Ms =

[

1 0 0 u∗
t

0 0 1 0

]

. (66)

A.4 The composite model

The composite model collects the arrays (A,B,C,Ms) from each submodel and
stacks them as in equations (26) and (27). This puts the model in the form of an
optimal linear regulator problem, so that the optimal policy can be computed using
standard algorithms.
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