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Abstract

A policy maker knows two models of inflation-unemployment dynamics.
One implies an exploitable trade-off, the other does not. The policy maker’s
prior probability over the two models is part of his state vector. Bayes’ law
converts the prior probability into a posterior probability at each date and
gives the policy maker an incentive to experiment. For two models calibrated
to U.S. data through the early 1960s, we isolate the component of government
policy that is due to experimentation by comparing the outcomes from two
Bellman equations, the first of which ‘experiments and learns’, the second
of which ‘learns but doesn’t experiment’. We interpret the second as an
‘anticipated utility’ model and study how well its outcomes approximate those
from the ‘experiment and learn’ Bellman equation. The approximation is
good. For our calibrations, the benefits from purposeful experimentation are
small.
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1 Introduction

This paper uses competing models of inflation-unemployment dynamics as a labo-
ratory for quantifying the costs to policy makers of abstaining from the temptation
to experiment in order to refine their knowledge of the economy. We estimate the
value of deliberate experimentation to a policy maker when two models that fit the
historical data approximately equally well have sharply different operating charac-
teristics. Two competing models of inflation-unemployment dynamics differ with
respect to whether they imply an exploitable Phillips curve.

To capture a debate that raged between advocates of the natural unemployment
hypothesis and others who thought that there was an exploitable unemployment-
inflation trade-off, we imagine that a monetary policy authority has the following
two models of inflation-unemployment dynamics:1

• Model 1 (Samuelson-Solow):

Ut = .0023 + .7971Ut−1 − .2761πt + .0054η1,t

πt = vt−1 + .0055η3t

• Model 2 (Lucas):

Ut = .0007 + .8468Ut−1 − .2489(πt − vt−1) + .0055η2,t

πt = vt−1 + .0055η4t

where Ut is the deviation of the unemployment rate from an exogenous measure of
a natural rate U ∗

t , πt is the quarterly rate of inflation, vt−1 is the rate of inflation
that at time t− 1 the monetary authority and private agents had both expected to
prevail at time t, and, for i = 1, 2, 3, 4, ηit is an i.i.d. Gaussian sequence with mean
zero and variance 1. The monetary authority has a Kydland-Prescott (1977) loss
function E

∑∞
t=0 βtrt, where rt = −.5(U 2

t + λv2
t ).

2 The monetary authority sets vt

as a function of time t information.3 The monetary authority attaches probability

1We use these specifications mainly as a device to get good fitting models while keeping the
dimension of the state to the minimum required to represent ‘natural rate’ and ‘non-natural rate’
theories of unemployment. See appendix D for details.

2Alan Blinder (1998) has stressed that this objective function forces a conflict between the
policy maker (who prefers an unemployment rate lower than the natural rate) and the public
(which wants unemployment to equal the natural rate) that induces the time consistency problem
for inflation described by Kydland and Prescott (1977).

3Under this timing protocol, there is no time-consistency problem in Kydland and Prescott’s
model. See Stokey (1989).
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α0 to model 1 and probability 1−α0 to model 2.4,5 Although they fit the U.S. data
from 1948:3-1963:I almost equally well, under our loss function these two models
call for very different policies toward inflation. Model 1, whose main features many
have attributed to Samuelson and Solow (1960), has an exploitable tradeoff between
vt and subsequent levels of unemployment. Having operating characteristics advo-
cated by Lucas (1972, 1973) and Sargent (1973), model 2 has no exploitable Phillips
curve: variations in the predictable part of inflation vt affect inflation but not un-
employment. If α0 = 0, then our decision maker should implement the trivial policy
vt = 0 for all t. However, if α0 > 0, the policy maker should set vt 6= 0, partly to
exploit a probable inflation-unemployment tradeoff, and partly to refine α.

We formulate and solve the pertinent Bellman equation then use the optimal
decision rule to study the following questions:

1. Suppose that the Samuelson-Solow model generates the data and that before
date T the government had assigned probability α = 1 to the Samuelson-
Solow model and had used the corresponding optimal policy for a long time,
so that the economy is in a stochastic steady state at date T − 1. Having
been persuaded by an advocate of the natural rate hypothesis, at date T the
government suddenly lowers α to a number α ∈ (0, 1) even though, unbe-
knownst to the government, the Samuelson-Solow model is true. Under these
assumptions, we use our model to quantify the adverse effects on government
policy that follow from its attaching some weight to the Lucas model at dates
t ≥ T . Lucas’s model is subversive in the sense that it leads to higher unem-
ployment than would have prevailed had it never been invented. We ask how
much higher is unemployment, and how long does it take for the government
to forget the Lucas model?

2. Suppose that the Lucas model generates the data and that before date T the
government had assigned probability 1 − α = 1 to the Lucas model and had

4We assume that model parameters are known because we want to reduce the dimension of
the monetary authority’s posterior distribution. If we were to treat the parameters as unknown,
probability distributions for those parameters would be part of the monetary authority’s prior,
increasing the dimension of the state beyond what we can manage computationally. See Wieland
(2000a,b) and Beck and Wieland (2002) for analysis of the Bellman equation for a decision maker
who experiments to learn about parameter values. See El-Gamal and Sundaram (1993) for an
analysis of convergence in a class of models in which agents are learning. Kenneth Kasa (1999)
adapts results that earlier researchers had obtained for a monopolist who could learn, but chooses
not to learn, his demand curve. Kasa thereby creates a model in which the Fed chooses not to
learn objects that could be learned with a different strategy.

5Hansen and Sargent’s (2005a) T
1 operator, which we apply in a companion paper, allows

us to analyze robustness to model perturbations that can be interpreted as unfocused coefficient
uncertainty. Their T

2 operator would allow us to study focused coefficient uncertainty.
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used the corresponding optimal policy for a long time, so that the economy is
in a stochastic steady state at date T − 1. At date T , having been persuaded
by advocates of the Samuelson-Solow model, the government suddenly lowers
1−α to a number in (0, 1) even though, unbeknownst to the government, the
Lucas model is true. We use our model to quantify the effects on government
policy that follow from its putting some weight on the Samuelson-Solow model.
Samuelson and Solow’s model is pernicious in leading to higher inflation but
no lower unemployment than if it had never been thought of. We study how
much more inflation is produced by this scenario and how long it takes for the
data to discredit the Samuelson-Solow model.

3. We want to quantify the role of ‘active’ as opposed to ‘passive’ experimenta-
tion. We do this by comparing the decision rule and value function for the
problem that includes α as a state variable and Bayes’ law as a transition
equation with the decision rule and value function that come from another
problem that suppresses α as a state variable and Bayes’ law as a transition
equation. By comparing the associated decision rules, we identify a com-
ponent of time t decisions that is attributable to intentional experimentation.
Another perspective on these calculations is that they allow us to evaluate how
well ‘anticipated utility’ decision rules approximate the decision rules that do
experiment optimally.6

1.1 Organization

Section 2 formulates Bellman equations, one for a decision maker who intentionally
experiments, another for an ‘anticipated utility’ decision maker who does not con-
sciously experiment. These Bellman equations describe alternative states of mind
for the policy maker. Section 3 describes alternative ways of modelling how the
true data generating model relates to the policy maker’s state of mind, and circum-
stances under which the government eventually learns the truth. Section 4 discusses
our numerical approximations to the value functions and decision rules. Section
5 describes quantitative experiments designed to answer the three questions asked
above, as well as a variety of statistics on ‘waiting times’ to learn the truth. Sec-
tion 6 adds some concluding remarks. Five appendixes contain technical details
about how we solved the Bellman equations and calibrated the two models. In
a companion paper, Cogley, Colacito, Hansen, and Sargent (2005), we study how

6Cogley and Sargent (2005) use an anticipated utility approximation to compute decision rules
in the context of a model whose state is so large that calculations like those in this paper succumb
to the curse of dimensionality. See Kreps (1998) for a justification of anticipated utility models.
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the decision maker responds to concerns about two distinct sources of misspecifi-
cation of his model, namely, misspecification of his prior over the two models, and
misspecification of each of those approximating models.

2 Two formulations of the policy problem under

model uncertainty

We map our example into a general setup, then state Bellman equations for the
government under two alternative assumptions about the government’s response to
the opportunity to experiment.

2.1 The models

The policy maker has two models

st+1 = Aist + Bivt + Ciεi,t+1, (1)

i = 1, 2, where st is a state vector, vt is a control vector, and εi,t+1 is an i.i.d.
Gaussian process with mean zero and contemporaneous covariance matrix I. Let
F (·) denote the c.d.f. of this normalized multivariate Gaussian distribution. At
time t, the policy maker has observed a history of outcomes st = st, st−1, . . . , s0 and
assigns probability αt to model 1 and probability (1 − αt) to model 2. By applying
Bayes’ Law, the policy maker updates αt:

αt+1 = B(αt, st+1). (2)

In equations (34) and (38) in appendix A, we provide a formula for B(αt, st+1). The
policy maker wants a policy for setting vt that maximizes

E0

∞∑

t=0

βtr(st, vt), β ∈ (0, 1), (3)

where E0 is a mathematical expectation with respect to the distribution over future
outcomes induced by the models (1) and the policy maker’s opinions about them.

2.2 Intentional experimentation

The policy maker’s belief αt is a component of the time t state vector (st, αt). In
choosing vt, it is in the policy maker’s interest to recognize the revisions of his beliefs
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that he foresees will occur through equation (2). Let V (st, αt) be the optimal value
in state (st, αt). The Bellman equation is

V (st, αt) = max
vt

{
r(st, vt) + βαt

∫
V (s1,t+1, B(αt, s1,t+1))dF (ε1,t+1) (4)

+β(1 − αt)

∫
V (s2,t+1, B(αt, s2,t+1))dF (ε2,t+1)}

}

subject to

si,t+1 = Aist + Bivt + Ciεi,t+1, ∀i ∈ {1, 2} (5)

The optimal decision rule can be represented recursively as

vt = v(st, αt) (6)

αt+1 = α(st, αt). (7)

Repeated substitution of (7) into (6) yields the policy maker’s strategy in the form
of a sequence of functions

vt = σt(s
t, α0), (8)

where st = (st, st−1, . . . , s0). The presence of B(αt, Aist + Bivt + Ciεt+1), i = 1, 2,
on the right side of (4) imparts a motive to experiment. To choose vt is to design
experiments.

2.3 Bellman equation in detail

Appendix A derives the function B(st, αt) and thereby obtains a particular version
of (4) that we approximate numerically. Let Ωi = CiC

′
i, Rt = αt

1−αt
, and define

g(ε1,t+1; st, αt) = log Rt −
1

2
log |Ω1| +

1

2
log |Ω2| −

1

2
(C1ε1,t+1)

′ Ω−1
1 (C1ε1,t+1)

+
1

2
[(A1 − A2)st + (B1 − B2)vt + C1ε1,t+1]

′

× Ω−1
2 [(A1 − A2)st + (B1 − B2)vt + C1ε1,t+1] (9)

and

h(ε2,t+1; st, αt) = log Rt −
1

2
log |Ω1| +

1

2
log |Ω2| +

1

2
(C2ε2,t+1)

′ Ω−1
2 (C2ε2,t+1)

−
1

2
[(A2 − A1)st + (B2 − B1)vt + C2ε2,t+1]

′

× Ω−1
1 [(A2 − A1)st + (B2 − B1)vt + C2ε2,t+1]. (10)
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Using (34) in Appendix A, we obtain a law of motion for αt+1 under the two models.
Then Bellman equation (4) becomes

V (st, αt) = max
vt

{
r(st, vt) + βαt

∫
V

(
s1,t+1,

eg(ε1,t+1)

1 + eg(ε1,t+1)

)
dF (ε1,t+1)

+β(1 − αt)

∫
V

(
s2,t+1,

eh(ε2,t+1)

1 + eh(ε2,t+1)

)
dF (ε2,t+1)

}
. (11)

subject to (5). Appendix B describes how we approximate the solution of (11).

2.4 Attitudes toward experimentation

Despite knowing (4), prominent macroeconomists have advised against exploiting
the opportunity (or succumbing to the temptation) to experiment identified by the
right side of Bellman equation (4). Blinder (1998, p. 11) asserts that

“while there are some fairly sophisticated techniques for dealing with
parameter uncertainty in optimal control models with learning, those
methods have not attracted the attention of either macroeconomists or
policymakers. There is a good reason for this inattention, I think: You
don’t conduct policy experiments on a real economy solely to sharpen
your econometric estimates.”

Lucas (1981, p. 288) agrees, remarking that

“Social experiments on the grand scale may be instructive and admirable,
but they are best admired at a distance. The idea, if the marginal social
product of economics is positive, must be to gain some confidence that
the component parts of the program are in some sense reliable prior to
running it at the expense of our neighbors.”

Perhaps Blinder and Lucas suspect that the decision maker has too few models
on the table (e.g., that neither of models in Bellman equation (4) is correct), or
that it would be difficult to specify a prior over such models, and that therefore
the decision problem is misspecified. Cogley, Colacito, Hansen, and Sargent (2005)
describe how to address such concerns by applying the methods of Hansen and
Sargent (2005a).
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Another reason for not deliberately experimenting is that it is very difficult to
approximate the solution of the Bellman equation that corresponds to (4) when there
are more dimensions of uncertainty, e.g., unknown coefficients and more models. To
sidestep that problem, researchers like Cogley and Sargent (2005) have appealed
to Kreps’s (1998) ‘anticipated utility’ model to justify an adaptive approach that
abstracts from deliberate experimentation.

A third possible reason for being skeptical about experiments is related to the
previous two. We can interpret the fact that Bellman equation (4) is difficult to solve
as saying that it is difficult to design optimal experiments. The value function that
obeys (4) is maximized over all possible experiments. Many suboptimal experiments
would attain lower values than those delivered by the ‘don’t experiment’ rule that
solves an alternative Bellman equation that we now describe.

2.5 Unintentional experimentation

Comparing (4) with another Bellman equation lets us quantify how much the policy
maker sacrifices by abstaining from the opportunity to experiment. We formulate an
optimum problem that ignores the opportunity to experiment by replacing the law
of motion (2) for αt dictated by Bayes’ law with the “don’t experiment on purpose”
specification

αt+s = αt ∀s ≥ 0. (12)

When he makes a decision at time t, the policy maker pretends that he cannot or will
not learn about the model from future data. One interpretation of this assumption
is that the policy maker believes that nature will draw next period’s st+1 from an
α-weighted mixture of models 1 and 2. Another interpretation is that the policy
maker plans not to revise his views. Under either interpretation, a policy maker
with this fixed-α view chooses a policy

vt = w(st; αt) (13)

that maximizes the right side of the following Bellman equation:7

W̃ (st; αt) = max
vt

{
r(st, vt + βαt

∫
W̃ (s1,t+1; αt)dF (ε1,t+1)) (14)

+β(1 − αt)

∫
W̃ (s2,t+1; αt)dF (ε2,t+1)

}
.

subject to (5). Notice how, by using (12) instead of (2) as the law of motion for
α, (14) suppresses the motive to experiment deliberately. But in the spirit of the

7Appendix C describes our algorithm for solving (14).
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adaptive control literature, suppose that the policy maker does indeed revise αt by
applying Bayes’ Law even though he uses a policy (13) derived by solving the abstain-
from-learning Bellman equation (14). Then his actual decisions can be represented
recursively as (2) and (13). These decisions would emerge from a ‘don’t experiment,
do learn’ prescription.8 Equations (2), (13) can be solved by repeated substitution
to yield the policy maker’s strategy in the form of a sequence of functions

vt = σ̃t(s
t, α0). (15)

Thus, although in formulating his policy, the policy maker ignores the motion
in αt impelled by Bayes’ law (2), Bayes’ law nevertheless affects the value that he
can expect to attain under the policy (13), which evidently satisfies the Bellman
equation

W (st; αt) = r(st, w(st, αt)) + βαt

∫
W (s1,t+1, B(αt, s1,t+1))dF (ε1,t+1) (16)

+ β(1 − αt)

∫
W (s2,t+1, B(αt, s2,t+1))dF (ε2,t+1).

subject to:

si,t+1 = Aist + Biw(st, αt) + Ciεi,t+1, ∀i ∈ {1, 2}

Because (13) is a feasible policy for the decision maker of subsection 2.2 who is
willing to experiment, it follows that

V (s, α) ≥ W (s; α) (17)

for all values of (s, α). The gap

V (s, α) − W (s; α) (18)

measures the value of experimentation and the difference

v(s, α) − w(s; α) (19)

measures the component of the policy choice that can be attributed purely to the
policy maker’s motive to experiment.

8We interpret Blinder (1998, chapter 1) as advocating this point of view.
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2.5.1 Anticipated utility as an approximation

In addition to representing a stylized ‘don’t experiment but do learn’ view, rules like
(2)-(13) have been recommended as an alternative or approximation to (6)-(7) to
be used in situations in which the curse of dimensionality prevents the policy maker
or the analyst from solving the pertinent counterpart to Bellman equation (4). The
appeal of this approximation is greatest when the dimension of the prior distribution
is large.9 We have assumed that Ai, Bi, Ci in (1) are known matrices. Had we
assumed instead that the policy maker has a nontrivial prior probability distribution
over those parameters, those distributions would enter the value function on the left
side of (4). The Bellman equation for this value function would be difficult to solve
because of the dimension of the state vector.

3 The truth

So far, everything we have said is about what the monetary authority believes and
how it chooses vt. We have yet to say how the economy actually works. Our
description so far has been about ideas that are ‘just in the head’ of the monetary
authority and how it responds to those ideas.

Under the monetary authority’s prior distribution over sequences for unemploy-
ment and inflation that is implied by our specification, αt is a martingale. See
appendix A, section A.1 for a proof. Because αt ∈ [0, 1], the martingale convergence
theorem implies that αt converges almost surely under that measure. To say what
happens to αt under the measure that actually generates the economy, we have to
say what that true measure is. If we assume that either model 1 (Samuelson and
Solow’s) or model 2 (Lucas’s) or some fixed-α mixture of them governs the data,
then αt given by (30) converges almost surely to the true α.10

Our concern in the next section is to study the rates at which αt converges to the
true α under alternative assumptions about which model is the true data generating
process and alternative initial conditions for (α,U). We design alternative scenarios
to shed light on the questions stated in section 1 and to determine which of our two
models is more difficult to learn about.

9See footnote 4.
10Our model has a feature that El-Gamal and Sundaram (1993) identify as important in promot-

ing convergence, namely, the presence of an exogenous component of randomness that generates
‘natural experiments’ that can facilitates discriminating the models even if the policy maker decides
not to experiment in setting his policy.
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4 Value functions and decision rules

We have reported calibrated versions of our two models in section 1. For government
preference parameters, we begin by setting β = .995 and λ = 0.1. (In section 5.4,
we shall consider other values of λ.) A high value of β promotes experimentation
because the costs of experimentation are paid immediately while the benefits ac-
crue later. A patient government is therefore more inclined to experiment than an
impatient one. The parameter λ is the relative weight on inflation in the govern-
ment’s loss function. A low value means the monetary authority cares more about
unemployment, which may have been the case in the days of Samuelson and Solow.

Figures 1, 2, and 3 display value functions and decision rules associated with
our two Bellman equations (4) and (14). Figure 1 shows both W and V , but they
are so close that they cannot be distinguished. Figure 3 shows their difference and
confirms that V (U, α) > W (U, α) except at the boundaries α = 1 and α = 0, where
V (U, α) = W (U, α).11 The ‘experiment and learn’ value function V is related to the
‘don’t experiment but learn’ value function W as expected. When α ∈ (0, 1), there
is value to intentional experimentation. The policy functions in figure 2 and their
difference in figure 3, panel b, show the different actions called for by the decision
rules v and w associated with Bellman equations (4) and (14), respectively.

Overall, the differences between the value functions and the decision rules are
both small.12 Therefore, in this example at least, the type of anticipated utility
model used by Cogley and Sargent (2005), which is associated with Bellman equa-
tion (14), provides a good approximation to the outcomes from the intentional ex-
perimentation model.13 We study the quality of approximation more fully in section
5, where we analyze the questions posed in section 1.

To bring out their differences, for different values of α figure 4 shows the decision
rules w(U, α) and v(U, α) as functions of U . As noted, the differences between v

and w are always small, but the biggest differences occur for α’s away from the
boundaries of 0 and 1. The figures reveal that when α is well into the interior of
(0, 1), v’s call for additional experimentation serves to make it nonlinear and to
enhance the countercyclicality of inflation policy. That is, the v-inflation policy is
higher than the w-inflation policy when U is high, and lower when U is low. This
pattern reveals a kind of ‘opportunism’: the best time to experiment with Keynesian
stimulus is when U is high.14

11The prior is dogmatic at the boundaries, where data never alter the policy maker’s beliefs. A
decision maker who is sure that one of the two submodels is true is uninterested in experimentation.

12In section 5.5, we buttress this assertion by calculating a permanent variation in U that is
sufficient to compensate the policy maker for not experimenting. It turns out to be very small.

13See David Kreps (1998) for a broader defense of this modelling strategy in games and dynamic
economic models.

14In contrast, Alan Blinder’s opportunistic call for more deflation in recessions seems to have
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Figure 2: Policy functions with and without experimentation.
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Figure 3: Differences in value functions (panel a) and policies (panel b) with and
without deliberate experimentation.

Another interesting feature of figure 4 is that for both the v and w decision rules,
policy begins quickly to look more Keynesian even for α = 0.2 (i.e., a small weight
on the Samuelson-Solow model), while it continues to look quite Keynesian when
there is a comparable small weight of 1−α = 0.2 on the Lucas model. Thus, a little
bit of doubt about the Lucas model makes the policy maker begin to behave like a
Keynesian, while a Keynesian has to have bigger doubts about the Samuelson-Solow
model to begin behaving as Lucas’s model advises.15 This follows from two features,
namely, the policy ineffectiveness proposition inherent in the Lucas model and the
assumption that λ = 0.1. The latter assumption means that the monetary authority
cares mostly about real variables, and the policy-ineffectiveness proposition states
that one policy rule is as good as another with respect to their effects on real
variables. Accordingly, a little bit of doubt about the Lucas model is enough to make
the policy maker acquiesce to Keynesian policy prescriptions. Section 5 revisits this
issue for different values of λ.

4.1 Asymmetry of V − W

Notice the asymmetry of V (U, α) − W (U, α) shown in panel (a) of figure 3. This
surface is more steeply sloped along the α-axis when α is close to zero than when

been motivated not by an appeal to optimal experimentation but as a way for the Fed to find
political cover for reducing inflation. See Orphanides and Wilcox (2002) for an account of Blinder’s
argument.

15This feature of the decision rules conforms to the story about the conquest of American inflation
told by Cogley and Sargent (2005).
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Figure 4: Slices of the optimal decision rules for inflation. The bold line is v(U, α)
and the other line is w(U, α).

α is near one. That means deliberate experimentation has more incremental value
for a monetary authority that leans toward the Lucas model than for one that leans
toward the Samuelson-Solow model.

To understand why, think about the information content of the passive w-policy
and how much intentional experimentation would add to it. For α close to 1, the
w-policy calls for inflation to vary energetically in response to unemployment. That
would eventually result in lower average and less variable unemployment if the
Samuelson-Solow model were true, but would not alter the properties of unem-
ployment if the Lucas model were true. So for α close to one, the anticipated utility
w-policy itself provides identifying information about the world. The policy maker
learns not only from natural experiments arising from shocks, but also from varia-
tion in inflation arising from its w-policy. That is not the case when α is close to
zero, for then the w-policy always keeps expected inflation close to zero. Because

14



the w-policy provides little identifying information in this case, the policy maker
would have to rely solely on natural experiments to learn the truth. Thus, under
the w-policies, learning is likely to take longer when α0

.
= 0 than when α0

.
= 1.16

Other things equal, deliberate experimentation is less attractive when model uncer-
tainty is likely to evaporate quickly on its own. That explains why V − W rises
more slowly from α

.
= 1.

These features of our policy rules and value functions influence outcomes of the
experiments that we report in the next section.

5 Forgetting pernicious ideas

We generate alternative scenarios by specifying initial conditions for U and gov-
ernment beliefs α and then making an assumption about which of our two models
generates the data. We use the policy functions in figure 2 to generate histories of
outcomes, and we relate those outcomes to questions 1 and 2 in the introduction.

5.1 Misplaced experimentation when Samuelson and Solow

are correct

Assume that the data generating process is the Samuelson and Solow model.
Figure 5 shows outcomes after policy maker erroneously assign positive probability to
the Lucas model. For the first 19 periods, the policy maker had α = 1 and therefore
had optimally exploited the tradeoff between unemployment and inflation given
by the Samuelson-Solow model. In period 19, the policy maker assigns a positive
probability to Lucas’s model. Starting from period 19, we model the behavior of
three policy makers. As a benchmark, the first one (dotted line in the pictures)
continues to assign probability one to the Samuelson-Solow model and therefore
abstains from experimenting or learning. The second and third ones attach a prior
probability of 75% to the Lucas model being true. The second Bayesian v policy
maker takes into account that the prior will be revised in subsequent periods (thick
lines), while the third anticipated utility w policy maker (thin lines) does not.

In this scenario, Lucas’s idea is destructive because it distorts policy relative to
the optimal α = 1 policy. The Samuelson-Solow model offers a lever for maintaining
low average unemployment and reducing its variability. The experimental policy
initially calls for lower inflation relative to the optimal α = 1 policy and a weaker
countercyclical response to unemployment, and that results in higher average un-
employment and greater cyclical variability. But notice how small the differences
are. Unemployment is initially a bit higher, but the differences are visually hard

16Indeed, this emerges in the simulations reported below.
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Figure 5: In the three panels: the dotted line represents the behavior of a policy
maker that attaches probability one to the Samuelson and Solow model, the thick
line is the experimenting policy maker and the other line is the non-experimenting
policy maker.

to detect. This follows from the Keynesian nature of the experimental policy. An
optimal experiment does not involve a sudden, sharp drop to zero inflation. On
the contrary, it still calls for countercyclical inflation variation, just tempered some-
what relative to the α = 1 rule.17 Thus, Lucas’s ideas are not too pernicious in
this setting. The policy maker does not forfeit the opportunity to accomplish its
unemployment objectives when experimenting with the Lucas model; it just pursues
them less energetically for a time.

The figure also compares outcomes of the experimental v-policy with those of the
anticipated utility w-policy. The experimenting policy maker keeps inflation higher

17I.e., in figure 4, the decision rule is less steeply sloped when α = 0.2 than when α = 1, but it
still slopes upward.

16



for a while in exchange for a sharper decrease in unemployment compared to the
anticipated utility policy maker. The second policy maker evidently learns faster
than the third. But once again, the outcomes are similar. At least in this instance,
the adaptive policy well approximates the experimental policy, which suggests that
the incremental benefit of deliberate experimentation is slight.

5.2 Misplaced experimentation when the Lucas model is

true

Now assume that Lucas’s is the true data generating mechanism. Figure 6 shows
outcomes when after 19 quarters of correct policy under Lucas’s model, the monetary
policy decision maker assigns a probability α = 0.75 to Samuelson and Solow’s
model. We display paths for three types of decision makers. As a benchmark, the
first continues to assign probability one to Lucas’s model throughout and neither
learns nor experiments. The second experiments and learns, while the third learns
but does not intentionally experiment.

Unemployment behaves in the same way under the three policy makers’ policies
because Lucas’s model is the true data generating process. Samuelson and Solow’s
advice is costly because it makes inflation higher and more variable without generat-
ing an offsetting benefit in terms of better unemployment outcomes. Furthermore,
the process of forgetting the ‘wrong model’, as reflected in the convergence of αt

back to 0, appears to be slower than occurred in the previous subsection where the
Samuelson-Solow model prevailed. Although learning is initially quite rapid, with
α falling from 0.75 to around 0.15 in the first year, substantial model uncertainty
remains for more than a decade, during which the experimental policy retains its
countercyclical character.

Although the experimenting v policy maker generates higher inflation than is
optimal when α = 0, it typically chooses a lower inflation rate than does the non-
experimenting, anticipated utility w policy maker. The anticipated utility w policy
maker chooses an inflation rate that is approximately 40 basis points higher and
that gap persists.

5.3 How long it takes to learn

Table 1 presents summary statistics from several related experiments. The variable
that we call waiting time represents the number of quarters that are needed for α to
return to within a 0.01 neighborhood of what it should be under the data generating
process. For each experiment, we report the true model, the initial prior, the initial
unemployment rate, the median waiting time with and without experimentation
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Waiting Time
True Model α0 U0 Experimentation No Experimentation

SS 0.01 0
247 267

[149,486] [156,500+]

SS 0.01 0.025
272 278

[154,498] [171,500+]

Lucas 0.99 0
97 107

[37,242] [40,244]

Lucas 0.99 0.025
85 87

[21,213] [26,216]

SS 0.5 0
39 45

[20,80] [23,92]

SS 0.5 0.025
21 25

[6,54] [8,69]

Lucas 0.5 0
87 93

[32,160+] [35,160+]

Lucas 0.5 0.025
65 68

[14,160+] [18,160+]

SS 0.28 0
52 65

[27,160+] [35,160+]

SS 0.28 0.025
35 46

[15,142] [19,148]

Lucas 0.28 0
80 90

[26,160+] [28,160+]

Lucas 0.28 0.025
71 73

[20,160+] [22,160+]

Table 1: Waiting times (in quarters) for various data generating processes and initial
(α0, U0) pairs.
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Figure 6: In the three panels: the dotted line represents the behavior of a policy
maker that attaches probability one to the Samuelson and Solow model, the thick
line is the experimenting policy maker and the other line is the non-experimenting
policy maker.

and the 10%-90% confidence sets in square brackets. When a ‘+’ appears next to a
number it means that the waiting time exceeded the length of the simulated path.

Several things can be learned from this table. First, as expected, the experiment-
ing policy maker learns the truth faster than an anticipated utility policy maker.
Deliberate experimentation reduces the median waiting time by approximately 2
years on average, or by 10 percent. For the most part, learning is also faster when
unemployment is initially high. That reflects the cyclical opportunism of optimal
policy: the best time to experiment with Keynesian stimulus is when unemploy-
ment is high. Paths that start with high unemployment therefore get a bigger dose
of initial experimentation.

Second, if we start by attaching a probability of almost one to the wrong model,
it is easier to learn when Lucas’s model is true than when Samuelson and Solow’s is
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true. In the latter case, with α0 = 0.01, the optimal policy involves little variation
in inflation, and the policy maker must rely solely on natural experiments to learn.
In contrast, when α0 = 0.99, the policy rule calls for countercylical movements
in inflation, so the policy maker can learn not only from shocks but also from
policy-induced variation. That extra source of variation helps identify the true
structure and accelerates learning. Keynesian policy makers operating in a classical
environment discover more quickly the error of their ways. Classical policy makers
working in a Keynesian world update their beliefs more slowly.

Third, if we start with a 50-50 probability on the two models, the Samuelson
and Solow model is easier to unveil. In this case, the optimal rule initially provides
the same degree of policy-induced variation. But as beliefs are updated, that source
of identifying information increases in the Samuelson-Solow economy (because α is
increasing) and decreases in the Lucas economy. Thus, learning accelerates in the
Samuelson-Solow economy and decelerates in the Lucas economy.

Finally, for our baseline calibration the benefits of deliberate experimentation
are maximized when α = 0.28. We also simulated a number of paths starting at
α0 = 0.28 to see whether that alters any of the results described above. The rows in
the table corresponding to α0 = 0.28 show that the basic picture remains the same.

5.4 Alternative government preferences

In this section we explore the possibility that the policy maker attaches a higher
weight to inflation in the loss function. Figure 7 shows how the value of experimen-
tation changes with λ.

As λ increases from 0.1 to 1, the gain that can be obtained under the experiment-
ing policy rises significantly. It is also interesting to notice that the peak of V −W

shifts toward the middle of the support of α. When λ = 0.1, the policy maker is more
concerned about unemployment than about inflation, and a conspicuous amount of
unintentional experimentation is created when the Samuelson and Solow model is
likely to be the data generating process. However, as λ increases to 1, inflation gets
a higher weight in the reward function, causing unintentional experimentation to
diminish. The policy authorities compensate for the reduced information flow from
the w-policy by increasing intentional experimentation. Thus, the increase in the
difference of the value functions associated with the two policies essentially reflects
a substitution of deliberate for passive experimentation.

As λ continues to increase, the value of intentional experimentation eventually
begins to fall. For example, when λ is as high as 16, the value of the policy rule
described in equation (6) is lower than the two cases discussed earlier. For this
setting of λ, the value functions are negatively sloped in the direction of α,18 and

18Pictures are available on http://homepages.nyu.edu/∼rc652/Research/researchframe.htm.
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Figure 7: V (U, α)−W (U, α) for different values of λ. The white curve is drawn for
λ = 0.1 and the other two are for the cases of λ = 1 (top figure) and of λ = 16
(bottom figure).

experimentation usually calls for a lower inflation rate. However, λ is so high that the
programmed inflation resulting from the Bayesian and anticipated utility approaches
are extremely low and almost undistinguishable. Hence the very small benefit from
experimentation shown in the picture.

Table 2 compares means and variances of unemployment and inflation for the
Bayesian and anticipated utility policy makers. In the top panel, the Samuelson-
Solow model is correct, but the policy authorities put some prior weight on the
Lucas model. The bottom panel reverses the status of the two models. In each
experiment, we generated 500 sample paths of length 40 (ten years) for the three
values of λ discussed in this section.

Several things are worth noticing in this table. First, when the Lucas model is
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Inflation Unemployment
α0 U0 λ = 0.1 λ = 1 λ = 16 λ = 0.1 λ = 1 λ = 16

0.25 0.025
1.0098 1.0695 1.0575 0.9759 0.9720 0.9984
0.8791 0.6059 0.9612 1.0230 1.0345 1.0007

0.25 0
1.0372 1.0880 1.0710 0.8393 0.9538 0.9972
0.7998 0.6046 0.9654 1.0258 1.0308 1.0001

0.50 0.025
1.0067 0.9889 1.0380 0.9725 1.0099 0.9980
0.9372 0.7236 0.9496 1.0139 1.0325 1.0008

0.50 0
1.0145 1.0510 1.0465 0.8780 0.9522 0.9969
0.8953 0.7170 0.9553 1.0159 1.0290 1.0002

0.75 0.025
1.0005 1.0039 1.0165 1.0005 0.9971 0.9988
0.9737 0.9047 0.9762 1.0060 1.0130 1.0004

0.75 0
1.0080 1.0238 1.0173 0.8900 0.9678 0.9985
0.9636 0.9100 0.9744 1.0061 1.0086 1.0001

Inflation Unemployment
α0 U0 λ = 0.1 λ = 1 λ = 16 λ = 0.1 λ = 1 λ = 16

0.25 0.025
1.3601 1.2369 1.0794 1.0000 1.0000 1.0000
0.8969 0.7040 0.9833 1.0000 1.0000 1.0000

0.25 0
1.3753 1.4365 1.1069 1.0000 1.0000 1.0000
0.9256 0.7601 1.0017 1.0000 1.0000 1.0000

0.50 0.025
1.3037 1.1160 1.0610 1.0000 1.0000 1.0000
0.9164 0.7018 0.9637 1.0000 1.0000 1.0000

0.50 0
1.3084 1.2951 1.0915 1.0000 1.0000 1.0000
0.9088 0.7350 0.9858 1.0000 1.0000 1.0000

0.75 0.025
1.2307 1.0677 1.0325 1.0000 1.0000 1.0000
0.9362 0.8116 0.9713 1.0000 1.0000 1.0000

0.75 0
1.2064 1.1236 1.0506 1.0000 1.0000 1.0000
0.9211 0.8254 0.9703 1.0000 1.0000 1.0000

Table 2: Top panel: data are generated according to the Samuelson and Solow
model. Bottom panel: data are generated according to the Lucas model. For each
(α0, U0) pair, the first row reports the average inflation (unemployment) without
experimentation relative to the average inflation (unemployment) with experimen-
tation for different values of λ. The second row reports the standard deviation of
inflation (unemployment) without experimentation relative to the standard devia-
tion of inflation (unemployment) with experimentation for different values of λ. In
both panels: 500 samples of ten years (40 quarters) were generated.
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true, mean inflation is significantly higher in the absence of deliberate experimen-
tation, in some cases by as much as 40 percent. Because the authorities put some
weight on the Samuelson-Solow model, they adopt a positive target for average in-
flation, which shrinks to zero as α converges to zero. Intentional experimentation
accelerates learning, so the Bayesian authorities move more rapidly to zero inflation
than the anticipated-utility policy maker. Hence the anticipated utility w-policy re-
sults in higher average inflation during the 10-year transition. Also notice that mean
unemployment is identical for the two policy rules. This follows from the policy-
ineffectiveness proposition, which implies that deliberate experimentation does not
matter for unemployment outcomes.

Second, inflation is always more volatile when the policy maker is following
the Bayesian rule19. When λ = 16 the differences are mild, which is consistent
with the small benefits of experimentations shown in Figure 7. The gap between
the two volatilities is by far greatest when λ = 1. This helps explain why the
highest benefits from experimentation occur when λ = 1. The Bayesian policy maker
manipulates the planned rate of inflation more actively in the first few periods in
order to discriminate between the two submodels. This calls for a higher volatility
of the inflation rate. The fact that for λ = 1 the variance gap is so big suggests an
intensive use of inflation for experimenting reasons.

When the Samuelson-Solow model is true, the additional variation in inflation
under the v-policy pays off in terms of lower volatility of unemployment. But notice
that the relative decline in unemployment volatility is substantially smaller than
the increase in inflation volatility. When the Lucas model is true, the extra infla-
tion volatility has no influence on unemployment volatility, again because of the
policy-ineffectiveness proposition. Thus, in the Lucas model, the cost of deliberate
experimentation is greater inflation volatility along the transition, and the benefit
is more rapid convergence to zero inflation.

5.5 Equivalent variation

For given preference parameters λ, β, let ∆ be the permanent reduction in unemploy-
ment that it would take to compensate the policy maker for having to abstain from
experimentation, i.e., from having to use the anticipated utility w(U, α) decision rule
rather than the v(U, α) decision rule. Appendix describes how we calculated ∆. In
Figures 8, we plot ∆ for various values of λ. For all settings of λ, ∆ is very small.
The pattern of how ∆ varies with λ confirms the ordering of Figure 7. The relative
magnitudes change a little bit mainly in the case in which λ = 0.1. For this value
of λ, the biggest difference in the policies with and without experimentation shifts
toward the middle of the support of α.

19There is only one exception that we attribute to numerical error.
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Figure 8: Equivalent variation in unemployment, ∆, for different values of λ. The
white curve is drawn for λ = 0.1 and the other two are for the cases of λ = 1 (darkest
figure) and of λ = 16 (grey figure).

5.6 Nonlinear Phillips Curves

Models 1 and 2 represent the ideas of Samuelson, Solow, and Lucas in a linear
framework. This is common in the literature, but Stiglitz (1997) emphasizes that it
is not innocuous for understanding experimentation. Relative to the linear models
that we study, a concave Phillips curve would enhance the motive for experimenta-
tion, while a convex relation would diminish it. Economists who estimate nonlin-
ear Phillips curves typically find a convex relationship. Examples include Phillips
(1958), Samuelson and Solow (1960), and Debelle and Laxton (1997). Convexity
means that inflation rises more sharply in expansions than it falls in contractions. It
also implies that the sacrifice ratio is an increasing function of unemployment, which
helps explain the preference of Keynesian policy makers for gradual disinflation. A
convex Phillips curve increases the expected cost of experimentation and makes a
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risk-neutral policy maker more reluctant to experiment. Thus, to the extent that
we have neglected nonlinear terms, our results probably overstate the benefits of
experimentation.

5.7 Convergence under a third model

In this section, we analyze outcomes where, unbeknownst to the policy maker who
uses the decision rule (6) that solves (4), a third model truly generates the data. In
particular, we assume that unemployment is actually generated by a version of the
Solow-Tobin model:20

Ut = 1.334Ut−1 − 0.451Ut−2

−0.165∆πt − .094∆πt−1 − 0.142∆πt−2 + 0.0035η5,t (20)

πt = vt−1 + 0.0055η6,t

A martingale convergence theorem still prevails, and will eventually propel αt toward
the submodel or mixture of submodels that minimizes the Kullback-Leibler discrep-
ancy from the data generating model.21 But where is that? Both the likelihood
ratio and the measure with respect to which it is evaluated in the Kullback-Leibler
criterion are endogenous, depending on the decisions of the policy maker, so it is
not a priori obvious where the martingale convergence theorem will send α.

Figure 9 shows the dynamics of α for various initial conditions of the state
variables (α0, U0). Evidently, αt heads to zero in all of our simulations, so that the
decision maker eventually puts zero weight on the Samuelson-Solow submodel and
complete weight on the Lucas model. Why does this occur?

Each of the policy maker’s two submodels, the Lucas model and the Samuelson-
Solow model, has a defect relative to the Solow-Tobin data generator. The Samuelson-
Solow model says there is a long-run tradeoff when none in fact exists, and the Lucas
model says there is no short-run tradeoff, when in fact there is. It turns out that the
Samuelson-Solow defect gets exposed along the sample path, but the Lucas defect
does not. The Samuelson-Solow defect emerges early in the simulation because the
mean unemployment gap always goes to zero, contrary to the model’s prediction.
That pushes α toward zero. As α moves toward zero, however, systematic inflation
becomes less countercylical, and that makes it harder to detect the Lucas model’s
imperfection. Notice that the Lucas model’s defect can’t be detected from natural

20We report standard deviations of the estimated coefficients in the Appendix.
21The Kullback-Leibler information is the expected log of the ratio of the likelihood under the

data-generating model to the likelihood under the approximating model, evaluated with respect to
the measure associated with the data-generating model. See Appendix B in Gelman, et. al. 1995,
pp. 484-488.
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experiments alone because those take the form of unexpected inflation, which do af-
fect unemployment according to the Lucas model. We need variation in systematic

inflation in order to reveal the Lucas defect, but the systematic variation fades as α

declines. So the sample paths lack an enduring force that would identify the missing
short-run tradeoff.
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Figure 9: Dynamics of αt when the Solow-Tobin model is the data generating
process. In the three panels on the left, the initial level of unemployment is zero. In
the three panels on the right, the initial level of unemployment is 0.025. The initial
prior is increasing moving to the bottom of the figure.

Especially for someone who believes that the Solow-Tobin model is most nearly
true, these calculations modify some of our earlier conclusions about the pernicious-
ness of false beliefs. In our two-submodel model, Lucas’s ideas were innocuous when
data are actually generated by the Samuelson-Solow model because the central bank
soon discovered an unemployment-inflation tradeoff. When the data are truly gener-
ated by the Solow-Tobin model, Lucas’s ideas are less innocuous because the central
bank never learns that there actually is a short-run tradeoff. The policy rule still
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gets average inflation right, but there is a welfare loss because it does not react opti-
mally to shocks. That would not be a problem if the central bank had a third policy
model that represented Solow and Tobin’s ideas, for in that case the weight on the
Solow-Tobin model would eventually converge to one, and Lucas’s model would be
forgotten.

6 Concluding remarks

The value functions and decision rules in figures 1 and 2 reveal that in our exam-
ple, an anticipated utility model does a good job of approximating outcomes of a
Bayesian model in which the monetary policy maker purposefully exploits the oppor-
tunity to experiment. While the passive learner in the anticipated utility does not
design policies in order to experiment, the outcomes of his policies induce enough
variation in the data that he is able to discriminate between the two models almost
as fast as the Bayesian agent. This outcome is related to features in the environ-
ment identified by El-Gamal and Sundaram (1993), who show how the presence of
‘natural experiments’ promotes learning.

Another interesting outcome is captured in the concavity of the decision rules in
figure 2. This shape conveys that the decisions of a Samuelson-Solow style Keynesian
are more robust to small doubts, i.e., perturbations of α away from 1, than are the
decisions of Lucas-style classical economist to small perturbations of α away from
0. That lack of robustness of the classical recommendations to small doubts plays
an important role in Cogley and Sargent’s (2005) account of U.S. inflation policy
during the 1970s.

Our calculations also reveal how long it takes to disabuse a doubtful monetary
authority of the wrong model. A key factor that influences the speed of convergence
is the probability weight α, for that affects the contribution of policy-induced vari-
ation to learning. When α is close to zero, policy keeps inflation close to zero, and
the policy maker must rely heavily on natural experiments for learning. When α is
close to one, the policy maker still learns from natural experiments but also from
policy-induced, countercyclical variations in inflation. That extra source of variation
speeds learning.

We have given the policy maker only two submodels, each of which he knows for
sure. The models have very different operating characteristics. That their differences
are are not subtle eases the task of generating or waiting for data to discriminate
between them. In effect, we have assumed that the monetary authority’s doubts
are limited to ignorance of the ‘correct’ value of one hyperparameter, α. If the
monetary authority’s doubts are actually broader and vaguer, we have substantially
understated the difficulty of the decision and learning problem that it faces. The
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robustness calculations in Cogley, Colacito, Hansen, and Sargent (2005) provide
ways to address those concerns.

7 Appendixes

A Transition Equation For αt

Let αi0 ≡ p(Mi) be the prior probability on model i, and let pi(s
t
i|θi) represent

its likelihood function. Here we abstract from parameter uncertainty by adopting
the shortcut that the parameters θi are known. By Bayes’s theorem, the posterior
probability on model i is

αit ≡ p(Mi|s
t
i, θi) =

pi(s
t
i|θi)p(Mi)∫

pi(st
i|θi)p(Mi)dMi

. (21)

The numerator is an unnormalized model weight, which we label wit, and the de-
nominator is a normalizing constant that ensures that model probabilities sum to
1. With a finite collection of models, the denominator is just the sum of the unnor-
malized model weights,

∑
i wit.

We start with a simple recursion for the unnormalized weights wit. After taking
logs and first-differencing, we find

log wit − log wit−1 = log pi(s
t
i|θi) − log pi(s

t−1
i |θi). (22)

Note that the prior model weight drops out of the recursion; αi0 initializes the
sequence but the likelihood is all that matters for updates. Also notice that α-
updates depend only on the value of the likelihood at the given θi. Usually the model
probability updates would depend on a marginalized likelihood, but this drops out
because we assume that θi is known. We need only to evaluate the likelihood, not
marginalize across unknown parameters.

To simplify further, use the prediction error decomposition of the likelihood to
write

log pi(s
t
i|θi) =

∑t

s=1
log pi(sis|s

s−1
i , θi). (23)

Subtracting the log-likelihood through t − 1 from that through t, we get

log wit = log wit−1 + log pi(sit|s
t−1
i , θi). (24)

The date t update depends on the value of the conditional log-likelihood. An obser-
vation that is likely given the model raises the unnormalized model weight, and a
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puzzling observation (for that model) lowers it. Notice that log wit is a martingale
if the model residuals are serially uncorrelated.

Now let’s specialize to a two-model model. Let αt be the normalized probability
weight for model 1,

αt =
w1t

w1t + w2t

. (25)

The probability weight on model 2 is 1 − αt.

The normalizing constant is a nuisance, so we eliminate it by taking the ratio,

Rt ≡
αt

1 − αt

=
w1t

w2t

. (26)

The transition equation for logRt follows from the transition equations for log wit,

log Rt = log Rt−1 + log
p1(s1t|s

t−1
1 , θ1)

p2(s2t|s
t−1
2 , θ2)

. (27)

Thus, the updating rule for the log odds ratio depends only on the log-likelihood
ratio for the two competing models. If we write this in terms of αt, we find

αt

1 − αt

=
αt−1

1 − αt−1

p1(s1t|s
t−1
1 , θ1)

p2(s2t|s
t−1
2 , θ2)

, (28)

or

αt =

αt−1

1−αt−1

p1(s1t|s
t−1

1
,θ1)

p2(s2t|s
t−1

2
,θ2)

1 + αt−1

1−αt−1

p1(s1t|s
t−1

1
,θ1)

p2(s2t|s
t−1

2
,θ2)

, (29)

=
αt−1p1(s1t|s

t−1
1 , θ1)

αt−1p1(s1t|s
t−1
1 , θ1) + (1 − αt−1)p2(s2t|s

t−1
2 , θ2)

.

If the two models involve the same data, we can equate s1t = s2t. In that case,

αt =
αt−1p1(st|s

t−1, θ1)

αt−1p1(st|st−1, θ1) + (1 − αt−1)p2(st|st−1, θ2)
. (30)

The right side of this equation spells out the function B(αt−1, st).

A.1 Martingale Property of αt

The updating formula makes αt a martingale from the point of view of the Bayesian
agent (this is an example of Doob’s martingale result for Bayesian updating). To
see why, take the expectation of αt with respect to the posterior at αt−1,

Et−1B(αt−1, st) =

∫
B(αt−1, st)ft−1(st|s

t−1)dst. (31)
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Because model parameters are assumed to be known, there is a single source of
uncertainty about next period’s αt, viz. what next period’s st will be. Therefore
the expectation is taken with respect to the agent’s posterior predictive density for
st, which we denote ft−1(st|s

t−1). This density is a probability weighted average of
the predictive densities for the two models,

ft−1(st|s
t−1) = αt−1p1(st|s

t−1, θ1) + (1 − αt−1)p2(st|s
t−1, θ2). (32)

Thus, the conditional expectation for αt is

Et−1αt =

∫
B(αt−1, st)

[
αt−1p1(st|s

t−1, θ1) + (1 − αt−1)p2(st|s
t−1, θ2)

]
dst,

=

∫
αt−1p1(st|s

t−1, θ1)dst, (33)

= αt−1

∫
p1(st|s

t−1, θ1)dst = αt−1.

A.2 A Different State Space

To get a tractable Bellman equation, it is convenient to rewrite the problem so that
the state transition equation is linear. Define:

log Rt = log
αt

1 − αt

then

log Rt+1 = log Rt + log
f1(st+1|st)

f2(st+1|st)

αt can be obtained back through the following expression

αt =
1

1 + (exp log Rt)−1
(34)

In the Bellman equation, we take expectations of functions that involve the log
likelihood ratio. These expectations involve the distribution of ε2,t+1 under model
1 and viceversa. We can represent those distributions by exploiting the assumption
that st is the same across models. This assumption means that the model innovations
are related. After subtracting the transition equation for model 2 from that for model
1, we find:

C2ε2,t+1 = (A1 − A2)st + (B1 − B2)vt + C1ε1,t+1 (35)

C1ε1,t+1 = −(A1 − A2)st − (B1 − B2)vt + C2ε2,t+1 (36)
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Define Ω1 = C1C
′
1, Ω2 = C2C

′
2. We use (35) and (36) to write the recursion for

log Rt+1 under models 1 and 2. When model 1 is true, we have

log Rt+1 = log Rt −
1

2
log |Ω1| +

1

2
log |Ω2| −

1

2
(C1ε1,t+1)

′ Ω−1
1 (C1ε1,t+1)

+
1

2
[(A1 − A2)st + (B1 − B2)vt + C1ε1,t+1]

′

×Ω−1
2 [(A1 − A2)st + (B1 − B2)vt + C1ε1,t+1] (37)

When model 2 is true, we have

log Rt+1 = log Rt −
1

2
log |Ω1| +

1

2
log |Ω2| +

1

2
(C2ε2,t+1)

′ Ω−1
2 (C2ε2,t+1)

−
1

2
[(A2 − A1)st + (B2 − B1)vt + C2ε2,t+1]

′

×Ω−1
1 [(A2 − A1)st + (B2 − B1)vt + C2ε2,t+1] (38)

It is convenient to use αt rather than log Rt as a state variable. So we want to
transform (37) and (38) to get laws of motion for αt under the two models. For the
purpose of doing this, define

g(ε1,t+1; st, αt) = log Rt −
1

2
log |Ω1| +

1

2
log |Ω2| −

1

2
(C1ε1,t+1)

′ Ω−1
1 (C1ε1,t+1)

+
1

2
[(A1 − A2)st + (B1 − B2)vt + C1ε1,t+1]

′

×Ω−1
2 [(A1 − A2)st + (B1 − B2)vt + C1ε1,t+1] (39)

and

h(ε2,t+1; st, αt) = log Rt −
1

2
log |Ω1| +

1

2
log |Ω2| +

1

2
(C2ε2,t+1)

′ Ω−1
2 (C2ε2,t+1)

−
1

2
[(A2 − A1)st + (B2 − B1)vt + C2ε2,t+1]

′

×Ω−1
1 [(A2 − A1)st + (B2 − B1)vt + C2ε2,t+1] (40)

Using (34), we get a law of motion for αt+1 under the two models. Then our Bellman
equation can be expressed

V (st, αt) = max
vt

{
r(st, vt) + βαt

∫
V

(
A1st + B1vt + C1ε1,t+1,

eg(ε1,t+1)

1 + eg(ε1,t+1)

)
dF (ε1,t+1)

+β(1 − αt)

∫
V

(
A2st + B2vt + C2ε2,t+1,

eh(ε2,t+1)

1 + eh(ε2,t+1)

)
dF (ε2,t+1)

}
. (41)
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B Approximating the Bellman Equation

Discretize the support of α and s into Iα and Is points respectively, to get I = Iα ·Is

nodes (α, s)i, ∀i = 1, ..., I. In what follows, we will refer to αi and si as the first
and the second entry of (α, s)i respectively. Specify J known linearly independent
basis functions φj ((α, s)i), j ∈ {1, ..., J}. In our solution, we employ a third order
complete polynomial, implying that J = 10. The goal is to find basis coefficients cj,
j = 1, ..., J that best approximate the value function

Vi = V ((α, s)i) ≈
J∑

j=1

cjφj ((α, s)i) =
J∑

j=1

cjφj,i (42)

∀i = 1, ..., I or, in the equivalent matrix notation:

V ≈ Φc

where V is the I × 1 vector of approximated value functions at each node, Φ is
the I × J collocation matrix and c = [c1, ..., cJ ]′ is the vector of approximation
coefficients. We also discretize the support of the two shocks in K1 and K2 points
and denote wk the approximated probability mass associated to each of the resulting
K = K1 × K2 nodes. Using (42) in the Bellman equation we get for each node
i ∈ {1, ..., I}:

Vi = max
vi

{
ri(vi) + βαi

K∑

k=1

J∑

j=1

wkcjφj

(
s′1,i,k(vi),

exp[gk,i(vi)]

1 + exp[gk,i(vi)]

)

+ β(1 − αi)
K∑

k=1

J∑

j=1

wkcjφj

(
s′2,i,k(vi),

exp[hk,i(vi)]

1 + exp[hk,i(vi)]

)}
(43)

where

ri(vi) = r(si, vi)

s′1,i,k(vi) = A1si + B1vi + C1εk

x′
2,i,k(vi) = A2si + B2vi + C2εk

and gk,i(vi) and hk,i(vi) defined as in (39) and (40) respectively:

gk,i(vi) = g(εk; si, αi, vi)

hk,i(vi) = h(εk; si, αi, vi)

We can now use the following algorithm to solve the Bellman equation recursively:
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1. guess an initial vector of basis coefficients c1

2. for each node (s, α)i compute the right hand side of equation (43) using c1 and
call v(c1) the outcome

3. solve for c2 = (Φ′Φ)−1 Φ′v(c1)

4. replace c1 with c2 and iterate until convergence.

C The ‘Don’t Experiment’ Model

This appendix describes how to solve Bellman equation (14) by mapping the problem
into what Cogley and Sargent (2004) called a ‘Bayesian linear regulator’. Stack the
two state space models from (1) as

[
s1,t+1

s2,t+1

]
=

[
A1 0
0 A2

] [
s1,t

s2,t

]
+

[
B1

B2

]
vt +

[
C1 0
0 C2

] [
ε1,t+1

ε2,t+1

]
(44)

or
st+1 = Ast + Bvt + Cεt+1 (45)

Let α ∈ (0, 1) be a fixed probability that the decision maker attaches to model 1.
Express the time t loss as r(st, vt) = −.5(s′tRst + v′

tQvt). The decision maker seeks
to maximize

L = −.5E
∞∑

t=0

βt
{

αs′1tRs1t + (1 − α)s′2tRs2t + v′
tQvt

}
(46)

or

L = −.5E
∞∑

t=0

βt

{
s′t

[
αR 0
0 (1 − α)R

]
st + v′

tQvt

}
(47)

Cogley and Sargent (2004) note that the problem of choosing a decision rule to
maximize (47) with respect to (45) is an optimal linear regulator problem. The
optimal decision rule is

vt = −Fst = −F1s1t − F2s2t. (48)

D Description of the Empirical Specification

Here we briefly describe how the two policy models are estimated. Inflation is mea-
sured by the log difference of the chain-weighted GDP deflator, and unemployment
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is the civilian unemployment rate. Both series are seasonally adjusted and are sam-
pled over the period 1948:1 to 1963:1. We stop the estimation there to represent
the kind of model uncertainty that Federal Reserve officials would have faced in the
years leading up to the Great Inflation.

Both Phillips curve specifications involve the gap between the unemployment
rate and a time-varying natural rate of unemployment. In order to keep the size of
the state space to a minimum, we approximate the natural rate of unemployment
U∗

t by exponentially smoothing the actual unemployment rate URt,

U∗
t = U ∗

t−1 + µ(URt − U ∗
t−1), (49)

with a constant gain parameter µ = 0.075. That makes the unemployment gap a
geometrically distributed lag of past changes in unemployment,

Ut ≡ URt − U ∗
t =

(1 − µ)(1 − L)

1 − (1 − µ)L
URt. (50)

This procedure approximates a one-sided high-pass filter that transforms unemploy-
ment into the unemployment gap. The decomposition is shown in the following
figure.
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Figure 10: Decomposing Unemployment: The Natural Rate and the Gap.

The thin line records actual unemployment, the dotted line depicts our proxy
for the natural rate, and the thick line is the unemployment gap, which is the
variable that appears in the Phillips curves. This decomposition assigns most of the
short-term variation in unemployment to the unemployment gap, and attributes
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long-term movements in the level to shifts in the natural rate. For the years over
which we estimate the models, the natural rate increases only slightly, and most of
the variation in URt is in the gap measure Ut.

For model 1, this is all we need for estimation. We simply project the current
unemployment gap onto a constant, current inflation, and one lag of gap, and es-
timate parameters by OLS. For the period 1948:3-1963:1, the least-squares point
estimates and standard errors are as follows.

Intercept Ut−1 πt

β̂ 0.0023 0.7971 -0.2761
σβ̂ 0.0010 0.0699 0.1189

Table 3: Estimates of Model 1, 1948:3-1963:1.

In model 2, unemployment depends not on inflation but on unexpected inflation,
πt−vt−1, so to estimate that model we also need a measure of expected inflation vt−1.

We construct that in the simplest way possible, by projecting current inflation on a
constant along with one lag of inflation and unemployment. The fitted value from
that regression is our measure of vt−1, and the residual is our measure of unexpected
inflation, πt − vt−1. Then we substitute that variable into the Phillips curve and
estimate its parameters by least squares. The estimates and standard errors for
model 2 are shown in the next table.

Intercept Ut−1 πt − vt−1

β̂ 0.0007 0.8468 -0.2489
σβ̂ 0.0008 0.0674 0.1298

Table 4: Estimates of Model 2, 1948:3-1963:1.

We fit the Solow-Tobin model used in section D by fitting the following regression
using data from 1949-2003:

Ut = β1Ut−1 + β2Ut−2 + β3∆πt + β4∆πt−1 + β5∆πt−2 + ηt. (51)

Notice that the first difference of inflation is on the right-hand side. This is Solow and
Tobin’s trick for enforcing long-run neutrality. We don’t need an intercept because
filtered unemployment has mean zero, as does ∆πt. (If an intercept is added, it is
close to zero and insignificant.) The OLS estimates and standard errors are:
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Ut−1 Ut−2 ∆πt ∆πt−1 ∆πt−2 ηt R2

β̂ 1.334 -0.451 -0.165 -0.094 -0.142 0.0035 0.894
σβ̂ 0.0060 0.0060 0.065 0.066 0.062

Table 5: Estimates of the Solow-Tobin model.

The model fits reasonably well, and the coefficients have the right sign. The lag
polynomial for unemployment will generate a hump-shaped response to shocks. The
slope of the short-run Phillips curve is flat, but not too flat. So this should work as
a true model.

We use the point estimates in these tables to calibrate the two policy models and
the Solow-Tobin model that we study in section . Our central bank takes the point
estimates as if they were known with certainty and formulates policy by averaging
across the models. Thus, it takes account of model uncertainty, but suppresses
parameter uncertainty.

E Computing benefits as equivalent variation in

unemployment

Let W∆(Ut, αt) be the value of the economy in which the central bank follows the
abstain from experimentation policy and a constant amount of unemployment ∆ is
added every period:

W∆(Ut, αt) = −Et

∞∑

j=0

βj
[
(Ut+j + ∆)2 + λv2

t+j

]

= −Et

∞∑

j=0

βj
(
U2

t+j + λv2
t+j

)
− 2∆Et

∞∑

j=0

βjUt+j −
∆2

1 − β

= W (Ut, αt) − 2∆Et

∞∑

j=0

βjUt+j −
∆2

1 − β
(52)

where W (Ut, αt) is the value from following the anticipated utility policy defined as
in (14). The expectation term in (52) can be computed by solving the recursion:

s(Ut, αt) = Ut + βEts(Ut+1, αt+1)

= Ut + βαt

∫
s (U1(Ut, αt), B(Ut, αt)) dF (ε1,t+1)

+β(1 − αt)

∫
s (U2(Ut, αt), B(Ut, αt)) dF (ε2,t+1)
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Defining V (Ut, αt) as the value of the economy under experimentation, we want to
compute ∆ such that:

V (Ut, αt) = W∆(Ut, αt)

= W (Ut, αt) − 2∆s(Ut, αt) −
∆2

1 − β

We select the solution that calls for ∆ = 0, when α = 0 and α = 1:

∆ = −(1 − β)s(Ut, αt) +
√

(1 − β)2(s(Ut, αt))2 − (1 − β)(V (Ut, αt) − W (Ut, αt))
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