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Abstract

We study prices and allocations in a complete-markets, pure-exchange econ-
omy in which there are two types of agents with different priors over infinite
sequences of the aggregate endowment. Aggregate consumption growth evolves
exogenously according to a two-state Markov process. The economy has two
types of agents, one that learns about transition probabilities and another that
knows them. We examine allocations, the market price of risk, and the rate
at which asset prices converge to values that would be computed under the
assumption that all agents know the transition probabilities.

Key words: Walrasian equilibrium, Bayes’ Law, heterogeneity, market price of
risk, survival.

1 Introduction

Cogley and Sargent (2008) showed that market prices of risk would be high in
an economy with a risk-neutral Bayesian representative agent who learns about the
parameters of a transition matrix for aggregate consumption growth starting with
a pessimistic prior in 1933.1 This paper studies the robustness of that finding to a
perturbation that adds a small fraction of agents who know the parameters of the
transition matrix. Traders participate in a Walrasian equilibrium in which they do
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not infer information from prices (see Grossman (1981)).2,3 Under what we assume
to be the true data-generating mechanism, the survival-of-the-fittest force analyzed
by Blume and Easley (2006) causes the more knowledgeable agents’ influence on
equilibrium prices to grow over time along with their wealth. We study how quickly
that dissipates the effects of the initial pessimism of the less informed agents on
equilibrium prices.4

To give the survival mechanism a large scope to moderate the effects of initial
pessimism, we assume complete markets that allow agents to make trades of claims
to wealth that are motivated solely by the different subjective probabilities they put
on future states. That gives the agents many opportunities to place bets that over
time stochastically increase the share of wealth of the traders who know transition
probabilities.

We solve a Pareto problem to compute competitive equilibrium prices and allo-
cations, thereby implicitly defining an initial allocation of wealth. We study how the
market price of risk evolves as a function of the relative Pareto weight on the better-
informed agent. Among other things, we want to know how large the Pareto weight
on the better-informed agent has to be in order to eradicate the effects of the initial
pessimism that Cogley and Sargent (2008) attributed to a representative agent.

Because we specify the data generating mechanism and agents’ beliefs so that
the truth is in the support of both agents’ beliefs, the survival analysis of Blume and
Easley (2006) lets both types of agents have positive wealths in the limit. However, the
agents’ ultimate shares of aggregate consumption are random variables that depend
on the history of the growth rate of aggregate consumption. We calculate probability
distributions of these shares for various horizons.5

2 The model

The aggregate endowment process is the same as in Cogley and Sargent (2008).
The two types of agents have identical one-period utility functions but different pri-
ors that imply different beliefs about histories of aggregate growth rates. Agent 1
uses Bayes’ law to learn about transition probabilities. Bayes’ law induces a different
probability measure over histories of aggregate consumption growth rates for agent 1

2We endow our two types of agents with different priors. For reasons discussed in subsections 2.1
and 2.2, if we had endowed the two types of agents with a common prior, our robustness exercise
would be trivial: the presence of the more knowledgeable type 2 agent would cause the pessimism
of the type 1 agent to evaporate completely at time 0.

3Kogan et al. (2006) study a setting in which most agents know the data generating mechanism
and form forecasts accordingly but a low-wealth small measure of irrational agents still has important
influences on prices.

4In the representative agent economy of Cogley and Sargent (2008), Bayes’ law also dissipates
pessimism.

5Beker and Espino (2008) study limiting portfolios and volume in a related economy.
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than is believed by agent 2, who knows the true transition probabilities from the out-
set. Agents take prices as given and trade history-contingent claims to consumption
for all finite histories.

2.1 The endowment process, beliefs, and trading opportuni-

ties

The consumption good arrives exogenously and is nonstorable, so all current-
period output is consumed immediately. Realizations for gross consumption growth
follow a two-state Markov process with high and low growth states, denoted gh and gl,
respectively. The Markov chain has a transition matrix F, where Fij = Prob[gt+1 =
gj|gt = gi]. We let gt = [gt, gt−1, . . . , g0] denote a history of aggregate growth rates.
At time t ≥ 0, agents of both types have the information set gt.

The two types of agents begin with different priors in the form of joint densities
over (F, g∞). The marginal distribution over F for the type 1 agent who learns is
nontrivial and includes in its support the true F that actually governs the data. For
the type 2 agent, the marginal distribution over F is concentrated on the true F .6

2.2 Walrasian versus rational expectations equilibrium

We study a complete markets economy with time 0 trading of a complete set of
claims to consumption contingent on finite histories gt for all t ≥ 0. We study what
Grossman (1981) calls a Walrasian equilibrium, in which traders take prices as given
and do not infer information from prices.

We put individuals in a setting in which the only information revealed by prices
is subjective probabilities of future g’s. We do this by assuming that agents have
different priors over g∞ and common information sets, and not a common prior with
different information sets.7

If we had made a different assumption about agents’ beliefs, it would be have been
appropriate to study an equilibrium in which traders do extract information from
observed prices, what Grossman (1981) calls a rational expectations equilibrium.8 In
particular, we could have started our two types of agents with a common prior over
(F, g∞, s), where s is a signal that the type 2 agent but not the type 1 agent receives

6The term ‘true F ’ has no special status in the theory underlying the Walrasian competitive
equilibrium prices and allocations. Two distinct probability densities over infinite sequences of
consumption growth are simply ingredients of the two types of agents’ preferences. We do not have
to use the term ‘true F ’ until we simulate equilibrium allocations and prices under a particular
probability distribution.

7Thus, we do not adhere to the “Harsanyi Doctrine” that asserts that differences in individuals’
beliefs are to be attributed entirely to differences in information.

8Pearlman and Sargent (2005) study the rational expectations equilibrium for the private infor-
mation environment of Townsend (1983) and show that firms can extract all of other firms’ private
information from prices.
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Table 1: Maximum Likelihood Estimates of the Consumption Process (Cecchetti
et al. (2000))

Fhh Fll µh µl σε

Estimate 0.978 0.515 2.251 -6.785 3.127
Standard Error 0.019 0.264 0.328 1.885 0.241

at time 0. We could let the signal reveal the value of F and assume that while a
type 1 consumer observes gt and equilibrium prices at t ≥ 0, a type 2 agent observes
s as well as gt and equilibrium prices. Under these assumptions about priors and
information, rational-expectations equilibrium prices would immediately reveal s to
the type 1 agents, and the two types of agents would have a common posterior over
(g∞, F ) (see Milgrom and Stokey (1982)). In that case, the pessimism of the type 1
agent would completely evaporate at time 0.9

Since we are interested in continuing effects of gradual learning, we chose our
Walrasian specification to keep learning alive.

2.3 Calibration

We calibrate F from estimates reported by Cecchetti et al. (2000) who estimated
a hidden Markov model for aggregate consumption growth,

∆ ln Ct = µ(st) + εt, (1)

where st is an indicator variable that records whether consumption growth is high or
low and εt is an identically and independently distributed normal random variable
with mean 0 and variance σ2

ε . They estimated the model by maximum likelihood using
data on annual per capita US consumption for the period 1890-1994. We reproduce
their results in table 1.

The high-growth state is persistent, and the economy spends most of its time there.
Contractions are more severe than typical post-WWII recessions, with a mean decline
of 6.785 percent per annum. Moreover, because the low-growth state is moderately
persistent, a run of contractions can occur with nonnegligible probability, producing
something like the Great Contraction. For example, conditional on a contraction

9Sometimes differences in priors can be reformulated in terms of common priors but different
information sets. Thus, we could have started our two types of agents with a common prior over
(g∞, F ), then given the type 1 agent the information set gt at t and the type 2 agent both gt and
knowledge of particular tail events for the {gt} process in the form of limiting values of the empirical
fractions of transitions from high to low growth and from low to high growth states. Knowing those
tail events is tantamount to knowing F . In the text, we allow agents to exchange claims contingent
only on finite histories gt for all t ≥ 0, so there is no market in which agents can bet on tail events.
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having begun, the probability that it will last 3 more years is 14 percent, and if that
were to occur, the cumulative fall in consumption would amount to 25 percent.

We simplify the endowment process by suppressing the Gaussian innovation εt

and assume instead that gross consumption growth follows a two-point process,

gt = gh ≡ 1 + µh/100 if st = 1, (2)

= gl ≡ 1 + µl/100 if st = 0.

We retain the point estimates of µh and µl made by Cecchetti et al. (2000) as well as
their estimates of the transition probabilities Fhh and Fll.

We assume that this model represents the true process for consumption growth.
We also assume that both agents know gh and gl and that a type 2 agent knows the
true transition matrix F . A type 1 agent 1 uses Bayes’ law to learn about F .

2.4 Preferences over consumption plans

A consumption plan for agent i is a sequence of functions Cit(g
t), t ≥ 0, whose

time t component maps a time t history gt into agent i’s time t consumption. Two
infinitely-lived consumers share the same isoelastic one-period utility function u(Cit) =
Cit(gt)1−α−1

1−α
and order consumption plans according to the expected utility functionals

Ui =
∞

∑

t=0

∑

gt

βt Cit(g
t)1−α − 1

1 − α
pri(g

t), (3)

or

Ui = Ei0

∞
∑

t=0

βtC
1−α
it − 1

1 − α
, (4)

where pri(g
t) is agent i’s subjective probability over gt and Eit denotes conditional

expectation with respect to pri(g
t). The parameters α and β are the coefficient

of relative risk aversion and subjective discount factor, respectively, and they are
common across agents. In our simulations, we set α = 2 and β = 1.03−1.

2.5 The Pareto Problem

For some initial distribution of wealth, a competitive equilibrium allocation solves
a Pareto problem:

L =
∑∞

t=0
βt

∑

gt

{

λu[C1t(g
t)]pr1(g

t) + (1 − λ)u[C2t(g
t)]pr2(g

t)

+µ(gt)
[

Ct(g
t) − C1t(g

t) − C2t(g
t)

]

}

,

where λ is the Pareto weight on the Bayesian consumer, gt represents a history of
states through date t, and µ(gt) is the Lagrange multiplier on the aggregate resource
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constraint at date t, history gt. The Pareto planner distributes consumption so that
the ratio of marginal utilities equals the ratio of Pareto weights,

u′(C2t(g
t))pr2(g

t)

u′(C1t(gt)])pr1(gt)
=

λ

1 − λ
. (5)

With isoelastic utility, equation (5) can be solved to express consumption for agent
1 as a history-dependent share of the aggregate endowment,

C1t(g
t) =

φ(gt)

1 + φ(gt)
Ct(g

t) (6)

where

φ(gt) =

[

λ

1 − λ

pr1(g
t)

pr2(gt)

]1/α

. (7)

The more informed type 2 agent gets the remainder,

C2t(g
t) =

1

1 + φ(gt)
Ct(g

t). (8)

With common beliefs (i.e., pr1(g
t) = pr2(g

t)), φ = [λ/(1 − λ)]1/α, implying that
the agents get constant shares of aggregate consumption. Diverse beliefs alter this
common-beliefs allocation by shifting resources toward agent 1 in histories that he
thinks are more likely than agent 2. In our model, agent 1 is initially pessimistic,
overestimating the probability of a contraction state. Hence, along a sample path,
agent 1 gets more consumption relative to the common-beliefs benchmark in the
contraction state and less in the expansion state. Agent 2’s allocation is twisted in
the opposite direction. Since expansions are the norm, agent 2 frequently benefits
from agent 1’s pessimism. But in a contraction, the consumption of agent 2 falls by
more than the aggregate endowment. Thus, the presence of a pessimistic agent alters
equilibrium prices in ways that increase the consumption risk that the more informed
agent chooses to bear in a competitive equilibrium.

2.6 Arrow security prices

As usual, we can support a Pareto optimal allocation with an appropriate initial
distribution of wealth, sequential trading of one-period Arrow securities, and a set
of ‘natural’ limits on the quantities of Arrow securities that can be issued in each
history, date pair (for example, see Ljungqvist and Sargent (2004, ch. 8)). In the
present context, it suffices to trade two Arrow securities each period, one that pays
one unit of aggregate consumption when gt+1 = gh and zero units otherwise, and the
other paying off when gt+1 = gl. Their prices are denoted Qht and Qlt, respectively.
The gross return on the high-growth state asset is 1/Qht when gt+1 = gh and 0
otherwise. Arrow securities prices are
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Qht = β
u′(Cit+1(gh, g

t))

u′(Cit)
pri(gt+1 = gh|g

t) (9)

and

Qlt = β
u′(Cit+1(gl, g

t))

u′(Cit)
pri(gt+1 = gl|g

t). (10)

2.7 Financial wealth

Given a division of the aggregate endowment into an amount yi
t(g

t) assigned to
an agent of type i at time t and history gt, we can use implied Arrow-Debreu prices to
define a sequence of financial wealths that equal equilibrium quantities of one-period
Arrow securities (see Ljungqvist and Sargent (2004, pp. 224-233)). For t ≥ 0, let
qt
τ (g

τ) be the time t Arrow-Debreu price for a claim to a unit of consumption at date
τ after history gτ and let ci

τ (g
τ) be the consumption of a type i agent at date τ after

history gτ . Then financial wealth at date t after history gt is

W i
t (g

t) =

∞
∑

τ=t

∑

ĝτ |ĝt=gt

qt
τ (ĝ

τ)[ci
τ (ĝ

τ ) − yi
τ (ĝ

τ)]

where ĝτ |ĝt = gt is a history gτ , τ ≥ t whose partial history up to t is gt.
In principle, for a given assignment of individual endowments {yi

t(g
t)} for i = 1, 2,

we can compute the financial wealths of our two types of consumers recursively, but
for our model it is computationally demanding and we do not do so because we are
principally interested in allocations and market prices of risk, which are easier to
compute.

2.8 Alternative representations of the unique SDF

Because markets are complete, there is a unique stochastic discount factor with
respect to the informed type 2 agent’s probability measure. The stochastic discount
factor has the alternative representations

SDF = m2t+1 = m1t+1
pr1(gt+1|g

t)

pr2(gt+1|gt)
(11)

where mit+1 = β(Cit+1(g
t+1/Cit(g

t))−α denotes the intertemporal marginal rate of
substitution for consumer i.10

10Cogley and Sargent (2008) featured the learning wedge captured by the likelihood ratio
pr1(gt+1|g

t)/pr2(gt+1|g
t). In their economy, the representative agent is of type 1, there is no type

2 informed agent, but pr2(gt+1|g
t) represents the true data generator. Bossaerts (2002, 2004) also

uses a ratio of the likelihood of a Bayesian agent to the likelihood for a data-generating process to
model prices of risk. Hansen (2007) and Hansen and Sargent (2007a) develop models of robust asset
pricing that feature another probability ratio, prwc(gt+1|g

t)/prdgp(gt+1|g
t), where the denominator

represents probabilities under the true data-generating process and the numerator is a worst-case
probability model.
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Equality between the two representations of the common stochastic discount fac-
tor in (11) captures how agent-specific consumption growth rates must adjust to offset
differences in subjective conditional probabilities. We can use these two representa-
tions of the stochastic discount factor to motivate alternative notions of the market
price of risk.

2.9 Market prices of risk

Hansen and Jagannathan (1991) define the conditional market price of risk as
the ratio of the conditional standard deviation of a stochastic discount factor to its
conditional mean,

mprit =
σit(mit+1)

Eit(mit+1)
. (12)

Here Eit(·) and σit(·) represent the conditional mean and standard deviation, re-
spectively, evaluated with respect to consumer i’s predictive probabilities. To find
unconditional prices of risk, we marginalize with respect to the growth state, using
consumer i’s unconditional densities.

Because the two consumers have diverse beliefs, they also form different assess-
ments about the price of risk. Since agent 2 knows the true transition probabilities,
his perceived law of motion for aggregate consumption coincides with the actual law
of motion. Hence we call mpr2t the ‘rational-expectations’ price of risk. Similarly,
because the Bayesian consumer uses his subjective predictive probabilities to make
forecasts, we call mpr1t the ‘subjective’ price of risk.

2.10 Bayesian learning and predictive probabilities

Agents observe the history of their own consumption, of aggregate consumption,
and of Arrow security prices.11 As in Cogley and Sargent (2008), we assume that
the type 1 Bayesian consumer adopts a beta-binomial probability model for learning
about F . A binomial likelihood is a natural representation for a two-state endowment
process, and a beta density is the conjugate prior for a binomial likelihood. We inject
additional pessimism by applying the T

2 risk-sensitivity operator of Hansen and Sar-
gent (2007b). This operator distorts a benchmark beta prior by tilting probabilities
towards the low-growth state.

11They also know the sharing rules (6)-(8), and from this they can deduce the other type of agent’s
beliefs. Although the Bayesian consumer deduces the beliefs of the fully-informed agent, that does
not mean that he recognizes they are the true probabilities. The Bayesian type 1 agent quickly
discovers that the type 2 agent has a dogmatic prior. If agent 1 knew that agent 2 knew the truth,
the sharing rule would reveal F , and agent 1 could also become fully informed. But we assume that
from the perspective of agent 1, the beliefs of agent 2 are just someone else’s prior. Therefore, they
do not influence the type 1 agent’s Bayesian updating. See the discussion in subsections 2.1 and 2.2.
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Table 2: Prior Means for Fhh and Fll.

Beta Worst-Case
Fhh Fll Fhh Fll

1919 − 1933 0.915 0.805 0.869 0.966

Worst-case priors are calculated for α = 2 and θ = 125.

2.10.1 A type 1 agent’s prior

As in Cogley and Sargent (2008), for the type 1 agent, we imagine a consumer
who is about to emerge from the Great Contraction in 1933 and has a conventional
beta prior

f(Fhh, Fll) ∝ f(Fhh)f(Fll), (13)

where f(Fhh) and f(Fll) are independent beta densities,

f(Fhh) ∝ Fhh
nhh

0
−1(1 − Fhh)

nhl
0
−1, (14)

f(Fll) ∝ Fll
nll

0
−1(1 − Fll)

nlh
0
−1.

The variable nij
t is a counter that records the number of transitions from state i to

j through date t, and the parameters nij
0 represent prior beliefs about the frequency

of transitions. In the following subsections, we describe how we elicit a pessimistic
prior for the type 1 agent.

2.10.2 Using a short sample

To elicit a pessimistic outlook, we calibrate f(Fhh, Fll) by fitting to a short training
sample covering the period 1919-1933 that oversamples contraction states. Because
actual data on consumption growth are realizations of a continuous random variable,
we fit a hidden Markov model to the actual data and then calibrate f(Fhh) and
f(Fll) so that they have the same mean and degrees of freedom.12 The results are
recorded in the middle column of table 2. Consumption growth was sharply negative
during 1930-1933, and with a short training sample this experience would have made
a Bayesian pessimistic about the onset and persistence of contractions. Thus, Fhh is
lower and Fll is higher than the estimates of Cecchetti et al. (2000).

2.10.3 Pessimistic twisting

In Cogley and Sargent (2008), we found that more pessimism is needed to attain
good results for the equity premium and market price of risk. Accordingly, we mul-
tiply the benchmark beta prior by a nonnegative random variable ζ(Fhh, Fll; θ) that

12For details, see Cogley and Sargent (2008).
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pessimistically distorts beliefs,

fwc(Fhh, Fll) ∝ f(Fhh, Fll)ζ(Fhh, Fll; θ). (15)

To obtain the function ζ(Fhh, Fll; θ), we apply the T
2 risk-sensitivity operator of

Hansen and Sargent (2007b). This operator helps the consumer evaluate continuation
values in a way that guards against misspecification of his prior. Application of
the operator gives the indirect utility function for a problem in which the decision
maker chooses a distortion to his benchmark prior f(Fhh, Fll) in order to minimize the
expectation of a continuation value function plus an entropy penalty. The penalty
on entropy constrains the set of alternative priors against which the decision maker
wants to guard, with the size of the set decreasing in a positive robustness parameter
θ. The worst-case distortion to the prior is

ζ(Xt, θ) ∝ exp
(−V (Xt)

θ

)

, (16)

where V (Xt) is the consumer’s value function

V (Xt) = U(Ct) + βEt[V (Xt+1|Xt],

and the state Xt consists of statistics summarizing the observed history gt along
with the unobserved parameters Fhh, Fll. Since we use T

2 only to elicit a prior, we
condition on the training sample for gt, obtaining an initial distortion ζ(Fhh, Fll; θ).
Notice that ζ(Fhh, Fll; θ) → 1 as θ → +∞. Thus, in the limit as θ → +∞ we recover
the undistorted beta prior.

We set θ = 125 to make fwc(Fhh, Fll) resemble one of the worst-case priors in our
earlier paper. The results are recorded in the third column of table 2. Relative to the
beta priors, the worst-case priors underestimate Fhh and exaggerate Fll. Thus, the
robust consumer initially believes that contractions occur more often and are longer
when they do occur. Since long contractions have the character of Great Depressions,
our robust consumer is initially wary of another crash. A Bayes factor actually favors
the distorted prior over the benchmark beta prior, so the Bayesian consumer would
not dismiss this as implausible. For further discussion of the worst-case priors, see
Cogley and Sargent (2008).

Next, we approximate fwc(Fhh, Fll) by another product of beta densities,

pwc(Fhh, Fll) ∝ p(Fhh)p(Fll), (17)

where p(Fhh) and p(Fll) are calibrated so that pwc(Fhh, Fll) has the same mean and
degrees of freedom as fwc(Fhh, Fll). We do this partly for computation reasons, as it
speeds our calculations quite a lot.

But there is also a substantive reason. The dependence induced by ζ(Fhh, Fll; θ)
is an interesting feature in its own right, and in our earlier paper it contributed to
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higher prices of risk. In that paper, α was calibrated at 0, and the worst-case prior
induced positive correlation between Fhh and Fll. Thus, after a transition from gh to
gh, the mean of Fhh would increase, but so would the mean of Fll. Similarly, after
exiting a contraction, the mean of Fll would decline but so would the mean of Fhh.
In this way, every step in the direction of optimism was accompanied by a partially
offsetting step toward pessimism. This caused pessimism to evaporate more slowly
and contributed to high prices of risk.

With α = 2, the effect seems to be different. In this case, (15) induces negative
correlation between Fhh and Fll. Thus, as Fhh rises, Fll falls, and vice versa. Since
inverse dependence makes pessimism evaporate more quickly, it causes the market
price of risk to decline more rapidly. To counteract this effect, we endow the consumer
with the independent prior (17). The two priors have the same mean and degrees of
freedom, but (17) implies that Fhh and Fll are updated separately.13

Figure 1 depicts the marginal priors for Fhh and Fll. Solid lines portray the bench-
mark beta prior and dashed and dotted lines portray the two worst-case densities.
Notice how the risk-sensitivity adjustment reshapes the benchmark priors by shifting
probability mass toward lower values of Fhh and higher values of Fll.

2.10.4 The posterior on Fhh and Fll

Next, we derive an expression for agent 1’s posterior, p1(Fhh, Fll|C
t, Ct

1t, Q
t).

Given the history of aggregate and own consumption, the history of Arrow securities
prices Qt conveys no extra information. This follows from the fact that Arrow prices
are deterministic functions of the other conditioning information (see equations (9)
and (10)).14 Hence, the posterior simplifies to

p1(Fhh, Fll|C
t, Ct

1t, Q
t) = p1(Fhh, Fll|C

t, Ct
1). (18)

Similarly, given knowledge of the sharing rule and history of aggregate consumption,
C1t is also a deterministic function of the other conditioning information (see equation
(6)). Therefore, the history of own consumption is also redundant,

p1(Fhh, Fll|C
t, Ct

1, Q
t) = p1(Fhh, Fll|C

t). (19)

Hence, Bayesian updating simplifies to learning about the transition probabilities
in light of observations on aggregate consumption. Appendix A describes how this is
done. Among other things, the appendix establishes that the prior pwc is conjugate

13Because the worst-case prior depends on the utility function, the value of α affects the outcome
of applying the T

2 operator. When α = 0 as in Cogley and Sargent (2008), the agent cares only
about mean consumption growth and not about smoothing consumption across states. When α = 2,
the agent prefers a smooth consumption process. The worst-case transition matrix for an α = 0
consumer therefore differs from the worst-case transition matrix for an α = 2 consumer.

14Bayesians remember their past beliefs as well.
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Figure 1: Beta and Robust Priors. Solid lines depict undistorted Beta priors, dashed
lines portray worst-case priors for α = 2 and θ2 = 125, and dotted lines illustrate the
independent beta approximation to the worst-case prior.
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to a binomial likelihood function. Hence the posterior is also a product of beta
densities, and the vector of counters nt constitute sufficient statistics. The Bayesian
consumer enters each period with a prior of the form (17). After observing aggregate
consumption growth, he updates the counters, incrementing by 1 the element nij

t+1

that corresponds to the realizations of gt+1 and gt :

nij
t+1 = nij

t + 1 if gt+1 = gj and gt = gi, (20)

nij
t+1 = nij

t otherwise.

Substituting the updated counters into (24) and normalizing delivers the new poste-
rior, which then becomes his prior for the following period.

It is convenient to factor pri(g
t) as

pri(g
t) =

∏t

s=1
pri(gs|g

s−1), (21)

where pri(g1|g
0) is agent i ’s prior distribution. To solve the Pareto problem and

compute Arrow securities prices, we need the posterior predictive probabilities,

pr1(gt+1 = gj|gt = gi, nt) =

∫∫

pr1(gt+1 = gj|gt = gi, nt, Fhh, Fll)p(Fhh, Fll|gt = gi, nt)dFhhdFll.

(22)
In appendix A, we demonstrate that pr1(gt+1 = gj|gt = gi, nt) = F̂ij(t), the posterior

mean of Fij. Given our assumptions, the posterior mean reduces to F̂ij(t) = nij
t /(nih

t +
nil

t ).

3 Two Benchmarks

Before studying the diverse-beliefs economy, we present results for two bench-
marks, a rational-expectations economy populated only by a fully-informed consumer
and a Bayesian economy in which the fully-informed consumer is absent. These bench-
marks correspond to λ = 0 and λ = 1, respectively. Later we compare these polar
cases to outcomes for intermediate values of λ.

3.1 A representative agent with full information

When λ = 0, the model reduces to a standard representative-agent economy
in which the consumer knows the transition probabilities. Tables 3 and 4 report
the Arrow security prices and market prices of risk that emerge from this model.
Despite the possibility of a sharp decline in consumption, market prices of risk are
quite small. The unconditional price of risk is just 0.032, an order of magnitude
smaller than the lower bound of Hansen and Jagannathan (1991). The price of risk
is higher in contractions than in expansions – 0.092 as opposed to 0.030 – but the
contraction-state price of risk also falls well short of the Hansen and Jagannathan
lower bound.

13



Table 3: Arrow Security Prices

Qht Qlt

gt = gh 0.908 0.025
gt = gl 0.449 0.577

Table 4: Market Prices of Risk

Expansion Contraction Unconditional
MPR 0.030 0.092 0.032

3.2 A representative Bayesian consumer

When λ = 1, the model reduces to a representative-agent economy in which the
consumer uses Bayes’ law to learn about the transition probabilities. Figures 2 and 3
summarize Arrow prices and market prices of risk averaged across 1000 sample paths.

The consumer’s beliefs satisfy a Bayesian consistency theorem, so Arrow prices
eventually converge to their λ = 0 full-information rational-expectations values. But
this takes a long time. Along a sample path, the consumer is pessimistic about the
onset of a contraction. Thus, conditional on being in an expansion, Qh is lower and Ql

higher than their full-information values (see the first row of figure 2). The consumer
is also pessimistic about the persistence of contractions. Therefore, conditional on
being in a contraction, Qh is again lower and Ql higher than their limiting values (see
the second row of the figure).

An outside observer who imputes knowledge of the transition probabilities to a
representative consumer would say either that the consumer is making systematic
pricing errors or that he is more risk averse than α = 2.

Figure 3 depicts subjective and rational-expectations prices of risk. Because the
consumer is mildly risk averse, subjective prices of risk are small, on the order of
0.03 to 0.09 (see the top panel of figure 3). These values are in the same ballpark
as the full-information prices of risk reported above. The prices of risk needed to
reconcile Arrow prices with rational expectations are substantially higher, however
(see the bottom panel of figure 3). The unconditional rational-expectations price of
risk is initially above 0.8 and declines gradually to 0.23 after 75 years (1933 + 75
= 2008). This is in the ballpark of Hansen and Jagannathan’s (1991) lower bound.
Going forward in time, the model predicts a further decline to around 0.15 after 200
years.

Table 5 summarizes the distribution of unconditional prices of risk in year 75. The
subjective price of risk is always smaller than 0.1, but the rational expectations (RE)
price of risk is greater than 0.2 on roughly half of the sample paths, and it exceeds
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Figure 2: Arrow Security Prices. Solid lines portray Bayesian prices, and dashed lines
depict full-information rational-expectations prices.
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Table 5: Cumulative Distribution of Unconditional MPR in year 75

pr(mpr > x) x = 0.1 0.15 0.2 0.25
Subjective MPR 0 0 0 0

RE MPR 1.0 1.0 0.495 0.279

0.25 on more than a quarter of the paths.
As in Cogley and Sargent (2008), the high rational-expectations price of risk re-

flects the change of measure that reconciles Bayesian asset prices with the true transi-
tion probabilities. That change of measure introduces a highly volatile learning wedge
into a rational-expectations Euler equation, disconnecting the rational-expectations
pricing kernel from the consumer’s subjective IMRS. The learning wedge makes the
rational-expectations pricing kernel highly volatile, even though the consumer’s sub-
jective IMRS is not. That explains why a high rational-expectations price of risk can
coexist with a mild degree of risk aversion.

4 The Diverse Beliefs Economy

4.1 How consumption is distributed

Figure 4 illustrates the share of consumption for agent 2 averaged across 1000
sample paths. The respective values of λ are calibrated to deliver initial mean shares
of 1, 5, 10, and 50 percent.15

On average, the well-informed agent’s consumption share increases over time. The
rate of growth is higher the lower is his initial mean share. For instance, when his
average share is initially 10 percent or less, his share of consumption increases by a
factor of 3 or 4 over the first 100 years and by a factor of 4 to 6 over 200. But when
average consumption shares are initially even, agent 2’s share increases by a factor of
only 1.7 over 200 years.

Figure 5 depicts histograms for consumption shares in various years, with the
share allocated to the better-informed agent on the x-axis and the proportion of sam-
ple paths on the y-axis. As time passes, the histograms shift to the right, illustrating
how the better-informed agent’s consumption share increases with high probability.

15Although this is a convenient way to calibrate λ, one should keep in mind that agent 2’s initial
consumption share understates his initial share of wealth. In this economy, for both types of con-
sumer, the time 0 financial wealths defined in subsection 2.7 are zero. Total wealth, which includes
the present value of the consumer’s endowment, equals the present value of future consumption, eval-
uated with Arrow-Debreu history-contingent prices. Since the better-informed agent’s consumption
share increases over time, it follows that his initial share of wealth exceeds his initial share of con-
sumption. Thus, for example, when λ is calibrated so that the two agents initially share consumption
equally, we allocate more than half of initial aggregate wealth to the well-informed agent.
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Figure 4: Average Consumption Share of the Fully-Informed Agent for Various λ.

The histograms also spread out over time and acquire long lower tails. This means
that there are some sample paths on which his consumption share fails to increase and
a few paths where it actually declines. Thus, although the fully-informed consumer
frequently does quite well relative to the Bayesian consumer, he does not always
prosper. As t increases, the histograms converge to a non-degenerate ergodic distri-
bution,16 but that takes a long time, and we did not run the simulation long enough
to learn what it looks like.

Figure 6 displays particular sample paths that show how various events alter
the consumption shares. This figure refers to the simulation in which the fully-
informed agent has an initial consumption share of 5 percent; the figures for initial
shares of 1 and 10 percent are similar.17 Solid lines portray aggregate consumption
growth, and dashed and dotted lines depict consumption shares for the Bayesian
and fully-informed consumers, respectively. The message of this figure is that a
consumer’s share increases when his cumulative forecasting record is superior to that
of his counterpart. The full set of sample paths contains a variety of experiences.
The figure portrays just a few of them in order to inform intuition.

The upper left panel illustrates a path along which no contractions occur. At
first, this favors the fully-informed consumer. The Bayesian consumer is initially
pessimistic about the onset of a contraction and worries too much about contractions
that do not occur. Eventually, their roles reverse. As good outcomes recur, F̂hh rises
and eventually surpasses Fhh. At that point, expansions are more likely under the
Bayesian predictive density, and his forecasting record makes a comeback relative to

16This follows from Blume and Easley (2006) and the fact that the truth lies in the support of
both agent’s beliefs.

17Matters are slightly different when the initial shares are 0.5.
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Figure 6: Particular Sample Paths, Initial Mean Share = 0.05. Solid lines portray ag-
gregate consumption growth, and dashed and dotted lines depict consumption shares
for the Bayesian and fully-informed consumers, respectively.
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that of the fully-informed agent. That shifts consumption back toward agent 1.
The upper right panel depicts a sample path on which there are just a few short

contractions. Because most transitions are from gh to gh, F̂hh converges fairly quickly
to the neighborhood of Fhh, and since there is little disagreement about this transition
probability, the onset of a contraction has only a slight effect on their consumption
shares. But because no long contractions occur on this sample path, there is substan-
tial disagreement about the persistence of contractions, the Bayesian remaining much
more pessimistic. A quick end to a contraction therefore favors the fully-informed
agent, improving his cumulative forecasting record relative to that of the Bayesian
consumer. That shifts consumption toward the fully-informed agent.

The sample path depicted in the lower left panel has many short contractions.
The occurrence of many contractions favors the Bayesian consumer. He is pessimistic
about F̂hl and predicts more gh to gl transitions than the fully-informed consumer.
The realization of many such transitions therefore improves his relative forecasting
record, shifting consumption in his favor at the onset of a contraction. On the other
hand, the fully-informed agent attaches a higher probability to high-growth states,
and he rallies when the economy transits into an expansion.

Finally, the bottom right panel illustrates a sample path with a pair of long
contractions. According to the fully-informed agent, these are rare events, so his
relative forecasting record suffers when they are realized. Hence consumption shifts
toward the Bayesian consumer when long contractions occur. Notice also how long
the penalty persists. Because of the history dependence in the Pareto allocation,
the share of the fully-informed agent remains low for many, many years after the
contraction ends.

Relative to what happens in the limit, along the transition path the Bayesian
consumer buys extra contraction insurance from the fully-informed agent. That in-
surance pays off in the event of frequent and/or long contractions, in which case the
Bayesian’s share increases at the expense of the fully-informed agent. So during fre-
quent and/or long contractions, Bayesian consumption falls by less than aggregate
consumption and that of the fully-informed agent falls by more. The payoff for the
fully-informed agent is a higher consumption share in expansions. In those states, his
consumption increases by more than aggregate consumption.

For initial consumption shares of 10 percent of less, the risk-sharing arrangement
damps consumption volatility for the Bayesian agent and amplifies it for the fully-
informed agent. Figure 7 illustrates consumption for the four sample paths shown
above. In each panel, the top line portrays aggregate consumption on a log scale,
and the bottom line depicts consumption for the fully-informed consumer. In the
aggregate, contractions are small bumps, in some cases visually hard to discern.
For the fully-informed consumer, contractions are proportionally much larger, often
resulting in a very substantial decline in consumption.

Table 6 reports the standard deviation of consumption growth in the aggregate
and for the two agents. Averaging across all sample paths, the standard deviation of
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Figure 7: Particular Sample Paths, Initial Mean Share = 0.05. In each panel, the
top line portrays aggregate consumption, and the bottom line depicts consumption
for the fully-informed consumer.
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Table 6: Standard Deviation of Consumption Growth

Initial Share ∆ ln C ∆ ln C1 ∆ ln C2

0.01 0.0196 0.0170 0.1785
0.05 0.0196 0.0155 0.1679
0.10 0.0196 0.0177 0.1565
0.50 0.0196 0.0477 0.0911

aggregate consumption growth is 1.96 percent per annum. When agent 2 has a small
initial consumption share, Bayesian consumption is a bit smoother than the aggre-
gate. But for the fully-informed agent consumption growth is almost 10 times more
volatile. Thus, the better-informed agent bears a disproportionate share of aggre-
gate consumption risk. In effect, the risk-sharing arrangement amplifies consumption
catastrophes for the fully-informed consumer relative to the aggregate data-generating
process. This affects his perception of the market price of risk.

Matters are slightly different when the fully-informed trader has an initial con-
sumption share of 0.5 (see figure 8 and the last row of table 6). The risk-sharing
arrangement still amplifies consumption volatility for the well-informed consumer,
but it also increases consumption volatility for the Bayesian consumer. Figure 8 por-
trays consumption shares for this calibration along the same sample paths shown in
figure 6. Consumption covaries negatively across consumers, so there is still a lot
of risk sharing. But relative to the previous calibrations, the consumption of the
Bayesian consumer 1 increases a lot more in favorable states of the world and falls
more in unfavorable states. This amplifies the Bayesian consumer’s perception of the
price of risk.

4.2 Arrow security prices

Figure 9 illustrates Arrow prices in the diverse-beliefs economies and compares
them with those in polar Bayesian (λ = 1) and RE (λ = 0) economies. As before, the
figures depict mean prices averaged across 1000 sample paths. The top and bottom
row depict prices conditional on being in an expansion and contraction, respectively.

The presence of a fully-informed type 2 consumer moves prices toward their
rational-expectations values. But when his initial consumption share is small, his
effect on prices is also small. Thus, when the initial mean share is 0.01, prices in
the diverse-beliefs economy are almost identical to those in the Bayesian economy.
In this case, the two lines are visually hard to distinguish. The differences are a bit
larger when his initial mean share is 0.05 or 0.10, but prices remain closer to Bayesian
outcomes than to RE values. His influence is greater, however, when his initial mean
consumption share is 0.5, and in that case convergence to the rational-expectations
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Figure 8: Particular Sample Paths, Initial Mean Share = 0.5. Solid lines portray ag-
gregate consumption growth, and dashed and dotted lines depict consumption shares
for the Bayesian and fully-informed consumers, respectively.
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Figure 9: Arrow Security Prices. Top: conditional on expansion; bottom: conditional
on contraction.
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benchmark is much more rapid.
Because the fully-informed agent bears a disproportionate share of aggregate con-

sumption risk, the price gaps shown in figure 2 no longer present such attractive
opportunities to trade. For instance, consider the Arrow security paying off in the
low-growth state. At first glance, figure 2 might seem to suggest that the fully-
informed trader could profit by selling to the Bayesian consumer because the bench-
mark Bayesian price exceeds the RE price. That impression is misplaced, however,
because the fully-informed trader bears much more downside consumption risk in
the diverse-beliefs economy than in the representative-agent, rational-expectations
economy and requires a higher selling price to compensate for the extra risk.

4.3 Market prices of risk

Figure 10 illustrates market prices in the diverse-beliefs economies and compares
them with prices of risk in the purely Bayesian economy. The left-hand column
portrays the subjective price of risk for the Bayesian consumer, and the right-hand
column depicts rational-expectations prices of risk for the fully-informed trader.18

In all but one of the calibrations, the subjective price of risk is quite small. When
the well-informed trader has a small initial consumption share, the Bayesian consumer
can buy contraction insurance and therefore bears less consumption risk than in
the pure Bayesian economy. Hence subjective prices of risk are lower in the mixed
economy. The one exception occurs when the agents initially share consumption
equally. As we have seen, in that case both agents bear more consumption risk, and
that elevates the Bayesian consumer’s subjective price of risk.

RE prices of risk are also smaller than in the Bayesian economy, but in most
cases only slightly. For the fully-informed type 2 consumer, prices of risk remain
high because he is exposed to more consumption risk than in the aggregate. For
the Bayesian consumer, the price of risk is high because of the learning wedge that
appears after expressing his Euler equation in terms of the true probabilities.

Table 7 summarizes the distribution of the rational expectations market price of
risk in year 75. When the fully-informed agent has a small initial consumption share,
the distribution is much like that in the Bayesian economy. The distribution shifts to
the left as the fully-informed trader becomes more important, but high prices of risk
emerge on a substantial fraction of sample paths even when his initial consumption
share is 0.1. Hence, the introduction of a small measure of fully-informed consumers
does not reverse the results of Cogley and Sargent (2008). A large measure of fully-
informed agents is needed to overturn those results.

18In the purely Bayesian economy, the rational-expectations price of risk involves a pricing kernel
which reconciles Bayesian asset prices with the true transition probabilities. In the diverse-beliefs
economy, this coincides with the fully-informed consumer’s price of risk.
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Figure 10: Market Prices of Risk. Top: unconditional; middle, conditional on expan-
sion; bottom, conditional on contraction.
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Table 7: Distribution of the Unconditional RE-MPR in Year 75

Initial Share Pr(mpr > 0.1) Pr(mpr > 0.15) Pr(mpr > 0.2) Pr(mpr > 0.25)
0 1.0 1.0 0.495 0.279

0.01 1.0 0.913 0.493 0.252
0.05 1.0 0.726 0.339 0.185
0.10 1.0 0.492 0.237 0.114
0.50 0.184 0.060 0.022 0.012

5 Concluding Remarks

Survival arguments depend sensitively on market completeness as well as the
distribution of risks and agents’ attitudes toward risk.19 Complete markets give the
agents in this paper many opportunities to make trades that are motivated by the
different subjective probabilities they put on future outcomes. Thus, by assuming
complete markets, we have given the survival argument ample scope to eradicate the
effects of initial pessimism on equilibrium prices. It would be interesting to compute
how market incompleteness would change that.

A Updating

The likelihood function for a batch of data, gt = {gs}
t
s=1 , is proportional to the

product of binomial densities,

f(gt|Fhh, Fll) ∝ Fhh
(nhh

t
−nhh

0
)(1 − Fhh)

(nhl
t
−nhl

0
)Fll

(nll
t
−nll

0
)(1 − Fll)

(nlh
t
−nlh

0
), (23)

where (nij
t −nij

0 ) is the number of transitions from state i to j observed in the sample.20

Multiplying the likelihood by the prior (17) delivers the posterior kernel,

k(Fhh, Fll|g
t) = F

nhh
t

−1
hh (1 − Fhh)

nhl
t
−1Fll

nll
t
−1(1 − Fll)

nlh
t
−1, (24)

∝ p(Fhh|g
t)p(Fll|g

t),

where

p(Fhh|g
t) = beta(nhh

t , nhl
t ), (25)

p(Fll|g
t) = beta(nll

t , nlh
t ).

Hence, the prior and likelihood form a conjugate pair. The posterior is also a product
of independent beta densities, and the counters are sufficient statistics.

19This is a message of Kogan et al. (2006).
20According to this notation, n

ij
t represents the sum of prior plus observed counters.
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The posterior predictive probabilities are

pr1(gt+1 = gj |gt = gi, nt) =

∫∫

pr1(gt+1 = gj |gt = gi, nt, Fhh, Fll)p(Fhh, Fll|gt = gi, nt)dFhhdFll,

=

∫∫

pr1(gt+1 = gj |gt = gi, Fhh, Fll)p(Fhh, Fll|gt = gi, nt)dFhhdFll,

=

∫∫

Fijp(Fhh, Fll|gt = gi, nt)dFhhdFll,

= F̂ij(t),

where F̂ij(t) is the posterior mean of Fij. After integrating, one can show that

F̂ij(t) = nij
t /(nih

t + nil
t ).
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