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Introduction

Computation of optimal fiscal policies for Lucas and Stokey’s (1983) economy requires

repeated evaluations of the present value of the government’s surplus, an object formally

equivalent to an asset price. The functional equation for an asset price is typically diffi-

cult to solve. In this paper, we specify a linear-quadratic version of Lucas and Stokey’s

economy, making both asset pricing computations and optimal fiscal policy calculations

easy. The key steps are described in Appendix for two basic kinds of stochastic process:

a stochastic first-order linear difference equation and a Markov chain. We use the Lucas-

Stokey economy to exhibit features of Lucas and Stokey’s model, and how they compare

to Barro’s (1979) tax-smoothing model.1

Review of Barro’s model

Robert Barro (1979) formalized the idea that taxes should be smooth by saying that they

should be a martingale, regardless of the stochastic process for government expenditures.

Hansen, Sargent, and Roberds (1991) use the following linear quadratic model to formalize

Barro’s conclusions. The government chooses a rule for taxes to maximize the criterion

−E
∞∑

t=0

βtT 2
t (1)

subject to an initial condition B0 and

γ (L) gt = ρ (L)wt

Bt+1 = R (Bt + gt − Tt) ,
(2)

where Tt, gt, bt denote tax collections, government expenditures, and the stock of risk-

free government debt, respectively, and where R is a gross risk-free rate of return on

government debt and β ∈ (0, 1) is a discount factor. In (2), γ(L) and ρ(L) are stable one-

sided polynomials in nonnegative powers of the lag operator L, wt is a scalar martingale

difference sequence adapted to its own history. Under the assumption that Rβ = 1, the

1 The asset pricing calculations emanate from Hansen (1987) and Hansen and Sargent (1999).
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solution of this problem that satisfies the side condition E0

∑∞
t=0 βtT 2

t < +∞ is a rule for

taxes of the form

Tt − Tt−1 = [(1− β) ρ (β) /γ (β)]wt. (3)

Using (3) with (2) shows that Bt+1 is cointegrated with Tt.2

Equation (3) asserts the striking property that the serial correlation properties

of taxes are independent of the serial correlation properties of government expenditures.

That a random walk with small innovation variance appears smooth is the sense of ‘tax

smoothing’ that emerges from Barro’s analysis. This outcome depends on the debt being

risk-free.

The second equation of (2) can be written

πt+1 = Bt+1 −R [Bt − (Tt − gt)] ≡ 0, (4)

where πt+1 is interpretable as the payoff on government debt in excess of the risk-free rate.

Barro’s model has Tt adjust permanently by a small amount in response to a surprise in gt,

wt, and has Bt+1 make the rest of the adjustment to enforce (4) period by period. These

adjustments make the cumulative excess payoff to government creditors be

Πt =
t∑

s=1

πs ≡ 0. (5)

The adjustments are very different in Lucas and Stokey’s model.

Lucas and Stokey (1983) reexamined the optimal taxation problem in an equilibrium

economy with complete markets, where the government issues state-contingent debt, not

only the risk-free debt in (2). In their analysis, tax-smoothing in the form emphasized

by Barro does not emerge. Taxes are not a martingale but rather have serial correlation

properties that mirror those of government expenditures. A martingale lurks in their

analysis, but as a counterpart to (5) for the cumulated excess payoff to the government’s

creditors, not taxes, and only after appropriate adjustments for risk and risk aversion.

2 See Hansen, Sargent, and Roberds (1991).
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Lucas and Stokey’s Model

We present a linear quadratic version of Lucas and Stokey’s (1983) model of optimal

taxation in an economy without capital and a compute a variety of examples.

Exogenous processes and information

Let xt be an exogenous information vector. We shall use xt to drive exogenous

stochastic processes gt, dt, bt, 0st, representing, respectively, government expenditures, an

endowment, a preference shock, and a stream of promised coupon payments owed by the

government at the beginning of time 0:

gt = Sgxt (6a)

dt = Sdxt (6b)

bt = Sbxt (6c)

0st = 0Ssxt. (6d)

We make one of two alternative assumptions about the underlying stochastic process

xt.

Assumption 1: The process xt is an n × 1 vector with given initial condition x0

and is governed by

xt+1 = Axt + Cwt+1. (7)

Here {wt+1} is a martingale difference sequence adapted to its own past and to x0, and A

is a stable matrix.

Assumption 2: The process xt is an n state Markov chain with transition proba-

bilities arranged in the n× n matrix P with Pij = Prob(xt+1 = x̄j |xt = x̄i).

Technology
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There is a technology for converting one unit of labor `t into one unit of a single

nonstorable consumption good. Feasible allocations satisfy:

ct + gt = dt + `t. (8)

Households

Markets are complete. At time 0, a representative consumer faces a scaled Arrow-

Debreu price system3 {p0
t} and a flat rate tax on labor {τt}. and chooses consumption and

labor supply to maximize:

−.5E0

∞∑
t=0

βt
[
(ct − bt)

2 + `2
t

]
(9)

subject to the time 0 budget constraint

E0

∞∑
t=0

βtp0
t [dt + (1− τt) `t + 0st − ct] = 0. (10)

This states that the present value of consumption equals the present value of the endow-

ment plus coupon payments on the initial government debt plus after tax labor earnings.

The scaled Arrow-Debreu prices are ordinary state prices divided by discount factors and

conditional probabilities. The scaled Arrow-Debreu price system is a stochastic process.

Government

The government’s time 0 budget constraint is

E0

∞∑
t=0

βtp0
t [(gt + 0st)− τt`t] = 0. (11)

Given the government expenditure process and the present value E0

∑∞
t=0 βtp0

t 0st, a fea-

sible tax process must satisfy (11).

3 The scaled Arrow-Debreu prices are ordinary state prices divided by probabilities and the time t
power of the discount factor, transformations that permit representing values as conditional expectations
of scaled prices times quantities. See Hansen (1987) and Hansen and Sargent (1999).
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Equilibrium

Definition: L2
0 is the space of random variables yt measurable with respect to xt and such

that E0

∑∞
t=0 βty2

t < +∞.

Definitions: A feasible allocation is a stochastic process {ct, `t} that satisfies (8). A tax

system is a scalar stochastic process {τt}. A price system is a stochastic process {p0
t}. The

time t elements of each of these processes are assumed to be measurable with respect to

xt, and to belong to L2
0.

Definition: An equilibrium is a feasible allocation, a price system, and a tax system that

have the following properties:

i. Given the tax and price systems, the allocation solves the household’s problem.

ii. Given the price system, the allocation and the tax system satisfy the government’s

budget constraint.

Properties

The first-order conditions for the household’s problem imply that the equilibrium

price system satisfies p0
t = µ(bt − ct), where µ is a numeraire that we set at b0 − c0. The

preference specification permits the scaled Arrow-Debreu price p0
t to be expressed in terms

of ratios of linear functions of the state:

p0
t = Mpxt/Mpx0,

where Mp is a matrix defined so that Mpxt = bt − ct. The preference specification will

make it possible to express government time t revenues as the ratio of a quadratic function

of the state at t to a linear function of the state at 0. The forms of these prices and

taxes, together with the other objects in (9), reduce the technical problem to evaluating

geometric sums of a quadratic form in the state. For assumptions 1 and 2, Appendix A

shows how to compute such sums.
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Ramsey problem

There are many equilibria, indexed by tax systems. The Ramsey problem is to

choose the tax system that delivers the equilibrium preferred by the representative house-

hold. The Ramsey problem assumes that at time 0 the government commits itself to the

tax system, once and for all.

Definition: The Ramsey problem is to choose an equilibrium that maximizes the house-

hold’s welfare (9). The allocation that solves this problem is called the Ramsey allocation,

and the associated tax system is called the Ramsey plan.

Solution strategy

In solving the Ramsey problem, the government chooses all of the objects in an

equilibrium, subject to the constraint on the equilibrium imposed by its budget constraint.

Following a long line of researchers starting with Frank Ramsey (1929), we shall solve

this problem using a ‘first-order’ approach that involves the following steps. The steps

incorporate the properties required by the definition of equilibrium.

1. Obtain the first-order conditions for the household’s problem and use them to express

the tax system and the price system in terms of the allocation alone.

2. Substitute the expressions for the tax system and the price system obtained in step

1 into the government’s budget constraint to obtain a single iso-perimetric restriction on

allocations.

3. Use Lagrangian methods to find the feasible allocation that maximizes the utility of

the representative household subject to the restriction derived in step 2. The maximizer

is the Ramsey allocation.

4. Use the expressions from step 1 to find the associated Ramsey equilibrium price and

tax systems by evaluating them at the Ramsey allocation.
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Computation

We now execute these four steps. The problem is set so that the mathematics of

linear systems can support a solution.

Step 1. The household’s first order conditions imply

p0
t = (bt − ct) / (b0 − c0) (12)

τt = 1− `t

bt − ct
(13)

Step 2. Using (12) and (13) express (11) as

E0

∞∑
t=0

βt
[
(bt − ct) (gt + 0st)− (bt − ct) `t + `2

t

]
= 0 (14)

Equation (14) is often called the implementability constraint on the allocation.

Step 3. Consider the maximization problem associated with the Lagrangian:

J = E0

∞∑
t=0

βt

{
−.5

[
(ct − bt)

2 + `2
t

]
+ λ0

[
(bt − ct) `t − `2

t − (bt − ct) (gt + 0st)
]

+ µ0t [dt + `t − ct − gt]
}

where λ0 is the multiplier associated with the government’s budget constraint, and µ0t

is the multiplier associated with the time t feasibility condition. Obtain the first-order

conditions:

ct : − (ct − bt) + λ0 [−`t + (gt + 0st)] = µ0t (15a)
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`t : `t − λ0 [(bt − ct)− 2`t] = µ0t (15b)

dt + `t = ct + gt (15c)

We want to solve equations (15a), (15b), (15c) and the government’s budget constraint

(11) for an allocation. Our strategy is to begin by taking λ0 as given and to solve (15) for

an allocation contingent on λ0. Then we shall use (11) to solve for λ0.

Using the feasibility constraint ct = dt + `t − gt, we can express (15a), (15b) as

`t − λ0 [(bt − dt − `t + gt)− 2`t] = − (dt + `t − gt − bt) + λ0 [−`t + (gt + 0st)]

or

`t =
1
2

(bt − dt + gt)− λ0

2 + 4λ0
(bt − dt − 0st) .

We also derive

ct =
1
2

(bt + dt − gt)− λ0

2 + 4λ0
(bt − dt − 0st) .

Define c̃t = (bt + dt − gt)/2, ˜̀
t = (bt − dt + gt)/2 and mt = (bt − dt − 0st)/2. We have:

`t = ˜̀
t − µmt (16a)

ct = c̃t − µmt (16b)

where, for convenience, we define

µ =
λ0

1 + 2λ0
. (17)

Using (16), the general term of (14) can be written as:

(bt − c̃t) (gt + 0st)− (bt − c̃t) ˜̀
t + ˜̀2

t

− µmt

[
− (gt + 0st) + ˜̀

t − (bt − c̃t) + 2˜̀
t

]
+ µ2a2

t

= (bt − c̃t) (gt + 0st)− 2m2
t µ + 2m2

t µ
2,

where we used the fact that 2˜̀
t = bt − dt + gt and the fact that ˜̀

t = bt − c̃t to reduce the

bracketed factor in the second line.

This allows us to write (14) as:

a0(x0)
(
µ2 − µ

)
+ b0(x0) = 0 (18)
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where

a0(x0) = E0

∞∑
t=0

βt 1
2

(bt − dt − 0st)
2

= E0

∞∑
t=0

βtx′t
1
2

[Sb − Sd − 0Ss]
′ [Sb − Sd − 0Ss]xt (19)

and

b0(x0) = E0

∞∑
t=0

βt
[
(bt − c̃t) (gt + 0st)− (bt − c̃t) ˜̀

t + ˜̀2
t

]
(20)

= E0

∞∑
t=0

βt 1
2

(bt − dt + gt) (gt + 0st)

= E0

∞∑
t=0

βt 1
2
x′t [Sb − Sd + Sg]

′ [Sg + 0Ss] xt (21)

where the fact that bt − c̃t = ˜̀
t was used. The 0 subscripts on the forms a0 and b0

denote their dependence on 0Ss. The coefficients in the polynomial expression of (18) only

functions of x0 alone because, given the law of motion for the exogenous state xt, the

infinite sums can be computed using the algorithms described in Appendix A.

Notice that b0(x0), when expressed by (20), is simply the infinite sum on the left-

hand side of (14) evaluated for the specific allocation {c̃t, ˜̀
t}. That allocation solves the

problem:

max
c,`

−.5
[
(c− bt)

2 + `2
]

subject to c + gt = ` + dt. In other words, {c̃t, ˜̀
t} is the allocation that would be chosen

by a social planner, or the Ramsey allocation when the government can resort to lump-

sum taxation. The term b0(x0) is the present-value of the government stream spending

commitments {gt + 0st}, evaluated at the prices corresponding to the {c̃t, ˜̀
t} allocation.

If that present value is 0, distortionary taxation is not necessary, and µ = 0 (that is,

λ0 = 0) solves (18): the government’s budget constraint is not binding. One configuration

for which b0(x0) = 0 is when gt = −0st for all t, but there are many others. Because

markets are complete, the timing of the government’s claims on the household does not

matter. If the government were able to acquire such claims on the private sector in a

non-distortionary way, it would be able to implement a first-best allocation.
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When the net present value of the government’s commitments is positive, we must

solve (18) for a µ in (0, 1/2), corresponding to λ0 > 0. The polynomial a0(x0)µ(1 − µ)

is bounded above by a0(x0)/4, which means that government commitments that are “too

large” cannot be supported by a Ramsey plan. If b0(x0) < a0(x0)/4 there exists a unique

solution µ in (0, 1/2) and a unique λ0 > 0. The Ramsey allocation can then be computed

as:

ct = c̃t − µmt

=
1
2

([Sb + Sd − Sg]− µ [Sb − Sd − 0Ss])xt (22a)

`t = ˜̀
t − µmt

=
1
2

([Sb − Sd + Sg]− µ [Sb − Sd − 0Ss])xt (22b)

and the Ramsey plan as:

τt = 1− `t

bt − ct

= 1−
˜̀
t − µmt

bt − c̃t + µmt

=
2µmt

˜̀
t + µmt

=
2µ [Sb − Sd − 0Ss]xt

([Sb − Sd + Sg] + µ [Sb − Sd − 0Ss]) xt
. (23)

Expression (23) shows how the stochastic properties of the tax rate mirror those for gov-

ernment expenditures when the endowment and the preference shocks are constant.
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Martingale returns on government debt

Recursive formulation of the government budget

The government’s budget constraint can be written

B0 = E0

∞∑
t=0

βtp0
t (τt`t − gt) (24)

where B0 ≡ E0

∑∞
t=0 βtp0

t 0st is the time 0 present value of initial government debt obliga-

tions. Define

Bt ≡ Et

∞∑
j=0

βjpt
t+j (τt+j`t+j − gt+j) . (25)

Along the Ramsey allocation, Bt can be computed as

Bt =
Et

∑∞
j=0 βj

[
(bt+j − ct+j) `t+j − `2

t+j − (bt+j − ct+j) gt+j

]
(bt − ct)

, (26)

which can evidently be expressed as a function of the time t state xt in particular, a

quadratic form in xt plus a constant divided by a linear form in xt. The quantity Bt can

be regarded as the time t value of government state contingent debt issued at t − 1 and

priced at t.

The government budget constraint can be be implemented recursively by issuing

one-period state contingent debt represented as a stochastic process Bt that is measur-

able with respect to time t information. In particular, we can replace the single budget

constraint (11) with the sequence of budget constraints for t ≥ 0:

Bt = [τt`t − gt] + βEt

[
pt

t+1Bt+1

]
, (27)

where pt
t+1 = bt+1−ct+1

bt−ct
is the scaled Arrow-Debreu state price for one-period ahead claims

at time t. We can think of the optimal plan as being implemented as follows. The

government comes into period t with state contingent debt worth Bt, all of which it buys

back or ‘redeems’. It pays for these redemptions and its time t net of interest deficit

gt − τt`t by selling state contingent debt worth Etβpt
t+1Bt+1. The term structure of this

debt is irrelevant (but see Appendix B). We are free to think of it all as one-period state

contingent debt promising to pay off Bt+1 state-contingent units of consumption at t + 1.
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The martingale equivalent measure

Equation (27) looks like an asset pricing equation. The value of the asset at time t

is Bt and the time t ‘dividend’ is the government surplus τt`t−gt. Because we are working

with complete markets, we can coax from (27) a martingale that forms a counterpart to

(4) and (5).4 The argument proceeds as follows. We would like it if (25), the asset pricing

equation, involved so-called risk neutral pricing by collapsing to

Bt = Et

∞∑
j=0

R−1
tj (τt+j`t+j − gt+j) , (28)

where Rtj is the risk free j-period gross rate of return from time t to time t + j. The j

period risk free rate is Etβ
jpt

t+j , but (25) does not imply (28), at least not under rational

expectations (where E is taken with respect to the correct transition probabilities). But by

computing the expectation in (28) with respect to another set of transition probabilities,

we can make a version of (28) true.

Here is how to find transition probabilities that work. Note that the one-period risk

free interest rate Rt satisfies R−1
t = βEtp

t
t+1. Consider a portfolio of formed by borrowing

(Bt− (τt`t−gt)), and using the proceeds to buy the vector of one-period claims Bt+1. The

one-period profits from that portfolio will be

πt+1 = Bt+1 −Rt [Bt − (τt`t − gt)] . (29)

This investment costs no money, so that if risk-neutral investors’ evaluations determined

prices, the expected value of the payoff should be zero. (Remember that in Barro’s model,

the corresponding object is identically zero, not just zero in conditional expectation.) But

the representative household is risk-averse, and its preferences are reflected in state prices,

making risk neutral pricing fail, at least with the correct specification of probabilities. We

can induce a risk-neutral pricing formula by suitably respecifying the probabilities. In

particular, equations (27)-(29) state that

Ẽtπt+1 = 0, (30)

4 See Duffie (1997, chapter 2).
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where Ẽt is the conditional expectation with respect to the equivalent transition measure

defined as

f̃ (xt+1|xt) =
f (xt+1|xt) pt

t+1

Etp
t
t+1

, (31)

where f(xt+1|xt) is the original Markov transition density for x. The transition measure f̃

is equivalent in the sense of putting positive probability on the same events as f . Condition

(30) states that πt+1 is a martingale difference sequence with respect to the equivalent

transition measure.5

The martingale characterization of government debt encapsulates features of a va-

riety of examples calculated by Lucas and Stokey (1983) in which surprise increases in

government expenditures are associated with low realized returns on government debt,

and low government expenditures are associated with high rates of return. We now turn

to some examples of our own.

Three examples

All of the examples set β = 1.05−1, b = 2.135, d = 0 and initial debt B0 = 0. The first

two examples let wg,t+1 be a scalar martingale difference sequence, adapted to its own

past, with unit variance. The first example uses the linear stochastic difference equation

of assumption 1 and sets

gt+1 − µg = ρ (gt − µg) + Cgwg,t+1

with ρ = .7, µg = .35 and Cg = .035
√

1− ρ2. The second example also uses assumption 1

and sets

gt+1 − µg = ρ (gt−3 − µg) + Cgwg,t+1,

where ρ = .95 and Cg = .7
√

1− ρ2.

The third example uses assumption 2 and sets the Markov chain

P =


 .8 .8 0

0 .5 .5
0 0 1


 ,

5 The profit or gain Πt =
Pt

s=1 πs is a martingale with respect to the measure over sequences of xt

induced by the equivalent transition density. We define Π̃t =
Pt

s=0 πs.
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with g(x) = [ .5 .5 .25 ]′. Here the first state of the Markov chain is war, the second

armistice, the third peace. Government expenditures are identical in war and armistice,

but the probabilities of transition to peace differ.

10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 g(t)

 c(t)

τ(t)l(t)

10 20 30 40 50
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0.2

0.3

0.4

0.5

 g(t)

 B(t+1)

10 20 30 40 50
4.5%

5.0%

5.5%

6.0%

 R(t)−1

10 20 30 40 50
−0.2

0

0.2

0.4

0.6

π(t+1)

 g(t)

τ(t)l(t)

Figure 1: Case of an AR(1) process for gt.

We calculated Ramsey plans for each of these three economies. We wrote a matlab

program lqramsey for the assumption 1 economies and lqramsm for the assumption 2

economies. Figures 1, 2, and 3 display simulations of outcome paths.

The first panel of each case shows sample paths with tax smoothing, not in the sense

of Barro, but in the sense of ‘small variance’. As formula (23) shows, taxes inherit serial

correlation properties from the government expenditure process. The second and fourth
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0

0.2

0.4
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π(t+1)

 g(t)

τ(t)l(t)

Figure 2: Case of a seasonal AR(4) process for gt.

panels reveal important differences in the outcomes from Barro’s model. The second

panel in each case shows how Bt+1 falls when gt is above average, and rises when g is

below average. This behavior is also reflected in the fourth panel where the payout on the

public’s portfolio of government debt, πt+1, varies inversely with government expenditures.

When government expenditures are high (low) relative to what had been expected, ex post

government debt pays a low (high) return.

Figures 1 and 2 show linear time series versions of these patterns, example 1 with

first order autoregressive government expenditures, example 2 with seasonal government

expenditures. The effect of the pattern of government expenditures on the pattern of tax

collections are difficult to see from the pictures because the variance of tax collections is so
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 g(t)
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Figure 3: Markov chain g with war, armistice, peace.

small. The contemporaneous correlation of tax collections with government expenditures

is .99 in both examples 1 and 2.

Figure 3 shows the Markov example. The economy begins in war, and runs a

deficit while war continues. During war, there is no building up of debt: each period of

war the government pays zero gross return to its creditors (see the fourth panel). When

armistice arrives in period 5, it triggers a big positive payout πt+1, even though government

expenditures remain at their war time level. Armistice lingers for another period, causing

the payoff on government debt to be negative again. Then peace arrives, causing a large

payoff during the first period of peace, to be followed by a permanent string of risk-free

positive payouts equal to the permanent government surplus. Only during this period of
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permanent peace does formula (4) hold.

Figure 4, Figure 5, and Figure 6 display realizations of pt
t+1/Etp

t
t+1 and Π̃t+1 for

each of our three economies. The term pt
t+1/Etp

t
t+1 is the factor that πt needs to be

multipied to convert Πt into the martingale Π̃t. The factor is small, meaning that Πt itself

is nearly a martingale. Note how Π̃t becomes a constant once perpetual peace arrives in

Figure 6.

10 20 30 40 50
0.98

0.99

1

1.01

1.02

1.03

10 20 30 40 50
−1

−0.5

0

0.5

Figure 4: Case of an AR(1) process for gt. Left panel is pt
t+1/Etp

t
t+1, right panel is Π̃t.
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0.99

0.995

1

1.005

1.01

10 20 30 40 50
−0.8

−0.6

−0.4

−0.2

0

0.2

Figure 5: Case of a seasonal AR(4) process for gt. Left panel is pt
t+1/Etp

t
t+1, right panel

is Π̃t.
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0.95

1
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−1

−0.5

0

Figure 6: Markov chain g with war, armistice, peace. Left panel is pt
t+1/Etp

t
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panel is Π̃t.

Extensions

Further calculations with linear quadratic economies appear in Hansen (1987) and Hansen

and Sargent (1999). Extensions of Lucas and Stokey’s analysis to economies with capital

appear in Chari, Christiano, and Kehoe (1994, 1996) and Jones, Manuelli, and Rossi (1997).

Chari, Christiano, and Kehoe (1994) describe optimal policy in terms of a martingale of a

return variable related to Πt. For an analysis intermediate between Barro’s and Lucas and

Stokey’s, see Marcet, Sargent, and Seppala (1996), who restrict the government in Lucas

and Stokey’s model to issue only risk-free debt. That limitation puts a large number of

additional measurability restrictions on the Ramsey allocation, beyond those incorporated

in (14). These restrictions deliver a version of (5) with a time-varying risk free interest

rate. The problem with only risk free debt requires computational methods like ones of

Marcet and Marimon (1997).
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Appendix A: Geometric sums of quadratic forms

The calculations in the text require repeated evaluations of discounted infinite sums of

quadratic forms in future values of the state. This appendix gives formulas for these sums

under two alternative specifications of stochastic process for the state: (1) the state is

governed by a vector first order linear stochastic difference equation; and (2) the state

evolves according to an n state Markov chain.

Linear stochastic difference equation

We want a formula for expected discounted sums of quadratic forms

q (x0) = E0

∞∑
t=0

βtx′tMxt (32)

where

xt+1 = Axt + Cwt+1

and where wt+1 is a martingale difference sequence adapted to its own history and to x0.

The formula is

q (x0) = x′0Qx0 + q0

where
q0 =

β

1− β
traceC′QC

Q = M + βA′QA

(33)

The second equation is a Sylvester equation in Q that can be solved by one of a variety

of methods, including the doubling algorithm. See Anderson, Hansen, McGrattan, and

Sargent (1996) for a review of methods for solving Sylvester equations. The standard

Matlab program dlyap can be used; so can a homemade one doubleo of Hansen and

Sargent (1999).

Markov chain

Assume that xt is the state of an n-state Markov chain with transition matrix P

with (i, j)th element Pi,j = Prob(xt+1 = x̄j|xt = x̄i). Here x̄i is the value of x when the
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chain is in its ith state. Let h(x̄) be a function of the state represented by an (n×1) vector

h; the ith component of h denotes the value of h when x is in its ith state. Then we have

the following two useful formulas:

E [h (xt+k|xt = x̄)] = P kh

E

[ ∞∑
k=0

βkh (xt+k|xt = x̄)

]
= (I − βP )−1

h (x̄) ,

where β ∈ (0, 1) guarantees existence of (I − βP )−1 = (I + βP + β2P 2 + . . .).

Appendix B: Time consistency and the structure of debt

Under complete markets, there are many government debt structures that have the same

present value. One of the results of Lucas and Stokey (1983) is that a specific structure is

required if the Ramsey plan is to be time-consistent; that is, if the Ramsey plan computed

at t = 1 coincides with the continuation of the Ramsey plan computed at t = 0 for all

realizations of x1. We can compute the debt structure that will induce time consistency.

Assume that the government has solved for the Ramsey plan at t = 0, and restruc-

tured the debt, that is, chosen a new debt structure of the form 1st = 1Ssxt. We want

to find conditions on 1Ss such that the Ramsey plan found at time t = 0 will be time-

consistent. Suppose that, for t = 1, we compute the Ramsey plan. Following the same

procedure as above, we will need to solve for µ1 in the equation

a1(x1)
(
µ2

1 − µ1

)
+ b1(x1) = 0 (34)

where the subscript on a and b indicates the fact that these quadratic forms of x1 depend

on 1Ss just as a0(x0) and b0(x0) depend on 0Ss in (19) and (21). Once µ1 is found,

allocations can be computed using (22). Note that the ˜̀
t and c̃t terms in (16) do not

depend on the debt structure. Therefore, for the new Ramsey allocation to coincide with

the continuation of the Ramsey allocation computed at t = 0, all we need is

µ0 [Sb − Sd − 0Ss] = µ1 [Sb − Sd − 1Ss]
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or

µ1 1Ss = µ0 0Ss + (µ1 − µ0) (Sb − Sd) . (35)

To translate these conditions into conditions on 1Ss alone, we use (35) to substitute

1Ss in (34), solve for µ1 as a function of x1, and then replace µ1 in (35).

Rewrite (35) as

Sb − Sd − 1Ss =
µ0

µ1
(Sb − Sd − 0Ss) . (36)

Using (36) in the definition of a1(x1):

a1(x1) = E1

∞∑
t=0

βtx′1+t

1
2

[Sb − Sd − 1Ss]
′ [Sb − Sd − 1Ss]x1+t

we find that

a1(x1) =
(

µ0

µ1

)2

a0(x1) .

For convenience, write b1(x1) = c(x1) + d1(x1) with

c (x1) = E1

∞∑
t=0

βt 1
2
x′1+t [Sb − Sd + Sg]

′ [Sb − Sd + Sg] x1+td1(x1)

= E1

∞∑
t=0

βt 1
2
x′1+t [Sb − Sd + Sg]

′ [−Sb + Sd + 1Ss]x1+t.

The term c(x1) does not depend on 1Ss, and the term d1(x1) can be rewritten, using (36),

as:

d1(x1) =
µ0

µ1
d0(x1) .

We now replace a1 and d1 in (34) and solve for µ1:

µ1 = µ0
µ0a0(x1)− d0(x1)
µ2

0a0(x1) + c (x1)

and substitute µ1 in (35) to find:

1Ss = 0Ss
µ2

0 a0(x1) + c (x1)
µ0 a0(x1)− d0(x1)

+ (Sb − Sd)
a0(x1)

(
µ0 − µ2

0

)− c (x1)− d0(x1)
µ0 a0(x1)− d0(x1)

. (37)
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If we examine (37), we see that 1Ss will not be independent of x1 except when the

forms a1, c and d1 are, in fact, constants with respect to x1. A sufficient condition for this

to hold is that bt, dt and 0st be independent of t. When that obtains, the second term in

(37) is zero (by (18)) and the time-consistent debt structure will be given by:

1Ss = 0Ss
µ2

0 a + c

µ0 a− d
.

Appendix C: Matlab programs

Stochastic Difference Equation

% LQRAMSEY
%
% Compute Ramsey equilibria in a LQ economy with distorting taxation:
% case of a stochastic difference equation
% The program computes allocation (consumption, leisure), tax rates,
% revenues and the net present value of the debt.
% See also LQRAMSM.
% FRV Apr 10 1998
%%%%%%%%%%%%%%%%% customization required %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Gentle user:
% The only customization required is in part (1).
%%%%%%% (1) Define the parameters of the model
% Misc
T=50; % length of simulation
beta=1/1.05; % discount factor
% exogenous state
% specify a stochastic process for the state of the form
% x(t+1)= A * x(t) + C * w(t+1)
% where w is i.i.d. N(0,1)
% ex1: govt spending is AR(1), state = [g ; 1]
%mg=.35;
%rho=.7;
%A=[rho mg*(1-rho); 0 1];
%C=[mg/10*sqrt(1-rho^2);0];
%% These selector matrices are all 1*nx, where nx is the size of the
state:
%Sg = [1 0]; % The selector matrix for the government expenditure
%Sd = [0 0]; % The selector matrix for the exogenous endowment
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%Sb = [0 2.135]; % The selector matrix for the bliss point
%Ss = [0 0]; % The selector matrix for the promised coupon payments
% ex2: seasonal
rho=.95;
mg=.35;
A=[0 0 0 rho mg*(1-rho);

1 0 0 0 0 ;
0 1 0 0 0 ;
0 0 1 0 0;
0 0 0 0 1];

C=[mg/8*sqrt(1-rho^2);0;0;0;0];
Sg = [1 0 0 0 0];
Sd = [0 0 0 0 0];
Sb = [0 0 0 0 2.135]; % this is chosen so that (Sc+Sg)*x0=1
Ss = [0 0 0 0 0];
%%%%%%%%%%%%%%%%%%% This concludes the customization. Let’er rip!
%%%%%%%%%%%%%%%%
%%%%%%% (1) generate initial condition
[nx,nx]=size(A);
if ~exist(’x0’)

x0=null(eye(nx)-A);
if (x0(nx)<0)

x0=-x0;
end
x0=x0./x0(nx);

end
%%%%%%% (2) solve for the Lagrange multiplier on the government BC
% we actually solve for mu=lambda/(1+2*lambda)
% mu is the solution to a quadratic equation a(mu^2-mu)+b=0
% where a and b are expected discounted sums of quadratic forms
% of the state; we use dlyap to compute those sums quickly.
Sm=Sb-Sd-Ss; % a short-hand
Qa=dlyap(sqrt(beta)*A’,-0.5*Sm’*Sm);
qa=trace(C’*Qa*C)*beta/(1-beta);
Qb=dlyap(sqrt(beta)*A’,-0.5*(Sb-Sd+Sg)’*(Sg+Ss));
qb=trace(C’*Qb*C)*beta/(1-beta);
a0=x0’*Qa*x0+qa;
b0=x0’*Qb*x0+qb;
if a0<0 % normalize

a0=-a0; b0=-b0;
end
disc=a0^2-4*a0*b0;
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% there may be no solution:
if ( disc < 0 )

disp(’There is no Ramsey equilibrium.’);
disp(’(Hint: you probably set government spending too high;’);
disp(’ elect a Republican Congress and start over.)’);
return

end
mu=0.5*(a0-sqrt(disc))/a0;
% or it may be of the wrong sign:
if ( mu*(0.5-mu) < 0 )

disp(’negative multiplier on the government budget constraint!’);
disp(’(Hint: you probably set government spending too low;’);
disp(’ elect a Democratic Congress and start over.)’);
return

end
%%%%%%% (3a) solve for the allocation
Sc=0.5*(Sb+Sd-Sg-mu*Sm);
Sl=0.5*(Sb-Sd+Sg-mu*Sm);
Stau1=2*mu*Sm;
Stau2=Sb-Sd+Sg+mu*Sm;
%%%%%%% (4) run the simulation
[nx,nw]=size(C);
x=zeros(nx,T);
w=randn(nw,T); % draw the shocks
x(:,1)=x0; % initialize the state
for t=2:T % compute x recursively

x(:,t)=(A*x(:,t-1) + C*w(:,t));
end
% exogenous stuff:
g = Sg*x; % govmint spending
d = Sd*x; % endowment
b = Sb*x; % bliss point
s = Ss*x; % coupon payment on existing debt
% endogenous stuff:
c=Sc*x; % consumption
l=Sl*x; % labor
p=(Sb-Sc)*x; % price
tau=(Stau1*x)./(Stau2*x); % taxes
rev=tau.*l; % revenues
QB=dlyap(sqrt(beta)*A’,-((Sb-Sc)’*(Sl-Sg)-Sl’*Sl));
qB=trace(C’*QB*C)*beta/(1-beta);
B=(x’*QB*x+qB)/p; % debt
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% 1-period risk-free interest rate
R=((beta*(Sb-Sc)*A*x)./p)’.^(-1);
pi=B(2:T)-R(1:T-1).*(B(1:T-1)-rev(1:T-1)’+g(1:T-1)’);
% risk-adjusted martingale
adjfac=(((Sb-Sc)*x(:,2:T))./((Sb-Sc)*A*x(:,1:T-1)))’;
Pitilde=cumsum(pi.*adjfac);
%%%%%%% (5) plot
set(0,’DefaultAxesColorOrder’,[0 0 0],...

’DefaultAxesLineStyleOrder’,’-|--|-|-.’)
figure
subplot(2,2,1),
plot([c’ g’ rev’]),grid %cons, g and rev
v=axis; axis([1 T 0 v(4)]);
set(gca,’FontName’,’Times New Roman’);
subplot(2,2,2)
plot((1:T),g,(1:T-1),B(2:T)),grid %g(t) and B(t+1)
v=axis; axis([1 T v(3) v(4)]);
set(gca,’FontName’,’Times New Roman’);
subplot(2,2,3)
plot((1:T),R-1),grid % interest rate
v=axis; axis([1 T v(3) v(4)]);
set(gca,’FontName’,’Times New Roman’);
% format the vertical labels for the interest rate plot
yticks=get(gca,’YTick’)’;
set(gca,’YTickLabel’,num2str(yticks*100,’%4.1f%%’));
subplot(2,2,4)
plot((1:T),[rev’ g’],(1:T-1),pi), grid
v=axis; axis([1 T v(3) v(4)]);
set(gca,’FontName’,’Times New Roman’);
figure
subplot(2,2,1),
plot((2:T),adjfac),grid
v=axis; axis([1 T v(3) v(4)]);
set(gca,’FontName’,’Times New Roman’);
subplot(2,2,2),grid
plot((2:T),Pitilde)
v=axis; axis([1 T v(3) v(4)]);
set(gca,’FontName’,’Times New Roman’);
% th-th-th-that’s all, folks!
return
% labels to place on the graphs
gtext(’\pi\it(t+1)’);
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gtext(’\it g(t)’);
gtext(’\it g(t)’);
gtext(’\it g(t)’);
gtext(’\it c(t)’);
gtext(’\it\tau(t)l(t)’);
gtext(’\it\tau(t)l(t)’);
h=gtext(’\it B(t+1)’);
h=gtext(’\it R(t)-1’);

Markov Chain

% LQRAMSM
%
% Compute Ramsey equilibria in a LQ economy with distorting taxation:
% case of a Markov chain
% The program computes allocation (consumption, leisure), tax rates,
% revenues, and the net present value of the debt.
% See also LQRAMSEY.
% FRV Apr 10 1998
%%%%%%%%%%%%%%%%% customization required %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Gentle user:
% The only customization required is in part (1).
% (1) Define the parameters of the model
% model 1:
% 3 states
P = [0.8 0.2 0;... % The transition matrix

0 0.5 0.5;
0 0 1];

xbar = [ 0.5 0 2.2 0 1;...% Possible states of the world: each column
0.5 0 2.2 0 1;... % is a state of the world
0.25 0 2.2 0 1]’; % is a state of the world

% the rows are: [g d b s 1]
x0=1; % index of the initial state
Sg = [1 0 0 0 0]; % The selector matrix for the government
expenditure
Sd = [0 1 0 0 0]; % The selector matrix for the exogenous
endowment
Sb = [0 0 1 0 0]; % The selector matrix for the bliss point
Ss = [0 0 0 1 0]; % The selector matrix for the promised coupon
payments
% Misc
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T=20; % length of simulation
beta=1/1.05; % discount factor
%%%%%%%%%%%%%%%%%%% This concludes the customization. Let’er rip!
%%%%%%%%%%%%%%%%
% (2) solve for the Lagrange multiplier on the government BC
% we actually solve for mu=lambda/(1+2*lambda)
% mu is the solution to a quadratic equation a(mu^2-mu)+b=0
% where a and b are expected discounted sums of quadratic forms
% of the state; we use dlyap to compute those sums quickly.
m = size(xbar,2); % Number of possible states of the world
Sm=Sb-Sd-Ss; % a short-hand
invP=inv(eye(size(P))-beta*P);
a0=((1:m)==x0)*0.5*invP*((Sm*xbar)’.^2);
b0=((1:m)==x0)*0.5*invP*(((Sb-Sd+Sg)*xbar).*((Sg+Ss)*xbar))’;
if a0<0 % normalize

a0=-a0; b0=-b0;
end
disc=a0^2-4*a0*b0;
% there may be no solution:
if ( disc < 0 )

disp(’There is no Ramsey equilibrium.’);
disp(’(Hint: you probably set government spending too high;’);
disp(’ elect a Republican Congress and start over.)’);
return

end
mu=0.5*(a0-sqrt(disc))/a0;
% or it may be of the wrong sign:
if ( mu*(0.5-mu) < 0 )

disp(’negative multiplier on the government budget constraint!’);
disp(’(Hint: you probably set government spending too low;’);
disp(’ elect a Democratic Congress and start over.)’);
return

end
% (3a) solve for the allocation
Sc=0.5*(Sb+Sd-Sg-mu*Sm);
Sl=0.5*(Sb-Sd+Sg-mu*Sm);
Stau1=2*mu*Sm;
Stau2=Sb-Sd+Sg+mu*Sm;
% (4) run the simulation
epsilon = rand(1,T);
cumP = cumsum(P’)’; % The cumulative sum for each row of P
x(:,1) = xbar(:,x0);
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state=zeros(T,1);
state(1)=x0;
for t = 2:T

state(t) = min(find(cumP(state(t-1),:) >= epsilon(t)));
x(:,t) = xbar(:,state(t));

end
% exogenous stuff:
g = Sg*x; % govmint spending
d = Sd*x; % endowment
b = Sb*x; % bliss point
s = Ss*x; % coupon payment on existing debt
% endogenous stuff:
c=Sc*x; % consumption
l=Sl*x; % labor
p=(Sb-Sc)*x; % price
tau=(Stau1*x)./(Stau2*x); % taxes
rev=tau.*l; % revenues
% compute the debt
B=invP*(((Sb-Sc)*xbar).*((Sl-Sg)*xbar)-(Sl*xbar).^2)’;
B=B(state,:)./p’;
% 1-period risk-free interest rate
R=(beta*(P(state,:)*((Sb-Sc)*xbar)’)./p’).^(-1);
pi=B(2:T)-R(1:T-1).*(B(1:T-1)-rev(1:T-1)’+g(1:T-1)’);
% risk-adjusted martingale
adjfac=p(2:T)’./(P(state(1:T-1),:)*((Sb-Sc)*xbar)’);
Pitilde=cumsum(pi.*adjfac);
%%%%%%% (5) plot
set(0,’DefaultAxesColorOrder’,[0 0 0],...

’DefaultAxesLineStyleOrder’,’-|--|-|-.’)
figure
subplot(2,2,1),%grid
plot([c’ g’ rev’]) %cons, g and rev
v=axis; axis([1 T 0 v(4)]);
set(gca,’FontName’,’Times New Roman’);
subplot(2,2,2),%grid
plot((1:T),g,(1:T-1),B(2:T)), %g(t) and B(t+1)
v=axis; axis([1 T v(3) v(4)]);
set(gca,’FontName’,’Times New Roman’);
subplot(2,2,3),%grid
plot((1:T),R-1) % interest rate
v=axis; axis([1 T 0 v(4)]);
set(gca,’FontName’,’Times New Roman’);
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% format the vertical labels for the interest rate plot
set(gca,’YTickLabel’,num2str(get(gca,’YTick’)’*100,’%3.0f%%’));
subplot(2,2,4),%grid
plot((1:T),[rev’ g’],(1:T-1),pi),
v=axis; axis([1 T v(3) v(4)]);
set(gca,’FontName’,’Times New Roman’);
figure
subplot(2,2,1),
plot((2:T),adjfac),grid
v=axis; axis([1 T v(3) v(4)]);
set(gca,’FontName’,’Times New Roman’);
subplot(2,2,2),grid
plot((2:T),Pitilde)
v=axis; axis([1 T v(3) v(4)]);
set(gca,’FontName’,’Times New Roman’);
% th-th-th-that’s all, folks!
return
% labels to place on the graphs
gtext(’\pi\it(t+1)’);
gtext(’\it g(t)’);
gtext(’\it g(t)’);
gtext(’\it g(t)’);
gtext(’\it c(t)’);
gtext(’\it\tau(t)l(t)’);
gtext(’\it\tau(t)l(t)’);
h=gtext(’\it B(t+1)’);
h=gtext(’\it R(t)-1’);
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