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Abstract

We defend the forecasting performance of the FOMC against a criticism of Christina and David

Romer (2008) by assuming that the FOMC’s forecasts depict a worst-case scenario that it uses to

design decisions that are robust to misspecification of the staff’s model. We use a simple macro

model and a plausible loss function to illustrate how such an interpretation of the FOMC’s forecasts

can explain the findings of Romer and Romer, including the pattern of differences between FOMC

forecasts and forecasts published by the staff of the Federal Reserve System in the Greenbook.
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1 Introduction

Romer and Romer (2008) assert that forecasts made by the Federal Reserve Open Market Com-

mittee (FOMC) detract from the policymaking process in the US and that the FOMC should leave

forecasting to the staff of the Federal Reserve System. They base their criticism on an econometric

comparison of the accuracy of forecasts published by the FOMC in the Monetary Policy Report and

forecasts published by the staff of the Federal Reserve System in the Greenbook. The staff forecasts

are available to FOMC members at the time they produce their own forecasts, so together with

presumed superior knowledge of their own preferences, the information advantage lies firmly with

the FOMC. Despite this, Romer and Romer (2008) find that:

1. Optimal predictions of inflation and unemployment essentially put zero weight on FOMC fore-

casts and unit weight on staff forecasts.

2. Staff forecasts have smaller mean squared forecast errors than FOMC forecasts.

3. Statistical and narrative evidence indicates that differences between FOMC and staff forecasts

affect actual policy outcomes.

Romer and Romer (2008) use these findings to portray the FOMC as a policymaker that is “not

using the information in the staff forecasts effectively” and that “may indeed act on information

that is of little or negative value”. In their opinion the evidence is sufficiently damning to warrant

restructuring the role of the FOMC in monetary policymaking:

“a more effective division of labor within the Federal Reserve System might be for the

staff to present policymakers with policy options and related forecast outcomes, and for

policymakers to take those forecasts as given. With this division, the role of the FOMC

would be to choose among the suggested alternatives, not to debate the likely outcome

of a given policy.”

Against these criticisms we provide two defences, one simple, another sophisticated. Our simple

defence is based on Figure 1, which plots the FOMC and staff Greenbook forecasts studied by Romer

and Romer (2008). In almost all instances, differences between comparable forecasts are miniscule.

The only time when notable differences perhaps occur is during the Volcker disinflation of the early

1980s. Indeed, FOMC and staff inflation forecasts never differ by more than 50 basis points after

the Volcker disinflation, and there is no significant difference in the accuracies of FOMC and staff

forecasts throughout Greenspan’s tenure as President of the Federal Reserve. An observer could

easily come away from this figure with the impression that, while differences between the forecasts
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are as statistically significant as Romer and Romer (2008) claim, they are not of enough substantial

economic importance to merit concern or discussion.
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Figure 1: FOMC forecasts and Greenbook forecasts

The remainder of this paper is devoted to our second and more sophisticated defence of the

FOMC. Instead of simply dismissing the forecast differences detected by Romer and Romer (2008)

as being too small to be of any substantial interest, our second defence sets aside such admittedly

understandable impressions gleaned from Figure 1, takes the discrepancies identified by Romer and

Romer’s statistical findings as something substantial to be accounted for, and fashions an argument

based on an assumption that the FOMC and the staff Greenbook forecasts are answers to different

questions. We pursue this second defence despite Figure 1 because the pessimism that Romer and

Romer (2008) detect lurking in the FOMC forecasts invites invoking the instrumental pessimism

affiliated with robust control theory to explain the qualitative pattern of forecast differences. Romer

and Romer’s findings provide a laboratory within which we can explore the details of the context-

specific pessimism that facilitates constructing robust decisions.

Qualitatively, the criticisms made by Romer and Romer (2008) are unassailable in a world where

private agents, policymakers, and researchers share a common model of the probability densities

governing economic outcomes. In such a context it is difficult to justify inferior FOMC forecasts.

Our defence therefore rests partly on breaking the single probability density assumption by allowing
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the FOMC to doubt the specification of the model used by the staff to produce its forecasts.1 In the

alternative vision of policymaking adopted in this paper, the staff uses a good macroeconomic model

to forecast. But the FOMC suspects that the staff’s model is imperfect and wants policies that are

robust to specification errors. Those doubts get expressed in the FOMC’s forecasts and in its policy

choice. To complete our explanation, we assume that the data generating process is in fact described

by the staff’s model, so that the FOMC’s specification fears are, after the fact, ‘all in its head’. By

assuming that the staff model agrees with the data generating, we drive the forecast error differences

in the staff’s favour.2

To engineer a robust decision rule, the policymaker “exponentially twists” what in our application

is the forecasting density of the staff and puts larger probabilities on outcomes that involve inflation

and unemployment being away from their targets. Twisting the staff’s forecasting probability density

in this way results in worst-case scenarios that differ in their severity according to the magnitude of

the specification doubts that policymakers wishes to guard against. These worst-case scenarios are

a key input to the robust policymaking decision process, because by responding optimally to them

a policy maker acquires acceptable performance of its loss function when evaluated under each of a

large set of possible models, not just under the staff model.3 Our defence of the FOMC assumes that

the forecasts it publishes are exactly these worst-case scenarios.

Furthermore, if the FOMC undertakes robust control, then the worst-case scenarios that it pub-

lishes will definitely influence the policy actions actually taken; it is precisely when the worst-case

scenario differs from the staff forecast that robust policy calls for the FOMC to take preemptive pol-

icy steps. The finding of Romer and Romer (2008) that forecast differences predict monetary policy

1A very incomplete list of examples drawn from the growing body of work in macroeconomics that incorporates

concerns about robustness of decisions to model misspecifications includes Barlevy (2009), Benigno and Nisticò (2009),

Billi (2009), Brock and Durlauf (2005), Brock, Durlauf, and Rondina (2008), Brock, Durlauf, Nason, and Rondina

(2007), Caballero and Krishnamurthy (2008), Caballero and Kurlat (2009), Dennis, Leitemo and Söderström (2009a,

2009b), Epstein and Schneider (2008), Giannoni (2002, 2007), Kasa (2002), Leitemo and Söderström (2008a, 2008b),

Lewis and Whiteman (2006), Luo and Young (2010), Onatski and Stock (2002), Tetlow (2007), Tetlow and Ironside

(2005), Tetlow and von zur Muehlen (2001, 2004, 2009), and Uhlig (2009). See Kasa (2001, 2006) for work focusing on

robust filtering and prediction. All of these papers feature some version of max-min expected utility theory, although

they differ in terms of the details of how misspecifications are formalised. See Woodford (2006, 2010) for an analysis

in which a monetary policy maker trusts its own model but not its knowledge of private agents’ expectations. In

Woodford’s model, equilibrium prices do not reveal private agents’ beliefs to the Ramsey planner, while in the model

of Karantounias (2009) they do, and that affects the robust policy design problem.
2 In empirical applications of all models with multiple priors, it is necessary to make some assumption about which

distribution generates the data. The equating of all subjective distributions with the objective distribution inherent

in typical rational expectations models relieves the rational expectations econometrician of the need to make such an

independent assumption about the data generating mechanism.
3See the ex post Bayesian interpretation of robust decision rules advanced by Hansen and Sargent (2008, chapters

1 and 7).
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actions is, therefore, completely compatible with thoughtful application of robust control techniques

by the FOMC. In our view, the FOMC may be setting policy rationally to guard against model

misspecification by responding to worst-case scenarios rather than reacting to “information that has

little or negative value”. Our case defending the FOMC rests on whether specification doubts of this

type really can quantitatively explain the differences in forecasts published by the FOMC and the

staff.

To add content to our defence, we demonstrate how a concern about robustness can explain

the broad qualitative features of the results of Romer and Romer (2008) in a simple model of US

monetary policy inspired by Primiceri (2006). In our model, the FOMC faces a joint estimation

and optimisation problem as it attempts to set appropriate policy whilst simultaneously tracks a

hidden state variable in the form of a time-varying NAIRU (Non-Accelerating Inflation Rate of

Unemployment). Allowing the policymaker to have specification doubts puts our model within the

general class of hidden Markov models discussed by Hansen and Sargent (2007) and Hansen et al.

(2010). Accordingly, our policymaker faces a policy design problem in which it doubts not only its

model per se but also how to use its model to infer the NAIRU. Once the model has been set up, it

is straightforward to apply the techniques in Hansen et al. (2010) to show that the type of evidence

used by Romer and Romer (2008) to criticise the FOMC can be explained by the assumption that the

FOMC answering forecasting questions by reporting the worst-case scenarios that it uses to design a

robust policy.

For our defence of the FOMC to be convincing, it should be that the forecasts published by the

FOMC are systematically biased towards a worst-case scenario in comparison to the staff forecasts.

Romer and Romer (2008) found that FOMC forecasts were on average higher than staff forecasts

for inflation and lower than staff forecasts for unemployment. At first sight, the optimistic bias in

unemployment forecasts appears at odds with our claim that the FOMC forecasts are worst-case

scenarios. However, what constitutes a worst-case scenario is dependent on the staff’s approximating

model as well as on the policy maker’s objective function. In our model, we find that, in plausible

regions of the parameter space, the worst-case scenario biases the inflation forecast upwards away from

its target and the unemployment forecast downwards towards zero. The intuition for this outcome

lies in the dynamics of the model and the way in which the combination of high inflation and low

unemployment at the forecast horizon considered by the FOMC signals persistently bad outcomes

into the more distant future. We therefore argue that seemingly “pessimistic” inflation forecasts

and “optimistic” unemployment forecasts can still be rationalised as a description of the worst-case

scenario. Furthermore, the region of the parameter space where this happens is consistent with

the FOMC being more concerned about model misspecifications that lead to poor quality inferences

about the current state of the economy rather than misspecifications that lead to poor understanding

of the state transition dynamics of the system. According to Bullard (2009), it is the concern for
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accurate tracking of the economy - not a concern for accurate forecasting - that is uppermost in the

minds of FOMC members.

The paper is organised as follows. Section 2 describes a simple model of monetary policymaking

and shows how it maps into the more general class of hidden Markov models analysed by Hansen

et al. (2010). After Section 3 describes the policy maker’s filtering problem, the robust policy is

derived in Section 4 and a calibrated numerical example is constructed in Section 5 to show how

the findings of Romer and Romer (2008) can be explained as an artefact of the FOMC exhibiting a

preference for robustness. Section 6 demonstrates how our story can also justify the relative degree of

optimism and pessimism seen in actual FOMC and staff forecasts once the FOMC is assumed to be

more concerned about tracking hidden states than dynamics of the system given those hidden states.

A final Section 7 concludes with a discussion of the narrative evidence in support of a division of

labour in the Federal Reserve System whereby FOMC forecasts become twists of the staff forecasts.

2 A Model of Monetary Policymaking

The modus operandi of monetary policymakers is obscure to outsiders and has to be inferred from

the speeches and decisions made by central bankers. Nevertheless, a consensus has emerged that

modern monetary policymaking incorporates three key beliefs. First, there is a natural rate of

unemployment at which inflation is stable. Second, there is a transmission mechanism through

which monetary policy actions affect the economy. Third, monetary policymakers face trade-offs.

Indeed, the Financial Times (“King backs job losses to curb inflation”) imputed such beliefs to Bank

of England Governor Mervyn King on Tuesday April 1, 2008. The FT wrote:

“The economy needs to slow to the point where there is spare capacity in order to bring

inflation under control, Mervyn King, the Bank of England governor, said on Monday.

... Mr King’s recognition that the Bank’s monetary stance was designed to slow the

economy to reinforce its monetary policy committee’s inflation-fighting credentials came

at an awkward time, he conceded, describing the ‘difficult balancing act’.”

We adopt a simple model of monetary policymaking that is designed to capture these features

in a parsimonious way. The model shares much of the structure proposed by Primiceri (2006) but

features an unobserved non-accelerating inflation rate of unemployment (NAIRU) that confronts the

monetary policymaker with a joint estimation and decision problem. We assume that the policymaker

has an approximating model in which the NAIRU u∗t evolves as:

(u∗t+1 − u∗∗) = δ(u∗t − u∗∗) + ηt+1,

where ηt+1 is an i.i.d. mean zero Gaussian shock and
[
u∗0 u

∗

−1

]
′ ∼ N (µ(u∗),Σ(u∗)). u∗∗ is the steady-

state value of the NAIRU. The approximating model further describes inflation πt and unemployment
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Ut as related to the NAIRU and a policy instrument Vt by:

πt+1 = πt + γ0(Ut − u∗t ) + γ1(Ut−1 − u∗t−1) + επt+1,
(Ut+1 − u∗t+1) = ρ1(Ut − u∗t ) + ρ2(Ut−1 − u∗t−1) + Vt + εUt+1,

with επt+1 and εUt+1 i.i.d. mean zero Gaussian shocks to inflation and unemployment, respectively.

The shocks
(
ηt+1, επt+1, εUt+1

)
have standard deviations (cπ, cU , cu∗). The monetary policymaker’s

objective is the expected value of:

−.5
∞∑

t=0

βt
(
(πt − π∗)2 + λ(Ut − ku∗t )2 + φ(Vt − Vt−1)2

)

where λ is the weight placed on unemployment and k ∈ (0, 1) controls whether the policymaker
dislikes unemployment or the gap between unemployment and the NAIRU. The parameter φmeasures

the preference for policy smoothing. The monetary policymaker’s signal vector at time t+ 1 is:

[
π̃t+1

Ũt+1

]

=

[
πt+1

Ut+1

]

+

[
ϑπt+1

ϑUt+1

]

,

i.e., it observes noisy measures of inflation and unemployment. The standard deviations of the

measurement errors (ϑπt+1, ϑUt+1) are
(
cπ̃, cŨ

)
. To map the model into the hidden Markov models

of Hansen et al. (2010), let the observed state vector yt, the unobserved state vector zt, the control

at, the shock vector wt ∼ N (0, I5), and the signal vector st be given by:

yt =

[
1

Vt−1

]

, zt =






πt

Ut

Ut−1 − u∗t−1
u∗t





, at = Vt, wt =






ηt

επt

εUt

ϑπt

ϑUt






, st =

[
π̃t

Ũt

]

,

and write the matrices in the laws of motion and signal equation:

yt+1 = A11yt +A12zt +B1at +C1wt+1,

zt+1 = A21yt +A22zt +B2at +C2wt+1,

st+1 = D1yt +D2zt +Hat +Gwt+1 (1)

as

A11 =

[
1 0

0 0

]

, A12 = 02×4, B1 =

[
0

1

]

, C1 = 02×5,
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A21 =






0 0

(1− δ)u∗∗ 0

0 0

(1− δ)u∗∗ 0





, A22 =






1 γ0 γ1 −γ0
0 ρ1 ρ2 (δ − ρ1)
0 1 0 −1
0 0 0 δ





, B2 =






0

1

0

0





,

C2 =






0 cπ 0 0 0

cu∗ 0 cU 0 0

0 0 0 0 0

cu∗ 0 0 0 0





, D1 =

[
0 0

(1− δ)u∗∗ 0

]

, D2 =

[
1 γ0 γ1 −γ0
0 ρ1 ρ2 (δ − ρ1)

]

,

H =

[
0

1

]

, G =

[
0 cπ 0 cπ̃ 0

cu∗ 0 cU 0 c
Ũ

]

,

where C1, C2,G are indicator matrices that pick out the required elements of wt+1. Notice that the

matrices in the systematic parts of the signal equation are identical to those in the equation of the

unobserved state vector zt+1. The quadratic form in the Hansen et al. (2010) objective function:

−1
2

∞∑

t=0

βt






at

yt

zt






′ 




Q P1 P2

P ′1 R11 R12

P ′2 R21 R22











at

yt

zt






can be expressed as:

−1
2

∞∑

t=0

βt






Vt

1

Vt−1

πt

Ut

Ut−1 − u∗t−1
u∗t






′





φ 0 −φ 0 0 0 0

0 π∗2 0 −π∗ 0 0 0

−φ 0 φ 0 0 0 0

0 −π∗ 0 1 0 0 0

0 0 0 0 λ 0 −λk
0 0 0 0 0 0 0

0 0 0 0 −λk 0 λk2











Vt

1

Vt−1

πt

Ut

Ut−1 − u∗t−1
u∗t






.

3 Filtering

Here is how the policymaker would infer the unobserved NAIRU if it had full confidence in the

specification of its approximating model. The policymaker observes yt, has a prior distribution

z0 ∼ N (ž0,∆0) over the initial values of the unobserved states, and observes a sequence of signals
{st+1}. With no concerns about model misspecification, the policymaker applies Bayes’ law directly
to the approximating model (1) to construct a sequence of posterior distributions zt ∼ N (žt,∆t) for
t ≥ 1, where the sufficient statistics žt = E(zt |yt, . . . , y0 ) and ∆t = E [(zt − žt)(zt − žt)′ |yt, . . . , y0 ]
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satisfy the recursions:

yt+1 = A11yt +A12žt +B1at +C1wt+1 +A12(zt − žt),
žt+1 = A21yt +A22žt +B2at +K2(∆t)Gwt+1 +K2(∆t)D2(žt − zt),
∆t+1 = C(∆t). (2)

K2(∆t) and (∆t) satisfy the Kalman filtering equations:

K2(∆) = (A22∆D
′

2 +C2G
′)(D2∆D

′

2 +GG
′)−1,

C(∆) ≡ A22∆A
′

22 +C2C
′

2 −K2(A22∆D′2 +C2G′)′, (3)

and the policymaker’s information set at t can be represented as (yt, žt,∆t).

4 Robust Policy and Worst-Case Scenarios

Now we allow the policymaker to doubt the specification of its approximating model. Hansen and

Sargent (2007) and Hansen et al. (2010) show how to compute a decision rule for at that is robust to

possible misspecifications of (i) the approximating model (1) defining the joint distribution of (yt+1

zt+1)′ conditional on values of (yτ zτ )′ for τ ≤ t, and (ii) the probability distribution of the unknown
state zt conditional on the history of signals sτ for τ ≤ t that comes from applying the ordinary

Kalman filter (2)-(3) to the approximating model. Following the steps in Hansen et al. (2010), we

begin by letting primes represent next period values to ease notation and noting that the law of

motion for (y, z, ž,∆) can be written in terms of the state variables (y, ž,∆) as:

y′ = A11y +A12ž +B1a+C1w
′ +A12(z − ž),

z′ = A21y +A22ž +B2a+C2w
′ +A22(z − ž),

ž′ = A21y +A22ž +B2a+K2(∆)Gw
′ +K2(∆)D2(z − ž),

∆′ = C(∆),

where w′ ∼ N (0, I) and z − ž ∼ N (0,∆).4 To represent misspecification in the dynamics of the

approximating model, the policymaker replaces the distributions of w′ and z − ž by distorted dis-
tributions w′ ∼ N (ṽ,Σ) and z − ž ∼ N (u,Γ) that potentially feed back on state variables. The
distorted distributions allow perturbations to the dynamics of the approximating model. At this

point, Hansen et al. (2010) derive robust policy as the outcome of a two-player zero-sum game in

which the policymaker chooses an action a to maximise its objective whilst a fictitious agent chooses

perturbations w′ and z− ž to minimise that same objective. Hansen and Sargent (2007, p. 33) show
4Notice how the approximating model includes the law of motion for (ž,∆) as dictated by Bayes’ law.
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that a modified certainty equivalence principle holds in this setting, so instead of directly analysing

the full stochastic game it is sufficient to solve a deterministic game in which the policymaker chooses

an action a and the minimising agent chooses the mean distortions ṽ and u.5 The appropriate law

of motion for the deterministic game has shocks replaced by distorted means:

y′ = A11y +A12ž +B1a+C1ṽ +A12u,

z′ = A21y +A22ž +B2a+C2ṽ +A22u,

ž′ = A21y +A22ž +B2a+K2(∆)Gṽ +K2(∆)D2u,

∆′ = C(∆), (4)

where ṽ and u are treated as under the control of the minimising agent and allowed to feed back on

state variables (z, ž,∆). For a quadratic continuation value function W (y, ž,∆, z) and one-period

return function Ũ(y, ž, z − ž, a), the policymaker chooses an action a and accompanying mean dis-
tortions ṽ and u by solving:6

max
a
min
u

[
Ũ(y, ž, z − ž, a) + θ2

u′∆−1u

2
+min

ṽ

(
βW (y′, ž′,∆′, z′) + θ1

ṽ′ṽ

2

)]
, (5)

where the optimisation is subject to the laws of motion (4) and the minimising agent faces penalties

θ1(ṽ
′ṽ)/2 and θ2(u

′∆−1u)/2 on its choices of ṽ and u.7 The penalties are on the entropy contributions

5This is a consequence of the return function being quadratic, the transition law being linear, and distributions of

random shocks and the prior for z0 being Gaussian. The minimising decision player increases shock covariance matrices

as well as means, but the certainty equivalence result allows us to compute the mean distortions by solving the purely

deterministic game. The omitted stochastic terms affect constants in the value functions but not decision rules.
6This is game I of Hansen et. al. (2010), which corresponds to recursions (20)-(21) of Hansen and Sargent (2007).

These pertain to a situation in which the decision maker conditions continuation values on hidden state variables.
7The continuation value function W has form:

W (y, ž,∆, z) = −
1

2






y

z

ž






′

Ω(∆)






y

z

ž




− ω,

and is computed as the fixed-point of:

W (y, ž,∆, z) = U(y, z, a) + min
v

{
βW (y′, ž′,∆′

, z
′) + θ1

v′v

2

}
,

where ′s denote next period values and the law of motion is modified in the following way to condition on z:





y′

z′

ž′




 =






A11 A12 0

A21 A22 0

A21 K2(∆)D2 A22 −K2(∆)D2











y

z

ž




−






B1

B2

B2




F (∆)

[
y

ž

]

+






C1

C2

K2(∆)G




 v,

together with:

∆′ = C(∆).

Here v is the distorted mean of w′ conditioned on (y, z, ž,∆), while ṽ is the distorted mean of w′ emerging from (5)

conditional on (y, ž,∆).
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(ṽ′ṽ)/2 and (u′∆−1u)/2 incurred when the minimising agent distorts the means of w′ and z. The

degree to which the minimising agent is constrained depends on the positive multipliers θ1 and θ2,

with lower values giving more scope for the minimising agent to perturb the approximating model.

When θ1 = θ2 = +∞, the policy maker trusts his model. Then the minimizing values of u and ṽ
are both zero and problem (5) becomes an ordinary Bellman equation. The lower is the value of θ1,

the more the policymaker distrusts its approximating model of the dynamics of the state, given the

current state; the lower is the value of θ2, the more the policy maker distrusts its current probability

distribution over the hidden state z. We discuss the impact of the penalty parameters θ1 and θ2 in

the context of our model in Section 6.

The maxmin problem faced by the policymaker can be solved using standard techniques from

linear-quadratic control. The solution is for the policymaker to follow a feedback rule:

a = −
[
Fy Fz

] [ y

ž

]

, (6)

and for the minimising agent to choose distorted conditional means according to:

ṽ = −
[
Ky Kz

] [ y

ž

]

, (7)

u = −
[
Ly Lz

] [ y

ž

]

. (8)

The feedback rule (6) prescribes a robust policy for a policymaker concerned that its approximat-

ing model may be misspecified. In this paper, we assume that the staff of the Federal Reserve system

produces Greenbook forecasts by using the approximating model of the economy. Of course, the

staff’s forecast have to assume some decision rule for the monetary authority. To make its forecast

under the approximating model, we endow the staff with the decision rule that the FOMC ultimately

chooses, namely, the robust decision rule. Under this interpretation, the staff produce forecasts

believing that decisions and outcomes are governed by the first-order vector stochastic difference

equation:






yt+1

zt+1

žt+1




 =






A11 −B1Fy A12 −B1Fz
A21 −B2Fy A22 −B2Fz
A21 −B2Fy K2(∆)D2 A22 −B2Fz −K2(∆)D2Lz











yt

zt

žt




+






C1

C2

K2(∆)G




wt+1,

(9)

and one-period ahead staff forecasts are:

E
[
y′ |y, ž

]
= (A11 −B1Fy)y + (A12 −B1Fz)ž,

E
[
z′ |y, ž

]
= (A21 −B2Fy)y + (A22 −B2Fz)ž. (10)
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j-period ahead staff forecasts are obtained by iterating forward (10) and raising the appropriate

transition matrices to the jth power. The j-period ahead staff forecasts under the approximating

model are denoted by:

E
[
yj |y, ž

]
= A11(j)y +A12(j)ž,

E
[
zj |y, ž

]
= A21(j)y +A22(j)ž. (11)

The staff forecasts use the approximating model to estimate how the states in the economy will

evolve, given the robust policy chosen by the policymaker. However, that robust policy rule is not

a ‘best response’ to the staff’s forecasts but instead to the worst-case law of motion associated with

the worst-case forecasts implicit in the maxmin problem described above. To exhibit these worst-

case forecasts, we return to the policymaker’s maxmin problem. The forecasts underpinning its

solution are worst-case scenarios that explicitly incorporate the actions of the minimising agent, as

imagined by the policymaker as a way to cope with specification doubts. The worst-case one-step

ahead forecasts that result are twisted by the actions (7)-(8) of the minimising agent:8

Ê
[
y′ |y, ž

]
= (A11 −B1Fy −C1Ky −A12Ly)y + (A12 −B1Fz −C2Kz −A12Lz)ž,

Ê
[
z′ |y, ž

]
= (A21 −B2Fy −K2(∆)GKy −K2(∆)D2Ly)y

+(A22 −B2Fz −K2(∆)GKz −K2(∆)D2Lz)ž,

with multi-step worst-case forecasts given by forward iteration as before:

Ê
[
yj |y, ž

]
= Â11(j)y + Â12(j)ž,

Ê
[
zj |y, ž

]
= Â21(j)y + Â22(j)ž. (12)

We interpret the forecasts published by the FOMC in the Monetary Policy Report to be these worst-

case forecasts. The gap between (11) and (12) is our theory of the differential prediction errors

analysed by Romer and Romer (2008).

5 A Calibrated Example

Our defence of the FOMC relies on the ability of our model to rationalise the findings of Romer and

Romer (2008). In this section we present our arguments via a numerical example. The parameter

values for the numerical example are presented in Table 1, which with two exceptions are taken

8 In addition to twisting forecast means, the minimizing agent also increases conditional variances as described in

footnote 5. That implies that worst-case ‘fan charts’ would be wider than those produced under the approximating

model. We do not pursue this observation about fan charts here because we think that to do so in an informative way

would require expanding the features about which there is uncertainty by treating the coefficients in our state space

model (1) as hidden state variables too.

12



from the OLS estimates in the third column of Table 1 in Primiceri (2006). The first exception is

that we set a lower value of δ and a higher value of cu, so fluctuations in the NAIRU play less of

a role in determining unemployment.9 The second exception is that we set a lower k to induce the

policymaker to move unemployment away from its estimate of NAIRU. The parameters cπ̃ and cũ

calibrating measurement error volatilities have small values. We set the initial prior over
(
u∗0, u

∗

−1

)

to have a mean of (6, 6) and a covariance equal to the steady state implied by the Kalman filter. We

examine the model at first for θ1 = θ2 = 200. In Section 6, we explore how aspects of our results

depend on our setting of the parameter θ1 governing fear of misspecified state transition dynamics

and parameter θ2 governing fear of a misspecified posterior distribution over hidden states.

γ0 −1.02 β 0.99 θ2 200

γ1 0.93 π∗ 2 cu∗
√
0.02

ρ1 1.756 k 0.2 cπ 1.04

ρ2 −0.779 λ 1 cu 1

δ 0.95 φ 475 cπ̃
√
0.1

u∗∗ 6 θ1 200 cũ
√
0.1

Table 1: Parameter values

The behaviour of the calibrated model is illustrated by a representative simulation in Figure 2.

The solid line in the first part of each panel is a simulated time path for inflation and unemployment,

so at t = 10 the economy is just exiting a recession with inflation low and unemployment high. The

solid and dotted lines in the second part of each panel are forecasts for t > 10 using information

available up to and including period t = 10. The solid lines, labelled ‘staff forecast’, are derived

under the approximating model (11) and predict rapid returns of inflation and unemployment to

their steady-state values. The dotted lines, labelled ‘FOMC forecast’, are worst-case scenarios (12)

in which both inflation and unemployment overshoot and the returns to steady state are prolonged

and oscillatory.

9The rationale for this will be discussed in footnote 10 of Section 6.
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Figure 2: Simulation of the model with θ1 = θ2 = 200; staff and FOMC forecasts at t = 10

We now use the numerical example to defend the FOMC against the criticisms made by Romer

and Romer (2008). In the introduction, we reported how three specific findings led them to their

conclusions, so to refute their claims we show that each finding is consistent with our interpretation

of FOMC forecasts as twists of the staff forecasts.

1. Optimal predictions of inflation and unemployment essentially put zero weight on FOMC fore-

casts and unit weight on staff forecasts.

The first finding of Romer and Romer (2008) follows immediately from our interpretation of

FOMC forecasts as forecasts under its worst-case model and from our assumption that in fact the

staff’s model accurately approximates the data generating process. In our model, the FOMC fore-

casts contain no information over and above that in the staff forecasts under the staff’s approximating

model, so by definition the optimal predictions of inflation and unemployment under the approxi-

mating model should put zero weight on FOMC forecasts and unit weight on staff forecasts. To make

this more concrete, we replicate the econometric analysis of Romer and Romer (2008) but with data

simulated from our calibrated model. They estimate a regression of the form Xt = a+ bSt+ cPt+et,

where Xt is inflation or unemployment and St and Pt are the relevant FOMC and staff forecasts. We

simulate the model for n = 68 periods and consider FOMC and staff forecasts at the horizon of four

periods ahead. Table 2 shows the results; it is directly comparable to Table 1 in Romer and Romer

(2008).
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Constant Staff forecast FOMC forecast R2

Inflation −0.83
(0.44)

1.22
(0.42)

−0.16
(0.24)

0.38

Unemployment 0.52
(1.28)

1.02
(0.45)

−0.15
(0.26)

0.17

Table 2: Role of staff and FOMC forecasts in predicting

actual values for simulated data with θ1 = θ2 = 200

As expected, the optimal predictions of inflation and unemployment put close to zero weight on

the FOMC forecast and close to unit weight on the staff forecast. In this particular simulation, there

is over-weighting of the staff forecast relative to the FOMC forecasts, a result also obtained and

stressed by Romer and Romer (2008).

2. Staff forecasts have smaller mean squared forecast errors than FOMC forecasts.

We can explain the second finding of Romer and Romer (2008) as an artefact of a misguided

attempt to run a horse race between two forecasts that answer different questions. In our model, the

FOMC forecasts come from a worst-case model used for planning purposes that, by construction, will

not minimise mean squared forecast errors under the approximating model. With the two forecasts

answering different questions, it is inappropriate to measure their performance against a common

mean squared error criterion that by definition favours the staff forecast when the approximating

model actually comes closer to governing the data. Calculations using simulated data from our

calibrated model confirm this; in a representative simulation the mean squared errors of staff forecast

are 3.36 for inflation and 2.80 for unemployment, which compare favourably to the mean squared

errors of 4.26 for inflation and 3.34 for unemployment made by FOMC forecasts.

3. There is statistical and narrative evidence to suggest that differences between FOMC and staff

forecasts affect actual policy outcomes.

The statistical evidence that differences in forecasts affect policy decisions is based on the cor-

relation between forecast differences and the Romer and Romer (2004) measure of monetary policy

shocks. The main finding in Romer and Romer (2008) is that contractionary monetary policy shocks

are associated with the FOMC inflation forecast being above that of the staff. We refute using this

finding to criticise the FOMC by pointing out that it obtains in our model. The problem lies in

the way Romer and Romer (2004) estimate a series of monetary policy shocks by regressing the
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intended federal funds rate on Greenbook forecasts to arrive at a “series for monetary policy shocks

that should be free of both endogenous and anticipatory actions”. The shock series that results is

purged of information in the staff forecast but there is no guarantee that it will be exogenous with

respect to the FOMC forecast. Quite the contrary, robust policy expressly requires the policymaker

to take particular policy actions at times when worst-case forecasts differ from forecasts from the

approximating model. The ‘shocks’ identified by the Romer and Romer (2004) procedure are then

by construction correlated with the differences in forecasts. To see this mechanism in action in our

model, we apply the Romer and Romer (2004) procedure to simulated data to identify a measure

of monetary policy shocks Mt that is orthogonal to the staff forecasts. We then follow Romer and

Romer (2008) by estimating a regression of the form Mt = a+ b(St − Pt) + et, where St − Pt is the
difference between FOMC and staff forecasts. The results appear in Table 3 in the same format as

those for actual data in Table 2 of Romer and Romer (2008).

Constant Inflation Unemployment R2

−0.07
(0.02)

0.023
(0.009)

0.08

−0.05
(0.02)

−0.030
(0.015)

0.06

Table 3: Role of forecast differences in predicting

monetary policy shocks for simulated data with θ1 = θ2 = 200

The difference between FOMC and staff forecasts correlates with monetary policy shocks in

simulated data as expected. The strongest finding is that monetary policy contractions are associated

with the FOMC inflation forecast being above that of the staff, which mirrors the results of Romer

and Romer (2008). It is worth stressing that this result is a misleading consequence of incorrect

identification of monetary policy shocks by the Romer and Romer (2004) procedure. If we identify

shocks by regressing policy actions on both staff and FOMC forecasts then we are unlikely to find a

significant correlation between shocks and forecast differences. For simulated data this is certainly

the case.

The narrative evidence presented by Romer and Romer (2008) centres on the transcripts of three

FOMC meetings at which policy actions appear to be rationalised by the differences between FOMC

and staff forecasts. At the meetings in July 1979 and February 1982, the FOMC inflation forecast was

well above that of the staff, and there was a substantial contractionary policy shock. At the meeting

in February 1991 the situation was reversed, with the FOMC inflation forecast well below the staff’s

so Romer and Romer argue that there was a substantial expansionary shock. Even putting aside the
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difficulty of correctly identifying policy shocks, it is not clear how much weight one should put on the

narrative evidence. For example, Romer and Romer (2008) quote Mr Mayo in July 1979 as saying

that “Although the staff forecast is a reasonable one, I find myself a little more pessimistic. I am

concerned about both the likelihood of less real growth and more inflation" and Mr Boehe as saying

in February 1991 that “I think the staff forecast, while well thought out, is on the rosy side ... I’d

rather err on the side of too much stimulus at this point than too little". Whilst the interpretation

of narrative evidence such as this is debatable, we see both these quotes as consistent with our view

that the FOMC forms worst-case scenarios.

6 Average Forecast Differences

The findings of Romer and Romer (2008) are consistent with our interpretation of FOMC forecasts

as worst-case scenarios that inform robust policy designed to confront specification doubts. As such,

we have already provided a full defence of the FOMC against their criticisms. We can go further

though, because our characterisation of policymaking has sharp predictions about the relationship

between FOMC and staff forecasts. In particular, the FOMC forecast should be systematically biased

towards the worst-case scenario. Romer and Romer (2008) report that the FOMC inflation forecasts

is on average 13 basis points above the corresponding staff forecast. For unemployment, the FOMC

forecast is on average 6 basis points below that of the staff.10 At first sight the combination of

pessimistic inflation forecasts and optimistic unemployment forecasts appears difficult to reconcile

with our idea of FOMC forecasts as worst-case scenarios. However, what constitutes a worst-case

scenario depends on the objective function and the approximating model of the policymaker. A

worst-case scenario is dynamic and time-varying, so it is generally inappropriate to equate average

forecast difference with pessimism or optimism. Instead, we need to return to the model and calculate

the average forecast differences it implies at different horizons. We do this now and ask whether our

model can explain the differences in forecasts found by Romer and Romer (2008).

To calculate the average forecast differences at any horizon, it is sufficient to apply forecasting

equations (11) and (12) to the steady-state values of y, z, ž of the stochastic difference equation for

decisions and outcomes (9). It is a feature of models of linear-quadratic-Gaussian robust control that

the policymaker’s problem can become impossible if its specification doubts specification become too

big.11 In the language of Whittle (2002), the θ’s can be pushed to levels that set off a ‘neurotic

10The average forecast differences in inflation and unemployment are arguably small, as discussed in the context of

Figure 1. Furthermore, during the Greenspan era the FOMC inflation forecast is on average only 2 basis points above

the staff inflation forecast.
11Technically, what happens if the θs are set low enough is that the min-max problem becomes ill-defined because

the minimising player has been granted so much power to harm the maximising player that the objective function gets

driven to −∞ under any policy that the maximising player can choose. Setting the θs that low amounts to asking for
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breakdown’ as specification doubts completely overwhelm the ability of the decision maker to choose.

To see how much this affects our calibrated model, Figure 3 documents the range of θ1 and θ2 values

below which breakdown occurs. Any explanation of the average forecast differences in Romer and

Romer (2008) needs to avoid calibrations that are in the breakdown region.12

1θ

2θ0 100 200 300 400 500
0

500

1000

1500

2000

2500

Figure 3: Region of neurotic breakdown

The average difference between FOMC and staff inflation forecasts is shown in Figure 4 as a

function of θ1 and θ2. The rest of the calibration is as before. Forecast differences are shown via

a contour map so, for example, the 0.2 contour depicts the locus of θ1 and θ2 values for which

the four-period ahead inflation forecast of the FOMC is on average 20 basis points higher than

the corresponding staff forecast. According to the figure, the largest forecast differences occur near

the region of neurotic breakdown at the point where the policymaker has the largest permissible

specification doubts. Conversely, if θ1 and θ2 are large then the policymaker has a lot of confidence

in its approximating model and the difference between the worst-case scenario and the forecast from

the model is small. The contour map shows that FOMC inflation forecasts are on average higher

than staff inflation forecasts for any values of θ1 and θ2 outside the region of neurotic breakdown.

This means it is easy to reconcile our model with the Romer and Romer (2008) finding of FOMC

inflation forecasts being on average 13 basis points higher than those of the staff.

robustness over a larger set of models than it is feasible to attain. See Hansen and Sargent (2008, chapter 8) for a

discussion of breakdown points.
12This requirement explains our decision in Section 5 to calibrate δ such that fluctuations in the NAIRU play less of

a role in determining unemployment. If δ is set so that the NAIRU has near unit root behaviour as in Primiceri (2006),

then the region of neurotic breakdown is very large and it is difficult for the model to generate noticeable differences in

FOMC and staff forecasts.
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Figure 4: Average difference between FOMC and staff inflation forecasts four periods ahead

The average difference between FOMC and staff unemployment forecasts is shown in Figure 5.

This time the contour map is non-monotonic and whether the FOMC forecasts are higher or lower

than the staff forecasts depends on the values of θ1 and θ2. An early indication that this might

be the case was present in Figure 2 where the FOMC unemployment forecast first drops below and

then rises above the staff forecast. This is caused by the dynamic nature of the maxmin problem

underpinning the worst-case scenario. In the simulated example, the initial low FOMC forecast of

unemployment is a valid description of the worst-case because it signals large fluctuations in inflation

and unemployment in the future. A similar mechanism drives the average forecast differences in the

model, so for some regions of the parameter space, the worst-case scenario for unemployment appears

to be ‘optimistic’ initially and then ‘pessimistic’. The non-monotonicity of the contour map means

we can rationalise the average optimism of the FOMC in unemployment forecasts with the average

pessimism of FOMC inflation forecasts.

Values of θ1 = 76383 and θ2 = 238 give a match between our model and the results of Romer and

Romer (2008), and represent only a modest concern about misspecification on the part of the FOMC.

To see just how modest, we interpret θ1 and θ2 using the detection errors suggested by Hansen et al.

(2002), Anderson et al. (2003), and Hansen and Sargent (2008, ch. 9). A detection-error probability

is the probability that an econometrician makes an incorrect inference about whether observed data

is generated by the approximating model or the worst-case model. A detection error probability

attains its maximum possible value of .5 when the approximating and worst-case models are identical

(i.e., when θ1 = θ2 = +∞). Detection-error probabilities approach .5 from below when θ1 and θ2

both approach +∞ and the worst-case model becomes very close to the approximating model. The
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detection-error probability in our model is 0.326 in a sample of 100 quarters with θ1 = 76383 and

θ2 = 238, which indicates that almost a third of the time the detection test would select the wrong

model, indicating that the models are difficult to distinguish statistically. Therefore, we interpret

our calibrated pair of θ’s as implying only modest fears of model misspecification.

1θ

2θ

-0.12

-0
.1

2

-0.04

-0
.0

4

0 0

0.04

0.04
0.12

0.12

0 100 200 300 400 500
0

500

1000

1500

2000

2500

Figure 5: Average difference between FOMC and staff unemployment forecasts four periods ahead

The need to tilt the calibration towards a large θ1 and a small θ2 helps identify the nature of

specification doubts held by the FOMC. A large value of θ1 in the minmax problem (5) suggests

that the FOMC is not overly concerned with the staff’s ability to forecast the future state of the

economy, provided that it can accurately estimate the current state. This is further apparent when

separate detection-error probabilities are constructed for θ1 and θ2 following the sequential procedure

of Hansen et al. (2010).13 The detection-error probability for θ1 is 0.498, which implies that the

FOMC has almost no concerns over its ability to forecast the future state of the economy conditional

on the current state. Instead, almost all the overall detection-error probability comes from θ2, which

expresses the FOMC’s doubting its view of the current state. The small value of θ2 means that the

FOMC is concerned about its ability to infer the current state of the economy. In the parlance of

monetary policymakers, this translates into the FOMC being more worried about ‘tracking’ than

‘forecasting’. This result resonates with the discussion by President James Bullard of the Federal

Reserve Bank of St. Louis (2009) on an earlier version of this paper. In it he claimed that “Forecasting

is tracking ... Most of the focus in policy discussion concerns today’s state vector ... Further out is

normally slow mean reversion ... Through experience, forecasters learned that the near random walk

13Hansen et al. (2010) calculate a detection-error probability for θ1 by pretending that y, z are both observable and

then calculating detection-error probabilities for a system with an observed state vector using the approach of Hansen

et al. (2002) and Hansen and Sargent (2008, ch. 9).
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model works best”.

Intuition for why worries about tracking lead the FOMC to make optimistic unemployment

forecasts is contained in equations (7) and (8) for the worst-case conditional mean ṽ of the shock

vector wt+1 of the state and signal dynamics and the worst-case conditional mean u of the hidden state

reconstruction error z− ž. The lack of concern for forecasting implies that Ky,Kz and ṽ in equation
(7) are very small, so the worst case is almost completely driven by the distortion u of equation

(8). u is responsible for the optimism in unemployment forecasts already discussed, but implies mild

pessimism in the FOMC’s forecast for the natural rate of unemployment (on average 0.3 basis points of

pessimism when θ1 = 76383 and θ2 = 238). The worst case is therefore characterised by a pessimistic

forecast for the natural rate of unemployment and an optimistic forecast for unemployment. That

u distorts unemployment and its natural rate in opposite directions is confirmed in the numerical

values of Ly and Lz, which define the distortion A22u = −A22Lyy−A22Lz ž to the state vector z′ in
equation (4) as:

A22u =






−0.0055 −0.0568
0.0106 0.0695

−0.0063 0.0397

0.0114 −0.0098





y +






0.0132 −0.0424 0.0370 0.0429

−0.0130 0.0505 −0.0423 −0.0487
−0.0084 0.0301 −0.0255 −0.0300
0.0030 −0.0081 0.0074 0.0092





ž.

The coefficients on the second and fourth rows respectively determine the worst-case distortions to

unemployment and the natural rate of unemployment. They have opposite signs in all but the first

column, so unemployment and its natural rate are distorted in opposite directions. Distorting in

this way is a feature of the worst case because it makes it more difficult for the policymaker to infer

the hidden state variables of the system, in particular the natural rate of unemployment. To see

this more clearly, we calculate the variance-covariance matrix of z − ž under the approximating and
worst-case models following Hansen et al. (2010):14

∆ =






0.0924 −0.0011 −0.0074 0.0027

−0.0011 0.0929 0.0107 0.0009

−0.0074 0.0107 0.2594 −0.1828
0.0027 0.0009 −0.1828 0.1952





,

14Equation (23) of Hansen et al. (2010) defines the worst-case conditional variance of z − ž by:

∆worst case =




∆

−1
−
1

θ2
R22 −

1

θ2

[
0 I 0

]
Ω(∆)






0

I

0











−1

,

provided the matrix on the right hand side is positive definite. Ω(∆) is the matrix in the continuation value function

in footnote 7.
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∆worst case =






0.0927 −0.0016 −0.0072 0.0030

−0.0016 0.0959 0.0097 −0.0000
−0.0072 0.0097 0.2600 −0.1826
0.0030 −0.0000 −0.1826 0.1959





.

The worst-case variance-covariance matrix has larger values along its leading diagonal, reflecting the

greater difficulty the policymaker has inferring all the hidden state variables. Furthermore, distort-

ing unemployment and the natural rate of unemployment in opposite directions creates negative

covariance between the inference errors for these variables (element (2,4) is mildly negative in the

worst case). From this we have the final intuition for why the worst-case unemployment forecast is

optimistic. In the worst case, the natural rate of unemployment is distorted pessimistically whilst

unemployment itself is distorted optimistically. With unemployment and its natural rate moving

in opposite directions, it becomes harder for the policymaker to infer the hidden state vector z, the

variance-covariance matrix of z− ž deteriorates, and it is more difficult for the policymaker to control
the economy.

7 Conclusions

In our story, contrary to Romer and Romer (2008), policymakers do “use the information in the

staff forecasts effectively” and do not “act on information that is of little or negative value”. The

model with specification doubts is consistent with all the findings of Romer and Romer (2008) and

interprets the average difference between forecasts as what we regard as a reasonable response of the

FOMC to doubts about the specification of its model.

Whether individuals within the Federal Reserve System see themselves as dividing up policy-

making tasks in the way we propose is open to debate. The cautious communications strategies

adopted by policymakers make it unlikely that they will openly describe their forecasts in terms

of adjustments that express their doubts about their model. Nevertheless, some policymakers have

gone on the record with arguments that support our view. For example, on 4th January 2008 Forbes

Magazine (“Kohn says Fed operating with diverse views, not just strong chairman”) reported on a

discussion of Romer and Romer (2008) given by former Federal Reserve Monetary Affairs Director

Vincent Reinhart at the American Economic Association meetings in New Orleans. Forbes wrote:

“However, former Fed staffer Vincent Reinhart said while it may look as if ‘the FOMC’s

contribution to the monetary policy process is to reduce forecast accuracy,’ they are not

there primarily to be forecasters. Instead, they exist in a political system and have to be

held accountable for the outcomes of their decisions. ‘They can be bad forecasters and

good policymakers,’ Reinhart said, ‘if the diversity of views about the outlook informs
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their policy choice.’”

This paper also contributes to a recent literature due to Elliott et al. (2006) that uses forecast

biases to identify the objective functions of the people making those forecasts. For example, in

this vein Capistrán (2008) argues that the systematic biases periodically appearing in Greenbook

forecasts can be rationalised by assuming that the staff of the Federal Reserve System has a time-

varying and asymmetric forecasting objective. Our approach is arguably more disciplined than this

because the objective function that we posit has a structural interpretation as expressing a decision

maker’s doubts about the specification of its model. We believe that our approach can deliver

insights into the mindset that policymakers do or should have. Another exciting development is the

dataset of individual FOMC member forecasts put together by Romer (2009) and recently analysed

by Bhattacharjee and Gelain (2010). This is likely to prove a rich seam for future research.
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