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Abstract

A planner and agent in a permanent income economy cannot observe part of

the state, regard their model as an approximation, and value decision rules that

are robust across a set of models. They use robust decision theory to choose allo-

cations. Equilibrium prices reflect the preference for robustness and so embody

a ‘market price of Knightian uncertainty’. We compute market prices of risk and

compare them with a model that assumes that the state is fully observed. We

use detection error probabilities to constrain a single parameter that governs the

taste for robustness.

Key Words: Kalman filter, approximating model, Knightian uncertainty, ro-

bustness, equity premium, market price of uncertainty, permanent income.
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1 Introduction

This paper studies decision making and asset pricing in the presence of model uncer-

tainty and an imperfectly measured state vector. Agents treat their model as a good

approximation to an unknown ‘true model’. Doubts about the model make agents

want decision rules that work well for a set of models close to their approximating

model. We formalize model uncertainty using a robust decision theory cast in terms

of an explicit set of models. We augment previous work by formulating how a robust

decision maker should proceed when parts of the state that are useful for forecasting

are not observed.

We formulate a discounted linear-quadratic control problem with an unobserved

state, then apply it to compute equilibrium asset prices within a stochastic growth

model calibrated to U.S. data.1 We use the stochastic growth model as a laboratory

to study how agents’ preference for decisions robust to model misspecification affects

equilibrium allocation and asset prices.

Our laboratory is a model that Hansen, Sargent, and Tallarini (1999) estimated from

time series on consumption and investment for the post 1970’s U.S. In HST’s model,

the representative consumer faces an exogenous endowment process that is a sum of

two serially correlated stochastic components. HST assumed that the representative

consumer sees the state vector, including current and lagged values of both components

of the endowment process. At their maximum likelihood parameter estimates, HST

could actually infer the two stochastic components of the endowment process from the

data on consumption and investment used to estimate the model.

In this paper, we recast HST’s model by concealing elements of the state from

the consumer. We allow the consumer to see current and lagged values of only the

aggregate endowment and not its components. We follow HST in imputing model

uncertainty to the representative agent, inspiring a preference for robust estimators

and decision rules. The representative agent uses robust filtering and control, both to

choose a consumption, savings plan and to price risky claims.

This setting requires that we reconstruct HST’s decision and pricing theory to

incorporate effects of model uncertainty that influence filtering. We accomplish this

by building on results of Hansen and Sargent (2000), who have modified and extended

the linear quadratic robust decision and filtering theory of Basar and Bernhard (1995)

and Whittle (1990) to discounted problems of a type that are especially relevant to

economics and finance. We show how to adapt HST’s pricing formulas when the state
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is unobserved. We follow HST in defining a multiplicative adjustment to a stochastic

discount factor that reflects the representative agent’s preference for robustness. We

use this adjustment to compute a ‘market price of model uncertainty’ and study how

it affects the market price of risk.

We want quantitative estimates of how filtering affects the market price of model

uncertainty. Our hunch was originally that confounding the representative agent’s

problem by adding filtering can raise the market price of model uncertainty, thereby

helping to explain the equity premium.2 Quantifying the effects of a preference for

robustness on the market price of model uncertainty requires that we find a way to

discipline the one parameter that in our framework describes that preference. We

use Bayesian statistical detection theory to discipline that parameter, along the lines

described by Anderson, Hansen, and Sargent (2000). When we keep detection error

probabilities constant across the no-filtering-needed model of HST and the filtering-

needed model of this paper (to be dubbed the HSW model), we find little additional

effect on the market price of uncertainty from making agents filter. We suspect that

this reflects that the detection error probabilities do not properly penalize the added

complexity of the approximating model that is used by the agent who must filter. We

are not yet prepared to concede that the above hunch is misguided.

The following issue arises in asset pricing models in which the hidden Markov

structure of an endowment or dividend process impels an agent to filter. Without a

preference for robustness, such a model is observationally equivalent to another with a

fully observed state following a more complicated stochastic process. The agents fore-

cast future returns using that state and its stochastic process. Indeed, the solution of

the filtering problem in the original hidden Markov model produces this more compli-

cated state and stochastic process for the endowment or dividend. Thus, rather than

positing the filtering problem, one could simply begin with that richer state and law

of motion. Positing the hidden Markov model can only be defended as a parsimonious

way of specifying a richer stochastic process for the observable data.

We show that a preference for robustness causes the filtering and decision problems

to interact in a way that destroys the preceding observational equivalence. We highlight

this result by also constructing what we call a ‘comparison model’ that shuts down the

interaction between the filtering and decision problems. This model allows us to identify

an additional dimension of model misspecification (or ‘deception’) that concerns the

robust decision maker when he takes into account that the richer representation of the

dividend or endowment process is itself the result of solving a filtering problem. We
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also display numerical calculations that show the quantitative effects of this additional

source of misspecification.

We are interested in the HST model partly for studying the market price of Knigh-

tian uncertainty, and partly as a laboratory for applying robust decision methods more

generally. The combined robust filtering and control methods described in this paper

have applications in various macroeconomic models.3

The remainder of this paper is organized as follows. Section 2 describes key asset

pricing formulas and gives a representation of the market price of risk in terms of HST’s

market price of Knightian uncertainty. Section 3 describes the basic robust decision

theory, the set of models used to represent Knightian uncertainty, and three salient

models from within this set. Section 4 recasts HST’s model in a notation compatible

with Hansen and Sargent’s (2000) machinery for joint filtering and control. Section 5

describes detection error probabilities and how they can be used to discipline θ, the

single parameter that measures preferences for robustness. Section 6 describes HST’s

observational equivalence result, the foundation of their empirical strategy and ours.

Section 7 reformulates HST’s model by causing the planner and the agent to estimate

the state. A preference for robustness makes the filtering problem interact with the

control problem in a way that it does not when the model is treated as known. Section 9

reports the computed multi-period market prices for our model. Section 10 concludes

and suggests fruitful next steps. Three appendices describe technical details about

constructing detection error probabilities, robust decision rules, and multi-period asset

prices.

2 Asset Pricing Theory in Brief

Let pt+1 be a payoff at t+ 1 and qt be its price at t. Asset pricing theories4 start from

the Euler equation

qt = E[mt+1pt+1|Jt] ≡ Et [mt+1pt+1] , (1)

where E is the mathematical expectation with Jt a time t σ-algebra, and mt+1 a

stochastic discount factor. To give content to (1), we must specify a model (i.e., a

probability distribution) with respect to which E is evaluated. For most of this paper,
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we let E be evaluated with respect to the planner’s approximating model. We show how

a preference for robustness modifies the ordinary formula for the stochastic discount

factor in consumption-based asset pricing models.5

Using the definition of a conditional covariance and the Cauchy-Schwarz inequality,

we obtain the inequality

qt
Etmt+1

≥ Etpt+1 −
σt(mt+1)

Etmt+1
σt(pt+1), (2)

where σt(mt+1)
�t mt+1

is called the market price of risk. Notice that the left side is the ratio

of the price of a claim to payoff pt+1 to the price of a risk-less claim on one unit of

consumption next period. The right side then relates this price ratio to the mean and

standard deviation of the payoff. Inequality (2) becomes an equality for payoffs on the

conditional mean-standard deviation frontier. Hansen and Jagannathan’s statement of

the equity premium puzzle is that data on asset market returns and prices give values

of the market price of risk that are too high to be reconciled with many particular

models of the stochastic discount factor mt+1. This is because those theories make the

conditional standard deviation of the stochastic discount factor σt(mt+1) too small.6

Two classic theories of the discount factor mt+1 are

• Theory 1: mt+1 = β, used in Shiller (1981), where β ∈ (0, 1) is a constant.

• Theory 2: mt+1 = mf
t+1 ≡ β u′(ct+1)

u′(ct)
used in LeRoy (1973), Lucas Jr. (1978), and

Breeden (1979), where u(ct) is a constant relative risk aversion one-period utility

function, and ct is consumption of a representative consumer.

Both of these theories have small σt(mt+1): the former theory makes it zero by defini-

tion, the latter makes it small under a constant relative risk aversion utility function

evaluated at aggregate U.S. consumption growth rates.7

This paper uses HST’s:

• Theory 3: mt+1 = mf
t+1m

u
t+1, where mu

t+1 is a multiplicative adjustment to the

stochastic discount factor that reflects agents’ aversion to model uncertainty.

HST call mu
t+1 the market price of Knightian uncertainty. They deduce measures

of it using the robust decision theory to be described below. Those measures reflect

agents’ doubt about the approximating model that they use to evaluate the conditional
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expectation in the asset pricing formula (1). HST showed that for empirically plausible

parameterizations of model uncertainty, mu
t+1 possesses substantial variability, raising

the theoretical value of the equity premium, thereby helping to explain the equity

premium puzzle. Below, we will define what is empirically plausible in terms of the

probability of erroneously distinguishing among the alternative models to be described

in the next section.

3 Three Salient Models

This section presents a brief overview of the robust decision theory that underlies

the rest of the paper. Fear of model misspecification makes a decision maker want a

decision rule to work well for a set of models. We consider a class of models indexed

by a vector process vt, with state xt, control ut, and i.i.d. Gaussian shock process wt

with mean zero and identity covariance matrix:8

xt+1 = Axt +But + C [wt+1 + vt] .

We use the vector vt to represent model misspecifications around an approximating

model; vt ≡ 0 in the approximating model. We impose the following bound on the

specification error:

1

1 − β
Ex0

[ ∞∑
t=0

βtvt · vt

]
≤ η0.

The parameter η0 sets the average size of the potential model misspecifications where

the average on the left side is taken across states and over time. Otherwise vt can feed

back arbitrarily on the history of xt. In this way, vt represents misspecified dynamics.

The robustness parameter θ below can be interpreted as a Lagrange multiplier on the

above constraint.9

Within this class of models, three are especially important:

• An unknown true model has vt = v̄t �= 0.

• An approximating model has vt = 0.
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• A constrained worst case model has vt = v̂t �= 0, where v̂t is a process that

depends on η0.

The true model actually generates the data. The approximating model is the decision

maker’s model.10 Figure 1 depicts these three models graphically. The worst case

model v̂ is created as a by product of the process of designing a rule to work well over

the entire set of models in the circle.

We consider a decision maker who, when he fears no specification error (i.e., believes

v ≡ 0), has preferences ordered by

V0 = E

∞∑
t=0

{−βtR(xt, ut)} (3)

where R(x, u) is a quadratic function. In (3), E is the mathematical expectation taken

with respect to the approximating model. We want to evaluate (3) under a time-

invariant decision rule u = −Fx. For fixed F , write the one-period return function

RF (x) = R(x,−Fx).
For fixed F , we want to evaluate

VF (x0) = Ex0

∞∑
t=0

[
−βtRF (xt)

]
, (4)

under the approximating model. Under the approximating model (vt = 0), equation

(3) can be evaluated as the fixed point of the recursion

VF (x) = −RF (x) + βExVF (x∗),

where the superscript ∗ denotes a next period value and Ex is the conditional expecta-

tion evaluated with respect to the approximating model. This is an ordinary Bellman

equation.

Now suppose we admit specification error, so that multiple models are in play,

multiple probability distributions, with respect to each of which a mathematical ex-

pectation in (3) might be taken. We want a way to evaluate continuation utility that is

conservative with respect to model misspecification, meaning that it admits the pres-
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ence of multiple models. Anderson, Hansen, and Sargent (2000) construct a distorted

expectations operator R that delivers a conservative evaluation of a next period con-

tinuation value and that serves as a constant in a robustness bound. It is conservative

in the following sense. Let

R(V ) = inf
v
J(v) ≡ J(v̂), (5)

where

J(v) = θv′v + ExV (x∗), (6)

x∗ = Aox+ C(w + v), (7)

v̂ = θ−1(I − θ−1C ′ΩC)−1C ′ΩAox, (8)

and where Ao = A−BF and x′Ωx is part of the value function for the zero sum game

defined by (25) and (20) below11 Note that the dependence of J(v) on v comes through

the distorted transition law (7) induced by v. The definition of inf in (5) implies that

for any distortion v,

EV [Aox+ C(w + v)] ≥ J(v̂)(x) − θv′v.

The left side of this equation is the expectation of the one-period continuation value

evaluated under a particular model indexed by the distortion v. The inequality thus

bounds the rate at which performance deteriorates with respect to model misspeci-

fication as measured by v′v. Furthermore, under the approximating model (v = 0),

J(v̂) = R(V ) gives a conservative estimate, i.e., a lower bound, of the one-period

continuation value.12
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4 Reformulating HST’s Model

Our ultimate goal is to modify HST’s model by concealing the state of the economy,

thereby impelling the planner to estimate it. To accomplish this, it is convenient to

rearrange HST’s model to avail ourselves of the results of Hansen and Sargent (2000).

We recount and recast HST’s model.

4.1 HST’s Model

This section describes HST’s model, a linear quadratic stochastic growth model with

a habit. A planner values a scalar process s of consumption services according to

V0 = E

∞∑
t=0

βt{−(st − µb)
2}. (9)

The service s is produced via the household technology

st = (1 + λ)ct − λht−1,

ht = δhht−1 + (1 − δh)ct, (10)

where λ ≥ 0 and δh ∈ (0, 1), c is a scalar consumption process, µb is a preference

parameter governing curvature of the utility function, and h is a scalar stock of house-

hold habits.13 A linear technology converts a scalar endowment d into consumption or

capital:

kt = δkkt−1 + it,

ct + it = γkt−1 + dt. (11)

Here kt, it, dt are the capital stock, gross investment, and the exogenous stochastic

endowment at time t, respectively. The parameter γ is the constant marginal product

11



of capital and δk is the depreciation factor for capital. Combining (11) leads to

ct + kt = Rkt−1 + dt, (12)

where R = γ+ δk. Relation (12) makes the gross return on a one-period risk-free asset

be R.

HST assumed the following two-component model for the endowment:14

dt+1 = µd + d1
t+1 + d2

t+1,

d1
t+1 = g1d

1
t + g2d

1
t−1 + c1w

1
t+1,

≡ (φ1 + φ2)d
1
t − φ1φ2d

1
t−1 + c1w

1
t+1,

d2
t+1 = a1d

2
t + a2d

2
t−1 + c2w

2
t+1,

≡ (α1 + α2)d
2
t − α1α2d

2
t−1 + c2w

2
t+1 (13)

where wt+1 =


w

1
t+1

w2
t+1


 is an i.i.d. Gaussian disturbance vector with mean zero and

identity covariance matrix. The two-component specification (13) allows separate per-

manent and transitory components of dt, and is a specification often found in the micro

literature on permanent income models.15 HST also assumed that the planner observes

current and lagged values of both components di
t, i = 1, 2, at all t. Later in this paper, we

shall withdraw from the planner knowledge of the history of the individual components

of the endowment process, and let only the history of their sum be observed.
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4.2 Features of the HST Model

HST show that optimal consumption can be expressed

ct =
1

1 + λ
(µb − µst) +

λ

1 + λ
ht−1, (14)

where µst is the shadow price of services in the planning problem. It obeys

µst = µb + ψ0

∞∑
j=0

R−jEtdt+j + ψ1ht−1 + ψ2kt−1. (15)

HST show that (15) implies that

µst = µst−1 + ν ′wt, (16)

where ν is a vector, so that µs is a martingale.

Equations (15) and (14) imply that µb has no effect on the allocation, because

µb − µst does not depend on µb. However, µb does affect prices, including the market

price of risk. HST show that the shadow price of consumption, Mc
t , the marginal

utility of consumption in the solution of the planning problem, satisfies

Mc
t = (1 + λ) + (1 − δh)Et

[ ∞∑
τ=1

βτδτ
h(−λ)(µb − st+τ )

]
, (17)

where µb−st = µst. The stochastic discount factor (without a preference for robustness)

is

mf
t+1,t = β

Mc
t+1

Mc
t

. (18)

Finally, note that the coefficient of relative risk aversion for the one period utility

function −(st − µb)
2 is st

µb−st
.
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4.3 Recasting the State Vector

The main purpose of this paper is to alter HST’s model by changing assumptions about

what the planner observes. To accomplish this, we first recast the model so that it

conforms to a framework of Hansen and Sargent (2000) for getting robust solutions of

joint filtering and control problems. To set HST’s model into the Hansen and Sargent

(2000) form, we redefine the state vector. Thus, we let the state vector be

xt =




ht−1

kt−1

dt−1

1

dt

d1
t

d1
t−1




≡




ft

yt

zt



, (19)

with the partitioning of the state

ft ≡




ht−1

kt−1

dt−1

1



, yt ≡ dt, and zt ≡


 d1

t

d1
t−1


 .

Please note that although d2t, d2t−1 are not explicitly included in the state vector, they

can be recovered from the dt, d1t components.
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4.3.1 Reason for State Partitioning

We partitioned the state because we anticipate formulating a robust decision problem

in which part of the state, namely zt, is unobserved. Even with incomplete information,

we assume that the first two components ft and yt are known to the decision maker or

can be correctly inferred from current and past information. However, later we shall

assume that the third component, zt, consists of states that are hidden from the decision

maker. The decision maker uses current and past data to make inferences about this

vector. In many problems, there is a redundancy in the available information. For

our prediction algorithms, it is important to eliminate redundant information. We

accomplish this by eliminating ft from the information set. Current and past values of

yt are sufficient to generate the current information set. Knowledge of ft or its history

conveys no additional information.

In terms of the permanent income model, the partitioned law of motion can be

written in the recursive form




f ∗

y∗

z∗




=




Aff Afy 0

Ayf Ayy Ayz

Azf Azy Azz







f

y

z




+




Bf

0

0



u+




0

Cy

Cz



w, (20)

where superscript ∗ denotes a next period value, Cy = [c1 c2], and Cz =


c1 0

0 0


 .

Notice that f ∗ is an exact function of f , current y, and the control u. No information

is conveyed by the f vector. Notice also that CyC
′
y is nonsingular, so the entire y∗ vector

is required to capture the arrival of new information next period. In what follows we

will sometimes use the shorthand notation

x∗ = Ax+Bu+ Cw, (21)
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to depict the state evolution where

A =




Aff Afy 0

Ayf Ayy Ayz

Azf Azy Azz



≡




Af

Ay

Az



, B =




Bf

0

0



, and C =




0

Cy

Cz



. (22)

We can express the objective function (9) as

E

∞∑
t=0

{βtr(ft, yt, ut)}, (23)

where

r(f, y, u) = −(f ′ y′)R


f
y


 − u′Qu− 2u′W


f
y


 . (24)

The objective function (23) does not depend directly on zt. Instead zt enters the

problem only as an information vector that helps predict yt, which does appear in the

objective function.

The robust control problem with objective (9) and transition law (20) is just a

rewriting of HST’s problem. They solved this problem using a robust decision theory,

which we now briefly recount.

4.4 Robustness via a Two-Player Game

HST compute a robust decision rule by solving the two person game defined by the

fixed point of

−x′Ωx− a = max
u

min
v

{r(f, y, u)− βEx∗′Ωx∗ − βa+ βθv′v}, (25)
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subject to

x∗ = Ax+Bu+ C(w + v). (26)

The equilibrium of the game is a pair of decision rules

u = −Fx,

v̂ = κx, (27)

where F and κ are given by (B.6) to (B.9) in Appendix B, with volatility matrix C.

The decision rule for v̂ induces a ‘worst case’ adjustment to the conditional mean of

the innovation w. In effect, a robust rule for u is constructed by planning against

this worst case v̂. Please note that this worst case model is not the decision maker’s

model: his model has v = 0. The decision maker admits multiple models surrounding

his approximating v = 0 model and doesn’t know enough to unify the multiple models

by choosing a unique prior distribution over them. The worst case model is simply a

byproduct of the planning process.

4.5 Approximating and Distorted Models

The min-max decision theory leads to two salient models: the approximating and

the distorted or worst-case model, both evaluated under the robust decision rule

ut = −Fxt. The former becomes the economist’s (and also the planner’s and the

agent’s) model of the time series on quantities (ct, it); the latter gives the measure to

be used for pricing risky securities. The distortion of the worst-case model vis a vis the

approximating model boosts rates of return for risky assets, giving rise to ‘Knightian

uncertainty premia.’
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Then under the control law u = −Fx, the approximating model is

f ∗ = (Af − BfF )x,

y∗ = Ayx+ Cyw,

z∗ = Azx+ Czw. (28)

The distorted or worst case law of motion is

f ∗ = (Af − BfF )x,

y∗ = (Ay + Cyκ)x+ Cyw,

z∗ = (Az + Czκ)x+ Czw. (29)

Evidently, the distorted model can be obtained from the approximating model by

displacing the zero conditional mean of wt+1 in the approximating model by v̂t =

κxt. The Radon-Nikodym derivative, or likelihood ratio, of the distorted conditional

probability of xt+1 with respect to the approximating conditional probability is

mu
t+1,t =

exp[−1
2
(wt+1 − v̂t)

′(wt+1 − v̂t)]

exp[−1
2
w′

t+1wt+1]
, (30)

mu
t+1,t = exp(w′

t+1v̂t −
1

2
v̂′tv̂t). (31)

HST show that this Radon-Nikodym derivative is the market price of Knightian uncer-

tainty that appears in the multiplicative adjustment of the stochastic discount factor

mt+1,t = mf
t+1,tm

u
t+1,t,

where mf
t+1,t = β

Mc
t+1

Mc
t

is the “ordinary” (θ = +∞) stochastic discount factor without a

preference for robustness. Here Mc
t+1 is the shadow price of time t+ 1 consumption in
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the planning problem without a preference for robustness and mf
t+1,t is an intertemporal

marginal rate of substitution between consumption rates at t+ 1 and t.

Evidently, θ is a critical parameter influencing mu
t+1,t through its impact on v̂t. For

θ = +∞, there is no preference for robustness, κ = 0, and mu
t+1,t = 1. Lowering θ

increases the taste for robustness and allows mu
t+1,t to depart from unity and become

stochastic and variable. This increases the volatility of the stochastic discount factor

mt+1.

We require a way of thinking about reasonable values of θ. As we see in the next

section, different settings of θ lead to different probabilities of detecting differences of

the approximating model from the worst case model from a time series on xt of given

length. We shall use the detection statistics to guide our setting of θ.

5 Detection Error Probabilities

Anderson, Hansen, and Sargent (2000) link the preference-for-robustness parameter θ

and detection error probabilities, a link that we shall use below to discipline our choice

of plausible θ’s. Detection error probabilities can be calculated using likelihood ratio

tests. Thus, consider two alternative models. Model A is the approximating model,

and model B is the distorted model associated with the worst case shock implied by θ.

Consider a fixed sample of observations. Let Lij be the likelihood of that sample for

model j assuming that model i generates the data. Define the log likelihood ratio

ri ≡ log
Lii

Lij
,

where j �= i, and i = A,B. Now consider the probabilities of two kinds of mistakes.

First, assume that model A generates the data and calculate

pA = Prob(mistake|A) = freq(rA ≤ 0).

Thus, pA is the frequency of negative log likelihood ratios rA when model A is true.

Similarly, pB = Prob(mistake|B) = freq(rB < 0) is the frequency of negative log
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likelihood ratios rB when model B is true. Call the probability of a detection error

p(θ) =
1

2
(pA + pB). (32)

Here, θ is the robustness parameter used to generate a particular model B. Appendix

A shows in detail how to estimate the detection error probability by using simulations.

We propose to set p(θ) to a reasonable number, then invert p(θ) to find a plausible

value of θ.

6 Observational Equivalence

We follow HST and define σ ≡ −θ−1; σ is the risk-sensitivity parameter of Whittle

(1990) and Jacobson (1973). HST’s two-part empirical strategy rested on the fact

that the likelihood function for quantity data (ct, it) has a ridge that makes (β, σ) not

separately identifiable. However, (β, σ) pairs that are observationally equivalent for

quantities can have very different implications for asset prices, as summarized by the

market price of risk. HST’s strategy was, first, to estimate the model’s free parameters

from quantity observations; and, second, to select a (β, σ) pair from the likelihood

function ridge that matches market based measures of the market price of risk.

The free parameters of HST’s model are [λ, δh, δk, γ, g1, g2, a1, a2, c1, c2] and a locus

of (σ, β) pairs. Using data on quantities (ct, it) alone, HST computed maximum like-

lihood estimates of these parameters for geometrically detrended quarterly U.S. time

series from 1970I to 1996III. HST proved:

Observational Equivalence Proposition:

Fix all parameters except β and σ. Suppose βR = 1. There exists a σ < 0 such that

the optimal (c, i) plan with σ = 0 is also the optimal (c, i) plan for any σ satisfying

σ < σ ≤ 0 and a smaller discount factor β̂(σ) satisfying16

β̂(σ) =
1

R
+

ση2

R− 1
, (33)
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where η2 = ν ·ν, and ν is the vector that appears in the martingale representation (16)

for the shadow price of consumption services µst. Representation (16) comes from the

solution of the planning problem when σ = 0.

Recall the decomposition of the stochastic discount factor

mt+1,t = mf
t+1,tm

u
t+1,t,

where mf
t+1,t = β

Mc
t+1

Mc
t

is the “ordinary” (σ = 0) stochastic discount factor without a

preference for robustness and mu
t+1,t is the likelihood ratio defined above. The marginal

utility of consumption Mc
t+1 is tied down by the quantities (ct, it, kt−1, ht−1) and so is

identical across observationally equivalent (β, σ) pairs satisfying (33). However, mu
t+1,t

does depend on σ ≡ −θ−1, through formula (30). Increasing the absolute value of σ

generally increases the norm of v̂t and affects the stochastic discount factor.

It will ameliorate the equity premium puzzle17 – the low theoretical volatility of the

stochastic discount factor – if we can somehow increase the volatility of mu
t+1,t. HST

note that

E[(mu
t+1,t)

2|Jt] = exp(v̂′tv̂t).

Because E[mu
t+1,t|Jt] = 1 by construction, it follows that the conditional standard

deviation of mu
t+1,t,

σ(mu
t+1,t|Jt) =

√
exp(v̂′tv̂t) − 1. (34)

HST call σ(mu
t+1,t|Jt) the market price of Knightian uncertainty. The robustness pa-

rameter θ affects std(mu
t+1,t|Jt) through v̂t.

In summary, in HST’s model,

• Variations in the robustness parameter σ have no effect on quantities, in the sense

that there is an offsetting change in β that leaves F and all quantities unaltered.

• (β, σ) pairs that are observationally equivalent for quantities affect the market

price of risk through the market price of uncertainty (34).
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7 Two Models with Filtering

We now turn to the main purpose of this paper. We modify one assumption in HST’s

model. We assume that the planner does not observe the entire state. In particular, we

assume that the planner observes the history of dt but not its individual components.

This assumption can be expressed by saying that the planner observes current and

past values of f, y but never sees z in (20). Because z contains information about

future values of y, the planner is impelled to estimate z, and to base decisions on that

estimate. The planner is induced jointly to solve robust control and filtering problems.

7.1 An Elementary Problem with Filtering

Hansen and Sargent (2000) show how to modify the two-player game (25) to incorporate

unobserved elements of the state vector. They begin with an elementary formulation

of a game that is designed to induce robust filtering and control, and show how that

elementary game can be transformed to a simpler game, taking the form of (45), (46)

via a two-step procedure involving a first step that solves a filtering problem.

Now the decision maker enters a period knowing the components of the state f, y

but having only an estimator ž of z, whose covariance matrix about z, Σ, is known.

To express a preference for robust filtering and control, Hansen and Sargent consider

the following dynamic game:

−x̌′Ωx̌− a = max
u

min
v,vz

{r(f, y, u)− βEx̌∗
′
Ω∗x̌∗ − βa∗ + βθ(v′v + v′zvz)}, (35)

subject to

x∗ = Ax+Bu+ C(w + v), (36)

and

z = ž +Gz(wz + vz). (37)
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Here wz is another i.i.d. Gaussian process, independent of w; wz has mean zero and

identity covariance matrix; wz is the error in reconstructing the hidden part of the

state. The matrix Gz is a Cholesky factor of a covariance matrix Σ ≡ E(z− ž)(z− ž)′,

namely, GzG
′
z = Σ, and ž is an estimate of z constructed from current and past

observed values of y. This game assumes that the maximizing agent arrives at the

current period with an estimate ž of the subcomponent z of the state x. To promote

robustness, the game also lets the minimizing agent distort the conditional mean vz

of the state-reconstruction error wz, allowing it to depend on the history of the state.

One step of minimizing and maximizing in (35) will ‘backdate’ the value function as

parameterized by Ω∗, a∗ and ‘update’ the factored covariance matrix Gz.

Thus, this game produces

A. A backward (in time) recursion mapping Ω∗ into Ω and a∗ into a.

B. An estimator ž∗ of next period’s hidden state z∗.

C. A forward (in time) recursion mapping Σ into Σ∗, which generates a covariance

matrix to be used for next period’s version of the problem.

D. A robust adjustment to the estimate of the current state z.

Building on work of Basar and Bernhard (1995), Hansen and Sargent (2000) show

that item C is the same recursion associated with an ordinary Kalman filter, and that

ž∗ from item B is the ordinary Kalman filter estimate of the state. Thus, the ordinary

Kalman filter solves a filtering problem that embeds a preference for robustness. Al-

though the Kalman filter is used to construct ž given current and past data on y, item

D makes a conservative adjustment in the estimated z aimed at making the control

law more robust.

7.2 Interactions of Filtering and Decisions

Hansen and Sargent (2000) show that (35), (36), (37) can be reformulated in terms of

an ordinary Kalman filtering problem and a particular ordinary robust control problem

without filtering. In particular, they show that the solution of (35), (36), (37) can also

be obtained via the following three-step procedure:

23



• Step 1: For the purpose of solving the filtering part of the problem, form the

small state space system:

zt+1 = Azzzt + Czwt+1,

yt+1 = Ayzzt + Cywt+1. (38)

Form the ordinary Kalman filter for the system, i.e., the Kalman filter for the

system matrices18

[Azz, Cz, Ayz, Cy, CzC
′
y].

In particular, solve the Ricatti equation for Σ ≡ E(z − ž)(z − ž)′,

Σ = [AzzΣA
′
zz + CzC

′
z] − [AzzΣA

′
yz + CzC

′
y] × [AyzΣA

′
yz + CyC

′
y]

−1[AzzΣA
′
yz + CzC

′
y]

′.

(39)

Form the Kalman gain

K = [AzzΣA
′
yz + CzC

′
y] × [AyzΣA

′
yz + CyC

′
y]

−1.

Define the covariance matrix of errors in forecasting


yt+1

zt+1


 from {ys, s ≤ t},

Λ =


AyzΣA

′
yz + CyC

′
y AyzΣA

′
zz + CyC

′
z

AzzΣA
′
yz + CzC

′
y AzzΣA

′
zz + CzC

′
z;


 . (40)
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Factor Λ according to

Λ =


Čy 0

Čz C̃z





Čy 0

Čz C̃z



′

≡


Λ11 Λ12

Λ21 Λ22


 , (41)

where Čy is the Cholesky factor of Λ11, Čz = KČy, and C̃z is the Cholesky factor

of [Λ22 −Λ21Λ
−1
11 Λ12]. Note that Σ = Λ22 −Λ21Λ

−1
11 Λ12 and that the Kalman gain

is K = Λ21Λ11
−1. By construction, Čy and C̃z are nonsingular.

• Step 2: Write the state evolution equation as:19

x∗ = Ax̌+Bu+ Cw + A(x− x̌),

= Ax̌+Bu+ C∗w∗,

where

C∗ =




0 0

Čy 0

Čz C̃z



,

and w∗ is a normally distributed vector with mean zero and covariance matrix I,

which we partition as:

w∗ =


w̌
w̃


 . (42)

The vector w∗ is the shock in an innovations representation for the (y, z) process.20

Note that the dimension of the composite shock w∗ is 1 + 2 = 3, where 1 is the

dimension of y and 2 is the dimension of z. Recall that the dimension of w in
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the original transition law (26) with full state observation was 2.

We can use the process w∗ to form a law of motion for the predicted state. By

construction, the shock w̌ is in the information set of the decision-maker next

period: it is revealed by y∗ (remember that Čy is by construction nonsingular).

Also, by construction w̌ is independent of w̃. Therefore, the law of motion for

the predicted state is obtained by replacing w̃ with zero in the following repre-

sentation:

x̌∗ = Ax̌+Bu+ Čw̌, (43)

where

Č =




0

Čy

Čz



.

The f ∗ and y∗ components of x∗ match those for x∗ because both components

are in the decision maker’s information set tomorrow. However, z∗ and ž∗ will

differ. For future reference, we also define

C̃ =




0

0

C̃z



, (44)

and note that x∗ = x̌+ C̃w̃.
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• Step 3: Compute the decision rule for u that solves

−x̌′Ωx̌− a = max
u

min
v̌, ṽ

{r(f, y, u)− βEx̌∗
′
Ωx̌∗ − βa+ βθ(v̌′v̌ + ṽ′ṽ)}, (45)

subject to

x̌∗ = Ax̌+Bu+ Č(w̌ + v̌) + C̃ṽ. (46)

In this game, the composite vector w∗ disguises model misspecification. The two-

dimensional misspecification term ṽ appears in the evolution for the predicted state x̌∗,

but is hidden in the evolution for the actual state vector x∗. The predicted state ž∗

is created by the agent and not directly observed. The ṽ misspecification appears in

the agent’s perception of how z∗ will evolve and is thereby transmitted into how ž∗ is

constructed.

As mentioned above, Hansen and Sargent (2000) derive the three-step procedure

(45)-(46) from the more elementary recursive specification of a game, (35), (36), (37),

that involves both the unknown state and the control. Several things about this pro-

cedure are remarkable. First, filtering is done using an ordinary (i.e., non-robust)

Kalman filter.21 Second, the two-player game (45)–(46) is associated with an ordinary

robust decision problem that treats the state as observed and given by

[
y′ f ′ ž′

]
.

Third, there is an interaction between the filtering problem and the control problem

due to robustness. The interaction comes from the presence of the term C̃ṽ, which

captures the ability of the minimizing agent to deceive the maximizing agent by altering

the gap between the estimated and actual value of the unobserved part of the state z.

Below, we shall expand upon this third point by describing a comparison model that,

inappropriately according to the elementary recursive game that induces (45)–(46),

ignores this avenue of deception.
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A solution of (45) and (46) is a decision rule

u2 = −F2x̌,

and laws of motion for the worst case means

v̌2 = κ̌2x̌,

ṽ2 = κ̃2x̌, (47)

where coefficients F2 and κ2 ≡


κ̌2

κ̃2


 are determined by equations (B.6) to (B.9) in

Appendix B with volatility matrix

C2 =




0 0

Čy 0

Čz C̃z



.

We can use these worst case means to form the distorted law of motion to be used for

asset pricing and detection error probabilities. Thus, the approximating model under

the robust rule is

x̌∗ = (A− BF2)x̌+ Čw̌, (48)

and

x∗ = x̌∗ + C̃w̃. (49)
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The distorted model under the robust rule is

x̌∗ = (A− BF2 + Čκ̌2 + C̃κ̃2)x̌+ Čw̌, (50)

or

x̌∗ = (A− BF2)x̌+ Čw̌,

x∗ = x̌∗ + C̃w̃ + Čv̌ + C̃ṽ. (51)

These are the representations that we need to calculate detection error probabilities

and the market price of uncertainty.

7.3 Comparison Model

To highlight an interaction between filtering and control, we display another game that

emerges from ignoring that interaction. This game is formed by the following two step

procedure.

• Step 1. Perform steps 1 and 2 above.

• Step 2. Solve a recursive game (45) where the extremization is now subject to

the transition equation

x̌∗ = Ax̌+Bu+ Č(v̌ + w̌), (52)

The difference between (46) and (52) is the absence of ṽ from the latter. The elementary

recursive game referred to above directs Hansen and Sargent (2000) to include this term

in (46). This term embodies an interaction between filtering and control for inducing

robustness.

Notice that game (45)–(52) comes from replacing the original transition equation

for y in (20) with the ordinary Kalman filter ‘innovations representation’ for y, then

treating the innovations representation as though it were the original model of the y
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process in HST. This pushes the original representation of the y process in (25) into

the background and replaces it with another that ignores its hidden state structure,

then proceeding as in HST. The robust decision rule and the worst case means are

solved by (B.6) to (B.9) in Appendix B by setting the volatility matrix equal to

Č =




0

Čy

Čz



.

This two-step procedure without the interaction term was appropriate in analyses like

those of Detemple (1986), Dothan and Feldman (1986), Gennotte (1986) and Veronesi

(1999), that study asset pricing in the face of filtering without a preference for robust-

ness. With a preference for robustness, the procedure is not correct.

We call (45)–(52) the ‘comparison model’. Although Hansen and Sargent (2000)

show that it does not give the robust solution to the joint filtering and control problem,

we compute market prices of risk and detection error probabilities for the comparison

model as well as for (45)–(46).

8 Market Price of Uncertainty under Filtering

This section and Appendix C describe how to compute market prices of uncertainty.

We extend HST’s calculations to pricing multi-period returns.

8.1 One-Period Market Price of Uncertainty

We can compute the market price of uncertainty by again using a Radon-Nikodym

derivative of the distorted model of x∗ respect to the approximating model. Write:

x∗ = x̌∗ + C̃w̃.
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Form

mu∗ = exp(w∗ · v∗ − 1

2
v∗ · v∗),

where v∗ =


v̌
ṽ


 . While this will generate the correct pricing formulas, we can also use

the conditional expectation

E[mu∗|w̌, v∗] = exp(w̌ · v̌ − 1

2
v̌ · v̌),

since w̌ is the innovation to the information set of economic agents. Below, inspired

by (2), we compute the conditional standard deviation of mu to measure the boost in

the market price of risk contributed by uncertainty aversion.

We extend the calculations to multi-period returns because the effects of filtering

on prices of risk operate through ṽ and appear only in prices of multi-period returns.

8.2 Multi Period Market Prices of Uncertainty

To derive formulas for multi-period market prices of uncertainty with filtering, we

impose the permanent income control law and let the resulting state evolution under

the approximating model with filtering be

x̌t+1 = A∗x̌t + Čw̌t+1,

and under the (constrained) worst-case model

x̌t+1 = Ǎx̌t + Čw̌t+1.

Here A∗ = A − BF and Ǎ = A − BF + Čκ̌2 + C̃κ̌2, so that Ǎ includes captures the

feedback of both v̌ and ṽ on the state.
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We want to form the ratio of conditional densities for the observed state vector

yj
t+j =




yt+1

yt+2

...

yt+j



,

under the two models for each j. To represent this ratio, we construct the conditional

means and shock weighting matrices for yj
t+j in terms of the composite shock vector

w̌j
t+j =




w̌t+1

w̌t+2

...

w̌t+j



.

Then we can write

yj
t+j = H∗

j x̌t +G∗
jw̌

j
t+j ,

under the approximating model and

yj
t+j = Ȟj x̌t + Ǧjw̌

j
t+j ,

under the worst case model for some matrices H∗
j , Ȟj , G

∗
j and Ǧj. Form the likelihood

ratio:

mu
t+j,t =

| det(G∗
j)|

| det(Ǧj)|
exp

{
−1

2

[
(Ǧj)

−1(yj
t+j − Ȟjx̌t)

]
·
[
(Ǧj)

−1(yj
t+j − Ȟjx̌t)

]}
exp

{
−1

2

[
(G∗

j )
−1(yj

t+j −H∗
j x̌t)

]
·
[
(G∗

j)
−1(yj

t+j −H∗
j x̌t)

]} .
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Since we evaluate this under the approximating model, we can write

(G∗
j)

−1(yj
t+j −H∗

j x̌t) = w̌j
t+j ,

and

(Ǧj)
−1(yj

t+j − Ȟjx̌t) = (Ǧj)
−1G∗

j(G
∗
j)

−1(yj
t+j −H∗

j x̌t +H∗
j x̌t − Ȟjx̌t),

= (Ǧj)
−1G∗

j [w̌
j
t+j − (G∗

j)
−1(Ȟj −H∗

j )x̌t],

and substitute this into the likelihood ratio. In Appendix C, we obtain a formula for

mu
t+j,t from which we can readily compute σt(m

u
t+j,t), which is the j-period market price

of Knightian uncertainty. We proceed to construct recursions for Ȟj, H
∗
j , Ǧj, G

∗
j .

8.3 Conditional Means

Consider first the recursive construction of the conditional mean matrices. Let U =[
01×4 1 01×2

]
denote a selection matrix designed so that yt+j = Uxt+j . Let Ȟ1 = UǍ,

and use the recursion

Ȟk+1 =


 Ȟk

U(Ǎ)k+1




to construct Ȟj . Then the conditional mean for yj
t+j is Ȟj x̌t, which captures the

contributions of both v̌ and ṽ. Form H∗
j analogously with A∗ used in place of Ǎ for

the approximating model.
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8.4 Shock Dependence

Consider next the recursive construction of the matrices encoding shock dependence.

Let Č1 = Č, C∗
1 = Č and define Č and G∗ recursively as follows,

Čk+1 = [ǍČk
... Č],

C∗
k+1 = [A∗C∗

k

... Č]. (53)

Using these matrices and the facts that Ǧ1 = UČ and G∗
1 = UČ as inputs into the

recursion, we have

Ǧk+1 =


 Ǧk 0

UǍČk Ǧ1


 ,

G∗
k+1 =


 G∗

k 0

UA∗C∗
k G∗

1


 . (54)

9 Results

This section presents estimates of market prices of Knightian uncertainty for three

models: HST’s, ours, which we dub the HSW model, and the comparison model. The

first assumes that both components of the endowment process are observed, while the

second and third assume that only the sum is observed, impelling agents to filter.

The HSW model takes into account the interaction between filtering and decision

making under a preference for robustness, while the comparison model suppresses that

interaction.

9.1 HST Empirical Procedure

HST estimated the identifiable parameters by maximizing a Gaussian likelihood func-

tion. They estimated the model from geometrically detrended time series on ct, it.
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They found that given the parameters, the model reveals time series of the two compo-

nents d1
t , d

2
t of the endowment shock. They recovered those two components and used

them to construct the state xt for computing the mean distortion v̂t and mu
t+1,t.

9.2 Filtering the Endowment Process

In this paper we use HST’s parameter estimates, but want to assume that the planner

and agents do not see the components di
t, only their sum dt, up to a constant. We form

dt as the sum of the components d1
t + d2

t recovered by HST, then use the Kalman filter

to construct filtered estimates of the components based on the history of the sum dt

up to time t. In that way, we form žt as a component of x̌t. We then use x̌t to form

v̌t, ṽt and mu
t+1,t. In more detail, we form žt+1 recursively from

w̌t+1 = Č−1
y (yt+1 − Ayx̌t), (55)

žt+1 = Azx̌t + Čzw̌t+1. (56)

Here Č−1
y wt+1 is the innovation in yt+1. This is a standard recursive application of the

Kalman filter to construct state estimates.

Figure 2 shows the two components of the endowment process recovered by HST.

Figure 3 shows the filtered estimates of these two components. Not surprisingly, the

filtered components are smoother than their true counterparts. Below, we calculate

mu
t+1,t based on these filtered components.

Table 1 reports HST’s estimates of the free parameters of their model with habit

persistence. For those parameters, Figure 4 shows the locus of (β, σ) pairs that are ob-

servationally equivalent for HST’s model, the HSW model, and the comparison model.

These were computed by evaluating the exact formula (33). The locus for the com-

parison model is virtually identical with that for HST’s model, while the locus for the

HSW model is steeper, reflecting the larger innovation ‘volatility’ coming from C̃z. By

construction, all three loci go through the same point at σ = 0.

Table 2 computes the median market prices of risk from one to four periods for

HST’s model for some combinations22 of parameter values (µb, σ). The preference

specification makes µb a curvature parameter. Table 8 reports coefficients of relative

risk aversion associated with various values of µb, which we formed by injecting the
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derivatives of the utility function ucc and uc injected into the standard formula for the

coefficient of relative risk aversion:

rc ≡
−cucc

uc
. (57)

We apply the chain rule to calculate risk aversion coefficient defined in terms of con-

sumption, as in (57). The marginal utility of consumption is related to that for services

by uc = (1+λ)us = −2(1+λ)(s−µb). and The second derivative of the utility function

with respect to consumption is ucc = −2(1 + λ)2. Therefore, we take the coefficient of

relative risk aversion for consumption gambles to be

rc = c
1 + λ

µb − s
.

We evaluated (57) along the c, s realization of HST. Table 8 records various quantiles

of the resulting coefficients of relative risk aversion for different bliss points µb.
23

In tables 3, 4, 5 and 6, as σ varies, we alter β according to the observational

equivalence formula (33). That (β, σ) respect the observational equivalence formula

(33) implies that F stays fixed for all three models and all values of σ (this is what the

observational equivalence proposition means). However, the worst case shock v varies

with σ, and across models, because the volatility matrices (the C’s) vary across models

and also time series of the state vector.24 Tables 3 to 6 report the market prices of

uncertainty for 1 to 4 periods for all three models.25

Consider a comparison between the HSW and benchmark models. Recall that the

difference between the games underlying these models is that the HSW game has an

additional perturbation not present in the benchmark model. It requires more than

one time period for this perturbation to be reflected in the market price of uncertainty.

For a given choice of robustness penalty parameter θ = −1/σ, there is virtually no

difference in the one period median market prices of uncertainty between the HSW

game and the benchmark game. The additional perturbation, however, enhances the

uncertainty prices for longer time horizons in the HSW model. For instance, Table 4

shows that that the HSW model leads to a fifty percent increase in the market price

of Knightian uncertainty for horizon four. However, the meaning of θ or σ is different

across models. For a given σ, the worst-case model associated with the HSW model
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is, from a statistical vantage point, further away from the approximating model than

is the worst-case model that is associated with the benchmark model. An agent who

learns statistically may more readily detect such model departures from historical data.

We now study detection probabilities in more detail.

For each of our three models, Table 7 records the detection error probabilities for

distinguishing the approximating model from the worst case model affiliated with a

given σ. Each of these was calculated by counting frequencies from 20,000 simulations

of the detection error statistics described in Appendix A. Each simulation started from

HST’s estimate of the initial condition for the state, and contained the same number

of periods as the data set that HST used to estimate their model. For a given σ,

the detection error probability is lower for the HSW model than for the HST model,

meaning that it is easier to distinguish the worst case model from the approximating

model in the HSW case. In figures 5, 6, 7 and 8, we plot the relationship between

the market price of Knightian uncertainty and the detection error probability, using

statistics from tables 3, 4, 5 and 6 and 7. For each model for each pricing horizon,

there is a tight inverse relation between the detection error probability and the market

price of uncertainty. For the shorter pricing horizons, the market price of uncertainty

is actually lower for a given detection error probability for the HSW model than for

the other models. At horizon 4, however, the loci of detection-error probabilities and

market prices of uncertainty of all three models coincide. The graph at horizon 4

demonstrates that the link between the detection error probabilities and the market

prices of uncertainty that was discussed and documented in Anderson, Hansen, and

Sargent (2000) extends to at least some models with hidden Markov states, provided

that we look beyond the initial response.

9.3 Detection Error Probabilities and Model Complexity

The last subsection indicated that for a given detection error probability, all three mod-

els give rise to nearly the same market prices of uncertainty for the four period pricing

horizon. We suspect that it is not really appropriate to compare detection-error proba-

bilities as we have across different approximating models. Those models are associated

with games that assume different types of perturbations. The worst-case model for

the HSW game was derived by looking at more complicated perturbations than those

allowed for the benchmark game. In studying detection, we explored only pairwise
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comparisons between worst-case models and the approximating model. In statistically

exploring a richer class of perturbations, it may instead be reasonable to imagine de-

tection problems with a more complicated family of alternative models. Enlarging

the family of alternative models might make statistical detection more challenging.

Our current detection comparison misses the additional complexity that emerges from

adding candidate models into the choice set of a hypothetical statistician. When some

of the state variables are hidden from decision makers, taking account of this complexity

might well boost the market price of uncertainty.

10 Concluding Remarks

This paper has shown how to adapt the asset pricing theory of HST to a setting where

part of the state is not observed, putting the planner and the agents into a situation

where they have both to filter and to control. By using results of Hansen and Sargent

(2000), the joint filtering and control problem can be broken in two, the first being an

ordinary Kalman filtering problem, and the second being an ordinary robust control

problem with observed state. HST’s formulation of asset pricing then applies directly,

including their formula for the market price of Knightian uncertainty in terms of the

Radon-Nikodym derivative of the distorted with respect to the approximating model.

This two step procedure still embodies an interaction between filtering and control that

is captured by an extra innovation volatility term in the control problem relative to

what is found in the non-robust formulations of related problems by Detemple (1986),

Dothan and Feldman (1986), Gennotte (1986) and Veronesi (1999) and others.

We used detection error probabilities to discipline our choice of the critical robust-

ness parameter σ = −θ−1 across models. For fixed detection error probabilities, we

find that the market price of risk measured using the approximating model does not

increase in moving from HST’s specification to ours. The explanation is this. For fixed

σ, the added confusion caused by the filtering problem increases the gap between the

distorted and the approximating model by enlarging the mean distortion vt, making

deviations between the approximating and distorting models easier to detect statisti-

cally. Adjusting σ toward zero to compensate for this effect erases much of the boost

in the market price of risk coming from the increased volatility from filtering.

However, we are doubt this apparent irrelevance result because in comparing de-

tection errors across models it may be important to adjust the likelihood ratios for the
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differing complexities of the models. We suspect that adjusting for model complexity

would alter our interpretation of the above findings.

We intend this paper partly as a prolegomenon to a paper in which we alter the

specification of the trend in HST’s model. Instead of positing a known geometric trend,

we would like to work with a stochastic trend model, say by letting the endowment

process have repeated unit roots. That specification is capable of matching ‘trend

breaks’ in productivity growth. The filtering machinery in this paper then applies

directly to the problem of estimating an unobserved trend component of GDP growth,

allowing for breaks. HST’s model could be re-estimated under such a modification.

The joint robust filtering and control problem has many potential applications in

macroeconomics and monetary economics. A class of examples that especially interests

us has stochastic unobserved trends in productivity or ‘potential GDP’, estimates of

which enter monetary policy rules. See Cagetti, Hansen, Sargent, and Williams (2000)

for a formulation in continuous time.
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Table 1: Parameter Estimates from HST

β 0.9971
δh 0.6817
λ 2.4433
α1 0.8131
α2 0.1888
φ1 0.9978
φ2 0.7044
µd 13.7099
c1 0.1084
c2 0.1551

Table 2: Multi-Period Market Price of Model Uncertainty (with habit persistence)

Panel A: 1 period
µb�σ 0 -0.000025 -0.00005 -0.000075 -0.00010 -0.00015

24 0 0.0174 0.0348 0.0523 0.0697 0.1048
30 0 0.0284 0.0568 0.0853 0.1140 0.1718
36 0 0.0394 0.0789 0.1186 0.1586 0.2399

Panel B: 2 period
µb�σ 0 -0.000025 -0.00005 -0.000075 -0.00010 -0.00015

24 0 0.0246 0.0493 0.0740 0.0989 0.1491
30 0 0.0402 0.0805 0.1211 0.1620 0.2454
36 0 0.0557 0.1118 0.1685 0.2260 0.3450

Panel C: 3 period
µb�σ 0 -0.000025 -0.00005 -0.000075 -0.00010 -0.00015

24 0 0.0302 0.0604 0.0909 0.1215 0.1835
30 0 0.0492 0.0987 0.1487 0.1994 0.3035
36 0 0.0683 0.1372 0.2073 0.2790 0.4298

Panel D: 4 period
µb�σ 0 -0.000025 -0.00005 -0.000075 -0.00010 -0.00015

24 0 0.0348 0.0699 0.1051 0.1407 0.2131
30 0 0.0569 0.1142 0.1722 0.2314 0.3540
36 0 0.0789 0.1588 0.2405 0.3248 0.5049
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Table 3: One-Period Median Market Price of Model Uncertainty (with habit persis-
tence)

Panel A: The HST model
µb�σ 0 -0.000025 -0.00005 -0.000075

24 0 0.0174 0.0348 0.0523
30 0 0.0284 0.0568 0.0853
36 0 0.0394 0.0789 0.1186

Panel B: The comparison model
µb�σ 0 -0.000025 -0.00005 -0.000075

24 0 0.0175 0.0350 0.0525
30 0 0.0285 0.0570 0.0857
36 0 0.0395 0.0792 0.1191

Panel C: The HSW model
µb�σ 0 -0.000025 -0.00005 -0.000075

24 0 0.0175 0.0350 0.0526
30 0 0.0285 0.0571 0.0858
36 0 0.0396 0.0793 0.1193

Table 4: Two-Period Median Market Price of Model Uncertainty (with habit persis-
tence)

Panel A: The HST model
µb�σ 0 -0.000025 -0.00005 -0.000075

24 0 0.0246 0.0493 0.0740
30 0 0.0402 0.0805 0.1211
36 0 0.0557 0.1118 0.1685

Panel B: The comparison model
µb�σ 0 -0.000025 -0.00005 -0.000075

24 0 0.0247 0.0495 0.0744
30 0 0.0403 0.0808 0.1216
36 0 0.0559 0.1122 0.1692

Panel C: The HSW model
µb�σ 0 -0.000025 -0.00005 -0.000075

24 0 0.0310 0.0622 0.0935
30 0 0.0506 0.1016 0.1531
36 0 0.0702 0.1412 0.2135

41



Table 5: Three-Period Median Market Price of Model Uncertainty (with habit persis-
tence)

Panel A: The HST model
µb�σ 0 -0.000025 -0.00005 -0.000075

24 0 0.0302 0.0604 0.0909
30 0 0.0492 0.0987 0.1487
36 0 0.0683 0.1372 0.2073

Panel B: The comparison model
µb�σ 0 -0.000025 -0.00005 -0.000075

24 0 0.0303 0.0607 0.0912
30 0 0.0494 0.0991 0.1493
36 0 0.0686 0.1378 0.2082

Panel C: The HSW model
µb�σ 0 -0.000025 -0.00005 -0.000075

24 0 0.0436 0.0874 0.1318
30 0 0.0711 0.1431 0.2164
36 0 0.0987 0.1993 0.3034

Table 6: Four-Period Median Market Price of Model Uncertainty (with habit persis-
tence)

Panel A: The HST model
µb�σ 0 -0.000025 -0.00005 -0.000075

24 0 0.0348 0.0699 0.1051
30 0 0.0569 0.1142 0.1722
36 0 0.0789 0.1588 0.2405

Panel B: The comparison model
µb�σ 0 -0.000025 -0.00005 -0.000075

24 0 0.0350 0.0702 0.1056
30 0 0.0571 0.1147 0.1730
36 0 0.0793 0.1595 0.2416

Panel C: The HSW model
µb�σ 0 -0.000025 -0.00005 -0.000075

24 0 0.0551 0.1108 0.1673
30 0 0.0900 0.1816 0.2760
36 0 0.1250 0.2537 0.3894
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Table 7: Detection Error Probability

Panel A: The HST model
µb�σ 0 -0.000025 -0.00005 -0.000075

24 0.5000 0.4605 0.4254 0.3844
30 0.5000 0.4390 0.3739 0.3216
36 0.5000 0.4165 0.3371 0.2576

Panel B: The comparison model
µb�σ 0 -0.000025 -0.00005 -0.000075

24 0.5000 0.4637 0.4237 0.3857
30 0.5000 0.4370 0.3796 0.3231
36 0.5000 0.4169 0.3380 0.2647

Panel C: The HSW model
µb�σ 0 -0.000025 -0.00005 -0.000075

24 0.5000 0.4410 0.3781 0.3191
30 0.5000 0.4063 0.3092 0.2238
36 0.5000 0.3731 0.2466 0.1481

Table 8: Implied Coefficients of Relative Risk Aversion

quantile�µb 18 24 30 36
.25 13.1 5.1 3.1 2.3
.5 14.2 5.2 3.2 2.3
.75 15.4 5.4 3.3 2.4
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Figure 1: Three models: the approximating model v = 0, the true model v = v̄, and
the worst-case model v̂.
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Figure 2: Actual permanent and transitory components of endowment process from
Hansen, Sargent, Tallarini (1999) model.
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Figure 3: Filtered estimates of permanent and transitory components of endowment
process from Hansen, Sargent, Tallarini (1999) model.
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Figure 4: Observationally equivalent (β, σ) pairs, β on the vertical axis. The steeper
line is for the HSW model, the overlapping less steep line is for the HST model and
the comparison model.
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Figure 5: One-Period Market Price of Knightian Uncertainty versus Detection Error Prob-
ability
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Figure 6: Two-Period Market Price of Knightian Uncertainty versus Detection Error Prob-
ability
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Figure 7: Three-Period Market Price of Knightian Uncertainty versus Detection Error Prob-
ability

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

F
o

u
r−

P
e

ri
o

d
 M

a
rk

e
t 

P
ri
c
e

 o
f 

K
n

ig
h

ti
a

n
 U

n
c
e

rt
a

in
ty

Detection Error Probability

HST      
HSW      
Benchmark

Figure 8: Four-Period Market Price of Knightian Uncertainty versus Detection Error Prob-
ability
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Appendices

A Detection Error Probabilities

This appendix describes how we compute the detection error probabilities. First, we

describe detection error probabilities for the basic HST model, and then for the HSW

and comparison models.

A.1 Likelihood Ratio under the Approximating Model

Represent the approximating model as

xt+1 = Aoxt + Cwt+1, (A.1)

where wt+1 is a sequence of i.i.d. Gaussian vectors with mean zero and covariance

matrix I. In this part, we assume that the true data generating process is this approx-

imating model.

Represent the distorted model as

xt+1 = Aoxt + C(w̌t+1 + vt),

= Âxt + Cw̌t+1. (A.2)

Define vA as the worst case shock assuming that the underlying data generating process

is the approximating model, i.e., vA = κxA and Â = Ao + Cκ, where xA is generated

under (A.1). Hence, we can express the innovation under the worst case model as:

w̌t+1 = wt+1 − vA
t . (A.3)
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The log likelihood function under the approximating model is

logLAA = − 1

T

T−1∑
t=0

{log
√

2π +
1

2
(wt+1 · wt+1)}. (A.4)

The likelihood function for the distorted model, given that (A.1) is the data generating

process, is

logLAB = − 1

T

T−1∑
t=0

{log
√

2π +
1

2
(w̌t+1 · w̌t+1)},

= − 1

T

T−1∑
t=0

{log
√

2π +
1

2
(wt+1 − vA

t )′(wt+1 − vA
t )}. (A.5)

Hence, the likelihood ratio assuming that the approximating model is the data gener-

ating process, rA is :

rA ≡ logLAA − logLAB,

=
1

2T

T−1∑
t=0

{w̌t+1 · w̌t+1 − wt+1 · wt+1},

=
1

T

T−1∑
t=0

{1

2
vA

t

′
vA

t − vA
t

′
wt+1}. (A.6)

A.2 Likelihood Ratio under the Distorted Model

Now suppose that the data generating process is the distorted model, described as

follow

xt+1 = (Ao + Cκ)xt + Cεt+1,

≡ Âxt + Cεt+1, (A.7)
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where Â = Ao + Cκ. Under the approximating model, we have,

xt+1 = Aoxt + Cε̌t+1. (A.8)

Hence, ε̌t+1 = εt+1 + vB
t , where vB = κxB

t and xB
t is the time series generated under

(A.7).

The loglikelihood function logLBB for the distorted model, assuming that the dis-

torted model generates the data is

logLBB = − 1

T

T−1∑
t=0

{log
√

2π +
1

2
(εt+1 · εt+1)}. (A.9)

The log likelihood function logLBA for the approximating model, assuming that the

distorted model (A.7) generates the data is,

logLBA = − 1

T

T−1∑
t=0

{log
√

2π +
1

2
(ε̌t+1 · ε̌t+1)},

= − 1

T

T−1∑
t=0

{log
√

2π +
1

2
(εt+1 + vB

t )′(εt+1 + vB
t )}. (A.10)

Hence, the likelihood ratio rB, assuming that the distorted model is the data generating

process is

rB ≡ logLBB − logLBA,

=
1

2T

T−1∑
t=0

{ε̌t+1 · ε̌t+1 − εt+1 · εt+1},

=
1

T

T−1∑
t=0

{1

2
vB

t

′
vB

t + vB
t

′
εt+1}. (A.11)
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A.3 The Detection Error Probability

The detection error probability is defined as,

p(θ) =
1

2
(pA + pB), (A.12)

where pi = freq(ri ≤ 0), i = A,B. We attach equal prior weights to model A and B. To

compute p(θ), we simulate a large number of trajectories and calculate the empirical

detection error probability.

A.4 The HSW and the Comparison Models

For the HSW model, this appendix describes in detail how we simulated the approxi-

mating and worst case models and evaluated their likelihood functions to calculate the

detection error probabilities.

A.4.1 Simulating data under the worst case model

First, simulate under the worst case model, described by the following law of motion:

y∗ = Ayx̌+ Čy(w̌ + v̌),

ž∗ = Azx̌+ ČzČ
−1
y (y∗ − Ayx̌) + C̃z ṽ,

f ∗ = Af x̌+Bfu,

= (Af −BfF )x̌, (A.13)

given the initial condition x̌0 from HST (after appropriate transformation to the newly

defined state vector notation in order to make CyC
′
y nonsingular.) Note that

v =


v̌
ṽ


 =


κ̌
κ̃


 x̌ ≡ κx̌, (A.14)
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where x̌ is generated under (A.13).

First, given initial x̌ value from HST, calculate v̌ = κ̌x̌, draw a w̌ from N (0, 1),

calculate y∗. Second, compute next period’s ž∗ using y∗ and ṽ = κ̃x̌. Third, calculate

next period endogenous f ∗ using the third equation in (A.13). Finally, construct x̌∗ =[
f ∗ y∗ ž∗

]T

for the next period and repeat this procedure.

A.4.2 Simulating data under the approximating model

Perform the same procedure under the approximating model, except that now simula-

tion is done under the following law of motion:

y∗ = Ayx̌+ Čyw̌,

ž∗ = Azx̌+ ČzČ
−1
y (y∗ −Ayx̌),

f ∗ = Af x̌+Bfu,

= (Af − BfF )x̌. (A.15)

Note that there is no v̌ or ṽ appearing in the simulation.

A.5 Simulation under the comparison model

A.5.1 Simulating data under the worst case model

In the spirit of Section A.4, from the initial condition on x̌, we simulate using

y∗ = Ayx̌+ Čy(w̌ + v̌),

ž∗ = Azx̌+ ČzČ
−1
y (y∗ −Ayx̌),

f ∗ = Af x̌+Bfu,

= (Af − BfF )x̌. (A.16)

Given the initial condition x̌0, we iterate out the simulated data series for {y}T
t=1.
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A.5.2 Simulating data under the approximating model

Perform the following simulation

y∗ = Ayx̌+ Čyw̌,

ž∗ = Azx̌+ ČzČ
−1
y (y∗ −Ayx̌),

f ∗ = Af x̌+Bfu,

= (Af − BfF )x̌. (A.17)

Note that these equations for simulation under the approximating model for the

comparion model are the same as those for simulation under the approximating model

for the HSW model (A.15).

A.6 Likelihood ratio for the HSW model

Given one realization of simulated data {yt}T
t=1, (whether (A.15) or (A.13) generates

the data,) we can compute the likelihood under the worst case and approximating

models as follows.

A.6.1 Likelihood under the worst case model

The likelihood under the worst case model is

T∑
t=1

[
−1

2
(yt+1 − Ayx̌t − Čyv̌t)

′(ČyČ
′
y)

−1(yt+1 − Ayx̌t − Čyv̌t)

]
, (A.18)

where x̌t is filtered using the Kalman filter under worst case model:

žt+1 = Azx̌t + ČzČ
−1
y (yt+1 −Ayx̌t) + C̃zṽt,

ft+1 = (Af −BfF )x̌t. (A.19)
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Again note that ṽt = κ̃x̌t and

x̌t+1 =




ft+1

yt+1

žt+1



. (A.20)

Equation (A.19) generates the filtered state. Then we can compute v̌ and hence con-

struct the log likelihood defined in (A.18).

A.6.2 Likelihood under the approximating model

The likelihood under the approximating model is

T∑
t=1

[
−1

2
(yt+1 −Ayx̌t)

′(ČyČ
′
y)

−1(yt+1 − Ayx̌t)

]
, (A.21)

where x̌t is filtered using the following Kalman filter under worst case model:

žt+1 = Azx̌t + ČzČ
−1
y (yt+1 −Ayx̌t),

ft+1 = (Af − BfF )x̌t. (A.22)

With input {yt}T
t=1 and initial condition x̌0, we construct the filtered state for the

comparison model assuming that the approximating model generates the data based

on (A.27).

A.7 Likelihood ratio for the comparison model

Given one draw from, say simulated data {yt}T
t=1, whether (A.17) or (A.16) generates

the data, we can compute the likelihood under the worst case and approximating

models.
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A.7.1 Likelihood under worst case model

First compute under worst case model:

T∑
t=1

[
−1

2
(yt+1 − Ayx̌t − Čyv̌t)

′(ČyČ
′
y)

−1(yt+1 − Ayx̌t − Čyv̌t)

]
, (A.23)

where x̌t is filtered using the Kalman filter under worst case model:

žt+1 = Azx̌t + ČzČ
−1
y (yt+1 −Ayx̌t),

ft+1 = (Af − BfF )x̌t. (A.24)

Again note that ṽt = κ̃x̌t and

x̌t+1 =




ft+1

yt+1

žt+1



. (A.25)

Equation A.24 generates the filtered state. Then we may compute v̌ and hence, con-

struct the loglikelihood defined in (A.23).

A.7.2 Likelihood under approximating model

The likelihood under the approximating model is

T∑
t=1

[
−1

2
(yt+1 −Ayx̌t)

′(ČyČ
′
y)

−1(yt+1 − Ayx̌t)

]
, (A.26)
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where x̌t is filtered using the Kalman filter under worst case model:

žt+1 = Azx̌t + ČzČ
−1
y (yt+1 −Ayx̌t),

ft+1 = (Af − BfF )x̌t. (A.27)

With input {yt}T
t=1 and initial condition x̌0, we construct the filtered state for the

comparison model assuming that the approximating model generates the data based

on (A.27).

B Computing Robust Decision Rules

Consider a general optimization problem in a discounted linear quadratic environment

when the agent is concerned about model misspecification. Let xt be an (n× 1) state

vector, ūt be an (k × 1) control variable, and wt be an (m× 1) Gaussian noise hitting

the system at time t. The state vector is assumed to follow,

xt+1 = Āxt +Būt + Cwt+1 (B.1)

where Ā is an (n × n) , B is an (n × k) and C is an (n × m) matrix, respectively.

We define the time homogeneous instantaneous return function, r(x, ū) to have the

quadratic form:

r(x, ū) = −(x′ ū′)


 R̄ W

W ′ Q





x
ū


 , (B.2)

where R̄ is an (n × n), Q is a (k × k) and W is an (n × k) matrix, respectively. Her

concern about the model uncertainty is summarized by the parameter θ. She solves the
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following minmax optimization problem:

Ṽ (x) = sup
ū

inf
v
r(x, ū) + β

[
θv′v + EṼ (Āx+Bū+ C(w + v))

]
,

= −x′Ωx− a. (B.3)

To eliminate the cross product between the state vector and the control variable,

we define

R = R̄−WQ−1W ′,

A = Ā−BQ−1W ′,

u = ū+Q−1W ′x. (B.4)

The above transformation converts the law of motion (B.1) to the following equivalent

representation:

xt+1 = Axt +But + Cwt+1. (B.5)

The agent’s optimal decision rule and the worst case shock take the form of

u = −F ◦ D(Ω)x,

v̂ = θ−1(I − θ−1C ′ΩC)−1C ′Ω [A− BF ◦ D(Ω)] x ≡ κx, (B.6)

where

F(Ω) = β [Q+ βB′ΩB]
−1
B′ΩA,

D(Ω) = Ω + θ−1ΩC(I − θ−1C ′ΩC)−1C ′Ω,

κ = θ−1(I − θ−1C ′ΩC)−1C ′Ω [A− BF ◦ D(Ω)] . (B.7)

D captures the notion of robustness through its second term and F is the standard

decision rule for discounted linear quadratic regular problem. To compute the solution

of the optimizers from (B.6) and (B.7), we first need to compute the value function Ω.
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This can be achieved by solving the following fixed point problem

Ω = T ◦ D(Ω), (B.8)

where

T (P ) = R+ F(P )′QF(P ) + β[A−BF(P )]′P [A− BF(P )],

= R + βA′(P − βPB(Q+ βB′PB)−1B′P )A. (B.9)

C Multi-period market prices of Knightian uncer-

tainty

This appendix describes the detailed computations of multi-period market prices of

Knightian uncertainty with perfectly observable state vector, as in HST. The one-

period market prices of Knightian uncertainty in HST’s calculation is subsumed here.

The notation in this appendix is self-contained. Some notation from the text has been

recycled.26

The law of motion under the approximating model is

xt+1 = A∗xt + Cw̌t+1,

and under the worst-case model is

xt+1 = Ǎxt + Cw̌t+1.

There is perfect observability of the state vector x, as assumed under HST.
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Define

xj
t+j =




xt+1

xt+2

...

xt+j



, and w̌j

t+j =




w̌t+1

w̌t+2

...

w̌t+j



. (C.1)

Note that the dimension of xj
t+j is (nj) × 1, where n is the dimension of state vector

x, for our analysis n = 7. Under the approximating model, xj
t+j follows by induction,

xj
t+j = M∗

j xt +N∗
j w̌

j
t+j, (C.2)

where

M∗
j =




A∗

(A∗)2

...

(A∗)j




=


M

∗
j−1

(A∗)j


 , and N∗

j =




C 0 . . . 0

A∗C C . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

(A∗)j−1C . . . A∗C C




=


N

∗
j−1 0

S∗
j−1 N∗

1


 ,

(C.3)

and where S∗
j is define recursively as S∗

j =

[
(A∗)jC S∗

j−1

]
, with S∗

1 = A∗C.

Under the worst-case model,

xj
t+j = M̌jxt + Ňjw̌

j
t+j , (C.4)
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where

M̌j =




Ǎ

Ǎ2

...

Ǎj




=


M̌j−1

Ǎj


 , and Ňj =




C 0 . . . 0

ǍC C . . . 0

. . . . . . . . . . . . . . . . . . . . . .

(Ǎ)j−1C . . . ǍC C




=


Ňj−1 0

Šj−1 Ň1


 , (C.5)

and where Šj is defined recursively as Šj =

[
(Ǎ)jC Šj−1

]
, with Š1 = ǍC.

The initial conditions for these matrices are

N∗
1 = Ň1 = C, M∗

1 = A∗, and M̌1 = Ǎ.

Recall that under HST Ǎ = A∗ + Cκ, where κ is the worst case shock coefficient.

Under the approximating model,

w̌j
t+j =

[
(N∗

j )′N∗
j

]−1
(N∗

j )′(xj
t+j −M∗

j xt). (C.6)

Under the worst case model,

[
(Ňj)

′Ňj

]−1
(Ňj)

′(xj
t+j − M̌jxt) =

[
(Ňj)

′Ňj

]−1
(Ňj)

′(xj
t+j −M∗

j xt − (M̌j −M∗
j )xt),

= Ljw̌
j
t+j − Ojxt, (C.7)

where

Lj =
[
(Ňj)

′Ňj

]−1
(Ňj)

′N∗
j ,

Oj =
[
(Ňj)

′Ňj

]−1
(Ňj)

′ [M̌j −M∗
j

]
. (C.8)
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Hence, the likelihood ratio

mu
t+j,t =

exp
[
−1

2
(Ljw̌

j
t+j −Ojxt) · (Ljw̌

j
t+j − Ojxt)

]
exp

[
−1

2
w̌j

t+j · w̌
j
t+j

] . (C.9)

We assume that 2L′
jLj − I is positive definite and let Pj be its Cholesky decompo-

sition factor:

P ′
jPj = 2L′

jLj − I,

Qj = 2(P ′
j)

−1L′
jOj. (C.10)

The second moment of the market price of Knightian uncertainty hence can be

expressed as follows:

Et

[
mu

t+j,t

]2
=

[
1√
2π

]j ∫ ∞

−∞
Ω(w̌j

t+j)dw̌
j
t+j, (C.11)

where

Ω(w̌j
t+j) = exp

[
−1

2
(w̌j

t+j)
′P ′

jPjw̌
j
t+j + x′t(2O

′
jLjP

−1
j )Pjw̌

j
t+j − (Ojxt) · (Ojxt)

]
.

Hence, the conditional second moment of the market price of Knightian uncertainty is

Et

[
mu

t+j,t

]2
= (detPj)

−1 exp [x′tRjxt] , (C.12)

where

Rj =
1

2
Q′

jQj − O′
jOj,

= 2O′
jLjP

−1
j (P ′

j)
−1L′

jOj − O′
jOj,

= O′
j

[
2LjL

′
j − I

]−1
Oj. (C.13)
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Note that by construction, the conditional expectation of the market price of Knigh-

tian uncertainty is 1, namely, Etm
u
t+j,t = 1. Finally, the market price of Knightian

uncertainty

σt(m
u
t+j,t)

Et(mu
t+j,t)

=

√
(detPj)

−1 exp [x′tRjxt] − 1. (C.14)

It seems we need to show that

det(Pj) ≤ 1

and Rj is positive semidefinite.

HST’s calculation is our special case with j = 1. Obviously, L1 = I, O1 = κ, P1 =

I, and R1 = κ′κ. Hence,

σt(m
u
t+1,t)

Et(m
u
t+1,t)

=

√
(detP1)

−1 exp [x′tR1xt] − 1,

=
√

exp [vt · vt] − 1, (C.15)

where vt = κxt.

62



Notes

1The combined estimation and control calculations extend Hansen and Sargent’s

(1995) formulation of a discounted risk-sensitive problem.

2See Cochrane and Hansen (1992), Constantinides and Duffie (1996), Mehra and

Prescott (1985), Weil (1989) and Hansen and Jagannathan (1991).

3See Hansen and Sargent (2000) and Cagetti, Hansen, Sargent, and Williams (2000).

4See Harrison and Kreps (1979).

5As in HST, another way to interpret our calculations is as perturbing the measure

with respect to which the expectation is evaluated, while retaining the ordinary formula

for the stochastic discount factor.

6While Hansen and Jagannathan (1991) looked at the unconditional counterpart

to this pricing inequality for multiple assets, Gallant and Tauchen (1990) studied the

conditional version (2).

7See Hansen and Singleton (1983), Mehra and Prescott (1985), or Hansen and

Jagannathan (1991) for alternative statements of this phenomenon.

8See Anderson, Hansen, and Sargent (2000) for an alternative specification of a class

of models. Their approximating model is a controlled Markov process. They form a

set of alternative models by multiplying the one-step transition density of the approx-

imating model by a strictly positive function. It can be shown that the formulation
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for the linear stochastic difference equation in this paper is consistent with Anderson,

Hansen, and Sargent’s.

9Thus, θ is +∞ for η0 = 0, and falls as η0 rises above zero.

10This is called the reference model in much of the control theory literature.

11See Appendix B for a formula for Ω.

12This R operator also appears in literature on recursive utility. See Kreps and

Porteus (1978), Epstein and Zin (1989) and Duffie and Epstein (1992).

13For studies of preferences with habit formation, see Ryder and Heal (1973), Becker

and Murphy (1988), Sudaresan (1989), Constantinides (1990) and Heaton (1993).

14The two parameterizations each for d1 and d2 are equivalent, the first being used

in this paper and the second in HST.

15For HST, the two-component structure served also the purpose of assuring ‘stochas-

tic nonsingularity’, meaning a spectral density of full rank for the observables ct, it for

which they constructed a likelihood function for estimating free parameters.

16Formula (33) solves and simplifies an implicit function in HST.

17See Hansen and Jagannathan (1991) for this characterization of the equity premium

puzzle.

18Here CzC
′
y measures the covariance between the state and measurement errors.
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19The spectral factorization achieved by (41) assures the equality Cw +A(x− x̌) =

C∗w∗.

20See Anderson and Moore (1979) for a discussion of innovations representations,

also called Wold representations.

21 This differs from the procedure recommended by Basar and Bernhard (1995) and

Whittle (1990). The difference stems from their using a different criterion, according

to which the decision maker cares equally about past and future returns.

22These combinations include ones originally reported in HST and some additional

ones besides.

23Given the time separabilities in preferences, there are important distinctions be-

tween consumption and wealth lotteries. See Constantinides (1990) for a discussion of

this point and suggestions for other measures of risk aversion.

24The market prices of uncertainty are computed using the exact formula (34) while

HST used an approximation.

25We chose a smaller range of σ’s because some of the σ’s in the tables are beyond the

‘breakdown point’ for the HSW model. See HST and Whittle (1990) for explanations

of the breakdown point.

26We use xt for what was x̌t in the text.
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