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Abstract

We decompose welfare effects of switching from government policy A to policy B into three
components: gains in aggregate efficiency from changes in total resources; gains in redistribution
from altered consumption shares that ex-ante heterogeneous agents can expect to receive; and
gains in insurance from changes in individuals’ consumption risks. Our decomposition applies
to a broad class of multi-person, multi-good, multi-period economies with diverse specifications
of preferences, shocks, and sources of heterogeneity. It has several desirable properties. For
example, it attributes to the insurance component all welfare effects that arise purely from mean
preserving spreads in consumption. We compare our decomposition to earlier ones developed
by Benabou (2002) and Floden (2001) and show that those approaches attribute welfare effects
from such spreads to insurance only under special conditions.
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1 Introduction

We want to understand sources of changes in social welfare induced by alternative government

policies. When households are heterogeneous, welfare depends on how efficiently goods and

services are produced as well as how they are allocated across households. Welfare changes

from reallocations are influenced by Pareto weights used to weight utilities of different agents,

so it is natural to want to isolate the contribution from redistribution.

We propose an approach that imputes a welfare change from moving from policy A to

policy B to three components that we call aggregate efficiency, redistribution, and insurance.

Aggregate efficiency captures consequences of changes in aggregate resources. Redistribution

captures changes in ex-ante consumption shares. Insurance captures changes in the ex-post

consumption risk.

Our decomposition has several desirable properties. It can be applied both to static and

to dynamic stochastic economies with multiple goods with arbitrary preferences that can vary

across households. It isolates the components of change in welfare in the three components in

an intuitive way. For instance, welfare changes that arise from changes in aggregate resources,

holding fixed both ex-ante expected consumption shares and ex-post risks in consumption for

all agents are imputed purely to the the aggregate efficiency component. Welfare changes that

arise from changes in ex-ante consumption shares, holding fixed both the level of aggregate

resources and consumption risk for each household are imputed purely to the redistribution

component. Similarly, welfare changes from a policy that reduces ex-post consumption risk,

while not affecting either total resources or expected consumption shares of any household

are imputed purely to the insurance component. Furthermore, our decomposition is reflexive

in the sense that each component of a welfare change from policy A to policy B is equal in

magnitude and of opposite sign to its counterpart for moving from policy B to policy A.

We also compare our approach to popular decompositions developed by Benabou (2002)

and Floden (2001).1 Their approaches compute a certainty equivalent consumption for each

agent and then average it across agents to compute a measure of total societal risk. We show

that their decompositions generally do not satisfy the properties mentioned above. For exam-

ple, an increase in welfare from a policy that induces a mean preserving reduction in household

consumption is interpreted by those decomposition as coming solely from insurance only un-

der special, non-generic conditions. We show that when these conditions are not satisfied,

1Examples of papers who use these, or closely related decompositions, include Abbott, Gallipoli, Meghir,
and Violante (2019), Cho, Cooley, and Kim (2015), Conesa, Kitao, and Krueger (2009), Dyrda and Pedroni
(2015), Guvenen, Kambourov, Kuruscu, Ocampo-Diaz, and Chen (2019), Heathcote, Storesletten, and Violante
(2017), Koehne and Kuhn (2015), Nakajima and Takahashi (2020), Seshadri and Yuki (2004).
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these decompositions may impute arbitrarily small or arbitrarily large welfare changes to the

insurance component.

The rest of this paper is organized as follows. Section 2 describes the environment. Section

3 develops our decomposition. Section 4 provides examples of applications of our decomposi-

tion. Section 5 makes comparisons to the decompositions by Benabou and Floden. Section 6

concludes. Proofs and technical details appear in the Appendix.

2 Environment

A unit measure of ex-ante heterogeneous households are subject to risk ex-post. Households are

distributed on a [0, 1] interval endowed with Lebesgue measure. A household i derives utility

Ui
(
{ck,i}k

)
from a bundle {ck,i}k of goods. The bundle can be either finite or infinite. Each

ck,i > 0 is stochastic and drawn from distributions that can differ across households. Expected

utility of household i is EiUi
(
{ck,i}k

)
, where Ei is a mathematical expectation that uses

household i’s probability distribution over {ck,i}k . We assume that Ui is twice continuously

differentiable and denote its first and second derivatives by Uk,i, Ukm,i for goods k,m. We

assume that the joint distribution of stochastic processes {ck,i}i,k has finite second moments

and that expected utilities are well-defined. We use a shorthand E to denote the average over

households. Thus, Exi denotes
∫

[0,1] Eixidi for any random variable xi.

Welfare is evaluated using Pareto weights {αi}i that satisfy αi ≥ 0 and Eαi = 1. Welfare

is denoted by W and is given by

W ≡ EαiUi
(
{ck,i}k

)
. (1)

An allocation under a government policy is a collection of stochastic processes {ck,i}k,i that

assign consumptions of all goods for all households. Switching from government policy A to

policy B results in an altered allocation and consequent welfare change WB − WA. We use

superscripts j ∈ {A,B} to denote all variables under the alternative policies. Our goal is to

partition a welfare change WB −WA into economically interpretable components.

3 A decomposition

We start with a single good economy. Section 3.2 extends the decomposition to settings with

multiple goods.
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3.1 Single good economy

When there is a single good, subscripts k are redundant. We can use Uc, Ucc to denote first and

second derivatives of the utility function. Without loss of generality, a household’s consumption

is a product of three terms

ci = Eci ×
Eici
Eci
× ci

Eici
≡ C × wi × (1 + εi) . (2)

Aggregate consumption C measures the size of an aggregate “pie” to be divided. The frac-

tion wi is the share of that pie that household i expects to receive. Finally, εi captures the

uncertainty that household i faces. By construction, we have Eiεi = 0 and Ewi = 1.

Identity (2) motivates us to decompose a welfare change across two consumption allocations

into three components that measure aggregate efficiency, redistribution, and insurance. Before

presenting our decomposition, it is useful to describe what we think are desirable properties

for these components.

Property a. A welfare change from a policy that affects aggregate consumption C but not {wi, εi}i
should be imputed solely to aggregate efficiency;

Property b. A welfare change from a policy that affects expected shares {wi}i but not C and {εi}i
should be imputed solely to redistribution;

Property c. A welfare change from a policy that affects the stochastic process for {εi}i but not C

and {wi}i should be imputed solely to insurance.

Our notion of aggregate efficiency requires that redistribution and insurance are unaffected

if consumption of every household is multiplied by the same positive scalar. This seems consis-

tent with common usages of these terms. More generally, it also implies that redistribution and

insurance remain unchanged so long as the distribution of expected consumption shares, {wi}i
and dispersions of consumptions relative to their means, {stdi (ci) /Eici}i are both unchanged.

Once we accept the Property a of pure aggregate efficiency, the other two properties follow

naturally. By redistribution, we capture effects from reshuffling resources across households,

that is, changes in expected consumption shares {wi}i. Thus, we attribute to redistribution all

changes that keep C and {εi}i constant and affect neither aggregate resources nor dispersions

of individual consumptions. By insurance, we capture changes in consumption risk that each

household faces. Thus, we attribute to the insurance component the welfare consequences

of a policy-induced change in variances of {εi}i that keeps aggregate resources and expected

consumption shares constant (i.e., pure mean-preserving spreads in consumption).
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Finally, it is desirable that a decomposition does not depend on whether one compares

policy B to policy A, or policy A to policy B. We call this property reflexivity and formally

state it as follows.

Property d. The absolute value of each component of the welfare change from policy A to policy B

equals its counterpart in moving from policy B to policy A.

Our approach rests on Taylor expansions of welfare difference WB −WA. Welfare Wj for

j ∈ {A,B} can be represented as a mapping from an allocation—sequences and stochastic

processes
{
Cj , wji , ε

j
i

}
i
—to a real number. We expand around a ”midpoint”

{
CZ , wZi ,0

}
i

defined as

CZ ≡
√
CACB, wZi ≡

√
wAi w

B
i , c

Z
i ≡ CZwZi . (3)

Applying Taylor’s theorem, one can show (see the appendix) that

WB −WA ' EφiΓ︸ ︷︷ ︸
agg. efficiency

+ Eφi∆i︸ ︷︷ ︸
redistribution

+EφiγiΛi︸ ︷︷ ︸
insurance

, (4)

where ”' ” denotes equality up to a third order reminder term in the Taylor expansion,

φi ≡ αiUc,i
(
cZi
)
cZi , γi ≡ −Ucc

(
cZi
)
cZi /Uc

(
cZi
)
, and

Γ ≡ lnCB − lnCA, ∆i ≡ lnwBi − lnwAi , Λi ≡ −
1

2

[
vari

(
ln cBi

)
− vari

(
ln cAi

)]
. (5)

Equation (4) shows that up to the third-order expansion terms, the welfare effectWB−WA

is represented as a sum of three terms. The first term is proportional to the increase in the

aggregate resources, Γ. The second term is proportional to a measure that captures changes in

households’ expected consumption shares, {∆i}i . The third term is proportional to changes

in the ex-post risk and is captured by {Λi}i . Although we consider a second order expansion,

there are no interaction terms among Γ, {∆i}i and {εi}i . This suggests that a natural way

to attribute contributions of aggregate efficiency, redistribution, and insurance to WB −WA

is in terms of the proportions EφiΓ
Eφi[Γ+∆i+γiΛi]

, Eφi∆i

Eφi[Γ+∆i+γiΛi]
, and EφiγiΛi

Eφi[Γ+∆i+γiΛi]
respectively.2

These terms must sum to 1:

1 =
EφiΓ

Eφi [Γ + ∆i + γiΛi]
+

Eφi∆i

Eφi [Γ + ∆i + γiΛi]
+

EφiγiΛi
Eφi [Γ + ∆i + γiΛi]

. (6)

It is easy to verify that the decomposition (6) satisfies Properties a, b, c, and d. Any policy

change that affects aggregate resources C but not {wi, εi}i implies that ∆i = Λi = 0 for all

2In general, the remainder term in the Taylor expansion (4) depends on higher-order interactions of Γ, {Λi}i
and {εi}i and cannot be partitioned unambiguously way across the three components. Defining the proportions
as we do implicitly assumes that the residual is split across these components in the same proportions as the
first and second order expansion terms. See the appendix for details.
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i; therefore the aggregate efficiency component of such a policy is 1. Similar arguments verify

that Properties b and c are satisfied. Property d (i.e., it is reflexive) is verified by noticing

that moving from policy B to policy A implies that both numerator and the denominator of

each fraction changes only its sign, leaving ratios unchanged.

Terms in decomposition (6) have natural interpretations. Quasi-weights {φi}i convert per-

cent changes {Γ,∆i,Λi}i that summarize how allocations change between policies A and B

into a welfare change WB −WA, measured in utils. Aggregate efficiency is simply the percent

change in total consumption, Γ, adjusted by Eφi. The insurance component depends on the

changes in the variance of log consumption and the coefficients of the relative risk aversion

{γi}i.
Finally, the redistribution component depends on changes in expected consumption shares

{wi}i and is captured by {∆i}i . To help understand this term, it is instructive to write it as

Eφi∆i =
√
CACB

∫
[0,1]

αiUc,i ln
wBi
wAi

√
wAi w

B
i di.

Note that the integral in this expression resembles the well-known Kullback–Leibler (K-L)

divergence, which takes the form
∫

ln
wBi
wAi
wAi di in our context. Just like the K-L divergence, our

redistribution component is a measure of differences between distributions
{
wAi
}
i

and
{
wBi
}
i
.

(Note that
{
wAi
}
i
and

{
wB
}
i
are are positive and sum to one so that they are proper probability

distributions.) There are two important differences from the K-L divergence. Firstly, the K-L

divergence is not reflexive and violates our desired Property d. By using midpoint between

the two distributions,
√
wAi w

B
i , rather than wAi , we overcome this problem. Secondly, the

K-L divergence by construction ”weights” resources given to each household i equally. This

corresponds to a very specific point on the Pareto frontier. On an arbitrary point of the Pareto

frontier, these weights are given by αiUc,i.

We wrote the redistributive component as Eφi∆i in formula (4) to emphasize the common

structure underlying the three components and to show the relationship to standard measures

of divergence. An alternative way of representing it is by

redistribution '
√
CACBEαiUc,i

(
c̄Zi
) (
wBi − wAi

)
. (7)

From (7) one can immediately see that redistribution is a measure of changes in shares wBi −wAi
weighted with αiUc,i. Evidently, the redistributive component is zero if the planner is utilitarian

and agents have linear utility of consumption.

3.1.1 Order of approximation and an alternative decomposition
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One might be interested in the size of the omitted third order residual in equation (4) and

in understanding how it depends on the difference between allocations under policies A and

B. In this section we provide a short summary of these issues, leaving detailed proofs for the

appendix.

In the appendix, we define a space that consists of sequences and stochastic processes{
Γ̃, ∆̃i, ε̃i

}
i

endowed with an appropiate norm || · ||. From (2), any allocation {cji}i can be

mapped to a point in that space. We use ||Γ,∆, εB − εA|| to measure the distance between

allocations under two policies,
{
cAi
}
i

and
{
cBi
}
i

and denote it by ||cB − cA||. The residual in

equation (4) goes to zero as ||cB − cA|| → 0 but relatively little can be said theoretically about

the relative speeds at which the residual and ||cB − cA|| converge to zero. This is because

when we expand around a non-stochastic point
{
cZi
}
i
, processes

{
cBi
}
i

and
{
cAi
}
i

need not to

converge to this point as ||cB − cA|| → 0.

We can modify our decomposition to ensure that the approximation error shrinks to zero

at a rate faster than ||cB − cA||2. Write stochastic process ci as an explicit mapping from some

vector of primitive shocks ξ into consumption ci (ξ), with distribution of ξ given by Pri (dξ) .

Equation (2) can be rewritten as ci (ξ) = C×wi×εi (ξ) where εi (ξ) ≡ ci (ξ) /Eici. Let the point

of expansion be c̃Zi (ξ) ≡
√
CACB×

√
wAi w

B
i ×
√
εAi (ξ) εBi (ξ) and let δi (ξ) ≡ ln εBi (ξ)−ln εAi (ξ) ,

φ̃i (ξ) ≡ αiUc,i
(
c̃Zi (ξ)

)
c̃Zi (ξ) . Then the welfare decomposition can be written as

WB −WA = Eφ̃iΓ︸ ︷︷ ︸
agg. efficiency

+ Eφ̃i∆i︸ ︷︷ ︸
redistribution

+ Eφ̃iδi︸ ︷︷ ︸
insurance

+o
(
‖Γ,∆, δ‖2

)
. (8)

This decomposition retains the four properties of decomposition (4) that we discussed in pre-

vious section, and also guarantees that the reminder term converges to zero at a faster rate

than
∥∥cB − cA∥∥2

.

While decomposition (8) has nicer theoretical properties as the difference between alloca-

tions induces by policies A and B becomes small, we did not find any meaningful discrepancies

in comparing decompositions (8) and (4) in all examples that we considered. For this reason,

for the rest of this paper we focus on decomposition (4), both because it is easier to com-

pute and because {Λi}i maps directly into statistics that are already routinely reported in

quantitative models.

3.2 Decomposition in a multi-good economy

It is straightforward to extend our decomposition to general multi-good settings. To decompose

welfare gains into components, first compute points of approximation
{
cZk,i

}
k

for each good as

in equation (3). Then extend definitions of Γk and ∆k,i from equation (5) to every good k and
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define Λkm,i for each pair of goods k,m as

Λkm,i ≡ −
1

2

[
covi

(
ln cBk,i, ln c

B
m,i

)
− covi

(
ln cAk,i, ln c

A
m,i

)]
.

Let Uk,i, Ukm,i be first and second derivatives of Ui evaluated at
{
cZk,i

}
k

and let weights
{
φk,i
}
k

and cross-elasticities
{
γkm,i

}
k,m

be defined as

φk,i ≡ αiUk,icZi , γkm,i ≡ −
Ukm,ic

Z
m,i

Uk,i
.

Using the same steps as in the one good economy, we can show that

WB −WA ' agg. efficiency + redistribution + insurance, (9)

where

agg. efficiency = E
∑
k

φk,iΓk,

redistribution = E
∑
k

φk,i∆k,i,

insurance = E
∑
k

∑
m

φk,iγkm,iΛkm,i.

When utility is separable across all goods, this decomposition amounts to first computing

decomposition (4) separately for each good and then summing each respective component

across all goods. When utility is not separable, proper accounting for the insurance component

requires adding changes in the covariances in dispersions of different goods weighted with cross-

elasticities γkm,i.

This approach applies directly to decomposing welfare gains from switching from policy

A to policy B in infinite horizon economies. A typical application in quantitative macro is

to find an invariant distribution under some policy τA, use that as an initial condition for

an economy in which a different policy τB is introduced. One then compares welfare in the

invariant distribution under policy τA to the transition path to the invariant distribution under

policy τB (see, Guerrieri and Lorenzoni (2017) or Rohrs and Winter (2017) for examples of

such applications). The utility function is typically assumed to be of the form

EiUi
(
{ck,i}k

)
= Ei

∞∑
k=1

βk−1u (ck,i) ,

where β is the discount factor, u is the within period utility function, k is time and Ei is the

period 0 conditional expectation.
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These applications map directly into the framework developed in this section. Each good k

in our multi-good set up corresponds to consumption in period k, tuple
(
Cjk, w

j
k,i, ε

j
k,i

)
consists

of aggregate consumption, consumption shares of agent i, and consumption risk for agent i in

period k under policies j ∈ {A,B} . If the initial condition is the invariant distribution under

policy A, then sequence
{
CAk
}
k

takes the same values for all k, but sequences
{
wAk,i, ε

A
k,i

}
k

change over time due, for example, to idiosyncratic shocks experiences by agents.

3.3 Comparison of invariant distributions

In some applications, it can be difficult to compute a full transition path from changing gov-

ernment policies, so researchers often rely on comparing welfare across steady states. That

is, they compare welfare in the invariant distribution under policy B to welfare under invari-

ant distribution under policy A. We provide a natural way to extend our framework to such

settings.

Suppose that an invariant distribution under policy j is characterized by the probability

density f j on a space of household characteristics S ⊂ Rn. In common applications (e.g.,

Aiyagari (1995), Floden (2001), Conesa, Kitao, and Krueger (2009)) welfare is defined as an

integral over agents’ expected utilities,

Wj=

∫
S
EsU

({
cjk,s

}
k

)
f j (s) ds,

where Es is the expected utility of agent s ∈ S.
It is easiest to consider first a case in which the space of characteristics is unidimensional,

so that n = 1. Let F j be the cdf of f j . For any cjs that is function of s ∈ S, define c̄i by

c̄jF (s) = cjs. By construction, c̄ji is defined for i ∈ [0, 1]. Standard ”integration by substitution”

arguments (see, e.g. Corollary 3.7.2 in Bogachev (2007)) imply that

Wj=

∫
S
EsU

({
cjk,s

}
k

)
f j (s) ds =

∫
[0,1]

EiU
({
c̄jk,i

}
k

)
di.

The last term is a special case of our definition of welfare (1), so all the steps from section 3.2

apply directly.

This approach generalizes to any n via induction. We verify this for n = 2. Suppose the

S = A × Θ ⊂ R2 probability density f j (a, θ) under policy j. Let f j (θ) ≡
∫
A f

j (a, θ) da. We

can write welfare as

Wj=

∫
Θ

[∫
A
E(a,θ)U

({
cjk,(a,θ)

}
k

) f j (a, θ)

f j (θ)
da

]
f j (θ) dθ.
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Applying the same procedure that we described in the n = 1 case twice, first to the inner

integral, and then to the outer one, we can represent welfare

Wj=

∫
[0,1]2

E(i,ι)U
({
c̄jk,(i,ι)

}
k

)
didι.

The application of the decomposition in section 3.2 is now straightforward, except that now

households are distributed over [0, 1]2 rather than [0, 1] .

4 Applications

In this section we consider examples of application of our decomposition

4.1 Benabou (2002) economy

Benabou (2002) used a tractable framework analytically to study a heterogeneous agents econ-

omy with taxes. Agents are infinitely lived, have preferences over consumption good ct,i and

labor lt,i ordered by
∞∑
t=0

βt
[
ln ct,i −

1

1 + η
l1+η
t,i

]
.

Pre-tax earnings of household i in period t are yt,i = θt,ilt,i, where θt,i is labor productivity that

satisfies θt,i = exp
(
ei + ξt,i

)
. The first component of productivity ei ∼ N

(
−υ2

e
2 , υ

2
e

)
, captures

heterogeneity in initial skill endowments across households. The second component ξt,i ∼

N
(
−υ2

ξ,t

2 , υ2
ξ,t

)
, is driven by idiosyncratic productivity shocks experienced by households.3

Households hold no assets and consume their after-tax labor incomes each period. After-tax

labor income is τ̄ ty
1−τ
t,i , where τ is the degree of tax progressivity and τ̄ t is chosen so that the

net tax revenues are zero in each period t.

It is easy to solve for an equilibrium as a function of the progressivity parameter τ . Log-

arithmic utility in consumption and absence of non-labor income imply that all households

choose the same labor supply in all periods, lt,i (τ) = (1− τ)
1

1+η . This implies that both the

aggregate labor L (τ) and the aggregate consumption C (τ) are

C (τ) = L (τ) = (1− τ)
1

1+η .

Heterogeneity in productivity translates one for one into heterogeneity in household consump-

tion

ct,i (τ) = C (τ)× exp

(
(1− τ) ei + τ (1− τ)

υ2
e

2

)
× exp

(
(1− τ) ξt,i + τ (1− τ)

υ2
ξ,t

2

)
. (10)

3Benabou (2002) represents idiosyncratic shocks slightly differently. He assumes that each period households
are subject to multiplicative random walk shocks drawn from a fixed log-normal distribution. It can be shown
that this is equivalent to our specification of shocks ξt,i, where υ2

ξ,t grows linearly with t.
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Utilitarian welfare is W (τ) =
∑∞

t=0 β
tWt (τ), where

Wt (τ) = lnC (τ)− 1

1 + η
L (τ)1+η − (1− τ)2 υ

2
e

2
− (1− τ)2

υ2
ξ,t

2
. (11)

We now apply our section 3.2 decomposition. Explicitly computing each component in that

decomposition for two different tax progressivity parameters τA and τB, we have

WB
t −WA

t '

[
ln
C
(
τB
)

C (τA)
−
√

(1− τA) (1− τB) ln
L
(
τB
)

L (τA)

]
︸ ︷︷ ︸

agg. efficiency

(12)

+
υ2
e

2

[(
1− τA

)2 − (1− τB)2]︸ ︷︷ ︸
redistribution

+
υ2
ξ,t

2

[(
1− τA

)2 − (1− τB)2]︸ ︷︷ ︸
insurance

.

Changes in tax progressivity affect all components of the decomposition. Higher taxes re-

duce total output, aggregate consumption and labor. That changes aggregate efficiency. Higher

taxes also reduce dispersion in outputs {yt,i}i . That dispersion is driven in part by permanent

initial heterogeneity, captured by parameter υ2
e, and in part by ex-post risk, captured by υ2

ξ,t.

Thus, higher taxes provoke both redistribution and insurance. Equation (12) shows that our

decomposition imputes all changes in aggregate resources to aggregate efficiency, all changes

proportional to ex-ante heterogeneity υ2
e to redistribution, and all changes proportional to

ex-post risk υ2
ξ,t to insurance.

By comparing equations (11) and (12), we can also evaluate the size of the omitted residual

in our decomposition and study how it depends on τA and τB. Denoting this residual by R,

we have

R =
√

(1− τA) (1− τB)
ln
(
1− τB

)
− ln

(
1− τA

)
1 + η

−
(
1− τB

)
−
(
1− τA

)
1 + η

(13)

= O

(∣∣∣∣ln 1− τB

1− τA

∣∣∣∣3
)
.

The residual emerges because we approximate non-linear function 1
1+η

[
L
(
τB
)1+η − L

(
τA
)1+η

]
with a linear term

[
lnL

(
τB
)
− lnL

(
τA
)]
. This residual goes to zero with the rateO

(∣∣∣ln 1−τB
1−τA

∣∣∣3)
as τB → τA. To put this into perspective, Feenberg, Ferriere, and Navarro (2017) estimate pa-

rameter τ for the U.S. for various years and find that between 1980 and 2010 it varied between

0.07 and 0.1. For tax policies in this range, we have
∣∣∣ln 1−τB

1−τA

∣∣∣3 ≤ (ln 0.93
0.9

)3 ≈ 0.000035.

5 Comparison to decompositions by Benabou and Floden
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Motivated by the same questions as we are, Benabou (2002) and Floden (2001) developed

alternative decompositions of a policy-induced welfare change into analogues of our efficiency,

insurance, and redistribution components. A substantial literature uses their decomposition

to study consequences of alternative public policies. In this section, we compare our approach

to theirs. We focus in this section on a single good economy since it allows us to make our

points transparently.

5.1 Description of decompositions

The decompositions developed by Benabou (2002) and by Floden (2001) share several common

features. They require that all households have identical preferences U and start by computing

a certainty equivalent cce,ji level of consumption for each household i under any policy j as

follows

U
(
cce,ji

)
= EiU

(
cji

)
. (14)

Then they define an aggregate certainty equivalent Cce,j as Cce,j ≡ Ecce,ji .

Benabou’s decomposition of welfare change between policies A and B is based on the

identity

1 =
U
(
CB
)
− U

(
CA
)

WB−WA
+

{
WB−WA

}
−
{
U
(
Cce,B

)
− U

(
Cce,A

)}
WB−WA

+

{
U
(
Cce,B

)
− U

(
Cce,A

)}
−
{
U
(
CB
)
− U

(
CA
)}

WB−WA
.

The three fractions on the right side correspond to our notions of aggregate efficiency, redis-

tribution, and insurance.4

Benabou created his decomposition to study implications of changes in tax progressivity

in the economy that we described in section 4.1. Since preferences over consumption are

logarithmic in that model, changes in utils corresponds to changes in log points of consumption,

so that all terms on in the decomposition have natural economically interpretable units. This

is no longer the case when preferences are not logarithmic.

Floden (2001) extended Benabou’s approach to more general settings by converting each

component of the decomposition into consumption units. As a first step, he computes numbers

pjinsur and pjredis using

U
((

1− pjinsur
)
Cj
)

= U
(
Cce,j

)
, U

((
1− pjredis

)
Cce,j

)
= EαiU

(
cce,ji

)
. (15)

4Benabou and Floden use slightly different terminology when they refer to their decomposition terms, both
from each other and from our paper. To avoid confusion, we use our terminology throughout.
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Then he constructs contributions of aggregate efficiency, redistribution and insurance as

1 + ωeff ≡
CB

CA
, 1 + ωredis ≡

1− pBredis
1− pAredis

, 1 + ωinsur ≡
1− pBinsur
1− pAinsur

.

Similarly, the total welfare change from policy B is also computed in consumption units as

EαiU
(
cBi
)

= EαiU
(
(1 + ω) cAi

)
. (16)

Floden shows that if U has the CRRA form U (c) = c1−γ

1−γ if γ > 0, γ 6= 1 and U (c) = ln c

for γ = 1, then the following relationship holds

1 =
ln (1 + ωeff )

ln (1 + ω)
+

ln (1 + ωredis)

ln (1 + ω)
+

ln (1 + ωinsur)

ln (1 + ω)
, (17)

with the three terms on the right hand side corresponding to our notions of aggregate efficiency,

redistribution, and insurance.

5.2 An example

In this section, we start with a simple example that illustrates limitations of the Benabou-

Floden approach. We assume that U is logarithmic, so that the decompositions by Benabou

and Floden coincide, and that the planner is utilitarian. We assume that consumptions of

households under policies A and B are

cAi = ai + li (1 + ε̃i) ,

cBi = ai + li,

where {ai, li}i are some non-stochastic variables and ε̃i is a non-trivial stochastic process. We

assume that Eiε̃i = 0 and that vari (ε̃i) = var (ε̃) is the same for all i.

This highly stylized example captures some key features of richer heterogeneous agents

models like Aiyagari (1995). In such models, household consumption comes from asset income

(captured here by ai) and labor income (li) , which is also subject to idiosyncratic shocks

(ε̃i here). Policy B is a simple example of a social insurance program that removes all the

uncertainty that households face about their earnings without reallocating resources across

households or changing the aggregate amount of resources. Since agents are risk-averse, policy

B improves welfare. All improvement comes from better insurance.

We apply first our decomposition (6) to this economy. Let ā ≡ Eai, l̄ ≡ Eli, and write cAi

and cBi as

cAi =
(
ā+ l̄

)
× ai + li

ā+ l̄
×
(

1 +
li

ai + li
ε̃i

)
,

cBi =
(
ā+ l̄

)
× ai + li

ā+ l̄
× 1.

12



It is evident from these expression that Γ = ∆i = 0 for all i, and therefore our decomposition

attributes 100% of welfare gains to the insurance component.

We now apply the Benabou-Floden decomposition. Since it is not available in closed form in

this example, we consider approximations of their expressions for small values of idiosyncratic

shocks, ||ε||. It is easy to show (see the appendix) that a certainty equivalent of consumption

for household i satisfies

cce,Ai = cZi −
1

2
c̄Zi

(
li

ai + li

)2

var (ε) + o
(
||ε||2

)
, (18)

cce,Bi = cZi ,

where cZi = ai + li. Naturally, the certainty equivalent of consumption under policy B coin-

cides with expected consumption cZi , since households face no uncertainty. Under policy A,

the certainty equivalent is equal to the expected consumptions adjusted by the coefficient of

risk aversion (which is equal to one with logarithmic preferences) and the variance of consump-

tion
(

li
ai+li

)2
var (ε̃) . Note that even though all households face the same uncertainty about

labor earnings ln [li (1 + ε̃i)], their consumption risk varies due to heterogeneity in their asset

holdings.

Using expressions (18), it is easy to show that

ln (1 + ωinsur) = lnEcce,Bi − lnEcce,Ai =
1

2
var (ε̃)

EcZi
(

li
ai+li

)2

EcZi
+ o

(
||ε||2

)
,

ln (1 + ω) = E ln cce,Bi − E ln cce,Ai =
1

2
var (ε̃)E

(
li

ai + li

)2

+ o
(
||ε||2

)
.

Combining these two expressions, we get

ln (1 + ωinsur)

ln (1 + ω)
=

EcZi
(

li
ai+li

)2

EcZi × E
(

li
ai+li

)2 + o (1) , (19)

where o (1)→ 0 as ||ε|| → 0.

Equation (19) shows that the Benabou-Floden decomposition would assign 100% of welfare

gains to insurance only if cZi = ai + li is uncorrelated with
(

li
ai+li

)2
across households. This

condition will not be generally satisfied unless ai = 0 for all i, so that agents have no asset

income.

It is easy to see why the Benabou-Floden decomposition generally fails to assign all welfare

gains to the insurance component. Welfare is equal to E ln ccei , while they measure the insurance

component as lnEccei . There is no reason to expect that alternative insurance policies will affect

13



E ln ccei and lnEccei identically. The general problem is that while U (ccei ) is a good measure of

how risk affects the utility of individual household, there is no reason to think that U (Eccei ) is

a good measure of how risk affects social welfare.

The insurance component in equation (19) is always positive, but it is easy to see that it

can be arbitrarily large or small. Suppose that the relationship between ai and li is

ai + li = lκi for all i,

where κ reflects covariance between assets and labor income. Furthermore, assume that li is

distributed according to a Pareto distribution with shape parameter ρ. It is easy to calculate

explicitly the expressions in (19) to show that

ln (1 + ωinsur)

ln (1 + ω)
=

(ρ− κ) (ρ− (2− 2κ))

ρ (ρ− (2− κ))
+ o (1) .

The first term on the right hand side is well defined as long as ρ > max {2− κ, κ, 2− 2κ} .
By varying ρ and κ, the left side of the above equation can take any value in the (0,∞)

interval. The residual term o (1) can be made arbitrarily small by choosing small enough

idiosyncratic shocks. This implies that the Benabou-Floden decomposition might assign any

value in (0,∞) to the insurance component in our simple social insurance example. Since the

aggregate consumption C is unchanged, and the three components always sum to one, this

also implies that the Benabou-Floden decomposition might assign any value in (−∞, 1) to the

redistribution component. We summarize this discussion in

Lemma 1 In the constructed example, ln(1+ωinsur)
ln(1+ω) can take any value in (0,∞), and ln(1+ωredis)

ln(1+ω)

can take any value in (−∞, 1), depending on κ, ρ, and the shock process ε.

5.3 Sufficient conditions

Previous section shows that Benabou’s and Floden’s decompositions will typically violate Prop-

erty c, i.e. it will attribute mean-preserving changes in the stochastic process in consumption

to components other than insurance. Yet it is easy to construct examples where their decom-

positions do satisfy desirable Properties a, b, and c. In particular, Benabou developed his

decomposition to study welfare effect of changes in the progressivity of tax system in an econ-

omy that we described in section 4.1. We show in the appendix that Benabou’s decomposition

satisfies Properties a, b, and c in his economy, and coincides with our decomposition to the

order of approximation we consider. The following lemma provides a more systematic analysis

of conditions under which Benabou’s and Floden’s decompositions satisfy Properties a, b, and

c, and their relationship to our decomposition.
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Lemma 2 In the single good economy, the decompositions of Benabou and Floden generically

fail Properties a, b, and c. If U is CRRA (logarithmic) and there exists some Λ such that

vari
(
ln cAi

)
− vari

(
ln cBi

)
= 2Λ for all i, (20)

then Floden’s (Benabou’s) decomposition satisfies Properties a, b, and c and coincides with our

decomposition, up to a residual term that goes to zero as
∥∥Γj ,∆j , εj

∥∥→ 0 for j ∈ {A,B} .

A key conclusion from this lemma is that in addition to restricting attention to CRRA

preferences, Benabou’s and Floden’s decompositions require that policy B changes the variance

of log consumption of all agents by the same amount. To see why, observe that with CRRA

preferences welfare is given by 1
1−γE (ccei )1−γ , while their decompositions identify the insurance

component with 1
1−γ (Eccei )1−γ . Changes in risk affect 1

1−γE (ccei )1−γ and 1
1−γ (Eccei )1−γ in the

same way only if risk for each household i changes proportionally to ccei . This happens if

condition (20) is satisfied.

It is easy to verify that condition (20) indeed holds in Benabou’s economy for consumption

good. Using equation (10) we have

vari
(
ln cAi

)
− vari

(
ln cBi

)
=
υ2
ξ,t

2

[(
1− τA

)2 − (1− τB)2] for all i.

This condition relies critically on the assumption that agents hold no assets. As we illustrated

in the previous section, relaxing the no-asset assumption can have important consequences for

inferences from this decomposition in heterogeneous agents economies. Since asset dispersion

plays an important role in many heterogenous agents economies (including the one considered

by Floden (2001)), condition (20) is unlikely to hold in those models.

In calibrated economies, violation of condition (20) and its multi-good generalizations can

have substantial impacts on decompositions. For example, in Bhandari, Evans, Golosov, and

Sargent (2021) we considered a standard incomplete market heterogeneous agent (HA) New

Keynesian economy. Labor productivity shocks in our calibration were similar to those used

by Benabou (2002), but our agents also hold financial assets calibrated to U.S. data. In our

baseline setting, we showed that switching from an optimal policy prescribed by a textbook

representative agent economy to an optimal policy in the HA economy increased welfare, and

that 158% of that welfare gain could be attributed to insurance, -66% to aggregate efficiency

and 8% to redistribution. Our decomposition was also robust to changes in assumptions about

preferences, redistributive objectives of the government, and other parameters of the model.

That finding was also consistent with the observation that an optimal policy was governed
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by a desire to replicate missing Arrow-Debreu markets, i.e., to provide insurance against het-

erogeneous consequences of aggregate shocks. In contrast, when we applied directly Floden’s

decomposition, it attributed +800% of welfare gains to both the insurance and redistribution

component. Moreover, computed values varied wildly even with modest changes in parame-

ters such as degrees of agents’ risk aversion and the planner’s inequality aversion even though

neither optimal policies nor allocations were very sensitive to them. The sources of these

findings traces back to the one isolated in the example summarized in Lemma 1. Dyrda and

Pedroni (2015) report closely related issues with the sensitivity of Floden’s decomposition in

their application.

6 Conclusion

We developed a decomposition of welfare changes into three components: aggregate efficiency,

which captures effects from changes in the aggregate quantity of resources; redistribution, which

captures effects from changes in shares of resources that ex-ante heterogeneous agents expect

to receive; and insurance, which captures effects of changes in the uncertainties that agents

face. Our decomposition applies to a large class of multi-person, multi-good, multi-period

economies with general specifications of preferences and shocks and sources of heterogeneity.
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A Appendix

A.1 Taylor series in abstract spaces

Recall some properties of Taylor series in general spaces. Let f : X → R be a mapping

from a normed space X (with some norm || · ||) into R. The first-order Frechet derivative

at a point x ∈ X is a linear mapping f ′ (x) : X → R such that for each h ∈ X, we have

lim||h||→0
|f(x+h)−f(x)−f ′(x)·h|

||h|| = 0. The second-order Frechet derivative is the Frechet derivative

of f ′ (x) . It is a bilinear map. Any function f that is twice Frechet differentiable satisfies

f (x+ h) = f (x) + f ′ (x) · h+
1

2
f ′′ (x) · (h)2 +Rf (x, h) , (21)

where Rf (x, h) is a residual that is of the order o
(
||h||2

)
(see Cartan (1971), Theorem 5.6.3).

When X ⊂ Rn, functionals f ′ (x) and f ′′ (x) are simply the Jacobian and Hessian of f, respec-

tively.

For any given (x, h) ∈ X × X, define function g : R → R by g (σ) ≡ f (x+ σh). Take

Taylor expansion of g around σ = 0 to get

g (1) = g (0) + g′ (0) +
1

2
g′′ (0) +Rg (1) . (22)

Since we have g′ (0) = f ′ (x) · h and g′′ (0) = f ′′ (x) · (h)2 , we have

Rg (1) = Rf (x, h) = o
(
||h||2

)
. (23)

Finally, we use ”'” to denote that two relationships are equal up to any term of order

o
(
||h||2

)
. In this notation, relationship (21) and (22) can be rewritten as

f (x+ h) ' f (x) + f ′ (x) · h+
1

2
f ′′ (x) · (h)2 ,

g (1) ' g (0) + g′ (0) +
1

2
g′′ (0) .

A.2 Conventions and terminology

We define some conventions to be used throughout our proofs. For expressions that take the

same value for policies j = A and j = B we occasionally use a shorthand “t.i.p.”, meaning

”terms independent of policy”. By the Law of Iterated Expectations (LIE), we mean the

property that for any deterministic function xi of i and random variable εi with Eiεi = 0,

we have Exiεi = EEixiεi = ExiEiεi = 0, and that, by analogous arguments, Exi (εi)
2 =

Exivari (εi) . We use shorthands Ui, Uc,i, Ucc,i for Ui
(
cZi
)
, Uc,i

(
cZi
)
, Ucc,i

(
cZi
)

in a one-good

economy, and Ui, Uk,i, Ukm,i for Ui

({
cZk,i

}
k

)
, Uk,i

({
cZk,i

}
k

)
, Ukm,i

({
cZk,i

}
k

)
in multi-good

economies.
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A.3 Derivations of equations (4) and (7)

Let Γj ≡ lnCj − lnCZ and ∆j
i ≡ lnwji − lnwZi . Observe that by construction we have

ΓB = −ΓA =
1

2
Γ, ∆B

i = −∆A
i =

1

2
∆i, (24)

and therefore (
Γj
)2
,
(

∆j
i

)2
,Γj∆j

i are t.i.p. for all i.

Let WZ ≡ EαiUi
(
cZi
)

and write

WB −WA =
(
WB −WZ

)
−
(
WA −WZ

)
. (25)

We now apply Taylor series from section A.1 to
(
WB −WZ

)
and

(
WA −WZ

)
. We can

write

Wj −WZ = EαiU
(

exp
(

Γj + ∆j
i

)(
1 + εji

)
cZi

)
− EαiU

(
cZi
)
.

In the language of section A.1, the space X consists of sequences and stochastic processes{
Γ̃, ∆̃i, ε̃i

}
i
. We have that Γ̃ ∈ R and

{
∆̃i

}
i

is a mapping from [0, 1] to R. We can represent

stochastic processes ε̃i as mappings ε̃i (ξ) with distribution Pri (dξ) where without loss of

generality ξ ∈ [0, 1]. Thus, {ε̃i}i maps from [0, 1]2 to R. Any x ∈ X can be represented as

x =
(

Γ̃, ∆̃, ε̃
)
∈ R × L2 ([0, 1]) × L2

(
[0, 1]2

)
. We endow X with a corresponding norm. We

define function f : X → R by EαiU
(

exp
(

Γ̃j + ∆̃j
i

)(
1 + ε̃ji

)
cZi

)
− EαiU

(
cZi
)
. The analogue

to g (σ) is

Wj (σ) = EαiU
(

exp
(
σ
(

Γj + ∆j
i

))(
1 + σεji

)
cZi

)
.

To apply (21) and (22), we set x = (0, 0,0) and h =
(
Γj ,∆j , εj

)
. Applying (22) and (23)

we get

Wj −WZ = EαiUc,icZi
(

Γj + ∆j
i

)
+

1

2
EαiUc,icZi

(
Γj + ∆j

i

)2

+
1

2
EαiUcc,i ×

(
cZi
)2 [(

Γj + ∆j
i

)2
+
(
εji

)2
]

+ o
(∥∥Γj ,∆j , εj

∥∥2
)

' EαiUc,icZi
(

Γj + ∆j
i

)
+

1

2
EαiUcc,i ×

(
cZi
)2
vari

(
εji

)2
+ t.i.p. (26)

Here the expression in the last line is obtained by applying the LIE and dropping o
(∥∥Γj ,∆j , εj

∥∥2
)

terms from the first expression on the right side of (26).

Substitute (26) into (25) to get

WB −WA ' EαiUc,icZi︸ ︷︷ ︸
≡φi

Γ + EαiUc,icZi︸ ︷︷ ︸
≡φi

∆i +
1

2
EαiUc,icZi︸ ︷︷ ︸

≡φi

Ucc,ic
Z
i

Uc,i︸ ︷︷ ︸
≡−γi

[
Ei
(
εBi
)2 − Ei

(
εAi
)2]

. (27)
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Finally, observe that

vari

(
ln cji

)
= Ei

(
ln
(

1 + εji

)
− Ei ln

(
1 + εji

))2
' Ei

(
εji

)2
. (28)

Substitute this relationship and the definitions of γi, φi into (27) to obtain (4).

We now verify equation (7). As a preliminary step, observe that

wji
wZi

= exp
(

∆j
i

)
' ∆j

i + t.i.p. = ln
wji
wZi

+ t.i.p. (29)

Therefore,

redistribution =
√
CACBEαiUc,i ln

wBi
wAi

√
wAi w

B
i =

√
CACBEαiUc,i

(
ln
wBi
wZi
− ln

wAi
wZi

)
wZi

'
√
CACBEαiUc,i

(
wBi
wZi
− wAi
wZi

)
wZi =

√
CACBEαiUc,i

(
wBi − wAi

)
,

which verifies equation (7).

A.4 Details for section 3.1.1

We can write the welfare difference as

WB −WA = Eφi [Γ + ∆i + γiΛi] +R,

where R is a residual in decomposition (4). Let RΓ, R∆, RΛ with RΓ +R∆ +RΛ = R be parts

of R attributed to the aggregate efficiency, redistribution, and insurance components so that

the ”true” contribution, for example, of aggregate efficiency component is EφiΓ+RΓ

WB−WA . We have

EφiΓ +RΓ

WB −WA
=

EφiΓ +RΓ

Eφi [Γ + ∆i + γiΛi] +R
=

EφiΓ
Eφi [Γ + ∆i + γiΛi]

×
1 + RΓ

EφiΓ

1 + R
Eφi[Γ+∆i+γiΛi]

.

Therefore, the aggregate efficiency under the true decomposition and the one given in equation

(4) coincide if the second term in the second equality is equal to 1 or, equivalently,

RΓ

R
=

EφiΓ
Eφi [Γ + ∆i + γiΛi]

.

Analogous arguments apply to the redistribution and insurance components.

The third-order residual in decomposition (4) can be written as

R
((

lnCZ , lnwZ ,0
)
,
(
lnCB, lnwB, εB

))
−R

((
lnCZ , lnwZ ,0

)
,
(
CA, wA, εA

))
.

It converges to zero as ||cB − cA|| → 0. The speed of this convergence is

max
{
o
(
||ΓA,∆A, εA||2

)
, o
(
||ΓB,∆B, εB||2

)}
.
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Since ΓB = −ΓA = 1
2Γ and ∆B

i = −∆A
i = 1

2∆i, using the properties of a norm, we have

∥∥ΓA,∆A, εA
∥∥2

=

∥∥∥∥−1

2
Γ,−1

2
∆, εA

∥∥∥∥2

=
1

4

∥∥Γ,∆,−2εA
∥∥2
,

and o
(

1
4 ||Γ,∆,−2εA||2

)
= o

(
||Γ,∆,−2εA||2

)
. This and the analogous argument for ||ΓB,∆B, εB||2

provide the approximation errors in decomposition (4).

The construction of composition (3.1.1) is identical to that of (4), with appropriate modifi-

cation of the space X to consist of sequences
{

Γ̃, ∆̃i, δ̃i

}
i
, but now δBi (ξ) = −δAi (ξ) = 1

2δi (ξ)

and, therefore, ∥∥ΓA,∆A, εA
∥∥2

=
∥∥ΓB,∆B, εB

∥∥2
=

1

4
‖Γ,∆, ε‖2 ,

and max
{
o
(
||ΓA,∆A, δA||2

)
, o
(
||ΓB,∆B, δB||2

)}
= o

(
‖Γ,∆, δ‖2

)
.

A.5 Derivations of equation (9)

As in section A.3, we define Γjk ≡ lnCjk − lnCZk and ∆j
k,i ≡ lnwjk,i − lnwZk,i, and observe that

they satisfy ΓAk = −ΓBk , ∆A
k,i = −∆B

k,i and, therefore,

ΓjkΓ
j
m,Γ

j
k∆

j
m,i,∆

j
k,i∆

j
m,i are t.i.p. for all k,m, i.

We have

Wj (σ) = EαiU
({

exp
(
σ
(

Γjk + ∆j
k.i

))(
1 + σεjk,i

)
cZk,i

}
k

)
.

Therefore, its second-order expansion can be written, using the LIE, as

Wj (1)−Wj (0) ' E
∑
k

αiUk,ic
Z
k,i

(
Γj + ∆j

k,i

)
+

1

2
E
∑
k

∑
m

αiUkm,ic
Z
k,ic

Z
m,iEi

(
εjk,iε

j
m,i

)
+ t.i.p.

Since Wj =Wj (1) , we have

WB −WA ' E
∑
k

αiUk,ic
Z
k,iΓk + E

∑
k

αiUk,ic
Z
k,i∆k,i

+
1

2
E
∑
k

αiUk,ic
Z
k,i

∑
m

Ukm,ic
Z
m,i

Uk,i

[
Ei
(
εBk,iε

B
m,i

)
− Ei

(
εAk,iε

A
m,i

)]
.

Use the approximation

covi

(
ln cjk,i, ln c

j
m,i

)
' Ei

(
εjk,iε

j
m,i

)
,

together with the definitions of φk,i, γkm,i, we obtain (9).
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A.6 Proofs for section 4.1

Properties of normal distributions imply that

Ei exp

(
(1− τ) ξt,i + τ (1− τ)

υ2
ξ,t

2

)
= E exp

(
(1− τ) ei + τ (1− τ)

υ2
e

2

)
= 1,

E ln

{
exp

(
(1− τ) ei + τ (1− τ)

υ2
e

2

)}
= − (1− τ)2 υ

2
e

2
,

E ln

{
exp

(
(1− τ) ξt,i + τ (1− τ)

υ2
ξ,t

2

)}
= − (1− τ)2

υ2
ξ,t

2
.

Welfare in period t is Wt (τ) = E ln ct,i (τ)− 1
1−ηL (τ)1−η . Substitute (10) and the expressions

above into it to obtain (11). Since utility is separable, we can apply our decomposition sepa-

rately for each good. Consider good c first. From (10) and properties of normal distributions,

we have

wc,i = exp

(
(1− τ) ei + τ (1− τ)

υ2
e

2

)
, 1 + εc,i = exp

(
(1− τ) ξt,i + τ (1− τ)

υ2
ξ,t

2

)
.

Therefore,

Γc = lnC
(
τB
)
− lnC

(
τA
)
,

∆c,i =
[(

1− τB
)
−
(
1− τA

)]
ei +

[
τB
(
1− τB

)
− τA

(
1− τA

)] υ2
e

2
,

Λc,i = −
[(

1− τB
)2 − (1− τA)2] υ2

ξ,t

2
.

Given logarithmic preferences and utilitarian weights, we have φc,i = γc,i = 1 and therefore

agg. efficiencyc = lnC
(
τB
)
− lnC

(
τA
)
,

redistributionc = E∆c,i = −
[(

1− τB
)2 − (1− τA)2] υ2

e,t

2
,

insurancec = EΛc,i = −
[(

1− τB
)2 − (1− τA)2] υ2

ξ,t

2
.

We now apply this decomposition to labor. Since there is no heterogeneity in hours, we

immediately have ∆l,i = Λl,i = 0, lZi =
√
L (τA)L (τB) =

[(
1− τA

) (
1− τB

)]1/2(1+η)
, and

φl,i =
[(

1− τA
) (

1− τB
)]1/2

. This gives

agg. efficiencyl = −
√

(1− τA) (1− τB)
(
lnL

(
τB
)
− lnL

(
τA
))
,

redistributionl = insurancel = 0.

Combine the decompositions for consumption and labor to get (12).
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Finally, consider the residual term in equation (13). Let 1 + e ≡ ln 1−τB
1−τA . We have(

1− τB
)
−
(
1− τA

)
1 + η

=
1− τA

1 + η
[exp e− 1] =

1− τA

1 + η

[
e+

1

2
e2 +O

(
e3
)]

and√
(1− τA) (1− τB)

ln
(
1− τB

)
− ln

(
1− τA

)
1 + η

=
1− τA

1 + η
exp

(
1

2
e

)
e =

1− τA

1 + η

[
e+

1

2
e2 +O

(
e3
)]
.

This implies that R = O
(
e3
)
.

A.7 Proofs for section 5

A.7.1 Derivations of equation (17)

Floden derives (17) for the case of utilitarian planner. We show here that it holds more

generally. We have

EαiU
(
cBi
)

= EαiU
(
cce,Bi

)
=
(
1− pBredis

)1−γ
U
(
Cce,B

)
=
(
1− pBredis

)1−γ (
1− pBinsur

)1−γ
U
(
CB
)

=
(
1− pBredis

)1−γ (
1− pBinsur

)1−γ
(1 + ωeff )1−γ U

(
CA
)

and

EαiU
(
(1 + ω) cAi

)
= (1 + ω)1−γ (1− pAredis)1−γ (1− pAinsur)1−γ U (CA) .

Therefore

(1 + ω)1−γ = (1 + ωeff )1−γ
(

1− pBredis
1− pAredis

)1−γ (
1− pBinsur
1− pAinsur

)1−γ

,

or

(1 + ω) = (1 + ωeff ) (1 + ωredis) (1 + ωinsur) .

Take logs to get (17).

A.7.2 Derivations of equations in section 5.2

Most of the expressions used in this section are special cases of the more general formulas that

we derived to prove lemma 2. In particular, the approximation for cce,ji used in equation (18)

is a special case of the expression provided in claim 1 shown below, adapted to policies cji in

the example constructed in section 5.2. Similarly, the approximations for ln (1 + ωinsur) and

ln (1 + ω) follow from claims 5 and 6.
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A.7.3 Proof of Lemma 2

We focus in the proof only on Floden decomposition, since the proof for Benabou decomposition

follows the same steps but is simpler.

It is easy to see that generically Properties a, b, and c will be violated in the Floden decom-

position. Consider, for example, Property a. Take any allocation
{
cAi
}
i
, where consumptions

of households are non-trivial stochastic process, and construct
{
cBi
}
i

by cBi = DcAi for all i

for some D > 0. Property a is satisfied if all welfare changes from this policy are attributed

to the aggregate efficiency component. This would require that 1 − pBinsur = 1 − pAinsur. Since

CB = DCA, this would be the case only if Cce,B = DCce,A. But for arbitrary U function,

there is no reason to expect that Eccei scales with D under policy B. On the other hand, if U

is CRRA, using equation (14) it is easy to verify that cce,Bi = Dcce,Ai for all i, and therefore

CB = DCA. Failure of other properties follow from analogous arguments.

We now prove the second part of the lemma. As a first step, we want to characterize

approximations of consumption certainty equivalent cce,ji . Define a function cce,ji (σ) by

U
(
cce,ji (σ)

)
= EiU

(
exp

(
σ
(

Γj + ∆j
i

))(
1 + σεji

)
cZi

)
. (30)

While cce,ji (1) = cce,ji , it is more convenient to work with an arbitrary σ first. We will prove

several intermediate claims first about cce,ji (σ) and Cce,ji (σ) = Ecce,ji (σ). Throughout these

proofs, unless noted otherwise, U,Uc have arguments EcZi , while Uc,i, Ucc,i have arguments cZi .

Claim 1 cce,ji (σ) = cZi + σcZi

(
Γj + ∆j

i

)
+ σ2

2 c
Z
i

[(
Γj + ∆j

i

)2
− vari

(
εji

)]
+ o

(
σ2
)
.

Proof. The right and left sides of (30), respectively, are

RHS (σ) = Ui + σUc,ic
Z
i

(
Γj + ∆j

i

)
+
σ2

2
Ucc,i ×

(
cZi
)2 [(

Γj + ∆j
i

)2
+ vari

(
εji

)]
+
σ2

2
Uc,ic

Z
i

(
Γj + ∆j

i

)2
+ o

(
σ2
)
,

and

LHS (σ) = U
(
c̄ce,ji

)
+σUc

(
c̄ce,ji

)
cce,ji,σ +

σ2

2

[
Ucc

(
c̄ce,ji

)(
cce,ji,σ

)2
+ Uc

(
c̄ce,ji

)
× cce,ji,σσ

]
+o
(
σ2
)
,

where c̄ce,ji ≡ cce,ji (0) , cce,ji,σ ≡
∂cce,ji (σ)

∂σ

∣∣∣∣
σ=0

, cce,ji,σσ ≡
∂2cce,ji (σ)

∂σ2

∣∣∣∣
σ=0

. Since RHS (σ) = LHS (σ)

for all σ, it follows that

cce,ji,0 = cZi , c
ce,j
i,σ = cZi

(
Γj + ∆j

i

)
, cce,ji,σσ =

Ucc,i
Uc,i

(
cZi
)2
vari

(
εji

)
+ cZi

(
Γj + ∆j

i

)2
.
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We have

cce,ji (σ) = cce,ji,0 + σcce,ji,σ +
σ2

2
cce,ji,σσ + o

(
σ2
)
.

Substitute previous expression and use the fact that U is CRRA to prove the claim.

Claim 2 U
(
Cce,j (σ)

)
= σ

EcZi (Γj+∆j
i)

EcZi
− σ2

2 γ
EcZi vari(ε

j
i)

EcZi
+ t.i.p.+ o

(
σ2
)
.

Proof. By claim 1,

U
(
Cce,j (σ)

)
= U + σUc × EcZi

(
Γj + ∆j

i

)
+
σ2

2
Ucc ×

(
EcZi

(
Γj + ∆j

i

))2
(31)

+
σ2

2
Uc ×

[
E
Ucc,i
Uc,i

(
cZi
)2
vari

(
εji

)
+ EcZi

(
Γj + ∆j

i

)2
]

+ o
(
σ2
)

= σUcEcZi
(

Γj + ∆j
i

)
+
σ2

2
UcE

Ucc,i
Uc,i

(
cZi
)2
vari

(
εji

)
+ t.i.p. + o

(
σ2
)
.

Use the fact that U is CRRA and evaluate this expression at σ = 1 to prove the claim.

Claim 3 Let x (σ) be a twice differentiable function, with x̄ = x (0) , xσ = x′ (0) , xσσ = x′′ (0) ,

so that

x (σ) = x̄+ σxσ +
σ2

2
xσσ + o

(
σ2
)
.

Then

lnx (σ) = ln x̄+ σ
xσ
x̄

+
σ2

2

[
xσσ
x̄
−
(xσ
x̄

)2
]

+ o
(
σ2
)
. (32)

Proof. This follows from a routine application of a Taylor expansion of lnx (σ) around

lnx (0) .

Claim 4

lnWj ' (1− γ)
Eαi

(
cZi
)1−γ (

Γj + ∆j
i

)
− γ

2Eαi
(
cZi
)1−γ

vari

(
εji

)
Eαi

(
cZi
)1−γ + t.i.p.,

lnU
(
Cce,j

)
' (1− γ)

EcZi
(

Γj + ∆j
i

)
− γ

2Ec
Z
i vari

(
εji

)
EcZi

+ t.i.p.,

lnU
(
Cj
)
' (1− γ)

EcZi
(

Γj + ∆j
i

)
EcZi

+ t.i.p.

Proof. (first equation). From (26), we can write

Wj (σ) = WZ + σEαiUc,icZi
(

Γj + ∆j
i

)
+
σ2

2

{
EαiUc,icZi

(
Γj + ∆j

i

)2
+ EαiUcc,i ×

(
cZi
)2 [(

Γj + ∆j
i

)2
+
(
εji

)2
]}

+ o
(
σ2
)
.
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Apply claim 3 to get

lnWj (σ) = σ
EαiUc,icZi

(
Γj + ∆j

i

)
WZ

+
σ2

2

EαiUcc,i ×
(
cZi
)2 (

εji

)2

WZ
+ t.i.p.+ o

(
σ2
)
.

Use the fact that U is CRRA, WZ = (1− γ)−1 Eαi
(
cZi
)1−γ

, and that o
(
σ2
)

at σ = 1 is of

order o
(∥∥Γj ,∆j , εj

∥∥2
)

by equation (23) to show the first equation of the claim.

(second equation). Combine claims 2 and 3 to get

lnU
(
Cce,j (σ)

)
= σ

Uc × EcZi
(

Γj + ∆j
i

)
U

+
σ2

2

Uc ×
[
EUcc,i
Uc,i

(
cZi
)2
vari

(
εji

)]
U

+ t.i.p.+ o
(
σ2
)
.

Use the fact that U is CRRA and that o
(
σ2
)

at σ = 1 is of order o
(∥∥Γj ,∆j , εj

∥∥2
)

by equation

(23), to show the second equation of the claim.

(third equation). Let cji (σ) ≡ exp
(
σ
(

Γj + ∆j
i

))(
1 + σεji

)
cZi , Cj (σ) ≡ Ecji (σ) =

E exp
(
σ
(

Γj + ∆j
i

))
cZi , where the last equation follows due to the LIE. Therefore,

U
(
Cj (σ)

)
= U

(
E exp

(
σ
(

Γj + ∆j
i

))
cZi

)
= U + σUcEcZi

(
Γj + ∆j

i

)
+
σ2

2

{
Ucc

[
EcZi

(
Γj + ∆j

i

)]2
+ UcE

[
cZi

(
Γj + ∆j

i

)]2
}

+ o
(
σ2
)
.

Apply claim 3 to get

lnU
(
Cj (σ)

)
= σ

UcEcZi
(

Γj + ∆j
i

)
U

+ t.i.p.+ o
(
σ2
)
.

Use the fact that U is CRRA and that o
(
σ2
)

at σ = 1 is of order o
(∥∥Γj ,∆j , εj

∥∥2
)

by equation

(23), to show the third equation of the claim.

Claim 5 ln (1 + ω) ' Eαi(cZi )
1−γ

(Γ+∆i)+
γ
2
Eαi(cZi )

1−γ
[vari(εAi )−vari(εBi )]

Eαi(cZi )
1−γ .

Proof. From equation (16), the term ln (1 + ω) in Floden decomposition satisfies

(1− γ) ln (1 + ω) = lnWB − lnWA. (33)

Substitute the first equation from claim 4 to prove this claim.

Claim 6 ln (1 + ωinsur) ' γ
2

EcZi [vari(εAi )−vari(εBi )]
EcZi

.

Proof. Using its definition, observe that ln (1 + ωinsur) can written as

(1− γ) ln (1 + ωinsur) =
[
lnU

(
Cce,B

)
− lnU

(
Cce,A

)]
−
[
lnU

(
CB
)
− lnU

(
CA
)]
.

Apply the second and third equations from claim 4 and simplify.
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Claim 7 ln (1 + ωeff ) = Γ.

Proof. This follows from the definitions of 1 + ωeff and Γ.

With these claims we can now prove the second part of the lemma. Suppose that condition

(20) is satisfied. Then 2
[
vari

(
εAi
)
− vari

(
εBi
)]
' Λ for all i and therefore

ln (1 + ωinsur)

ln (1 + ω)
=

γΛEαi
(
cZi
)1−γ

Eαi
(
cZi
)1−γ

(Γ + ∆i + γΛ)
+ o (1) ,

ln (1 + ωeff )

ln (1 + ω)
=

ΓEαi
(
cZi
)1−γ

Eαi
(
cZi
)1−γ

(Γ + ∆i + γΛ)
+ o (1) ,

and, since equation (17) holds,

ln (1 + ωredis)

ln (1 + ω)
=

Eαi
(
cZi
)1−γ

∆i

Eαi
(
cZi
)1−γ

(Γ + ∆i + γΛ)
+ o (1) .

The first terms on the right sides of these equations are the very same terms that we obtained

using our decomposition (6) under the assumptions of the lemma. Thus, the two decomposi-

tions coincide up to o (1) , meaning that o (1)→ 0 as ‖Γ,∆, ε‖ → 0. Since our decomposition

satisfies Properties a, b, and c, so does Floden’s, to the order o (1) .
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