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Abstract. We explore methods for confronting model misspeci�cation in macroe-
conomics. We construct dynamic equilibria in which private agents and policy
makers recognize that models are approximations. We explore two generalizations
of rational expectations equilibria. In one of these equilibria, decision-makers use
dynamic evolution equations that are imperfect statistical approximations, and
in the other misspeci�cation is impossible to detect even from in�nite samples of
time series data. In the �rst of these equilibria, decision rules are tailored to be
robust to the allowable statistical discrepancies. Using frequency domain meth-
ods, we show that robust decision-makers treat model misspeci�cation like time
series econometricians.

1. Rational expectations versus misspecification

Subgame perfect and rational expectations equilibrium models do not permit a
self-contained analysis of model misspeci�cation. But sometimes model builders
suspect misspeci�cation, and so might the agents in their model.1 To study that we
must modify rational expectations. But in doing so, we want to respect and extend
the inspiration underlying rational expectations, which was to deny that a model
builder knows more about the data generating mechanism than do the agents inside
his model.
This paper describes possible reactions of model builders and agents to two dif-

ferent types of model misspeci�cation. The �rst type is diÆcult to detect in time
series samples of the moderate sizes typically at our disposable. A second type of
model misspeci�cation is impossible to detect even in in�nite samples drawn from
an equilibrium.
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1By studying how agents who fear misspeci�cation can promote cautious behavior and boost
market prices of risk, we do not intend to deny that economists have made tremendous progress
by using equilibrium concepts that ignore model misspeci�cation.
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1.1. Rational expectations models. A model is a probability distribution over
a sequence. A rational expectations equilibrium is a �xed point of a mapping from
agents' personal models of an economy to the actual model. Much of the empir-
ical power of rational expectations models comes from identifying agents' models
with the data generating mechanism. Leading examples are the cross-equation re-
strictions coming from agents' using conditional expectations to forecast and the
moment conditions emanating from Euler equations. A persuasive argument for im-
posing rational expectations is that agents have incentives to revise their personal
models to remove readily detectable gaps between them and the empirical distribu-
tions. The rational expectations equilibrium concept is often defended as the limit
point of some more or less explicitly speci�ed learning process in which all personal
probabilities eventually merge with a model's population probability.

1.2. Recognitions of misspeci�cation. A rational expectations equilibrium (in-
dexed by a vector of parameters) is a likelihood function. Many authors of rational
expectations models express or reveal concerns about model misspeci�cation by
declining to use the model (i.e., the likelihood function) for empirical work. One ex-
ample is the widespread practice of using seasonally adjusted and/or low-frequency
adjusted data. Those adjustments have been justi�ed formally by stressing the
model's inadequacy at particular frequencies and by appealing to some frequency
domain version of an approximation criterion like that of Sims (1972), which is min-
imized by least squares estimates of a misspeci�ed model. Sims (1993) and Hansen
and Sargent (1993) describe explicit justi�cations that distinguish the model from
the unknown true data generating process. They posit that the true generating
process has behavior at the seasonal frequencies that cannot be explained by the
model except at parameter values that cause bad �ts at the non-seasonal frequencies.
Maximum likelihood estimates make the model best �t the frequencies contributing
the most variance to the data set. When the model is most poorly speci�ed at the
seasonal frequencies, then using seasonally adjusted data can trick the maximum
likelihood method to emphasize frequencies where the model is better speci�ed.
That can give better estimates of parameters describing tastes and technologies.2

Less formal reasons for divorcing the data analysis from the model also appeal to
model misspeci�cation. For example, calibrators say that their models are approxi-
mations aimed at explaining only \stylized" facts or particular features of the time
series.
Notice that in both the formal defenses of data �ltering and the informal practice

of calibration, the economist's model typically remains a rational expectations model

2The remarkable feature of these results is that better estimates of taste and technology param-
eters are acquired by imposing false cross-equation restrictions and by accepting worse estimates
of the parameters governing information and agents' forecasts. Two sided seasonal adjustment
distorts the temporal and information properties processes that agents are trying to forecast.
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inhabited by agents who do not doubt the model. Thus, such analyses do not let
the agents inside the economist's model share his doubts about model speci�cation.

2. Agents who share economists' doubts

But the intent of rational expectations is to put the economist and the agents in-
side his model on the same footing. Letting the agents contemplate model misspeci-
�cation reopens fundamental issues that divided Knight, Fellner, and Ellsberg from
Savage, and that were set aside when, by adopting rational expectations, macroe-
conomists erased all model ambiguity from their agents' minds.

2.1. Savage versus Knight. Knight (1921) distinguished risky events, which could
be described by a probability distribution, from a worse type of ignorance that he
called uncertainty and that could not be described by a probability distribution. He
thought that pro�ts compensated entrepreneurs for bearing uncertainty. Especially
in some urn examples that pre�gured Ellsberg (1961), we see Knight thinking about
decision making in the face of possible model misspeci�cations.3 Savage contradicted
Knight. Savage (1954) proposed a set of axioms about behavior that undermined
Knight's distinction between risk and uncertainty. A person behaving according to
Savage's axioms has a well-de�ned personal probability distribution that rationalizes
his behavior as an expected utility maximizer. Savage's system undermined Knight
by removing the agent's possible model misspeci�cation as a concern of the model
builder.

2.2. Muth versus Savage. For Savage, it was not an aspect of rationality that
personal probabilities be `correct'. But for followers of Muth (1961), it was. By
equating personal probabilities with objective ones, rational expectations assumes
away possible model misspeci�cations and disposes of diversity of personal probabil-
ities. Rational expectations substantially weakens the appeal of Savage's \solution"
of the model speci�cation problems that concerned Knight because it so severely
restricts personal probabilities.

2.3. Ellsberg versus Savage. On the basis of experimental evidence, Ellsberg
(1961) and Fellner (1961) challenged Savage's theory. Fellner (1965) proposed a
semiprobabilistic framework in which agents used context-speci�c \slanted proba-
bilities" to make decisions in ways that violate the Savage axioms. The Ellsberg
paradox motivated Gilboa and Schmeidler (1989) to formulate a new set of axioms
that accommodate model ambiguity. Gilboa and Schmeidler's axioms give agents
not a unique personal probability distribution but a set of distributions. They posit
that agents make decisions as the max{min outcomes of a two-person game in which
the agent chooses a utility maximizing decision and a malevolent nature chooses a

3As Ellsberg (1961) points out, Knight's introspection about urns did not produce the paradox
that Ellsberg is famous for.
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minimizing probability distribution from within the set chosen by the agents. They
show that such behavior can explain the Ellsberg paradox.
Convinced by the Ellsberg paradox and inspired by Gilboa and Schmeidler's for-

mulation, Epstein and Wang (1994), Epstein and Melino (1995), and Chen and Ep-
stein (1998) have constructed dynamic models in which agents are adverse to model
ambiguity. Some of this work represents model ambiguity by a class of probability
distributions generated by the epsilon-contaminations used in the robust statistics
literature.

2.4. Brunner and Meltzer. Brunner and Meltzer (1967) discussed the role of
model misspeci�cation in the design of monetary policy. They challenged the exis-
tence of a \fully identi�ed, highly con�rmed theory of macroeconomic processes."
They write:

... we acknowledge that many of the questions raised here can be answered
more fully if (and only if) more useful knowledge about the structure of the
economy is assumed or obtained. Put otherwise, the theorist may choose
to ignore this problem by assuming the possession of reliable information
currently outside the scope of quantitative economics. The policy maker
is not as fortunate.4

By way of acknowledging policy makers' model ambiguity, Brunner and Meltzer ad-
vocated a min{max strategy for selecting among endogenous indicators of monetary
policy.
We share the concern of Brunner and Meltzer. Starting from a single dynamic

model, we add perturbations that represent potential model misspeci�cations around
that benchmark model. The perturbations can be viewed as indexing a large family
of dynamic models, as in dynamic extensions of the Gilboa-Schmeidler multiple prior
formulation. We prefer to think about the perturbations as errors in a convenient,
but misspeci�ed, dynamic macroeconomic model. The formal structure of our per-
turbations comes from a source that served macroeconomists well before, especially
at the dawn of rational expectations.

3. Control theory

The mathematical literatures on control and estimation theory were the main
sources of tools for building rational expectations models. That was natural, because
before 1975 or so, control theory was about how to design optimal policies under the
assumption that a decision maker's model, typically a controlled Markov process, is
correctly speci�ed. This is exactly the problem that rational expectations modelers
want the agents inside their models to solve.
But just when macroeconomists were importing the ordinary correct-model ver-

sion of control theory to re�ne rational expectations models, control theorists were

4See Brunner and Meltzer (1967), page 188.
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�nding that policies they had designed under the assumption that a model is correct
sometimes performed much worse than they should. Such practical problems caused
control theorists to soften their assumption about knowing the correct model and
to think about ways to design policies for models that were more or less good ap-
proximations. Starting in the mid{1970's, they created tools for designing policies
which would work well for a set of possible models that were in a sense close to a
basic approximating model. In the process, they devised manageable ways of for-
mulating a set of models surrounding an approximating model. To design policies
in light of that set of models, they used a min{max approach like that of Gilboa
and Schmeidler.

4. Robust control theory

We want to import, adapt, and extend some of the robust control methods to build
models of economic agents who experience model ambiguity. We brie
y sketch major
components of our analysis.

4.1. The approximating model. There is a single approximating model de�ning
transition probabilities. For example, consider the following linear-quadratic state
space system:

xt+1 = Axt +But + Cwt+1(1)

zt = Hxt + Jut(2)

where xt is a state vector, ut is a control vector, and zt is a target vector, all at
date t. In addition, suppose that fwt+1g is a vector of independent and identically
normally distributed shocks with mean zero and covariance matrix given by I. The
target vector is used to de�ne preferences via

�1

2

1X
t=0

�tEjztj2(3)

where 0 < � < 1 is a discount factor andE is the mathematical expectation operator.
The aim of the decision-maker is to maximize this objective function by choice of
control law ut = �Fxt.
4.2. Distortions. A particular way of distorting those probabilities de�nes a set of
models that express an agent's model ambiguity. First, we need a concise way
to describe a class of alternative speci�cations. For a given policy u = �Fx,
the state equation (1) de�nes a Markov transition kernel �(x0jx). For all x, let
v(x0jx) be positive for all x. We can use v(x0jx) to de�ne a distorted model via

�v(x0jx) = v(x0jx)�(x0jx)
Ev(x0jx) , where the division by Ev(x0jx) lets the quotient be a prob-

ability. Keeping v(x0jx) strictly positive means that the two models are mutually
absolutely continuous, which makes the models be diÆcult to distinguish in small
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data sets. Conditional relative entropy is a measure of the discrepancy between the
approximating model and the distorted model. It is de�ned as

ent =

Z
log

�v(x0jx)
�(x0jx) �

v(dx0jx):(4)

Conditional entropy is thus the conditional expectation of the log likelihood ratio
of the distorted with respect to the approximating model, evaluated with respect to
the distorting model.
The distortion just described preserves the �rst-order Markov nature of the model.

This occurs because v(x0jx) because only x shows up in the conditioning. More
general distortions allow lags of x to show up in the conditioning information set.
To take a speci�c example, we represent perturbations to model (1) by distorting
the conditional mean of the shock process away from zero:

xt+1 = Axt +But + C(wt+1 + vt)(5)

vt = ft(xt; : : : ; xt�n)(6)

Here equation (6) is a set of distortions to the conditional means of the innovations
of the state equation. In (6), these are permitted to feed back on lagged values of
the state and thereby represent misspeci�ed dynamics. For the particular model of
the discrepancy (6), it can be established that

ent =
1

2
v0tvt:

This distortion substitutes a higher-order nonlinear Markov model for the �rst-order
linear approximating model. More generally, the �nite-order Markov structure can
be relaxed by supposing that vt depends on the in�nite past of xt. The essential
requirement is the mutual absolute continuity between the approximating model
and its perturbed counterpart.

4.3. Conservative valuation. We use a min-max operation to de�ne a conser-
vative way of evaluating continuation utility. Let V (xt+1) be a continuation value
function. Fix a control law ut = �Fxt so that the transition law under a distorted
model becomes

xt+1 = Aoxt + C(wt+1 + vt);(7)

where Ao = A � BF . We de�ne a distorted expectations operator R�(V (xt+1))
for evaluating continuation values as the indirect utility function for the following
minimization problem:

R�(V (xt+1)) = min
vt
f�v0tvt + E(V (xt+1))g ;(8)

where the minimization is subject to constraint (7). Here � � +1 is a parameter
that penalizes the entropy between the distorted and approximating model and
thereby describes the size of the set of alternative models for which the decision
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maker wants a robust rule. This parameter is context-speci�c and depends on the
con�dence in his model that the historical data used to build it inspire. Below, we
illustrate how detection probabilities for discriminating between models can be used
to discipline the choice of �.
Let v̂t = G�xt attain the minimum on the right side. The following useful robust-

ness bound follows from the minimization on the right side of equation (8):

EV (Ao + C(wt+1 + vt)) � R�(V (xt+1))� �v0tvt:(9)

The left side is the expected continuation value under a distorted model. The right
side is a lower bound on that continuation value. The �rst term is a conservative
value of the continuation value under the approximating (vt = 0) model. The second
term on the right gives a bound on the rate at which performance deteriorates with
the entropy of the misspeci�cation. Decreasing the penalty parameter � lowers the
R�V (xt+1), thereby increasing the conservative nature of R�V (xt+1) as an estimate
under the approximating model and also decreasing the rate at which the bound on
performance deteriorates with entropy. Thus, the indirect utility function induces
a conservative way of evaluating continuation utility that can be regarded as a
context-speci�c distortion of the usual conditional expectation operator. There is a
class of operators indexed by a single parameter that summarizes the size of the set
of alternative models.
It can be shown that the operator R� can be represented as

R�(V (xt+1)) � h�1Et(h(V (xt+1))

� �v̂0tv̂t + Et(V (xt+1))

where h(V ) = � exp(�V
�
) and v̂t is the minimizing choice of vt.

5 Note that h is a
concave function. This is an operator used by Epstein and Zin (1989), Weil (1993)
and others, but with no connection to robustness.
The operator R� can be used to rework the theory of asset pricing or to design

robust decision rules. The operator also has been used by Hansen and Sargent (1995)
to de�ne a discounted version of risk-sensitive preference speci�cation of Jacobson
(1973) and Whittle (1990). They parameterize risk-sensitivity by a parameter � �
���1, where the � < 0 imposes an additional adjustment for risk that acts like a
preference for robustness.

4.4. Robust decision rule. A robust decision rule is produced by the Markov-
perfect equilibrium of a two-person zero-sum game in which maximizing agent
chooses a policy and a minimizing agent chooses a model. To compute a robust

5We use the notation � because there is a di�erence in the constant term that becomes small
when we take a continuous-time di�usion limit.



8 LARS PETER HANSEN AND THOMAS J. SARGENT

control rule we use the Markov-perfect equilibrium of the two-agent zero-sum dy-
namic game:6

V (x) = max
u

min
v

�
�1

2
z0z +

��

2
v0v + �EtV (x

�)
�

(10)

subject to

x� = Ax+Bu+ C(w + v):

Here � > 0 is a penalty parameter that constrains the minimizing agent; � governs
the degree of robustness achieved by the associated decision rule. When the robust-
ness parameter � takes the value +1, we have ordinary control theory because it is
too costly for the minimizing agent to set a nonzero distortion vt. Lower values of
� achieve some robustness (again see the role of � in the robustness bound (9).
To illustrate robustness we present some �gures from Hansen and Sargent (2000c)

based on a monetary policy model of Ball (1999). Ball's model is particularly simple
because the private sector is \backward-looking." This reduces the monetary policy
problem to a simple control problem. While this simpli�es our representation of
robustness, it is of more substantive interest to investigate models in which private
sector decision-makers are \forward-looking". Hansen and Sargent (2000b) study
models in which both the Federal Reserve and private agents are forward-looking
and concerned about model misspeci�cation.
Under various worst-case models indexed by the value of � = ��1 on the horizontal

axis, �gure 1 shows the values of �Ez0tzt for a monetary policy model of Ball (1999)
for three rules that we have labeled with values of � = 0;�:04;�:085. Later we shall
describe how these di�erent settings of � = ���1 correspond to di�erent sizes of the
set of alternative models for which the decision maker seeks robustness. For Ball,
�Ez0tzt is the sum of variances of in
ation and a variable measuring unemployment.
The three �xed rules solve equation (10) for the indicated value of �. The value
of �Ez0tzt is plotted for each of the �xed rules evaluated for the law of motion
xt+1 = (A� BF )xt + C(wt+1 +G(~�)xt) where G(~�)xt denotes the minimizing rule
for vt associated with the value � = ~� on the horizontal axis. The way the curves
cross indicates how the � = �:04 and � = �:085 rules are not optimal if the model
is speci�ed correctly (if � = 0 on the horizontal axis), but do better than the optimal
rule against the model misspeci�cations associated with the distortions associated
with movements along the horizontal axis. Notice how the � used to design the rule
a�ects the slope of the payo� line. We now brie
y turn to describe how � might be
chosen.

4.5. Detection probabilities. The Bellman equation (10) speci�es and penalizes
model distortions in terms of the conditional relative entropy of a distorted model

6There is only one value function because it is a zero-sum game.
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Figure 1. Value of �Ez0tzt for three decision rules when the data are
generated by the worst-case model associated with the value of � on
the horizontal axis: � = 0 rule (solid line), � = �:04 rule (dashed-
dotted line), � = �:085 ( dashed) line. The robustness parameter is
given by � = �1=�.

with respect to an approximating model. Conditional relative entropy is a mea-
sure of the discrepancy between two models that appears in the statistical theory
of discriminating between two models. We can link detection error probabilities
to conditional relative entropy, as in Anderson, Hansen, and Sargent (1999) and
Hansen, Sargent, and Wang (2000). This allows us to discipline our choice of the
single free parameter � that our approach brings relative to rational expectations.
For a sample of 147 observations, Figure 2 displays a set of Bayesian detection

error probabilities for comparing Ball's model with the worst case model from equa-
tion (10) that is associated with the value of � = ���1 on the axis. The detection
error probability is .5 for � = 0 (Ball's model and the � = 0 worst{case model are
identical and therefore detection errors occur half the time). As we lower �, the
worst{case model from (10) diverges more and more from Ball's model (because v0tvt
rises) and the detection error probability falls. For � = �:04, the detection error
probability is still :25: this high fraction of wrong judgments from a model compar-
ison test tells us that it is diÆcult to distinguish Ball's model from the worst{case
� = �:04 model with 147 observations. Therefore, we think it is reasonable for the
monetary authority in Ball's model to want to be robust against misspeci�cations
parameterized by such values of �. In this way, we propose to use a table of de-
tection error probabilities like that encoded in Figure (2) to discipline our selection
of �. See Anderson, Hansen, and Sargent (1999) and Hansen, Sargent, and Wang
(2000) for applications to asset pricing.

4.6. Precaution. A preference for robustness induces context-speci�c precaution.
In asset pricing models, this boosts market prices of risk and pushes a model's
predictions in the direction of the data with respect to the equity premium puzzle.
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Figure 2. Detection error probability (coordinate axis) as a function
of � = �1=� for Ball's model.

See Hansen, Sargent, and Tallarini (1999) and Hansen, Sargent, andWang (2000). In
permanent income models, it induces precautionary savings. In sticky-price models
of monetary policy, it can induce a policy authority to be more aggressive in response
to shocks than one who knows the model. Such precaution has an interpretation in
terms of a frequency domain representation of the criterion function under various
model perturbations.
For the complex scalar �, let G(�) be the transfer function from the shocks wt

to the targets zt. Let
0 denote matrix transposition and complex conjugation, � =�

� : j�j = p
�
	
, and d�(�) = 1

2�i
p
��
d�. Then the criterion (3) can be represented as

H2 = �
Z
�

trace [G(�)0G(�)]d �(�):

Where �Æj(�) is the jth eigenvalue of G(�)0G(�), we have

H2 =
X
j

Z
�

�Æj(�)d �(�):(11)

Hansen and Sargent (2000a) show that a robust rule is induced by using the criterion

ent(�) =

Z
�

log det[�I �G(�)0G(�)]d �(�)

or

ent(�) =
X
j

Z
�

log[� � Æj(�)]d �(�)(12)

Because log(��Æ) is a concave function of�Æ, criterion (12) is obtained from criterion
(11) by putting a concave transformation inside the integration. Aversion to model
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Figure 3. Frequency decompositions of Ez0tzt for objective function
of Ball's model under three decision rules (� = 0;�:04;�:085). The
robustness parameter satis�es: � = �1=�.

misspeci�cation is thus represented as additional \risk aversion" across frequencies
instead of across states of nature. Under criterion (12), the decision maker prefers
decision rules that render trace G(�)0G(�) 
at across frequencies.
For example, the curve for � = 0 in Figure 3 depicts a frequency domain decom-

position of Ez0tzt for the optimal rule under Ball's model. Notice that it is biggest
at low frequencies. This prompts the minimizing agent in problem (10) to make
what Ball's model are supposed to be i.i.d. shocks instead be serially correlated (by
making vt feed back appropriately on xt). The maximizing agent in (10) responds
by changing the decision rule so that it is less vulnerable to low-frequency mis-
speci�cations. In Ball's model, this can be done by having the monetary authority
adjust interest rates more aggressively in its \Taylor rule." Notice how the fre-
quency decompositions under the � = �:04 and � = �:085 rules are 
atter.7 They
thereby achieve robustness by rendering themselves less vulnerable to low{frequency
misspeci�cations.
A permanent income model is also most vulnerable to misspeci�cations of the

income process at the lowest frequencies, since it is designed to do a good job at
smoothing high frequency movements. For a permanent income model, a preference
for robustness with respect to the speci�cation of the income process then induces
precautionary saving of a type that does not depend on the third derivative of the
value function.

7These are frequency decompositions of the Ball's criterion function operating under the robust
rules when the approximating model governs the data.
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4.7. Multi-agent settings. We have discussed only single-agent decision theory,
despite the presence of the minimizing second agent. The minimizing agent in the
Bellman equation (10) is �ctitious, a computational device for the maximizing agent
to attain a robust decision rule. Macroeconomists routinely use the idea of a rep-
resentative agent to study aggregate phenomena using single-agent decision theory,
for example by studying planning problems and their decentralizations. We can use
a version of equation (10) in conjunction with such a representative agent device. A
representative agent formulation would attribute a common approximating model
and a common set of admissible model perturbations to the representative agent
and the government. Robust Ramsey problems can be based on versions of problem
(10) augmented with implementability constraints. See Hansen and Sargent (2000a)
and Hansen and Sargent (2000b) for some examples.

5. Self-confirming equilibria

We have focused on misspeci�cations that are diÆcult to detect with moderate{
sized data sets, but that can be distinguished with in�nite ones. We now turn to a
more subtle kind of misspeci�cation, one that is beyond the capacity of detection
error probabilities to unearth even in in�nite samples. It underlies the concept of
self-con�rming equilibrium, a type of rational expectations that seems natural for
macroeconomics. A self-con�rming equilibrium attributes possibly distinct personal
probabilities (models) to each agent in the model. Those personal probabilities (1)
are permitted to di�er on events that occur with zero probability in equilibrium,
but (2) must agree on events that occur with positive probability in equilibrium.
Requirement (2) means that the di�erences among personal probabilities cannot be
detected even from in�nite samples from the equilibrium. Fudenberg and Kreps
(1995a), Fudenberg and Kreps (1995b), Fudenberg and Levine (1993), and Sargent
(1999) advocate the concept of self-con�rming equilibrium partly because it is the
natural limit point of a set of adaptive learning schemes (see Fudenberg and Levine
(1998)). The argument that agents will eventually adapt to eliminate discrepancies
between their model and empirical probabilities strengthens the appeal of a self-
con�rming equilibrium but does nothing to promote subgame perfection.8 A self-
con�rming equilibrium is a type of rational expectations equilibrium. However,
feature (1) permits agents to have misspeci�ed models that �t the equilibrium data
as well as any other model but that miss the \causal structure." The beliefs of a
large player about what will occur o� the equilibrium path can in
uence his choices
and therefore outcomes along the equilibrium path.

8Bray and Kreps (1987) present a Bayesian analysis of equilibrium learning without misspeci�-
cation. They express regret that they precluded an analysis of learning about a model by having
set things up so that their agents can be Bayesians (which means that they know the model from
the beginning and learn only within the model). Agent's model misspeci�cation, which disappears
only eventually, is a key part of how Fudenberg and Levine (1998) and others analyze learning
about an equilibrium.
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That self-con�rming equilibria permit large players|in particular governments|
to have wrong views provides ways to resolve what we at Minnesota used to call
\Wallace's conundrum" in the mid-1970's.9 Wallace had in mind a subgame per-
fect equilibrium. He noted that there is no room for policy advice in a rational
expectations equilibrium where private agents know the conditional probabilities of
future choices of the government. In such a (subgame perfect) equilibrium, there are
no free variables for government agents to choose: their behavior rules are already
known and responded to by private agents. For example, if a researcher believes
that the historical data obey a Ramsey equilibrium for some dynamic optimal tax
problem, he has no advice to give other than maybe to change the environment.
Self-con�rming equilibria contain some room for advice based on improved spec-

i�cations of the government's model.10 But such advice is likely to be resisted
because the government's model �ts the historical data as well as the critic's model.
Therefore, those who criticize the government's model must do so on purely theo-
retical grounds, or else wait for unprecedented events to expose an inferior �t of the
government's model.
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