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Abstract

A representative consumer uses Bayes’ law to learn about parameters of

several models and to construct probabilities with which to perform ongoing

model averaging. The arrival of signals induces the consumer to alter his pos-

terior distribution over models and parameters. The consumer’s specification

doubts induce him to slant probabilities pessimistically. The pessimistic prob-

abilities tilt toward a model that puts long-run risks into consumption growth.

That contributes a counter-cyclical history-dependent component to prices of

risk.
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Le doute n’est pas une condition agréable, mais la certitude est absurde.1

Voltaire 1767.

1 Introduction

A pessimist thinks that good news is temporary and that bad news endures. This

paper describes how a representative consumer’s model selection problem and fear of

misspecification foster pessimism that puts countercyclical uncertainty premia into

risk prices.

1.1 Doubts promote fragile beliefs

A representative consumer values consumption streams according to the multiplier

preferences that Hansen and Sargent (2001) use to represent model uncertainty.2 Fol-

lowing Hansen and Sargent (2007), the iterated application of risk-sensitivity opera-

tors focuses a representative consumer’s distrust on model selection and on particular

parameters within those models.3 Ex post, the consumer acts ‘as if’ he believes a

probability measure that a malevolent alter ego has twisted pessimistically relative

to a baseline approximating model. The apparent pessimism is actually the con-

sumer’s instrument for constructing valuations that are robust to misspecifications.

By ‘fragile beliefs’ we refer to the sensitivity of pessimistic probabilities to the arrival

of news, as determined by the state-dependent value functions that define what the

consumer is pessimistic about.4 Our representative consumer’s reluctance to trust his

model adds ‘model uncertainty premia’ to prices of risk. The parameter estimation

and model selection problems make these uncertainty prices be time-dependent and

state-dependent, in contrast to the constant uncertainty premia found by Hansen

et al. (1999) and Anderson et al. (2003).

1Doubt is not a pleasant condition, but certainty is absurd.
2The relationship of the multiplier preferences of Hansen and Sargent (2001) to the max-min

expected utility preferences of Gilboa and Schmeidler (1989) are analyzed by Hansen et al. (2006),
Maccheroni et al. (2006a,b), Cerreia et al. (2008), and Strzalecki (2008).

3Sometimes the literature calls this ‘structured uncertainty’.
4Harrsion and Kreps (1978) and Scheinkman and Xiong (2003) explore other settings in which

difficult to detect departures from rational expectations lead to interesting asset price dynamics that
cannot occur under rational expectations.
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1.2 Key components

In addition to a risk sensitivity operator of Hansen et al. (1999) and Tallarini (2000)

that adjusts for uncertain dynamics of observed states, another one of Hansen and

Sargent (2007) adjusts the probability distribution of hidden Markov states for model

uncertainty.5 We interpret both risk-sensitivity operators as capturing a representa-

tive consumer’s concerns about robustness.6

Our representative consumer assigns positive probabilities to two models whose

fits make them indistinguishable for our data on per capita U.S. consumption expen-

ditures on nondurables and services from 1948II-2009IV. In one model, consumption

growth rates are only weakly serially correlated, while in the other there is a highly

persistent component of consumption growth rate, as in the long-run risk model of

Bansal and Yaron (2004). The representative consumer doubts the Bayesian model-

mixing probabilities as well as the specification of each model. The consumer copes

with model uncertainty by slanting probabilities towards the model associated with

the lowest continuation utility. We show how variations over time in the probabilities

attached to models and other state variables put volatility into uncertainty premia.

In contrast, Bansal and Yaron assume that the representative consumer assigns

probability one to the long-run risk model even though sample evidence is indecisive

in selecting between them.7 Our framework explains why a consumer might act as if

he puts probability (close to) one on the long-run risk model even though he knows

that it is difficult to discriminate between these models statistically.

1.3 Organization

We proceed as follows. After section 2 sets out a framework for pricing risks expressed

in a vector Brownian motionWt, section 3 describes a hidden Markov model and three

5This second risk-sensitivity operator expresses what Klibanoff et al. (2005, 2008) call smooth
ambiguity and what other researchers call ‘structured’ model uncertainty. Using a different approach
to learning in the presence of model ambiguity, Epstein and Schneider (2008) apply their recursive
multiple priors model to study the response of asset prices to signals when investors are uncertain
about a noise variance that influences Bayesian updating.

6Barillas et al. (2008) emphasize that both risk-sensitivity operators can be view as indirect
utility functions for the minimization part for max-min expected utility problems. Tallarini adopted
an interpretation in terms of enhanced risk aversion.

7Bansal and Yaron (2004) incorporate other features in their specification of consumption dy-
namics, including stochastic volatility, and they adopt a recursive utility specification with an in-
tertemporal elasticity of substitution greater than 1.
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successively smaller information sets (full information, unknown states, and unknown

states and unknown model) together with the three innovations (or news) processes

given by the increments to Brownian motions Wt(ι), W̄t(ι) and W̄t that are implied

by these three information structures. Section 4 then uses these three information

specifications and the associated dWt(ι), dW̄t(ι), dW̄t, respectively, as risks to be

priced without model uncertainty. We construct these section 4 risk prices under the

information assumptions ordinarily used in finance and macroeconomics. Section 5

proposes a new perspective on asset pricing models with Bayesian learning by pricing

each of the risks dWt(ι), dW̄t(ι) and dW̄t under the full information set. Section 6 de-

scribes contributions to risk prices coming from uncertainty about distributions under

each of our three information structures. Uncertainty about shock distributions with

known states contributes a constant uncertainty premium, while uncertainty about

unknown states contributes time-dependent premia and uncertainty about models con-

tributes state-dependent premia. Section 7 presents an empirical example designed

to highlight the mechanism through which the state-dependent uncertainty premia

give rise to countercyclical prices of risk. Appendix A describes how we use detection

error probabilities to calibrate the representative consumer’s concerns about model

misspecification.

2 Stochastic discounting and risks

Let {St} be a stochastic discount factor process that, in conjunction with an ex-

pectation operator, assigns date 0 risk-adjusted prices to payoffs at date t. Trading

at intermediate dates implies that St+τ

St
is the τ -period stochastic discount factor for

computing asset prices at date t. Let {Wt} be a vector Brownian motion innovation

process where the increment dWt represents new information flowing to consumers at

date t. Synthesize a cumulative time t payoff as

logQt(α) = α · (Wt −W0) −
t

2
|α|2.

By subtracting t
2
|α|2, we have constructed the payoff to be a martingale with unit

expectation. By altering the vector α, we change the exposure of the payoff to
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components of Wt. At date t, we price the payoff Qt+τ (α)
Qt(α)

as

Pt,τ (α) = E

[
St+τQt+τ (α)

StQt(α)

∣
∣
∣Yt

]

. (1)

The vector of (growth-rate) risk prices for horizon τ is given by the price elasticity

πt,τ = −
∂

∂α

1

τ
logPt,τ (α)|α=αo

, (2)

where we have scaled by the payoff horizon τ for comparability.8 Since we scaled the

payoffs to have a unit expected payoff, − 1
τ

logPt,τ is the logarithm of an expected

return adjusted for the payoff horizon. In log-normal models, this derivative is inde-

pendent of αo. This is true more generally when the investment horizon shrinks to

zero.9

The vector of local risk prices is given by the limit

πt = − lim
τ↓0

∂

∂α

1

τ
logPt,τ . (3)

It gives the local compensation for exposure to shocks expressed as an increase in

the conditional mean return. In conjunction with an instantaneous risk-free rate,

local risk prices are elementary building blocks for pricing assets (e.g., Duffie (2001,

pp. 111-114)). Local prices can be compounded to construct the asset prices for

arbitrary payoff intervals τ using the dynamics of the underlying state variables.

We can exploit local normality to obtain a simple characterization of the slope of

the mean-standard deviation frontier and thereby reproduce a classical result from

finance. The slope of the efficient segment of the mean-standard deviation frontier is

the optimized value of the objective function

max
α,α·α=1

α · πt

where the constraint imposes a unit local variance. The solution is α∗
t = πt

|πt|
with the

8The negative sign reflects that the consumer dislikes risk.
9Here we are following Hansen and Scheinkman (2009) and Hansen (2008) in constructing a term

structure of prices of growth-rate risk.
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optimized local mean being

α∗
t · πt =

πt · πt

|πt|
= |πt|. (4)

In this local normal environment, the Hansen and Jagannathan (1991) analysis sim-

plifies to comparing the slope of observed mean-standard deviation frontier to the

magnitude |πt| of the risk price vector implied by alternative models.

In the power utility model,

St+τ

St

= exp(−δ) exp[−γ(logCt+τ − logCt)],

where the growth rate of log consumption is logCt+τ − logCt. Here the vector πt of

local risk prices is the vector of exposures of −d logSt = γd logCt to the Brownian

increment vector dWt.

We use models of Bayesian learning to create alternative specifications of dWt

and information sets with respect to which the mathematical expectation in (1) is

evaluated.

2.1 Learning and asset prices

We assume a hidden Markov model in which Xt(ι) is a hidden state vector for an

unknown model indexed by ι, Y t+τ
t is the stochastic process of signals between date

t and t + τ , and Yt is a conditioning information set generated by the history of

signals up until time t. Lower case letters denote values that potentially can be

realized. In particular, y is a possible realized path for the signal process Y t+τ
t and

x is a possible realization of the date t state vector Xt(ι) for any model ι. The

hidden Markov structure induces probability densities f(y|ι, x), g(x|ι,Yt), h(ι|Yt),

and f̄(y|Yt).
10 Evidently,

f̄(y|Yt) =

∫ [∫

f (y|ι, x) g(x|ι,Yt)dx

]

h(ι|Yt)dι. (5)

For convenience, let

Zt+τ (α) =
St+τQt+τ (α)

StQt(α)
.

10Densities are always expressed relative to a reference measure. In the case of Y t+τ
t , the reference

measure is a measure over the space of continuous functions defined on the interval [t, t + τ ].
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In our construction under limited information, Zt+τ (α) can be expressed as a function

of Y t+τ
t and hence we can express the asset price

Pt,τ (α) = E [Zt+τ (α)|Yt]

as an integral against the density f̄ .

To express the price in another way that will be useful to us, we first use density

f to construct E[Zt+τ (α)|Xt(ι) = x, ι] and then write

Pt,τ (α) =
∫ ∫

E[Zt+τ (α)|Xt(ι) = x, ι] g(x|ι,Yt)dx
︸ ︷︷ ︸

h(ι|Yt)dι
︸ ︷︷ ︸

.

↑ ↑

unknown unknown

state model

This decomposition helps us understand how our paper relates to earlier asset

pricing papers including, for example, Detemple (1986), Dothan and Feldman (1986),

David (1997), Veronesi (2000), Brennan and Xia (2001), Ai (2006), David (2008),

Croce et al. (2008), and David and Veronesi (2009)11 that use learning about a hidden

state to generate an exogenous process for distributions of future signals conditional

on past signals as an input into a consumption based asset pricing model. After

constructing f̄(y|Yt), decision making and asset pricing proceeds as in standard asset

pricing models without learning. Therefore, the asset pricing implications of such

learning models depend only on f̄ and not on the underlying structure with hidden

states that the model builder used to construct that conditional distribution. The

only thing that learning contributes is a justification for a particular specification of

f̄ . We would get equivalent asset pricing implications by just assuming f̄ from the

start.

11The learning problems in those papers share the feature that learning is passive, there being no
role for experimentation, so that prediction can be separated from control. Cogley et al. (2008) apply
the framework of Hansen and Sargent (2007) in a setting where decisions affect future probabilities
of hidden states and therefore experimentation is active. The papers just cited price risks under
the same information structure that is used to generate the risks being priced. In section 5, we
offer an interpretation of some other papers (e.g., Bossaerts (2002, 2004), David (2008), and Cogley
and Sargent (2008)) that study the effects of agents’ Bayesian learning on pricing risks generated
by limited information sets from the point of view of an outside econometrician who has a larger

information set.
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2.2 Robust learning and asset pricing

Our application of distinct risk-sensitivity operators to twist the component distri-

butions f, g, h means that that equivalence is not true in our model because it makes

asset prices depend on the evolution of the hidden states themselves and not sim-

ply on the distribution of future signals conditioned on signal histories. Following

Hansen and Sargent (2007), this occurs because the representative consumer explores

potential misspecifications of the distributions of hidden Markov states and of future

signals conditioned on those hidden Markov states.12

Our representative consumer copes with model misspecification by replacing the

f, g, h conditional densities, respectively, with worst-case densities f̂ , ĝ, ĥ. With a

robust representative consumer, we can use the implied (̂·) version of density f̄ to

represent the asset price as

P̂t,τ (α) = Ê
[

Zt+τ (α)
∣
∣
∣Yt

]

. (6)

Using the density f̂ to account for unknown dynamics, we now construct Ê[Zt+τ (α)|Xt(ι) =

x, ι]. With a robust representative consumer, our information decomposition of the

asset price becomes

P̂t,τ (α) =
∫ ∫

Ê[Zt+τ (α)|Xt(ι) = x, ι] ĝ(x|ι,Yt)dx
︸ ︷︷ ︸

ĥ(ι|Yt)dι.
︸ ︷︷ ︸

↑ ↑

unknown unknown

state model

We can also represent the price in terms of the original undistorted distribution as

P̂t,τ (α) = E

[

Zt+τ (α)

(

f̂ [Y t+τ
t |ι, Xt(ι)]

f [Y t+τ
t |ι, Xt(ι)]

)(
ĝ[Xt(ι)|ι,Yt]

g[Xt(ι)|ι,Yt]

)(

ĥ[ι|Yt]

h[ι|Yt]

)∣
∣
∣
∣
Yt

]

(7)

where we have substituted in the random unobserved state vector and the random

future signals. Equivalently, the price with a robust representative consumer can be

12As emphasized by Hansen (2007), by exploring these misspecifications, our representative con-
sumer in effect refuses to reduce compound lotteries.
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represented as

P̂t,τ (α) = E

(
M t+τ

t

Mt

Zt+τ (α)

∣
∣
∣
∣
Yt

)

where the likelihood ratio M t+j
t satisfies E

(
M t+τ

t |Yt

)
= 1 and can be decomposed as

M t+τ
t =

f̂ [Y t+τ
t |ι, Xt(ι)]

f [Y t+τ
t |ι, Xt(ι)]

︸ ︷︷ ︸

ĝ[Xt(ι)|ι,Yt]

g[Xt(ι)|ι,Yt]
︸ ︷︷ ︸

ĥ[ι|Yt]

h[ι|Yt]
︸ ︷︷ ︸

.

↑ ↑ ↑

distorted distorted distorted

dynamics state estimation model probabilities

(8)

In section 6, we show how to represent the three relative densities f̂

f
, ĝ

g
, ĥ

h
, re-

spectively, that emerge from applying risk-sensitivity operators to conditional value

functions. These operators adjust separately for misspecification of f, g, and h. Con-

tinuation utilities will be key determinants of how our representative consumer uses

signal histories to learn about hidden Markov states, an ingredient absent from those

earlier applications of Bayesian learning that reduced the representative consumer’s

information prior to asset pricing. In the continuous-time setting set forth in section

3, changes in probability measures can conveniently be depicted as martingales. As

we will see, there is a martingale associated with each of the channels highlighted by

(8). For the “distorted” dynamics, in section 6.2 we construct a martingale {Mf
t }

that alters the hidden state dynamics, including the link between future signals and

the current state reflected in the density ratio f̂

f
. The martingale is constructed rel-

ative to a sequence of information sets that includes the hidden state histories and

knowledge of the model. In section 6.3, we construct a second martingale {M i
t} by

including an additional distortion to state estimation conditioned on a model as re-

flected in the density ratio ĝ

g
. This martingale is relative to a sequence of information

sets that condition both on the signal history and the model, but not on the history

of hidden states. Finally, in section 6.4 we produce a martingale {Mu
t } that alters

the probabilities over models and is constructed relative to a sequence of conditioning

information sets that includes only the signal history and is reflected in the density

ratio ĥ
h
.
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3 Three information structures

We use a hidden Markov model and two filtering problems to construct three infor-

mation sets that define risks to be priced with and without concerns about robustness

to model misspecification.

3.1 State evolution

Two models ι = 0, 1 take the state-space forms

dXt(ι) = A(ι)Xt(ι)dt+B(ι)dWt(ι)

dYt = D(ι)Xt(ι)dt+G(ι)dWt(ι) (9)

where Xt(ι) is the state, Yt is the (cumulated) signal, and {Wt(ι) : t ≥ 0} is a mul-

tivariate standard Brownian motion, so Wt+τ (ι) −Wt(ι) ∼ N (0, τI). For notational

simplicity, we suppose that the same Brownian motion drives both models. Under full

information, ι is observed and the vector dWt(ι) gives the new information available

to the consumer at date t.

3.2 Filtering problems

To generate two alternative information structures, we solve two types of filtering

problems. Let Yt be generated by the history of the signal dYτ up to t and any prior

information available as of date zero. In what follows, we first condition on Yt and ι

for each t. We then omit ι and condition only on Yt.

3.2.1 Innovations representation with model known

First, suppose that ι is known. Application of the Kalman filter yields the innovations

representation

dX̄t(ι) = A(ι)X̄t(ι)dt+Kt(ι)[dYt −D(ι)X̄t(ι)dt] (10)

where X̄t(ι) = E[Xt(ι)|Yt, ι] and

Kt(ι) = [B(ι)G(ι)′ + Σt(ι)D(ι)′][G(ι)G(ι)′]−1
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dΣt(ι)

dt
= A(ι)Σt(ι) + Σt(ι)A(ι)′ +B(ι)B(ι)′

−Kt(ι)[G(ι)B(ι)′ +D(ι)Σt(ι)]. (11)

We allow more shocks than signals, so G(ι) can have more columns than rows.

This possibility leads us to construct a nonsingular matrix Ḡ(ι) where G(ι)G(ι)′ =

Ḡ(ι)Ḡ(ι)′. The innovation process is

dW̄t(ι) = [Ḡ(ι)]−1
[
dYt −D(ι)X̄t(ι)dt

]
,

where the innovation dW̄t(ι) comprises the new information revealed by the signal

history.

3.2.2 Innovations representation with model unknown

When there are different G(ι)G(ι)′’s for different models ι, it is statistically trivial to

distinguish among models ι with continuous data records. Technically, the reason is

that with different G(ι)G(ι)′’s, the distinct ι models fail to be mutually absolutely

continuous over finite intervals, so one model puts positive probability on events that

are certain to be observed over a finite interval and on which the other model puts zero

probability. Because we want the models to be difficult to distinguish statistically,

we assume that that G(ι)G(ι)′ is independent of ι. Let ῑt = E(ι|Yt) and

dW̄t = Ḡ−1 (dYt − νtdt) = ῑtdW̄t(1) + (1 − ῑt)dW̄t(0)

where

νt
.
= [ῑtD(1)X̄t(1) + (1 − ῑt)D(0)X̄t(0)]. (12)

Then

dῑt = ῑt(1 − ῑt)[X̄t(1)′D(1)′ − X̄t(0)′D(0)′]
(
Ḡ′
)−1

dW̄t. (13)

The new information pertinent to consumers is now dW̄t.

4 Risk prices

Section 3 described three information structures: i) full information, ii) hidden states

with a known model, iii) hidden states with an unknown model. We use the asso-
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ciated Brownian motions W (ι), W̄t(ι), and W̄t as risks to be priced under the same

information structure that generated them.13 The forms of the risk prices are identical

for all three information structures and are familiar from Breeden (1979). The local

normality of the diffusion model makes the risk prices be equal to the exposures of

the log marginal utility to the underlying risks. Let the increment of the logarithm of

consumption be given by d logCt = H ′dYt, implying that consumption growth rates

are revealed by the increment in the signal vector. Each of our different information

sets implies a risk price vector, as reported in Table 1.

Because different risks are being priced, the risk prices differ across information

structures. However, the magnitudes of the risk price vectors are identical across

information structures. As we saw in (4), the magnitude of the risk price vector is

the slope of the instantaneous mean-standard deviation frontier. In section 6, we

shall show how a concern about model misspecification alters risk prices by adding

compensations for bearing model uncertainty. But first we want to look at Bayesian

learning and risk prices from a different perspective.

information local risk risk price slope

full dWt(ι) γG(ι)′H γ
√

H ′G(ι)G(ι)′H

unknown state dW̄t(ι) γḠ(ι)′H γ
√

H ′G(ι)G(ι)′H

unknown model dW̄t γḠ′H γ
√

H ′G(ι)G(ι)′H

Table 1: The parameter γ is the coefficient of relative risk aversion in a power utility
model. The entries in the “slope” column are the implied slopes of the mean-standard
deviation frontier. The consumption growth rate is d logCt = H ′dYt. When the model
is unknown, G(ι)G(ι)′ is assumed to be independent of ι.

13But in order to look at Bayesian learning from another angle, in section 5 we shall price the
three risk vectors under full information.
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5 A full-information perspective on agents’ learn-

ing

In this section, we describe how to link our paper to other papers on learning and asset

prices (e.g., Bossaerts (2002, 2004), David (2008), and Cogley and Sargent (2008)).

We think of these papers as studying what happens when an econometrician mis-

takenly assumes that consumers have a larger information set than they actually do.

From Hansen and Richard (1987), we know that an econometrician who conditions on

less information than consumers still draws correct inferences about the magnitude of

risk prices. Our message here is that an econometrician who mistakenly conditions on

more information than consumers makes false inferences about the magnitude of risk

prices. We regard the consequences of an econometrician’s mistakenly conditioning

on more information than consumers as contributing to the analysis of risk pricing

under consumers’ Bayesian learning.

To elaborate on the preceding points, Hansen and Richard (1987) systematically

studied the consequences for risk prices of an econometrician’s conditioning on less

information than consumers. Given a correctly specified stochastic discount factor

process, if economic agents use more information than an econometrician, the con-

sequences for the econometrician’s inferences about risk prices can be innocuous. In

constructing conditional moment restrictions for asset prices, all that is required is

that the econometrician includes at least prices in his information set. By application

of the law of iterated expectations, the product of a cumulative return and a stochas-

tic discount factor remains a martingale when some of the information available to

consumers is omitted from the econometrician’s information set.14 It is true that the

econometrician who omits information fails correctly to infer the risk components

actually confronted by consumers. But that mistake does not prevent him from cor-

rectly inferring the slope of the mean-standard deviation frontier, as indicated in the

third column of table 1 in section 3.

We want to consider the reverse situation when economic agents use less informa-

tion than an econometrician. We use the full-information structure but price risks

14This observation extends an insight of Shiller (1972), who, in the context of a rational expec-
tations model of the term structure of interest rates, pointed out that when an econometrician
omits conditioning information used by agents, there emerges an error term that is uncorrelated
with information used by the econometrician. Hansen and Sargent (1980) studied the econometric
implications of such “Shiller errors” in a class of linear rational expectations models.
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generated by less informative information structures, in particular, dW̄t(ι) and dW̄t.

In pricing dW̄t(ι) and dW̄t under full information, we use pricing formulas that take

the mistaken Olympian perspective (often used in macroeconomics) that consumers

know the full-information probability distribution of signals. This mistake by the

econometrician induces a pricing error relative to the prices that actually confront

the consumer because the econometrician has misspecified the information available

to the consumer. The price discrepancies capture effects of a representative agent’s

learning that Bossaerts (2002, 2004) and Cogley and Sargent (2008) featured.

5.1 Hidden states but known model

Consider first the case in which the model is known. Represent the innovation process

as

dW̄t(ι) = [Ḡ(ι)]−1

(

D(ι)
[
Xt(ι) − X̄t(ι)

]
dt+G(ι)dWt(ι)

)

.

This expression reveals that dW̄t(ι) bundles two risks: Xt(ι) − X̄t(ι) and dWt(ι). An

innovation under the reduced information structure ceases to be an innovation in

the original full information structure. The “risk” Xt(ι) − X̄t(ι) under the limited

information structure ceases to be a risk under the full information structure.

Consider the small time interval limit of

Q̄t+τ (ᾱ)

Qt(ᾱ)
= exp

(

ᾱ′
[
W̄t+τ (ι) − W̄t(ι)

]
−

|ᾱ|2τ

2

)

.

This has unit expectation under the partial information structure. The local price

computed under the full information structure is

−δ−γHXt(ι)+ᾱ
′[Ḡ(ι)]−1D(ι)

[
Xt(ι) − X̄t(ι)

]
+

1

2

∣
∣
∣−γH ′G(ι) + ᾱ′

[
Ḡ(ι)

]−1
G(ι)

∣
∣
∣

2

−
|ᾱ|2

2

where δ is the subjective rate of discount. Multiplying by minus one and differenti-

ating with respect to ᾱ gives the local price

γḠ(ι)′H + [Ḡ(ι)]−1D(ι)
[
X̄t(ι) −Xt(ι)

]
.

The first term is the risk price under partial information (see Table 1), while the sec-

ond term is the part of the forecast error in the signal under the reduced information
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set that can be forecast perfectly under the full information set. The second term is

the ‘mistake’ in pricing contributed by the econometrician’s error in attributing to

consumers a larger information set than they actually have.15

5.2 States and model both unknown

Consider next what happens when the model is unknown. Suppose that ι = 1 and

represent dW̄t as

dW̄t = Ḡ−1 [G(1)dWt(1) +D(1)Xt(1)dt] − Ḡ−1
[
ῑtD(1)X̄t(1)dt+ (1 − ῑt)D(0)X̄t(0)dt

]
.

There is an analogous calculation for ι = 0. When we compute local prices under full

information, we obtain

γḠ′H + Ḡ−1 [νt −D(ι)Xt(ι)] , (14)

where νt is defined in (12).

The term γḠ′H is the risk price under reduced information when the model is un-

known (see Table 1). The term Ḡ−1 [νt −D(ι)Xt(ι)] is a contribution to the risk price

measured by the econometrician coming from the effects of the consumer’s learning

on the basis of his more limited information set. With respect to the probability dis-

tribution used by the consumer, this term averages out to zero. Since ι is unknown,

the average includes a contribution from the prior. For some sample paths, this term

can have negative entries for substantial lengths of time, indicating that the prices

under the reduced information exceed those computed under full information. Other

15Although our illustrative application in section 7 uses only consumption growth as a signal,
our formulation allows multiple signals. Our application does not use asset prices as signals, but it
would be interesting to do so. In standard rational expectations models in the tradition of Lucas
(1978) (where agents do not glean information from equilibrium prices as in the rational expectations
models described by Grossman (1981)), cross-equation restrictions link asset prices to the dynamics
governing macroeconomic fundamentals. These cross-equation restrictions typically presume that
investors know parameters governing the macro dynamics. To avoid stochastic singularity, econo-
metric specifications introduce hidden states (including hidden information states) or “measurement
errors”. In such rational expectations models, prices reveal to an econometrician the information
used by economic agents. Rational expectations models that incorporate agents learning about
states hidden to them, possibly including parameters of the macro dynamics, are constructed and
estimated, for example, by David and Veronesi (2009), who also confront stochastic singularity in
the ways just mentioned. With or without learning, the cross equation restrictions in such models
would be altered in if agents were forced to struggle with misspecification as they do in the model of
section 7. In that illustrative application, we have not taken the extra steps that would be involved
in confronting stochastic singularity.
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trajectories could display the opposite phenomenon. It is thus possible that the term

Ḡ−1 [νt −D(ι)Xt(ι)] contributes apparent pessimism or optimism, depending on the

prior over ι and the particular sample path. Thus, Cogley and Sargent (2008) im-

pute a pessimistic prior to the representative consumer in order to generate a slowly

evaporating U.S. equity premium after WWII.

In subsequent sections, we use concerns about robustness to motivate priors that

are necessarily pessimistic. Our notion of pessimism is endogenous in the sense that it

depends on the consumer’s continuation values. That endogeneity makes pessimism

time-dependent and state-dependent in ways that we explore below.

6 Price effects of concerns about robustness

When prices reflect a representative consumer’s fears of model misspecification, (1)

must be replaced by (6) or equivalently (7). To compute distorted densities under

our alternative information structures, we must find value functions for a planner

who fears model misspecification.16 In section 4, we constructed what we called

“risk prices” that assign prices to exposures to shocks. We now construct somewhat

analogous prices, but because they will include contributions from fears of model

misspecification, we shall refer to them as “shock prices”. We construct components

of these prices for our three information structures and display them in the last column

of Table 2. Specifically, this column gives the contribution to the shock prices from

each type of model uncertainty.

information local risk risk price uncertainty price

full dWt(ι) G(ι)′H 1
θ1

[B(ι)′λ(ι) +G(ι)′H ]

unknown state dW̄t(ι) Ḡ(ι)′H 1
θ2
Ḡ(ι)−1D(ι)Σt(ι)λ(ι)

unknown model dW̄t Ḡ′H (ι̃− ῑ)Ḡ−1[D(1)x̄(1) −D(0)X̄(0)]

Table 2: When the model is unknown, G(ι)G(ι)′ is assumed to be independent of ι.
The consumption growth rate is d logCt = H ′dYt. Please cumulate contributions to
uncertainty prices as you move down the last column.

16Hansen and Sargent (2008, chs.11-13) discuss the role of the planner’s problem in computing
and representing prices with which to confront a representative consumer.
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6.1 Value function without robustness

We study a consumer with unitary elasticity of intertemporal substitution and so

start with the value function for discounted expected utility using a logarithm period

utility function

V (x, c, ι) = δE

[∫ ∞

0

exp(−δτ) logCt+τd τ
∣
∣Xt(ι) = x, logCt = c, ι

]

= δE

[∫ ∞

0

exp(−δτ)(logCt+τ − logCt)d τ
∣
∣Xt(ι) = x, logCt = c, ι

]

+ c

= λ(ι) · x+ c

where the vector λ(ι) satisfies

0 = −δλ(ι) +D(ι)′H + A(ι)′λ(ι), (15)

so that

λ(ι) = [δI − A(ι)′]−1D(ι)′H. (16)

The form of the value function is the same as that of Tallarini (2000) and Barillas

et al. (2008). The value function under limited information simply replaces x with

the best forecast x̄ of the state vector given past information on signals.

6.2 Full information

Consider first the full information environment in which states are observed and the

model is known. The model, however, now becomes a benchmark in the sense that the

decision maker distrusts it in a way that we formalize mathematically. Specifically,

a concern for robustness under full information gives us a way to construct f̂

f
in (8)

via a martingale {Mf
t (ι)} with respect to the benchmark probability model. The

relative density f̂

f
distorts future signals conditioned on the current state and model

by distorting both the state and signal dynamics. In a diffusion setting, a concern

about robustness induces the consumer to consider distortions that append a drift

µtdt to the Brownian increment and to impose a quadratic penalty to this distortion.

This leads to a minimization problem whose indirect value function yields the T
1
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operator of Hansen and Sargent (2007):17

Problem 6.1. A value function λ(ι) · x+ κ(ι) + c satisfies the Bellman equation

0 = min
µ

−δ[λ(ι) · x+ κ(ι)] + x′D(ι)′H + µ′G(ι)′H + x′A(ι)′λ(ι)

+ µ′B(ι)′λ(ι) +
θ1

2
µ′µ. (17)

Here the vector µdt is a drift distortion to the mean of dWt(ι) and θ1 is a pos-

itive penalty parameter that characterizes the decision maker’s fear that model ι is

misspecified. We impose the same θ1 for both models. See Hansen et al. (2006)

and Anderson et al. (2003) for more general treatments and see appendix A for how

we propose to calibrate θ1 via detection error probabilities. The minimizing drift

distortion

µ̃(ι) = −
1

θ1

[
G(ι)′H +B(ι)′λ(ι)

]
(18)

is independent of the state vector X(ι). As a result,

κ(ι) = −
1

2θ1δ
|G(ι)′H +B(ι)′λ(ι)|2. (19)

Equating coefficients on x in (17) implies that equation (15) continues to hold. Thus,

λ(ι) remains the same as in the model without robustness and is given by (16).

Proposition 6.2. The value function shares the same λ(ι) with the expected utility

model [formula (15)] and κ(ι) is given by (19). The associated worst-case distribution

for the Brownian increment is normal with covariance matrix Idt and drift µ̃(ι)dt

given by (18).

Under full information, the likelihood of the worst-case model relative to that of

the benchmark model is a martingale {Mf
t (ι)} with local evolution

d logMf
t (ι) = µ̃(ι)′dWt(ι) −

1

2
|µ̃(ι)|2dt,

17Suppose that the decision maker has instantaneous utility function u(x), positive discount rate
δ, and that the state follows the diffusion dxt = ν(xt)dt + σ(xt)dWt. The value function V (x)
associated with a multiplier problem satisfies the Bellman equation δV (x) = minh

(
u(x) + θ

2
h′h +

[ν(x)+σ(x)h]Vx(x)+ 1

2
trace[σ(x)′Vxxσ(x)]

)
. The indirect value function for this problem satisfies the

Bellman equation δS(x) = u(x) + ν(x)Sx(x) + 1

2
trace[σ(x)′Sxx(x)σ(x)] − 1

2θ
Sx(x)′σ(x)σ(x)′Sx(x),

which is an example of the stochastic differential utility model of Duffie and Epstein (1992). See
Hansen et al. (2006).
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so the mean of Mf
t (ι) is evidently unity. The stochastic discount factor (relative to

the benchmark model) includes contributions both from the consumption dynamics

and from the martingale and evolves according to

d logSf
t = d logMf

t (ι) − δdt− d logCt.

The vector of local shock price is again the negative of the exposure of the stochastic

discount factor to the respective shocks. With robustness, the shock price vector

G(ι)′H under full information is augmented by an uncertainty price:

G(ι)′H
︸ ︷︷ ︸

+
1

θ1
[G(ι)′H +B(ι)′λ(ι)]

︸ ︷︷ ︸

.

↑ ↑

risk uncertain dynamics

Notice the presence of the forward looking term λ(ι) from (16) in the term that we

have labeled ‘uncertain dynamics’. Neither the risk contribution nor the uncertainty

contribution to the shock prices is state dependent or time dependent. We have

completed the first row of Table 2.

6.3 Unknown states

Now suppose that the model (the value of ι) is known but that the state Xt(ι) is not.

We want ĝ

g
in formula (8) and proceed by seeking a martingale {M i

t} to use under

this information structure.

Without concerns about misspecification, the estimates x̄ of the state and the

covariance matrix Σ used to construct ψ at a given point in time will typically depend

on the model ι. The laws of motion for x̄(ι) and Σ(ι) are (10) and (11), respectively.

Following Hansen and Sargent (2007), we introduce a positive penalty parameter

θ2 and construct a robust estimate of the hidden state Xt(ι) by solving the following

problem cast in terms of objects constructed in subsection 3.2.1:18

18In appendix A, we describe how to use statistical detection error probabilities to calibrate the
penalty parameter θ1 as well as another penalty parameter θ2 to be introduced below.
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Problem 6.3.

min
φ

∫

[λ(ι) · x+ κ(ι) + θ2 log φ(x)]φ(x)ψ(x|x̄,Σ)dx

= min
x

λ(ι) · x+ κ(ι) +
θ2

2
(x− x̄)′(Σ)−1(x− x̄)

where ψ(x|x̄,Σ) is the normal density with mean x̄ and covariance matrix Σ and the

minimization on the first line is subject to
∫
φ(x)ψ(x|x̄,Σ)dx = 1.

In the first line of Problem 6.3, φ is a density (relative to a normal) that distorts the

density ψ for the hidden state and θ2 is a positive penalty parameter that penalizes φ’s

with large relative entropy (the expected value of φ logφ). The second line of Problem

6.3 exploits the outcome that with a linear value function the worst-case density is

necessarily normal with a distortion x̃ to the mean of the state. This structure makes

it straightforward to compute the integral and therefore simplifies the minimization

problem. In particular, the worst-case estimate x̃ solves

0 = λ(ι) + θ2(Σ)−1(x̃− x̄).

Proposition 6.4. The robust value function is

U [ι, x̄,Σ] = λ(ι) · x̄+ κ(ι) −
1

2θ2
λ(ι)′Σλ(ι) (20)

with the same λ(ι) as in the expected utility model [formula (15)] and the same κ(ι) as

in the robust planner’s problem with full information [formula (19)]. The worst-case

state estimate is

x̃ = x̄−
1

θ2
Σ(ι)λ(ι).

The indirect value function on the right side of (20) defines an instance of the T
2

operator of Hansen and Sargent (2007). Under the distorted evolution, dYt has drift

ξ̃t(ι)dt = D(ι)X̃t(ι)dt+G(ι)µ̃(ι)dt,

while under the benchmark evolution it has drift

ξ̄t(ι)dt = D(ι)X̄tdt.
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The corresponding likelihood ratio for our limited information setup is a martingale

M i
t (ι) that evolves as

d logM i
t (ι) =[ξ̃t(ι) − ξ̄t(ι)]

′[Ḡ(ι)′]−1dW̄t(ι) −
1

2

∣
∣Ḡ(ι)−1[ξ̃t(ι) − ξ̄t(ι)]

∣
∣
2
dt,

and therefore the stochastic discount factor evolves as

d logSi
t = d logM i

t (ι) − δdt− d logCt.

There are now two contributions to the uncertainty price, the one in the last

column of the first row of table 2 coming from the potential misspecification of the

state dynamics as reflected in the drift distortion in the Brownian motion, and the

other in the second row of table 2 coming from the filtering problem as reflected in a

distortion to the estimated mean of hidden state vector:

Ḡ(ι)′H
︸ ︷︷ ︸

+
1

θ1
[Ḡ(ι)]−1G(ι)[G(ι)′H +B(ι)′λ(ι)]

︸ ︷︷ ︸

+
1

θ2
[Ḡ(ι)]−1D(ι)Σt(ι)λ(ι)

︸ ︷︷ ︸

.

↑ ↑ ↑

risk uncertain dynamics estimation uncertainty

The state estimation adds time dependence to the uncertainty prices through the

evolution of the covariance matrix Σt(ι) governed by (11), but adds nothing through

the observed history of signals. We have completed the second row of Table 2.

6.4 Model unknown

Finally, we obtain a martingale {Mu
t } that adjusts for not trusting the benchmark

distribution over unknown models, thus constructing ĥ
h

in formula (8). We do this by

twisting the model probability E(ι|Yt) = ῑt by solving:

Problem 6.5.

min
0≤ι≤1

ιU [1, x̄(1),Σ(1)] + (1 − ι)U [0, x̄(0),Σ(0)]

+ θ2ι[log ι− log ῑ] + θ2(1 − ι)[log(1 − ι) − log(1 − ῑ)]

Proposition 6.6. The indirect value function for problem 6.5 is the robust value
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function19

−θ2 log

[

ῑ exp

(

−
1

θ2
U [1, x̄(1),Σ(1)]

)

+ (1 − ῑ) exp

(

−
1

θ2
U [0, x̄(0),Σ(0)]

)]

.

The worst-case model probabilities satisfy

(1 − ι̃) ∝ (1 − ῑ) exp

(

−
U [0, x̄(0),Σ(0)]

θ2

)

(21)

ι̃ ∝ ῑ exp

(

−
U [1, x̄(1),Σ(1)]

θ2

)

(22)

where the constant of proportionality is the same for both expressions.

Under the distorted probabilities, the signal increment dYt has a drift

κ̃tdt = [ι̃tξ̃t(1) + (1 − ι̃t)ξ̃t(0)]dt,

which we compare to the drift that we derived earlier under the benchmark probabil-

ities:

κ̄tdt = [ῑtξ̄t(1) + (1 − ῑt)ξ̄t(0)]dt.

The associated martingale constructed from the relative likelihoods has evolution

d logMu
t = (κ̃t − κ̄t)

′(Ḡ′)−1dW̄t −
1

2
|Ḡ−1(κ̃t − κ̄t)|

2dt

and the stochastic discount factor is governed by

d logSt = d logMu
t − δdt− d logCt.

The resulting shock price vector equals the exposure of d logSt to dW̄t and is the

ordinary risk price Ḡ′H plus the following contribution coming from concerns about

model misspecification:

19This is evidently another application of the T
2 operator of Hansen and Sargent (2007).
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ι̃Ḡ−1

[
1

θ 1
G(1)G(1)′H +

1

θ1
G(1)B(1)′λ(1)

]

+ (1 − ι̃)Ḡ−1

[
1

θ 1
G(0)G(0)′H +

1

θ1
G(0)B(0)′λ(0)

]

+ ι̃Ḡ−1

[
1

θ2
D(1)Σ(1)λ(1)

]

+ (1 − ι̃)Ḡ−1

[
1

θ2
D(0)Σ(0)λ(0)

]

+ (ῑ− ι̃)Ḡ−1 [D(1)x̄(1) −D(0)x̄(0)] . (23)

As summarized in Table 2, the term on the first line reflects uncertainty in state

dynamics associated with each of the two models. Hansen et al. (1999) feature a simi-

lar term. It is forward looking by virtue of the appearance of λ(ι) determined in (16).

The term on the second line reflects uncertainty about hidden states in each of the

two models. Notice that both of these terms depend on ι̃, so the probability distortion

across models impacts their construction. In the limiting case that ι̃ = 1, the term on

the first line is constant over time and the term on the second line depends on time

through Σ(1) but not on the signal history. In our application, this limiting case ob-

tains approximately when the penalty parameter θ2 is sufficiently small. The term on

the third line reflects uncertainty about the models and depends on the signal history

even when ι̃ = 1. The component Ḡ−1 [D(1)x̄(1) −D(0)x̄(0)] also drives the evolu-

tion of model probabilities given in (13) and dictates how new information contained

in the signals induces changes in the model probabilities under the benchmark spec-

ification. In effect, Ḡ−1 [D(1)x̄(1) −D(0)x̄(0)], appropriately scaled, is the response

vector from new information in the signals to the updated probability assigned to

model ι = 1. The signal realizations over the next instant alter the decision-maker’s

posterior probability ῑ on model 1 as well as his worst-case probability ι̃, and this is

reflected in the equilibrium uncertainty prices. This response vector will recurrently

change signs so that new information will not always move ῑ in the same direction.

In the term on the third line of (23), this response vector is scaled by the difference

between the current model probabilities under the benchmark and worst-case mod-

els. Formulas (21) and (22) indicate how the consumer slants probabilities towards

the model with the lower utility. This probability slanting induces additional history

dependence because ῑt depends on the signal history.
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7 Illustrating the mechanism

To highlight forces that govern the contributions of our three components of model

uncertainty to shock prices in formula (23), we create two models ι = 0, 1, with

model ι = 1 being a long-run risk model with a predictable growth rate along the

lines of Bansal and Yaron (2004) and Hansen et al. (2008). Our models share the

form d logCt = dYt and

dX1t = a(ι)X1t(ι)dt+ b1(ι)dW1t(ι)

dX2t = 0

dYt = X1tdt+X2tdt+ g2(ι)dW2t(ι), (24)

where X1t(ι), X2t(ι) are scalars and W1t(ι),W2t(ι) are scalar components of the vector

Brownian motion Wt(ι), X20(ι) = µy(ι) is the unconditional mean of consumption

growth for model ι, and a(ι) ≡ ρ(ι) − 1. We set τ = 1 in the following discrete-time

approximation to the state space system (9):

Xt+τ (ι) −Xt(ι) = τA(ι)Xt(ι) +B(ι)[Wt+τ (ι) −Wt(ι)]

Yt+τ − Yt = τD(ι)Xt(ι) +G(ι)[Wt+τ (ι) −Wt(ι)]

and we set A(ι) =

[

ρ(ι) − 1 0

0 1

]

, B(ι) =

[

b1(ι) 0

0 0

]

, D(ι) =
[

1 1
]

, G(ι) =
[

0 g2(ι)
]

.

A small negative a(ι) (i.e., an autoregressive coefficient ρ(ι) close to unity) coupled

with a small b1(ι) captures long-run risks in consumption growth. Bansal and Yaron

(2004) justify such a specification with the argument that it fits consumption growth

approximately as well as, and is therefore difficult to distinguish from, an iid consump-

tion growth model, which we know fits the aggregate per capita U.S. consumption

data well. In the spirit of their argument, we form two models with the same values

of the signal noise b2(ι) but that with different values of b1(ι), ρ(ι) ≡ a(ι) + 1, and

µy(ι) = X20(ι), give identical values for the likelihood function. In particular, with our

setting of the initial model probability ῑ0 at .5, the terminal value of ῑt also equals .5,

so the two models are indistinguishable statistically over our complete sample. This is

our way of making precise the Bansal and Yaron (2004) observation that the long-run
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Figure 1: Bayesian model probability ῑt (solid line) and worst-case model probability
ι̃t (dashed line).

risk with high serial correlation in consumption growth and a model with low serial

correlation in consumption growth models are difficult to distinguish empirically. We

impose ρ(1) = .99 as our long-run risk model, while the equally good fitting ι = 0

model with low serial correlation in consumption growth has ρ(0) = .4993.20

7.1 Calibrating θ1 and θ2

In appendix A we describe how we first calibrated θ1 to drive the average detection

error probability over the two ι models with observed states to be .4 and then, with θ1

thereby fixed, set θ2 to get a detection error probability of .2 for the signal distribution

of the mixture model. This is one of a frontier of configurations of θ’s that imply the

same detection error probability of .02. We use this particular combination for illus-

20The sample for real consumption of services and nondurables runs over the period 1948II-
2009IV. To fit model ι = 1, we fixed ρ = .99 and estimated b1 = .00075, g2 = .00468, µy = .0054.
Fixing g2 equal to .00468, we then found a values of ρ = .4993 and associated values b1 = .00231,
µy = .00468 that give virtually the same value of the likelihood. In this way, we construct two good
fitting models that are difficult to distinguish, with model ι = 1 being the long-run risk model and
model ι = 0 much more closely approximating an iid growth model. Freezing the value of g2 at
the above value, the maximum likelihood estimates are ρ = .8311, b1 = .00149, µy = .00465. The
data for consumption comes from the St. Louis Fed data set (FRED). They are taken from their
latest vintage (02/26/2010) with the following identifiers PCNDGC96 20100223 (real consumption
on nondurable goods), PCESVC96 20100223 (real consumption on services). The population series
is from the BLS, Series ID: LNU00000000. This is civilian noninstitutional population 16 years and
over in thousands. The raw data are monthly. We averaged to compute quarterly series.
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tration, and explore another one below. We regard the overall value of the detection

error probability as being associated with plausible amounts of model uncertainty.21

For these values of θ1, θ2,
22 figure 1 plots values of the Bayesian model mixing proba-

bility ῑ along with the worst-case probability ι̃. Figure 1 indicates how the worst-case

ι̃ twists toward the long-run risk ι = 1 model. This probability twisting contributes

countercyclical movements to the complete set of uncertainty contributions to the

shock price (23) that we plot in figure 2.23

Figure 3 decomposes the uncertainty contribution to the shock prices into compo-

nents coming from the three lines of expression (23), namely, those associated with

state dynamics under a known model, unknown states within a known model, and an

unknown model, respectively. As anticipated, the first two contributions are positive,

the first being constant while the second varies over time. The third contribution,

due to uncertainty about the model, alternates in sign.

The contribution on the first line of (23) is constant and relatively small in mag-

nitude. We have specified our models so that G(ι)B(ι)′ = 0 and thus

[
1

θ 1
G(ι)G(ι)′H +

1

θ1
G(ι)B(ι)′λ(ι)

]

=
1

θ 1
ḠḠ′H,

which is the same for both models. While the forward-looking component to shock

prices reflected in 1
θ1
B(ι)′λ(ι) is present in the model with full information, it is

absent in our specification with limited information.24 However, a forward-looking

component still contributes to the other two components of the uncertainty prices

because continuation values influence the worst-case distortions to model probabilities

and filtered estimates of the hidden states.

21We initiate the Bayesian probability ῑ0 = .5 and set the covariance matrices Σ0(ι) over hidden
states at values that approximate what would prevail for a Bayesian who had previously observed a
sample of the length 247 that we have in our actual sample period. In particular, we calibrated the
initial state covariance matrices for both models as follows. First, we set preliminary ‘uninformative’
values that we took to be the variance of the unconditional stationary distribution of X1t(ι) and
a value for the variance of X2(ι) of .012, which is orders of magnitude larger than the maximum
likelihood estimates of µy for our entire sample. We set a preliminary state covariance between
X1t(ι) and X2(ι) equal to zero. We put these preliminary values into the Kalman filter, ran it
for a sample length of 247, and took the terminal covariance matrix as our starting value for the
covariance matrix of the hidden state for model ι.

22The calibrated values are θ−1
1 = 7, θ−1

2 = .64.
23The figure plots all components of (23) except the ordinary risk price ḠH ′.
24In section 7.4, we consider an example that activates this forward-looking component by speci-

fying that G(ι)B(ι)′ is not zero.
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Figure 2: Contributions to uncertainty prices from all sources of model uncertainty.

The contribution on the second line of (23) features state estimation. Figure 4

shows the D(ι)Σ(ι)λ(ι) components that are important elements of state uncertainty.

This figure reveals how hidden states are more difficult to learn in model ι = 1 than

in model ι = 0, because a very persistent hidden state slows convergence of Σt(1). In

particular, the variance of the estimated unconditional mean of consumption growth,

Σt(ι)22, converges more slowly to zero for the long-run risk model ι = 1 than for

model ι = 0. The second contribution varies over time through variation in the

twisted model probability ι̃.

The contribution on the third line of (23) generally fluctuates over time in ways

that depend on the evolution of the discrepancy between the estimated meansD(ι)x̄(ι)

under the two models, depicted in figure 5. While pessimism arising from a concern

for robustness necessarily increases the uncertainty prices via the terms on the first

two lines of (23), it may either lower or raise it through the term on the third line.

The slope of the mean-standard deviation frontier, the maximum Sharpe ratio, is

the absolute value of the shock price. Therefore, sizable shock prices of either sign

imply large maximum Sharpe ratios. Negative shock prices for some signal histo-

ries indicate that the representative consumer sometimes fears positive consumption

innovations because of how they affect probabilities that he attaches to alternative

models ι. How concerns about model uncertainty affect uncertainty premia that are

embedded in prices of particular risky assets ultimately depends on how their returns

are correlated with consumption shocks.
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Figure 3: Contributions to uncertainty prices coming from separate components on
the three lines of (23): from state dynamics (top panel), learning hidden state when
the model is known (middle panel), and unknown model (bottom panel)
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Figure 4: D(ι)Σ(ι)λ(ι) for ι = 1 (top panel) and ι = 0 (bottom panel).
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Figure 5: Difference in means and means themselves from models ι = 1 and ι = 0.

7.2 Explanation for countercyclical uncertainty prices

The intertemporal behavior of robustness-induced probability slanting accounts for

how learning in the presence of uncertainty about models induces time variation in

uncertainty prices. Our representative consumer attaches positive probabilities to a

model with statistically subtle high persistence in consumption growth, namely, the

ι = 1 long-run risk model, and also to model ι = 0 that asserts much less persistent

consumption growth rates. The asymmetrical response of model uncertainty prices to

consumption growth shocks comes from (i) how the representative consumer’s concern

about misspecification of the probabilities that he attaches to the two models causes

him to calculate worst-case probabilities that depend on value functions, and (ii) how

the value functions for the two models become closer together after positive consump-

tion growth shocks and farther apart after negative shocks. The long-run risk model

confronts the consumer with a long-lived shock to consumption growth. That affects

the set of possible misspecifications that he worries about and gets reflected in a more

negative value of κ(ι) − 1
2θ2
λ(ι)′Σ(ι)λ(ι) in formula (20) for the continuation value.25

The resulting difference in constant terms (terms that depend on calendar time but

not on the predicted states) in the value functions for the models with (ι = 1) and

without (ι = 0) long-run consumption risk sets the stage for an asymmetric response

of uncertainty premia to consumption growth shocks. Consecutive periods of higher

25Over our sample, the
[
κ(1)− 1

2θ2

λ(1)′Σ(1)λ(1)
]
−
[
κ(0)− 1

2θ2

λ(0)′Σ(0)λ(0)
]

rises monotonically
from −7.46 to −7.25.
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than average consumption growth raise the probability that the consumer attaches

to the more persistent consumption growth ι = 1 model relative to the probability

that he attaches to the ι = 0 model. Although the long-run risk model has a more

negative constant term, when a string of higher than average consumption growths

occur, persistence of consumption growth under this model means that consumption

growth can be expected to remain higher than average for many future periods. This

pushes the continuation values associated with the two models closer together than

they are when consumption growth rates have recently been lower than average. Via

the exponential twisting formulas (21) and (22), continuation values determine the

worst-case probability ι̃ that the representative consumer attaches to the long-run

risk ι = 1 model. Thus our cautious consumer slants probability more towards the

long-run risk model when recent observations of consumption growth have been lower

than average than when these observed growth rates have been higher than average.

7.3 Roles of different types of uncertainty

The decomposition of uncertainty contributions to shock prices depicted in figure

3 helps us to think about how these contributions would change if, by changing θ1

and θ2, we refocus the representative consumer’s concern about misspecification on

a different mixture of state dynamics, hidden states, and unknown model. Figures

6 and 7 show the consequences of turning off fear of unknown dynamics by setting

θ1 = +∞ while lowering θ2 to set the detection error probability again to .2 (here

θ−1
2 = −1.72). Notice that now the uncertainty contribution to shock prices remains

positive over time. Evidently, in this economy, the representative consumer’s fear of

good consumption news is much less prevalent.

7.4 State-dependent contributions from unknown dynamics

The fact that our specification (24) implies that G(ι)B(ι)′ = 0 for ι = 0, 1 disables

a potentially interesting component of uncertainty contributions in formula (23). To

activate this component, we briefly study a specification in which G(ι)B(ι)′ 6= 0

and in which its difference across the two models contributes in interesting ways. In
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Figure 6: Difference in means (top panel) and Bayesian model probability ῑt (solid
line) and worst-case model probability ι̃t (dashed line) (bottom panel). Here θ1 is set
to +∞ and θ2 is set to give a detection error probability of .2.
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Figure 7: Contributions to uncertainty prices from learning hidden state (top panel),
models known; unknown model (middle panel), and all sources (bottom panel). Here
θ1 is set to +∞ and θ2 is set to give a detection error probability of .2. Because
θ1 = +∞, the contribution from unknown dynamics is identically zero.
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Figure 8: The one-noise system. Difference in means (top panel) and Bayesian model
probability ῑt (solid line) and worst-case model probability ι̃t (dashed line) (bottom
panel).

particular, we modify (24) to the single-shock specification

dX1t(ι) = a(ι)X1t(ι)dt+ b̂1(ι)dWt(ι)

dX2t(ι) = 0

dYt = X1t(ι)dt+X2t(ι)dt+ ĝ1(ι)dWt(ι) (25)

where X1t(ι), X2t(ι) are again scalars and Wt(ι) is now a scalar Brownian motion.

We construct this one-noise system by simply taking the time-invariant innovations

representation for the two-noise, one-signal system (24). We also assume that the

representative consumer observes both states for both models ι = 0, 1. Thus, the

model is structured so that with ι known, the consumer faces no filtering problem.

Therefore, the second source of uncertainty contribution vanishes and (23) simplifies

to

ι̃Ḡ−1

[
1

θ 1
G(1)G(1)′H +

1

θ1
G(1)B(1)′λ(1)

]

+ (1 − ι̃)Ḡ−1

[
1

θ 1
G(0)G(0)′H +

1

θ1
G(0)B(0)′λ(0)

]

+ (ῑ− ι̃)Ḡ−1 [D(1)x̄(1) −D(0)x̄(0)] . (26)

Although the representative consumer observes the states, he (or she) does not know

which model is correct and constructs the model probability ι̃ in a robust way.
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Figure 9: The one-noise system. Contributions to uncertainty prices from unknown
dynamics (top panel); unknown model (middle panel), and both sources (bottom
panel). Because the state is observed, there is no contribution from robust learning
about the hidden states Xjt(ι).

Figures 8 and 9 illustrate outcomes when we set θ−1
1 = 1.97, which we calibrated as

described in appendix A to deliver a detection error probability of .3, and θ−1
2 = 1.06,

which delivers an overall detection error probability of .2 for our one-shock model

(25). The term µ̃(ι) = −θ−1
1

[
G(ι)′H + B(ι)′λ(ι)

]
is now -0.0460 for ι = 0 and -

0.4454 for model ι = 1. The contribution of unknown state dynamics reported in the

top panel of figure 9 now varies over time. This variation reflects the difference in
1
θ1
G(ι)B(ι)′λ(ι) across the two models as well as the fluctuating value of ι̃. Notice

that while the overall uncertainty component to the shock price varies, this variation

is much than in our previous calculations. So while our one-shock model gives rise

to time variation in the contribution from a concern about misspecified dynamics, by

ignoring robust state estimation, this model excludes some of the interesting variation

in the uncertainty exposure prices in our original two-shock model. The prices of

exposure to consumption uncertainty are predominately positive, implying that the

consumer typically does not fear positive consumption shocks.

7.5 Reinterpretation of Bansal and Yaron

If we were to lower θ2 enough to imply ι̃ = 1, then the representative consumer would

ex post act as if he puts probability one on the long-run risk model, as assumed by
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Figure 10: The one-noise system with worst-case model probability ι̃ ≡ 1. Unknown
dynamics (top panel) and unknown model (bottom panel).

Bansal and Yaron (2004). Then (26) simplifies to

Ḡ−1

[
1

θ 1
G(1)G(1)′H +

1

θ1
G(1)B(1)′λ(1)

]

+ (ῑ− 1)Ḡ−1 [D(1)x̄(1) −D(0)′x̄(0)] . (27)

The first term that captures unknown dynamics becomes constant, while the effects

of not knowing the model contribute time-variation to the second term. Figure 10

reports the two lines of (27) for the one-noise model calibrated with θ1 as before

and ι̃t set identically to one by brute force. The first term of (27) is present in

the Bansal and Yaron (2004) approach that has the consumer assign probability one

without doubt to the long-run risk model, but not the second term accounting for

the consumer’s doubt about the correct model in our expression (27). So our ex post

‘as if’ interpretation goes only part way toward rationalizing the Bansal and Yaron

approach, but it also adds an new ingredient.

8 Concluding remarks

The perspective of Bansal and Yaron (2004) is that while (a) there are subtle but

recursive-utility-relevant stochastic features of consumption and dividend processes

that are difficult to detect from statistical analysis of those series alone, neverthe-
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less (b) data on asset prices together with cross-equation restrictions in the rational

expectations style of Hansen and Sargent (1980) substantially tighten parameter esti-

mates of the joint consumption, dividend processes that agents believe with confidence

when they price assets. Thus, though agents’ beliefs about the ‘fundamental’ joint

consumption, dividend process are difficult to infer from observations on that process

alone, adding asset prices and the full confidence in a stochastic specification that is

implicit in the rational expectations hypothesis lets us discover those beliefs.

Our response to point (a) differs from Bansal and Yaron’s. Instead of being com-

pletely confident in a single stochastic specification, our representative agent is suspi-

cious of that specification and struggles to learn while acknowledging his specification

doubts. This leads us modify Bayes’ law in ways that introduce new sources of uncer-

tainty prices. We find contributions of model uncertainty to shock prices that combine

(i) the same constant forward-looking contribution µ̃(ι) = −θ−1
1

[
G(ι)′H +B(ι)′λ(ι)

]

that was featured in earlier work without learning by Hansen et al. (1999) and Ander-

son et al. (2003), (ii) additional components −θ−1
2 Σ(ι)λ(ι) that smoothly decrease in

time and that come from learning about parameter values within models, and (iii) the

potentially volatile time varying contribution highlighted in section 7.2 that reflects

the consumer’s robust learning about the probability distribution over models.

Our shock prices are counterparts to what are interpreted as risk prices in much of

the asset pricing literature, but for us they include both risk and model uncertainty

components. Our mechanism for producing time-varying shock prices differs from

popular approaches in the existing literature. For instance, Campbell and Cochrane

(1999) induce secular movements in risk premia that are backward looking because

a social externality depends on current and past average consumption. To generate

variations in risk premia, Bansal and Yaron (2004) assume stochastic volatility in

consumption.26

Our analysis features the effects of robust learning on local prices of exposure

to uncertainty. Studying the consequences of robust learning and model selection for

multi-period uncertainty prices is a natural next step. Multi-period valuation requires

compounding local prices. When the prices are time-varying, this compounding can

have nontrivial consequences.

To obtain convenient formulas for prices, we imposed a unitary elasticity of sub-

26Our interest in learning and time series variation in the uncertainty premium differentiates us
from Weitzman (2005) and Jobert et al. (2006), who focus on long-run averages.
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stitution, which implies a constant ratio of consumption to wealth. Measuring the

consumption-wealth ratio properly is a difficult task, but we agree that it is prob-

ably worthwhile eventually to pay the costs in terms of computational tractability

that would be required to extend our model to allow a variable consumption-wealth

ratio.27

While our example economy is highly stylized, we can imagine a variety of other

environments in which learning about low-frequency phenomena is especially chal-

lenging when consumers are not fully confident about their probability assessments.

Hansen et al. (2008) show that while long-run risk components have important quan-

titative impacts on low frequency implications of stochastic discount factors and cash

flows, it is statistically challenging to measure those components. Belief fragility em-

anating from model uncertainty promises to be a potent source of fluctuations in the

prices of long-lived assets.

27We have doubts about the frequently used empirical procedure of using dividend to price ratios
to approximate consumption to wealth ratios. Dividends on aggregate measures of equity differ from
aggregate consumption in important ways and the aggregate values measured in equity markets omit
important components of wealth. Thus, aggregate dividend-price ratios can behave very differently
from the ratio of wealth to consumption.
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A Detection error probabilities

By adapting procedures developed by Hansen et al. (2002) and Anderson et al. (2003)
in ways described by Hansen et al. (2010), we can use simulations to approximate a
detection error probability. Repeatedly simulate {Yt+1−Yt}

T
t=1 under the approximat-

ing model. Evaluate the likelihood functions La
T and Lw

T of the benchmark model and
worst-case model for a given (θ1, θ2). Compute the fraction of simulations for which
Lw

t

La

T

> 1 and call it ra. This approximates the probability that the likelihood ratio

says that the worst-case model generated the data when the approximating model
actually generated the data. Do a symmetrical calculation to compute the fraction of
simulations for which

La

T

Lw

T

> 1 (call it rw), where the simulations are generated under

the worst-case model. As in Hansen et al. (2002) and Anderson et al. (2003), define
the overall detection error probability to be

p(θ1, θ2) =
1

2
(ra + rw). (28)

Because in this paper we use what Hansen et al. (2010) call Game I, we use
the following sequential procedure to calibrate θ1 first, then θ2. First, we pretend
that xt(ι) is observable for ι = 0, 1 and calibrate θ1 by calculating detection error
probabilities for a system with an observed state vector using the approach of Hansen
et al. (2002) and Hansen and Sargent (2008, ch. 9). Then having pinned down θ1,
we use formula (28) to calibrate θ2. This procedure takes the point of view that θ1
measures how difficult it would be to distinguish one model of the partially hidden
state from another if we were able to observe the hidden state, while θ2 measures how
difficult it is to distinguish alternative models of the hidden state. The probability
p(θ1, θ2) measures both sources of model uncertainty.

We proceeded as follows. (i) Conditional on model ι and the model ι state xt(ι)
being observed, we computed the detection error probability as a function of θ1 for
models ι = 0, 1. (ii) Using a prior probability of π = .5, we averaged the two curves
described in point (i) and plotted the average against θ1. We calibrated θ1 to yield
an average detection error probability of .4 and used this value of θ1 in the next step.
(iii) With θ1 locked at the value just set, we then calculated and plotted the detection
error for the mixture model against θ2. To generate data under the approximating
mixture model, we sampled sequentially from the conditional density of signals un-
der the mixture model, building up the Bayesian probabilities ῑt sequentially along
a sample path. Similarly, to generate data under the worst-case mixture model, we
sampled sequentially from the conditional density for the worst-case signal distribu-
tion, building up the worst-case model probabilities ι̃t sequentially. We set θ2 to fix
the overall detection error equal to .2.
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