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Abstract

We measure price-level uncertainty and instability in the U.S. over the period
1850-2012. Major outbreaks of price-level uncertainty and instability occur both
before and after World War II, alternating with three price-level moderations,
one near the turn of 20th century, another under Bretton Woods, and a third
in the 1990s. There is no evidence that the price level was systematically more
stable or less uncertain before or after the Second World War. Moderations
sometimes involved links to gold, but the experience of the 1990s proves that a
well-managed fiat regime can achieve the same outcome.
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1 Introduction

Figure 1 portrays annual data on the wholesale price level and inflation rate in the

United States for the period 1798-2012. We study wholesale price indices because

Christopher Hanes (2006) says they are more reliable than consumer price indices for

the period before World War I. According to Hanes, statisticians collected more data

on wholesale prices before 1914 than on retail prices or rents, thus compiling better

raw materials for price indices. Since comparability of data across periods is important

for us, we examine wholesale price indices for the period after 1914 as well.
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Figure 1: Wholesale Price Level and Inflation

The behavior of the wholesale price level, shown in the left panel, changed dra-

matically after the Second World War. Between 1798 and 1940, average inflation was

essentially zero, and there was no sustained growth in the price level. One very rough

stylized summary of pre-World War II US monetary history is that the price level

surged during wars but fell afterward, thus providing long-run price stability. In con-

trast, after 1945 there was no rollback of prices, average inflation became positive, and

the price level ascended. Because of that, one might suspect that price-level uncertainty

was greater after World War II.

But to the extent that average inflation was predictable after World War II, a posi-

tive average would contribute to sustained growth in the price level without increasing

uncertainty. The visual impression conveyed by an upward drift might therefore ex-

aggerate the degree of uncertainty. Predictable variation would undermine price level

stability, however, so that the price level might have been less stable after 1945, in the

sense of total variability, even if were no more uncertain.

In addition, although average inflation was close to zero before 1940, there was

a lot of volatility. Notice in particular that the rollbacks after the War of 1812 and

the Civil War lasted for decades and eventually generated more cumulated postwar

deflation than wartime inflation.1 Uncertainty about the extent and duration of a

rollback – especially about the degree of overshooting – could at least partially offset

any presumed benefits. Furthermore, data on inflation, exhibited in the right panel,

1 For instance, during the deflation following the Civil War, the price level overshot its 1860 value
on the way down and eventually fell 30 percent below the prewar mark. After reaching a trough in
1896, another 10 years passed before the price level returned to its 1860 value.
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suggest that volatility might have been lower after 1950, despite the Great Inflation and

the 2008 financial crisis. For these reasons, whether price-level uncertainty increased

or decreased after 1945 is unclear.

In this paper, we estimate a flexible statistical model for wholesale price inflation

and use it to measure price-level uncertainty and instability before and after World War

II. Our starting point is a simple and elegant model for inflation developed by Stock

and Watson (2007). A version of their model presents state equations for a nonlinear

state-space representation. Motivated by the work of Christina Romer (1986a,b), we

also append measurement error to acknowledge noise in pre-World War II data. As

Romer pointed out, one of the chief obstacles to assessing volatility across historical

eras is that data are not directly comparable. Long historical time series such as the

one shown in figure 1 are typically spliced together from a variety of sources that define

and measure objects differently. Older data are usually noisier, and measurement error

amplifies volatility.

To level the playing field, Romer posed and solved a ‘noise-creation’ problem, con-

structing a comparably noisy series for the postwar era by imitating prewar mea-

surement procedures using postwar data sources. After estimating the variances of

comparably noisy measures, she concluded that much of the apparent decline in U.S.

unemployment and GDP volatility is a consequence of better measurement. Similarly,

Hanes (1998) solved a noise-creation problem for U.S. wholesale price indices, con-

structing a noisy post-World War II series whose stochastic properties are consistent

with prewar data.

This paper extends Hanes’s analysis by solving a signal extraction problem for pre-

war data, thus improving estimates of historical volatility. We begin by describing a

nonlinear state-space model in which prewar inflation is measured with error. So that

Romer’s conclusion is not hardwired, our model allows true but hidden volatilities to

vary over time, as in Stock and Watson (2007). We solve the signal extraction problem

by applying Bayes’s theorem. If the state-space model were linear and conditionally

Gaussian, this would reduce to an operation closely related to Kalman smoothing. Be-

cause the model is nonlinear in state variables, however, we use a Markov Chain Monte

Carlo (MCMC) algorithm to simulate the posterior distribution for the model’s param-

eters and hidden variables. From that posterior, we deduce the posterior distribution

for conditional variances and second moments of future price levels, and then compare

our measures of uncertainty and instability at various dates.

Specification of the measurement-error process and identification of its parameters

are key elements of our analysis. Because measurement error is a latent variable weakly
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restricted by theory, how to specify it and how to identify its parameters are not obvi-

ous. Here we exploit Hanes’s consistent postwar measure of wholesale price inflation.

For the period 1948-1990, Hanes’s noisy measure overlaps with the putatively noise-

free2 measure constructed by the Bureau of Labor Statistics. The availability of two

inflation measures – one noisy and one clean – sharply identifies measurement error for

years in which they overlap, allowing precise estimation of its parameters.

After solving this signal extraction problem, we find that uncertainty was highest

and the price level least stable during the Civil War, the two World Wars and interwar

years, and during the Great Inflation and Great Recession. There were also three great

price-level moderations, one near the turn of the 20th century, another under Bretton

Woods, and a third during the 1990s. Because periods of high and low volatility occur

both before and after the Second World War, we find no compelling evidence that

the price level was systematically more stable or less uncertain in either era. There

was less uncertainty and more stability during moderations than at other times, but

moderations occur both before and after the Second World War.

2 Data

Our data are annual and are assembled from four sources, Warren and Pearson (1933),

Hanes (1998), and two series from the Bureau of Labor Statistics (BLS ). Hanes’s (2006)

chapter in the Millenial edition of the Historical Statistics of the United States (HSUS )

describes the historical data and documents their sources, and the data themselves can

be found in the accompanying tables.3 Postwar data were downloaded from the Federal

Reserve Economic Database (FRED).

Data for the period 1797-1890 come from Warren and Pearson (1933). The dotted

line in figure 2 depicts their measure of inflation. We use this series primarily as a

training sample to calibrate aspects of the prior.

Hanes (1998) replicated and extended Warren and Pearson’s series for the periods

1860-1941 and 1947-1990 (see the solid line in figure 2). His objective was not to

construct the best measure of wholesale price inflation for these periods but by following

Warren and Pearson as closely as possible to construct a series consistent with theirs.

For years in which their measures overlap, the correlation is 0.997, confirming that

Hanes’s procedures are faithful to those of Warren and Pearson.4 Among other things,

2 At least this is the conventional assumption in macroeconomics.
3 See http://hsus.cambridge.org/HSUSWeb/toc/showChapter.do?id=Cc.
4 Indeed, for the overlapping years, Warren and Pearson’s dotted line in figure 2 hides behind

Hanes’s solid line.
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Figure 2: US Wholesale Price Inflation: Overlapping Sources

we interpret ‘consistency’ to mean that the stochastic properties of measurement errors

in Hanes’s data are the same before and after the Second World War.

The United States government began constructing wholesale price indices in 1902

and produced retrospective measures back to 1890. We make use of two data series

from the BLS, one from HSUS covering the period 1890-1997 and another from FRED

covering the period 1913-2013. The corresponding inflation measures are shown as

dashed and dashed-dotted lines, respectively, in figure 2. The two BLS series are very

highly correlated for the period in which they overlap (correlation 1914-1997 = 0.986),

but because FRED data were revised more recently, we believe they are more accurate

for the period after the Second World War. Differences are slight in any case.

Although the Warren-Pearson-Hanes series is our primary noisy measure, there

is a gap from 1942-1947 that we fill with BLS-HSUS data. That the BLS-HSUS

measure is comparable to the Warren-Pearson-Hanes series is not obvious, but the

following defense can be offered. Warren and Pearson’s objective was to construct

a retrospective measure comparable to the BLS index begun in 1890, and Hanes’s

goal was to mimic Warren and Pearson (see Hanes 2006). To the extent that both

succeeded, one might therefore expect early BLS-HSUS data to correlate highly with

Hanes’s measure. Indeed, for the period 1914-1941, the point estimate in a regression of

Hanes’s inflation measure onto that of BLS-HSUS is 1.02, its standard error is 0.04, and

the R2 is 0.989. Thus the hypothesis that yBLS−HSUS is an unbiased predictor of yHanes

(i.e. that the regression coefficient is 1) cannot be rejected, and the standard deviation
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Figure 3: US Wholesale Price Inflation: Spliced Sources

of the approximation error yHanes− yBLS−HSUS is 11 percent of the standard deviation

of yHanes. Extrapolating this close association to 1942-1947 rationalizes bridging the

gap between Hanes’s two series with BLS-HSUS data. To be on the safe side, we also

checked the influence of this patch by estimating a version of the model that treats

1942-1947 as missing, and our conclusions were the same.

After discarding redundant data, we are left with the data shown in figure 3 that

we will use to calibrate priors and estimate the model. We construct a noisy inflation

measure for 1798-1990 by splicing data from Warren-Pearson-Hanes and BLS-HSUS.5

Our clean post-World War II measure (1948-2012) comes from BLS-FRED. Thus, two

inflation measures – one noisy and one clean – are available for 1948-1990, and a

single measure – either noisy or clean – is available for all other years. That a noise-

ridden series comparable to that for the period before World War II overlaps with a

clean measure for much of the postwar period underlies our strategy for recognizing

measurement error.

For guidance on how to represent measurement error, we examine the difference

between the noisy and clean measures yHanes − yBLS−FRED for the period 1948-1990.

On the assumption that BLS-FRED data are error free, this difference identifies noise

in Hanes’s measure of inflation, and its partial sum identifies noise in his measure of

5 In principle, precision could be enhanced by using all the noisy data, but since the various noisy
measures are highly correlated we suspect the gain would be slight. Thus, we simplify by using a
single noisy series.
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Figure 4: Measurement error in inflation and the log price level, 1948-1990

the log price level. As shown in figure 4, noise in inflation (depicted by the solid line)

appears to be stationary, centered near zero, and weakly autocorrelated, while noise in

the log price level (shown as a dashed line) appears to have a unit root. Thus, in what

follows, we assume that our noisy measure of inflation is the sum of true inflation plus

a mean zero, stationary measurement error.

3 A nonlinear state-space model with measurement

error and time-varying volatilities

Following Stock and Watson (2007) and Shephard (2013), the state equations for our

statistical model are

πt = µt +
√
rtεπt, (1)

µt = µt−1 +
√
qtεµt,

ln rt = ln rt−1 + ηrt,

ln qt = ln qt−1 + ηst,

where πt is inflation, µt is trend inflation, and rt and qt are stochastic volatilities

that evolve as geometric random walks. The innovations επt, εµt, are standard normal,

serially uncorrelated, and independent of all the other shocks in the model. Similarly,

the log volatility innovations ηrt and ηqt are iid normal with mean zero and covariance
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matrix

W =

[

σ2
r σrq

σrq σ2
q

]

. (2)

Introduced by Shephard (2013), this parameterization extends that of Stock and Wat-

son (2007) by allowing correlated increments to ln qt and ln rt. Shephard reported that

this extension improved the model’s fit to quarterly post World War II US inflation.6

This model has three features that we believe an adequate statistical representation

of inflation requires. First, to fit both the 19th century, when average inflation was

close to zero, and the period after World War II, when average inflation was positive

and variable, the model must include a stochastic trend. Second, there must also be a

transient component to fit the short-term volatility seen at various times throughout

the sample. Third, so that volatility can change, innovations to the two components

must have time-varying variances.

Our main extension of the Stock-Watson-Shephard model aims to confront the

measurement issues raised by Romer. To address her concerns, we append an additional

state equation for a serially correlated measurement error mt,

mt = ρmmt−1 + σmεmt, (3)

where εmt is iid standard normal and independent of the other shocks in the model.

The measurement equation for our state-space model is

yt = Cmt

[

πt

mt

]

, (4)

where yt represents observations on inflation. Our identifying assumptions are that the

post-1948 BLS-FRED data are noise free and that the measurement error parameters

ρm and σm are constant throughout Hanes’s sample. This is how we interpret the

statement that Hanes’s prewar and postwar measurement procedures are consistent.

Under these assumptions, the measurement arrays yt and Cmt are defined as

• yt = ynt, Cmt = [1 1] when a single noisy observation ynt is available (before

1948);

• yt = yct, Cmt = [1 0] when a single clean observation yct is available (after 1990);

6 As we shall see, we find less evidence of correlation in log-volatility innovations, perhaps because
our data are annual, measure wholesale prices instead of consumer prices, cover a longer time span,
and are noisier than Shephard’s. We also estimated a version based on Stock and Watson’s original
parameterization that constrains σrq = 0 and obtained results that are similar to those reported
below.
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• yt = [ynt yct]
′, Cmt =

[

1 1
1 0

]

when both noisy and clean observations are

available (1948-1990).

4 Priors

Our first task is to estimate the latent states πt, µt, rt, qt, and mt, the log-volatility

innovation variance W , and the measurement error parameters ρm and σm. We do this

via Bayesian methods.

Priors are wanted for the initial states µ0, π0, r0, q0, andm0 as well as the parameters

W , ρm, and σm. The transition equations then imply priors for the remaining states µt,

πt, qt, rt, andmt. We assume priors for µ0, π0, r0, q0, m0, W , ρm, and σm to be mutually

independent, and specify marginal priors for each. Many aspects of these priors are

calibrated using a training sample consisting of measured inflation for 1798-1849.

For instance, the prior for the initial state (µ0, π0) is normal with mean equal to

the training sample average (-0.90 percent per annum) and variance

P0 =

[

0.152 0
0 0.0252

]

. (5)

Since prior credible sets for π0 and µ0 are roughly (-0.3,0.3) and (-0.05,0.05), respec-

tively, the prior is weakly informative about initial inflation.

We also adopt normal priors for ln r0 and ln q0, the logs of the initial innovation

variances for the transitory and persistent components of inflation, respectively. The

prior mean for ln r0 is the log of the training sample variance for measured inflation

(-4.97), while that for ln q0 is is the log of the training sample variance divided by 25

(-8.19). We set the prior standard deviation for both to 5, a value that is huge on a log

scale. This makes the prior on the initial values ln r0 and ln s0 very weakly informative.

For the measurement error parameters ρm and σm, we adopt weakly informative

priors portrayed by dashed lines in figure 5. The prior for ρm is normal with mean zero

and standard deviation 0.45, thus centering on a white-noise specification and concen-

trating the preponderance of prior mass in the stationary region.7 For σm, we adopt

an inverse-gamma prior whose mode equals 50 percent of the training sample standard

deviation for measured inflation (70.71 percent of the variance), thereby expressing

an initial belief that the Warren-Pearson-Hanes data are very noisy. Not wanting to

hardwire this prior belief into a posterior, however, we set the prior degrees of freedom

7 Truncating the prior at the boundary of the stationary region was unnecessary because all the
posterior draws were in the interior.
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Figure 5: Priors and posteriors for measurement-error parameters

to 2, so that a centered 95 credible set ranges from 28 percent to more than 100 percent

of the training sample standard deviation. The result is an IG1(0.051, 2) specification.

A prior for W , the covariance matrix for log-volatility innovations, is harder to

calibrate using the training sample. Instead, we adopt an informative inverse-Wishart

prior that is inspired by Stock and Watson’s calibration. We start with their parameter

for the variance of log-volatility innovations in quarterly data, adjust for time aggrega-

tion to an annual sampling frequency, and then set the diagonal elements of the prior

scale matrix so that the prior modes for σ2
r and σ2

q equal the adjusted value. Lacking

a strong prior view about the covariance σrq, we set the off-diagonal elements of the

prior scale matrix to zero, thus centering the prior covariance on zero. After centering

the prior in this way, we set the degree of freedom parameter to deliver plausible prior

credible sets. After some experimentation, we settled on an IW (0.05 · I2, 10) prior for
W . Dashed lines in figure 6 portray prior histograms for the standard deviations σr

and σq and the correlation σrq/σrσq. A centered prior 95 percent credible set for the

standard deviations ranges from 0.158 to 0.380, while that for the correlation covers

the interval ±0.6.

5 Posteriors

The joint posterior distribution for parameters and hidden states is simulated via a

MCMC algorithm. Except for the measurement error and assumptions about the prior,

the model is very similar to that of Stock and Watson (2007) and is closely related to

that of Cogley and Sargent (2005). The MCMC algorithm is therefore also similar to
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Cogley and Sargent’s. Appendix A describes the details.8

5.1 Parameters and latent states

As we shall see, our measures of uncertainty and instability are functions of model pa-

rameters and latent states. We therefore begin by summarizing aspects of the posterior

distribution.

Also shown in figure 5 are posterior distributions for the measurement-error param-

eters ρm and σm. As expected, measurement-error parameters are sharply identified

from overlapping clean and noisy observations on inflation, and their posteriors are

much more concentrated than the priors (compare the solid and dashed lines in figure

5). Measurement errors are autocorrelated (the mode for ρm is 0.33, and a centered 95

percent credible set ranges from 0.03 to 0.6), and there is little support for large values

of σm (the posterior mode is 0.035, and a centered 95 percent credible set ranges from

0.028 to 0.045). At the posterior mode, the unconditional standard deviation of mt

is 0.037. Since the standard deviation of the Warren-Pearson-Hanes measure of infla-

tion is 0.092, this amounts to 40 percent of measured inflation volatility, a substantial

proportion but considerably less than some values entertained by the prior.

Posterior distributions for the standard deviations and correlation of log volatility

innovations appear in figure 6. Perhaps less obviously, precise estimation of measurement-

error parameters helps identify pre-1948 movements in rt and therefore also improves

8 Shephard (2013) describes an alternative simulation algorithm based on an auxiliary particle filter.
Because his algorithm intensively exploits parallel processing, our guess is that it is computationally
more efficient than ours. Nevertheless, our algorithm delivers a valid sample from the joint posterior
distribution for parameters and hidden states.
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estimation of σr. The noise-ridden measure of inflation has two transient components,

one
√
rtεπt that is genuine and another mt due to measurement error. Since param-

eters governing the latter are precisely estimated, the amount of transient variation

attributable to measurement error is restricted. Transient variation over and above an

amount consistent with mt must therefore be genuine. Since pre-1948 variation in rt is

more strongly identified, so is σr. Thus, in contrast to our earlier work (Cogley, et al.

2012), the posterior for σr differs from its prior, with the data wanting higher values of

σr (compare the solid and dashed lines figure 6). The posterior mode for σr increases

to 0.38, and a centered 95 percent credible set ranges from 0.26 to 0.59.

Alas, the other innovation variance parameters are weakly identified: their poste-

riors are essentially the same as their priors (compare the dotted and dashed lines in

the left panel of figure 6 and the solid and dashed lines in the right). Because of the

extent to which the prior and posterior for σq overlap, we also examined a model with

a less informative IW (0.05 · I2, 2) prior for W . This has long upper tails for σq and σr

and thus promotes faster drift in qt and rt. Despite that, the posteriors were similar

to those shown in figure 6, and our overall conclusions were much the same. For this

reason, we doubt that our benchmark prior has undue influence on the results.

Aspects of the posterior for the hidden states µt, πt − µt,
√
qt, and

√
rt are shown

in figure 7. In each panel, a solid line depicts the posterior median at each date, and

dotted lines portray the interquartile range.

Although the persistent component µt was centered around zero in the 19th century,

it was not strongly anchored near zero (see the upper left panel). On the contrary,

the posterior median wandered between +80 and -200 basis points per annum until

the early 20th century, when it settled in the vicinity of 1.5 to 2 percent. It remained

there until the Great Inflation of the 1970s, when the median estimate peaked at 7.4

percent per annum. After the Volcker disinflation, the median estimate fell to around

2.5 percent, and it fluctuated between 1.4 and 3.3 percent from then until the end of

the sample. There is also substantial uncertainty about the location of µt at any given

date. Before 1914, the interquartile range was typically ± 130 basis points around the

median with a spike to ± 180 basis points during the Civil War. With better data

after 1948, the interquartile range narrowed to ± 85 basis points around the median

but spiked to ± 260 basis points during the Great Inflation.

Movements in qt, the innovation variance of the persistent component µt, follow a

similar pattern (see the lower left panel of figure 7). Volatility was high during the

third quarter of the 19th century and declined gradually, with the median estimate of
√
qt falling from 1 percent in 1865 to 0.5 percent in 1945. As the economy’s nominal
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Figure 7: Posteriors for hidden states

anchor began to drag during the run-up to the Great Inflation, our estimate of
√
qt

rose, reaching a local peak of 1.1 percent at the time of the Volcker disinflation. Thus,

the post-World War II peak in qt was about the same as at the end of the Civil War.

Furthermore, the median estimate fell after 1983 and by the end of the sample had

returned to roughly the same level as at the end of the 19th century. We therefore

find no strong evidence that increments to the persistent component of inflation were

systematically more variable after World War II. On the contrary, the volatility of ∆µt

was highest at the beginning of our sample.

The right column of figure 7 depicts the transient component of inflation πt − µt

and its innovation variance rt. Although perhaps not obvious at first glance, the

figure attests that most bursts in U.S. inflation were transitory. To see this, notice

the difference in scale between the left and right columns. For instance, while the

interquartile range for µt varies between -0.03 and 0.09, that for πt − µt ranges from

-0.4 to 0.4. Similarly, estimates of
√
rt are an order of magnitude greater than those
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for
√
qt. To highlight this difference in scale, we reproduce in the top right panel

the median estimate of µt, which we portray as a dashed line. Except for the Great

Inflation, fluctuations in µt are small in comparison with variations in πt − µt. As we

shall see, transient variation dominates not only at the one-year horizon but also at

longer horizons.

The largest bursts of transient inflation occurred during and after the Civil War, in

and between the two World Wars, and during the recent financial crisis. A lesser burst

of transient volatility also appeared during the Great Inflation, but this was compara-

tively small. Troughs in rt occurred shortly after the turn of the 20th century, in the

early 1960s under Bretton Woods, and in the 1990s. Thus, three ‘great moderations’

appear in our sample, one in the last quarter of the 19th century, another between

World War II and the Great Inflation, and a third beginning in the mid 1980s and

ending after the turn of the 21st century. Because measurement error has been purged,

the model asserts that these moderations were authentic.

5.2 Orders of integration

Our model implies that inflation is I(1) and that the log price level is I(2), a common

specification for post-World War II data. However, it is not obvious whether these

orders of integration are consistent with data from before the First World War data.

To examine this issue, we estimate an augmented Dickey-Fuller regression,

yt = µ+ ρyt−1 +
∑2

j=1
ζj∆yt−j + ut, (6)

where yt is measured inflation for the period 1850-1913, and we calculate the t-statistic

for ρ−1. This augmented Dickey-Fuller statistic is -4.56, and its 1-percent asymptotic

critical value is -3.43. The test therefore seems strongly to reject a unit root in inflation.

However, the estimates shown in figure 7 suggest that the random-walk component

of inflation was small prior to 1914 and that the transient component plus measurement

error was much more volatile. It is tenuous whether an augmented Dickey-Fuller test

can detect a small random-walk component hidden under substantial noise. To check

the size of the test for our specification, we simulate the state-space model, generating

artificial data on measured inflation by drawing from the posterior for πt, ρm, and σm

and then calculating the implied distribution for the augmented Dickey-Fuller statistic.

It turns out that the null distribution is shifted well to the left of the asymptotic

distribution and that the correct 10 percent critical value is -5.13, implying that a unit

root in inflation is not rejected. Indeed, the p-value for a sample statistic of -4.56 is

0.39.
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None of this proves that inflation was I(1), but it does establish that our I(1)

representation is not grossly at odds with the data. We are sufficiently reassured that

our representation for inflation is good enough for pre-World War I data to allow us to

proceed.

5.3 Price-level uncertainty

To measure price-level uncertainty, we calculate the standard deviation of cumulative

h-year inflation, pt+h− pt, conditioned on the log-volatility innovation variance W and

histories of the time-varying states ωt = (πt, µt, rt, qt). As shown in appendix B, the

conditional mean and standard deviation are

E(pt+h − pt|ωt,W ) = hµt, (7)

σ(pt+h − pt|ωt,W ) =

√

qt
∑h

j=1
(h− j + 1)2 exp(jσ2

q/2) + rt
∑h

j=1
exp(jσ2

r/2),

respectively. Because the information set contains the current price level pt, the con-

ditional standard deviation of the future price level pt+h is the same as that for cumu-

lative inflation, σ(pt+h|ωt,W ) = σ(pt+h − pt|ωt,W ). Both measure uncertainty about

price-level paths emanating forward from a given (ωt,W ) pair.9

The conditioning variables (ωt,W ) are unknown, but our MCMC algorithm de-

livers a sample from their joint posterior distribution. By calculating the conditional

standard deviation σ(pt+h−pt|ωt,W ) for every (ωt,W ) pair in this sample, we obtain a

sample from the posterior distribution p(σ(pt+h − pt)|yT ), where yT denotes the entire

sample of observations and T is the length of the sample. We call the resulting values

smoothed conditional volatilities because they are derived from a posterior for (ωt,W )

that conditions on the full sample yT .10,11

9 Notice that the permanent and transient components both contribute terms that make this con-
ditional variance increase with the forecast horizon h. The increment to the term involving volatility
in the transient component is rt exp(hσ

2

r/2), while the increment to the term involving volatility in
the permanent component consists of the sum of qt exp(hσ

2
q/2) plus a number of other nonnegative

terms. If the values associated with permanent and transient components were similar (i.e. if qt ≈ rt
and σq ≈ σr), the permanent component would grow more rapidly and dominate at long horizons.
However, since we estimate qt << rt and σq < σr, the dominance of the permanent component is not
a foregone conclusion, at least not at horizons that interest us.

10 We draw from the smoothed density p(ωt,W |yT ) rather than the filter densities p(ωt,W |yt)
because filter densities for t < 1948 fail to exploit the identifying power of overlapping clean and noisy
measures. Hence filter densities before and after World War II would be on a different footing vis a
vis measurement error.

11 For t < T , a smoothed conditional volatility is not a posterior conditional-on-yT standard devia-
tion, but we believe it is a better choice because the conditional-on-yT standard deviation would tell
us more about measurement error than about price-level volatility.
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Figure 8: Posteriors for smoothed conditional volatilities 5 and 10 years ahead

Smoothed conditional volatilities for forecast horizons of 5 and 10 years are shown

in figure 8. Solid lines again depict the posterior median at each date, and dotted lines

portray the interquartile range. At least for these horizons, the evolution of price-level

uncertainty closely resembles the movements in
√
rt shown in figure 7. Price level un-

certainty was biggest near the end of the Civil War, during the interwar period and

two World Wars, and near the end of the sample. A smaller bump appears during the

Great Inflation, but this again seems minor. The periods of lowest volatility occurred

around the turn of the 20th century, in the late 1950s and early 1960s under Bretton

Woods, and during the Great Moderation of the 1990s. The close resemblance between
√
rt and smoothed conditional volatilities attests that transient bursts of inflation re-

main the dominant source of price-level uncertainty at horizons of 5 and 10 years. The

dominance of transient variation follows from the fact that qt << rt and σq < σr.

Because periods of high and low volatility appear both before and after 1945, there

is no unequivocal answer to whether there was greater price-level uncertainty before

or after World War II. On the contrary, the answer depends on the particular years

being compared. We think it is sensible to focus on local peaks and troughs. As shown

in table 1, median estimates of smoothed volatilities 10 years ahead peaked in 1864,

1921, 1980, and 2009 and reached troughs in 1904, 1959, and 1994. Dates of peaks and

troughs for the 5-year horizon differ only slightly, so we concentrate on these 7 years.

Table 2 compares smoothed conditional volatilities in selected prewar and postwar

years. The columns and rows refer, respectively, to particular prewar and postwar

base years. Thus, the top left panel compares 1864 with 1959, while the bottom right

compares 1921 with 2009. The top entry in each panel is the ratio of the postwar

mean smoothed conditional standard deviation relative to that in the prewar base
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Table 1: Peaks and Troughs in Smoothed Conditional Volatilities

Peaks 1864 1921 1980 2009
Troughs 1904 1959 1994

Note: Median estimates, h = 10 years.

year. Entries in parentheses record the proportion of posterior sample paths on which

conditional standard deviations are lower after the Second World War.

We begin by comparing peaks with peaks, viz. 1864 and 1921 v. 1980 and 2009.

At postwar peaks, mean smoothed volatilities were approximately 30-50 percent lower

than before the war, and the probability that uncertainty was greater at prewar peaks

exceeds 80 percent in all cases and 90 percent in a few. Thus the evidence weakly

suggests that price-level uncertainty was greater at prewar peaks. But since uncertainty

was higher after the war on a significant minority of paths (8-17 percent), the evidence

is not compelling.

When comparing troughs with troughs (1904 v. 1959 and 1994), the evidence

favoring a postwar stabilization is even weaker. Mean smoothed volatilities at the 1959

trough were 11-17 percent lower at the 5 and 10 years horizons, and uncertainty was

lower on roughly two-thirds of posterior sample paths. At the 1994 moderation there

was about as much uncertainty as at the 1904 trough.

One can of course also compare peaks with troughs. Not surprisingly, there was

Table 2: Relative Conditional Standard Deviations
1864 1904 1921

5 years 10 years 5 years 10 years 5 years 10 years

1959
0.350 0.283
(0.982) (0.996)

0.887 0.829
(0.627) (0.674)

0.361 0.276
(0.986) (0.997)

1980
0.640 0.533
(0.831) (0.915)

1.620 1.560
(0.205) (0.188)

0.659 0.520
(0.826) (0.924)

1994
0.466 0.370
(0.909) (0.965)

1.180. 1.082
(0.462) (0.503)

0.480 0.361
(0.908) (0.970)

2009
0.729 0.685
(0.844) (0.884)

1.848 2.003
(0.133) (0.078)

0.751 0.668
(0.834) (0.894)

Note: The top entry in each panel is the ratio of the postwar mean smoothed conditional

standard deviation relative to that in the prewar base year. Entries in parentheses record

the proportion of sample paths on which conditional standard deviations are lower in the

postwar year.
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more uncertainty at prewar peaks than at postwar troughs. For instance, mean smoothed

volatilities for 1959 and 1994 are approximately 60 percent lower than those for 1864

and 1921, and the probability that price levels were more predictable at postwar troughs

exceeds 95 percent. What to make of this comparison is unclear, however, for there is

also evidence – albeit a bit weaker – that uncertainty was greater at postwar peaks than

prewar troughs. For instance, mean smoothed volatilities in 2009 were double those

in 1904, and the probability that uncertainty was greater during the financial crisis is

roughly 10 percent. Similarly, mean smoothed volatilities were about 60 percent higher

in 1980, and conditional standard deviations were greater than in 1904 on 80 percent

of posterior sample paths.

In any case, no simple answer emerges to whether the price level was more pre-

dictable before or after 1945. Episodes of high and low volatility occur in both periods,

precluding a blanket characterization. The trough-to-trough calculations confirm the

promises of Ricardo and Keynes that a well-managed fiat regime can deliver outcomes

comparable to those of a commodity standard.12 Absent big shocks such as wars,

depressions, or financial panics, price level uncertainty can be moderated either by

means of a link to gold, as under Bretton Woods or the classical gold standard, or via

a well-managed fiat regime, as in the 1990s.

5.4 Price-level instability

While conditional variances are suitable for measuring uncertainty, the concept of price

stability seems different. We interpret ‘stability’ as total variation, not just unpre-

dictable variation. For assessing price instability, we therefore compare second mo-

ments across dates. Our measure of instability is the square root of the conditional

second moment (aka the conditional root mean square) for cumulative inflation,

crms(pt+h − pt|ωt,W ) =
√

σ2(pt+h − pt|ωt,W ) + h2µ2
t . (8)

This measures total price-level variation emanating forward from a given (ωt,W )

pair.13,14

12 See Sargent (2008) for accounts of their ideas and proposals.
13 When central bankers speak of price stability, however, they sometimes seem to mean stability

around an inflation target. This concept is closer to our notion of predictability. Readers who prefer
this interpretation should therefore pay more attention to the results reported in section 5.3.

14 While the conditional variance for the log price level is the same as that for cumulative inflation,
conditional second moments are not, because the conditional means differ. The conditional mean for
the log price level h periods ahead is pt+hµt, so (pt+hµt)

2 must be added to the conditional variance.
Conditional second moments of the log price level therefore penalize both past and future cumulative
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Figure 9: Posteriors for smoothed conditional root mean square statistics 5 and 10
years ahead

Smoothed conditional root mean square statistics are shown in figure 9. Since

the conditional second moment is the sum of the conditional variance plus the square

of the conditional mean, a difference between uncertainty and instability materializes

only when the conditional mean hµt is sufficiently far from zero. The only times

this happened in our sample were the Great Inflation of the 1970s and, to a lesser

extent, the financial crisis of 2009. The primary difference between the conditional

root mean square statistics shown in figure 9 and the conditional standard deviations

shown in figure 8 is that there are larger bumps in our instability measure in the 1970s.

Indeed, median estimates of price instability in late 1970s are larger than prewar peaks.

Otherwise, the evolution of conditional root mean square statistics resembles that of

conditional standard deviations.

Among other things, this means that our trough-to-trough comparisons of uncer-

tainty extend to our measure of instability. It follows that no compelling evidence

emerges that the price level was more stable during the two postwar moderations than

at the turn of the 20th century.

The main difference concerns peak-to-peak comparisons. For instance, while there

was weak evidence of less price-level uncertainty in 1980 than at prewar peaks, there

was about as much price-level instability. Mean smoothed crms statistics for 1980 are

approximately the same as those for 1864 and 1921, and the odds that prices were

more stable in one era over the other are not far from even (see the first and third

inflation. Why past cumulative inflation should be penalized is not obvious, however, so we prefer to
measure price instability by conditional second moments for cumulative inflation. Since variation in
pt dominates everything else, conditional second moments for the log price level increase with time
and are greatest at the end of the sample.
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Table 3: Relative Conditional Root-Mean-Square Statistics

1864 1904 1921
5 years 10 years 5 years 10 years 5 years 10 years

1959
0.371 0.325
(0.984) (0.995)

0.849 0.774
(0.646) (0.692)

0.386 0.326
(0.988) (0.996)

1980
0.967 1.092
(0.558) (0.455)

2.216 2.599
(0.070) (0.040)

1.007 1.095
(0.535) (0.454)

1994
0.505 0.447
(0.911) (0.960)

1.157 1.064
(0.425) (0.441)

0.526 0.448
(0.910) (0.966)

2009
0.795 0.796
(0.778) (0.755)

1.821 1.896
(0.120) (0.097)

0.828 0.798
(0.767) (0.770)

Note: The top entry in each panel is the ratio of mean smoothed CRMS relative to that in

the prewar base year. Entries in parentheses record the proportion of sample paths on which

CRMS statistics are lower in the postwar year.

columns of the 1980 row in table 3). Comparing the prewar peaks with 2009 yields

similar results. Mean smoothed crms statistics are about 20 percent lower than at the

prewar peaks, but price levels 5 and 10 years ahead were less stable in 2009 on 20-25

percent of paths (see the first and third columns of the 2009 row in table 3).

5.5 Deflation risk

Another aspect of price level dynamics that changed after the Second World War was

the risk of deflation. To develop evidence on this feature of the data, we calculate

smoothed deflation probabilities and compare them across dates.

As an analogue to our measures of uncertainty and instability, we want the prob-

ability of cumulative deflation pt+h − pt < 0 going forward from a given (ωt,W ) pair.

Toward this end, let ξht be a sequence of potential future shocks {επs, εµs, ηqs, ηrs}t+h
s=t+1.

According to the model, ξht has a normal unconditional distribution that we denote

pN(ξ
h
t ). Given a pair (ωt,W ) along with a draw of potential future shocks ξht , a se-

quence of potential future price level realizations {ps(ωt,W, ξst )}hs=1 can be calculated

by iterating on the state equations. We define an indicator variable

Ideflation

(

ph(ω
t,W, ξht ), pt(ω

t,W )
)

= 1 if pt+h < pt, (9)

= 0 otherwise,

that records whether cumulative inflation is positive or negative. Conditional on
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(ωt,W ), the probability of deflation is

dpr(ωt,W ) ≡ pr(pt+h − pt < 0|ωt,W ), (10)

=

∫

Ideflation

(

ph(ω
t,W, ξht ), pt(ω

t,W )
)

pN(ξ
h
t )dξ

h
t .

It is easy to approximate this probability by Monte Carlo integration. By calculating

dpr for every (ωt,W ) pair in the posterior sample, we obtain its posterior distribution.

We call the resulting values smoothed deflation probabilities because they are derived

from a posterior for ωt and W that conditions on the full sample yT .

1850 1900 1950 2000
0

0.2

0.4

0.6

0.8

1
5 years ahead

P
ro

b(
 p

t+
h −

 p
t <

 0
)

 

 

Median
Interquartile range

1850 1900 1950 2000
0

0.2

0.4

0.6

0.8

1
10 years ahead

Figure 10: Smoothed deflation probabilities 5 and 10 years ahead

Figure 10 depicts the median and interquartile range for dpr for forecast horizons

of 5 and 10 years. Not surprisingly, low values of µt and high values of σ(pt+h − pt)

both contribute to high deflation risk. Thus, the probability of deflation was highest

– above 70 percent – after the Civil War when µt was negative and σt was high. The

opposite scenario, periods with high µt and low σt, did not occur in our sample, but

deflation risk was lowest – below 5 percent – during the Great Inflation when high

values of µt trumped intermediate values of σt. The three price level moderations lie in

between, with deflation probabilities on the order of 10-20 percent.15 Thus, low values

of µt trump low values of σt during moderations.

Table 4 compares selected years before and after the Second World War. Peaks in

deflation risk were reached in 1876, 1921, and 1998, and troughs occurred in 1909 and

1979. We also include 2009 to measure deflation risk during the financial crisis. As

15 Because stochastic volatilities are represented as geometric random walks, our model generates
very thick tails for future price levels even in tranquil times.
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Table 4: Relative Deflation Probabilities
1876 1909 1921

5 years 10 years 5 years 10 years 5 years 10 years

1979
0.082 0.071
(0.995) (0.995)

0.198 0.181
(0.887) (0.885)

0.136 0.125
(0.993) (0.992)

1998
0.396 0.381
(0.918) (0.922)

0.958 0.971
(0.532) (0.518)

0.656 0.671
(0.746) (0.714)

2009
0.368 0.320
(0.951) (0.954)

0.889 0.814
(0.528) (0.553)

0.609 0.562
(0.840) (0.828)

Note: The top entry in each panel is the ratio of the postwar mean probability of deflation

relative to that in the prewar base year. Entries in parentheses record the proportion of

sample paths on which the probability of deflation was lower in the postwar year.

before, the top row records the ratio of mean deflation risks before and after the war,

and the bottom depicts the probability that dpr(ωt, θ) was lower after the war.

At the 1998 postwar peak, mean deflation risk was roughly 35-60 percent lower

than at the prewar peaks of 1921 and 1876 (see the first and third columns of the

row corresponding to 1998). Conditional deflation probabilities were also lower than

in 1876 on more than 90 percent of posterior sample paths. Relative to 1921, however,

the evidence is less decisive: dpr(ωt, θ) was higher in 1921 on 75 percent of posterior

paths but was lower on the remaining 25 percent. Comparing 2009 with the prewar

peaks yields similar results, with slightly stronger evidence of lower postwar deflation

risk.

The postwar peak in dpr is comparable to the prewar trough (see the 1909-1998

panel), but the postwar trough is negligible in comparison with either of the prewar

peaks (see the first and third columns of the 1979 row). A trough-to-trough comparison

yields weak evidence of a postwar decline (see the 1909-1979 panel). At the 1979

postwar trough, mean deflation risk was approximately one-fifth as large as at the

1909 prewar trough, but the probability of decline fell short of 90 percent. Thus, on

a a nontrivial minority of posterior sample paths, there was less deflation risk at the

prewar trough.

6 Discussion of related literature

Our paper is closely related to research on changing inflation persistence. For instance,

Barsky (1987) documents that U.S. inflation was well approximated by a martingale-
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difference process before World War II and became strongly autocorrelated only dur-

ing the Great Inflation. Benati (2008) corroborates these findings and shows more

generally that inflation is weakly persistent whenever a monetary regime has a clearly

defined nominal anchor. Our results and those of Stock and Watson (2007) are broadly

consistent with their findings.

While our statistical model stays close to Stock and Watson’s (2007) representation,

a number of other papers extend it in various directions to capture other features of

postwar US inflation. For instance, Cogley, et al. (2010) investigate autocorrelation in

the inflation gap, πt − µt, and Cecchetti, et al. (2007) model log-volatility innovations

as a two-state Markov process, thus allowing jumps in rt and qt. Kozicki and Tinsley

(2012) and Mertens (2011) introduce survey data on inflation forecasts to aid identifi-

cation,16 Mertens (2011) and Stella and Stock (2012) develop multivariate forecasting

models by incorporating data on other macroeconomic outcomes such as unemploy-

ment and the term structure of interest rates,17 and Chan, et al. (2013) introduce

a priori bounds on the random walk component µt.
18 Another worthy extension, es-

pecially for modeling 19th century inflation dynamics, would be to consider adding a

stationary component to the log price level.

All of these extensions merit further research, but we chose not to undertake them

here because we wanted to draw out the implications of a well-known and relatively

simple statistical model for pre-World War II inflation volatility. We believe we have

captured the main contours of the rise and fall in inflation volatility, and we encourage

others to join us by studying how alternative model specifications affect the results.

7 Concluding remarks

Our analysis of US wholesale price inflation evinces recurring episodes of rising and

falling price-level uncertainty and instability. Major outbreaks of price level instability

and unpredictability are associated with the Civil War, the two World Wars and Great

Depression, and the Great Inflation and Great Recession. In each instance, a crisis

disrupted pre-existing monetary arrangements and created considerable uncertainty

about the future. In each case, policy makers eventually found a path back to price

stability, but that took a long time: the average time from peak to trough was 30 years.

16 Surveys do not extend far enough back in time to help us.
17 Coping with measurement error is a bigger challenge in a multivariate environment, one well

worth undertaking.
18 In the present context, estimates of µt seem reasonable, making explicit bounds unnecessary.

Whether bounds that are reasonable for an inflation-targeting regime would remain valid in the event
of a crisis such as a great and dangerous war is open to doubt.
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Whether prices were more predictable or stable before or after the Second World

War seems to rest on trough-to-peak comparisons. When comparing peaks with peaks

and troughs with troughs, no compelling evidence emerges that the price level was

more stable or less uncertain in one era than the other.

Evidence emerges for three ‘great price-level moderations,’ one near the turn of

20th century, another under Bretton Woods, and a third in the 1990s. Well-managed

systems sometimes involved links to gold – as under the classical gold standard and

Bretton Woods – but the experience of the 1990s proves that a well-managed fiat regime

can achieve the same outcomes, as Ricardo and Keynes promised. Thus, a link to gold

or some other commodity seems not to have been necessary for moderating price level

volatility.

Nor does a commodity standard provide a guarantee of permanent price stability.

The major challenge is coping with big shocks such as wars, depressions, and financial

panics. Neither a commodity nor a fiat regime is immune to big shocks, and convert-

ibility has typically been suspended in times of crisis. During the US Civil War, policy

makers in both the North and the South stopped backing their currencies with gold or

silver because issues of war finance became their paramount concerns. Convertibility

was restored in the North only in 1879, and never in the South. The classical gold stan-

dard and Bretton Woods system ended not because the authorities thought they had

discovered better methods for maintaining price stability but because other economic

objectives supervened. Because maintaining convertibility during a crisis was unlikely,

there never was a believable unconditional commitment to a commodity standard. Be-

fore the breakdown of Bretton Woods we saw mixed standards, with convertibility

during tranquil times and suspensions and reversions to fiat money after big shocks.

Our analysis is cast in terms of a purely statistical model, so we have nothing to say

about why someone might care about the uncertainty and/or the stability of inflation

and how they have changed over time. But plenty of economic models do suggest that

we should care. For example, models in the tradition of Lucas (1973) make social

welfare depend on the uncertainty of the log price level, but not its stability. Other

models in the tradition of Lucas (2000) focus on welfare effects of the stability of

inflation, not its uncertainty. In other more general macroeconomic models, people

might care about both price level stability and price level uncertainty. Our statistical

characterizations of price level stability and price level uncertainty set the stage for a

quantitative economic analysis of their welfare consequences.
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