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Abstract

We study how a concern for robustness modifies a policy maker’s incentive
to experiment. A policy maker has a prior over two submodels of inflation-
unemployment dynamics. One submodel implies an exploitable trade-off, the
other does not. Bayes’ law gives the policy maker an incentive to experiment.
The policy maker fears that both submodels and his prior probability distri-
bution over them are misspecified. We compute decision rules that are robust
to misspecifications of each submodel and of the prior distribution over sub-
models. We compare robust rules to ones that Cogley, Colacito, and Sargent
(2007) computed assuming that the models and the prior distribution are cor-
rectly specified. We explain how the policy maker’s desires to protect against
misspecifications of the submodels, on the one hand, and misspecifications of
the prior over them, on the other, have different effects on the decision rule.
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1 Introduction

Central bankers frequently emphasize the importance of taking parameter and/or
model uncertainty into account when making decisions (e.g., see Greenspan 2004 and
M. King 2004). A natural way to do so is to cast an optimal policy problem as a
Bayesian decision problem. One consequence is that the decision maker’s posterior
about parameters and model probabilities becomes part of the state vector. A Bell-
man equation would then instruct the decision maker to experiment with an eye
toward tightening that posterior in the future. Although experimentation would
cause near-term outcomes to deteriorate, it would speed learning and improve out-
comes in the long run. Cogley, Colacito, and Sargent (2007), Wieland (2000a,b),
and Beck and Wieland (2002) study aspects of this tradeoff in a variety of mone-
tary policy models. Whether the decision maker should experiment a little or a lot
depends on details of the model, but all such studies agree that an optimal policy
should include some experimentation.

Despite this, prominent macroeconomists like Blinder (1998) and Lucas (1981)
have forcefully recommended against purposefully experimenting on real economies
in order to refine the policy maker’s knowledge (see Cogley, Colacito, and Sargent
(2007) for quotations of Blinder and Lucas). An aversion to experimentation also
runs through Friedman’s advocacy of a k-percent money growth rule. Resolving
this ‘Bellman versus Lucas’ difference of opinion seems to require challenging the
Bellman equation that leads to the recommendation to experiment purposefully.

That is what we do in this paper. In particular, we challenge the ingredient of the
Bellman equation that specifies that the policy maker completely trusts his stochas-
tic specification.1 Our decision maker distrusts his stochastic specification and this
modifies his Bellman equation. We formulate distrust by using risk-sensitivity op-
erators and we study how that alters incentives to experiment.

As a laboratory, we adopt the model of Cogley, Colacito, and Sargent (2007).
That paper computed the benefits to a Bayesian decision maker of intentional ex-
perimentation designed to reduce uncertainty about the correct model specification.
The authors gave a policy maker two submodels that have very different operating
characteristics that are important for policy. They also assumed that the monetary
authority’s doubts are limited to not knowing the ‘correct’ value of one hyperparam-
eter, α, the probability that one of two competing submodels generates the data.
In other words, they assumed that the monetary authority has narrowed the set
of possible models down to two and that it knows each submodel perfectly. If in
practice one thinks that the monetary authority’s doubts are broader and vaguer,

1Thus, Marimon (1997) noted that a Bayesian ‘knows the truth’ from the outset, so that
Bayesian learning problems are just about conditioning, not constructing new joint distributions
over unknowns and data.

2



then their calculations substantially understated the difficulty of the decision prob-
lem confronting the policy maker. For instance, the decision maker might be unsure
about parameters of each submodel, might suspect that additional submodels are
relevant, and might also have qualms about whether his prior adequately represents
his beliefs.2 The robustness calculations in this paper are designed to address some
of these concerns. As we shall see, a robust decision maker still has an incentive
to experiment, but the degree of experimentation is tempered by concerns that the
decision problem is misspecified.

We use two risk-sensitivity operators defined by Hansen and Sargent (2005,
2007a) to construct a Bellman equation that acknowledges that the policy maker
distrusts his model specification wants a decision rule that will be good enough de-
spite the misspecification of his model. ‘Good enough’ means that a decision rule
attains an acceptable outcome for a set of stochastic specifications centered on the
policy maker’s baseline model. As we shall see, our risk-sensitivity operators sum-
marize how the policy maker does a worst-case analysis in order to design a robust
rule.

Our robust policy maker achieves a robust decision rule by pretending to be a
pessimist. But pessimistic about what? Any worst-case analysis is context specific
in the sense that ‘worst’ is relative to a particular objective function. Our decision
maker attains robustness by finding a worst-case rule for a particular Kydland-
Prescott (1977) ad hoc criterion for assessing inflation and unemployment outcome
paths. As we vary the weights on inflation and unemployment in that criterion,
what is worst changes. That affects the robust decision rule in ways that we are
about to study.

1.1 Organization

Section 2 formulates a Bellman equation without concerns about misspecifica-
tion. Section 3 reformulates the Bellman equation to reflect how the decision maker
responds to fears that his prior over the two submodels as well as the submodels
themselves are misspecified. Section 4 describes our quantitative findings. Section 5
adds some concluding remarks. We consign many technical details to an appendix.

2O’Hagan (1998, p. 22) states that “to elicit a genuine prior distribution (and typically what is
needed is a joint distribution in several dimensions) is a complex business demanding a substantial
effort on the part of both the statistician and the person whose prior beliefs are to be elicited.”
Applied Bayesians frequently take shortcuts, such as assuming that parameters are independent
a priori or choosing functional forms for convenience and not from conviction. Consequently, one
might question whether a prior probability model accurately reflects the decision maker’s initial
beliefs.
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2 The experimentation problem without model

ambiguity

A decision maker wants to maximize the following function of states st and
controls vt:

E0

∞∑

t=0

βtr(st, vt). (1)

The observable and unobservable components of the state vector, st and zt, respec-
tively, evolve according to a law of motion

st+1 = πs(st, vt, zt, ǫt+1), (2)

zt+1 = zt, (3)

where ǫt+1 is an i.i.d. vector of shocks and zt ∈ {1, 2} is a hidden state variable
that indexes submodels. Since the state variable zt is time invariant, specification
(2)-(3) states that one of the two submodels governs the data for all periods. But
zt is unknown to the decision maker. The decision maker has a prior probability
Prob(z = 1) = α0. Where st = st, st−1, . . . , s0, the decision maker recursively
computes αt = Prob(z = 1|st) by applying Bayes’ law:

αt+1 = πα(αt, πs(st, vt, zt, ǫt+1)). (4)

Because he does not know zt, the policy maker’s prior probability αt becomes a
state variable in a Bellman equation that captures his incentive to experiment. Let
asterisks denote next-period values and express the Bellman equation as

V (s, α) = max
v

{
r(s, v) + Ez

[
Es∗,α∗(βV (s∗, α∗)|s, v, α, z)|s, v, α

]}
, (5)

subject to

s∗ = πs(s, v, z, ǫ
∗), (6)

α∗ = πα(α, πs(s, v, z, ǫ
∗)). (7)

Ez denotes integration with respect to the distribution of the hidden state z that
indexes submodels, and Es∗,α∗ denotes integration with respect to the joint distri-
bution of (s∗, α∗) conditional on (s, v, α, z).

3 Experimentation with model ambiguity

Bellman equation (5) invites us to consider two types of misspecification of the
stochastic structure: misspecification of the distribution of (s∗, α∗) conditional on
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(s, v, α, z), and misspecification of the probability α over submodels z. Following
Hansen and Sargent (2005, 2007a), we introduce two risk-sensitivity operators that
can help the decision maker construct a decision rule that is robust to these types
of misspecification. While we refer to them as “risk-sensitivity” operators, it is
actually their dual interpretations that interest us. Under these dual interpretations,
a risk-sensitivity adjustment is an outcome of a minimization problem that assigns
worst-case probabilities subject to a penalty on relative entropy. Thus, we view the
operators as adjusting probabilities in cautious ways that assist the decision maker
design robust policies.3

3.1 Two risk-sensitivity operators

3.1.1 T
1 operator

The risk-sensitivity operator T
1 helps the decision maker guard against misspec-

ification of a submodel. Let W (s∗, α∗) be a measurable function of (s∗, α∗). In our
application, W will be a continuation value function. Instead of taking conditional
expectations of W , we shall apply the operator:

T
1(W (s∗, α∗))(s, α, v, z; θ1) = −θ1 logEs∗,α∗ exp

(−W (s∗, α∗)

θ1

)∣∣∣(s, α, v, z). (8)

This operator yields the indirect utility function for a problem in which the decision
maker chooses a worst-case distortion to the conditional distribution for (s∗, α∗) in
order to minimize the expected value of a value function W plus an entropy penalty.
That penalty limits the set of alternative models against which the decision maker
guards. The size of that set is constrained by the parameter θ1 and is decreasing in
θ1, with θ1 = +∞ signifying the absence of a concern for robustness. The solution
to this minimization problem implies a multiplicative distortion to the Bayesian
conditional distribution over (s∗, α∗). The worst-case distortion is proportional to

exp
(−W (s∗, α∗)

θ1

)
, (9)

where the factor of proportionality is chosen to make this non-negative random
variable have conditional expectation equal to unity. Notice that the scaling factor
and the outcome of applying the T

1 operator will depend on the state z indexing
submodels even though W does not. In appendix A, we discuss in more detail a
formula for this worst-case conditional distribution. Notice how (9) pessimistically
twists the conditional density of (s∗, α∗) by upweighting outcomes that have lower
value.

3Direct motivations for risk sensitivity can be found in Kreps and Porteus (1979) and Klibanoff,
Marinacci, and Mukerji (2005).
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3.1.2 T
2 operator

The risk-sensitivity operator T
2 helps the decision maker evaluate a continuation

value function U that is a measurable function of (s, α, v, z) in a way that guards
against misspecification of his prior α:

T
2(W̃ (s, α, v, z))(s, α, v; θ2) = −θ2 logEz exp

(−W̃ (s, α, v, z)

θ2

)∣∣∣(s, α, v) (10)

This operator yields the indirect utility function for a problem in which the decision
maker chooses a distortion to his Bayesian prior α in order to minimize the expected
value of a function W̃ (s, α, v, z) plus an entropy penalty. Once again, that penalty
constrains the set of alternative specifications against which the decision maker
wants to guard, with the size of the set decreasing in the parameter θ2. The worst-
case distortion to the prior over z is proportional to

exp
(−W̃ (s, α, v, z)

θ2

)
, (11)

where the factor of proportionality is chosen to make this nonnegative random vari-
able have mean one. The worst-case density distorts the Bayesian probability by
putting higher probability on outcomes with lower continuation values. See appendix
A for more details about the worst-case density for z.4

Our decision maker directly distorts the date t posterior distribution over the
hidden state, which in our example indexes the unknown model, subject to a penalty
on relative entropy. The source of this distortion could be a change in a prior
distribution at some initial date or it could be a past distortion in the state dynamics
conditioned on the hidden state or model.5 Rather than being specific about this
source of misspecification and updating all of the potential probability distributions
in accordance with Bayes rule with the altered priors or likelihoods, our decision
maker directly explores the impact of changes in the posterior distribution on his
objective.

4The worst-case model as we have depicted it will depend on the endogenous state variable
st. Since this worst-case model distorts the distribution of ǫt+1, we may prefer to represent this
distortion without explicit dependence on an endogenous state variable. This can often be done
for decision problems without hidden states using a ‘Big K, little k’ argument of a type featured
in chapters 7 and 12 of Hansen and Sargent (2007b). A more limited notion of a worst-case model
can be constructed when hidden states are present, as discussed in Hansen and Sargent (2007a).

5A change in the state dynamics would imply a misspecification in the evolution of the state
probabilities.
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3.2 A Bellman equation for inducing robust decision rules

Following Hansen and Sargent (2005, 2007a), we induce robust decision rules
by replacing the mathematical expectations in (5) with risk-sensitivity operators.
In particular, we substitute (T1)(θ1) for Es∗,α∗ and replace Ez with (T2)(θ2). This
delivers a Bellman equation

V (s, α) = max
v

{
r(s, v) + T

2
[
T

1(βV (s∗, α∗)(s, v, α, z; θ1))
]
(s, v, α; θ2)

}
. (12)

We find it convenient to separate the two risk-sensitivity operators by allow-
ing for the parameters θ1 an θ2 to differ. The T

1 operator explores the impact
of forward-looking distortions in the state dynamics and the T

2 operator explores
backward-looking distortions in the outcome of predicting the current hidden state
given current and past information. As we will see, applications of these two oper-
ators have very different ramifications for experimentation, and for that reason we
find it natural to explore them separately.6

3.3 The submodels

Each submodel of Colacito, Cogley, and Sargent (2007) has the form

st+1 = Azst +Bzvt + Czǫt+1, (13)

z = 1, 2, where st is an observable state vector, vt is a control vector, and ǫt+1 is an
i.i.d. Gaussian processes with mean zero and contemporaneous covariance matrix I.
Let F (·) denote the c.d.f. of this normalized multivariate Gaussian distribution. At
time t, the policy maker has observed a history of outcomes st = st, st−1, . . . , s0 and
assigns probability αt to model 1 and probability (1 − αt) to model 2.

To capture an old debate between advocates of the natural unemployment hy-
pothesis and those who thought that there was an exploitable unemployment-inflation
trade-off, we imagine that a monetary policy authority has the following two models
of inflation-unemployment dynamics:7

• Model 1 (Samuelson-Solow):

Ut = .0023 + .7971Ut−1 − .2761πt + .0054η1,t

πt = vt−1 + .0055η3t

6When θ1 = θ2 the two operators applied in conjunction give the recursive formulation of risk
sensitivity proposed in Hansen and Sargent (1995), appropriately modified for the inclusion of
hidden states.

7We use these specifications in order to have good fitting models, to keep the dimension of the
state to a minimum, and still to allow ourselves to represent ‘natural rate’ and ‘non-natural rate’
theories of unemployment. For details, see appendix D of Cogley, Colacito, and Sargent.
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• Model 2 (Lucas):

Ut = .0007 + .8468Ut−1 − .2489(πt − vt−1) + .0055η2,t

πt = vt−1 + .0055η4t

Ut is the deviation of the unemployment rate from an exogenous measure of a natural
rate U∗

t , πt is the quarterly rate of inflation, vt−1 is the rate of inflation that at time t−
1 the monetary authority and private agents had both expected to prevail at time t,
and, for i = 1, 2, 3, 4, ηit are i.i.d. Gaussian sequences with mean zero and variance 1.
The monetary authority has a Kydland-Prescott (1977) loss function E0

∑∞

t=0 β
trt,

where rt = −.5(U2
t + λv2

t ) and E0 is the mathematical expectation conditioned
on s0, α0. The monetary authority sets vt as a function of time t information.
The analysis of Cogley, Colacito, and Sargent (2007) assumed that the monetary
authority knows the parameters of each model for sure and attaches probability
α0 to model 1 and probability 1 − α0 to model 2.8 Although they fit the U.S.
data from 1948:3-1963:I almost equally well, these two models call for very different
policies toward inflation under our loss function. Model 1, whose main features
many have attributed to Samuelson and Solow (1960), has an exploitable tradeoff
between vt and subsequent levels of unemployment. Having operating characteristics
advocated by Lucas (1972, 1973) and Sargent (1973), model 2 has no exploitable
Phillips curve: variations in the predictable part of inflation vt affect inflation but
not unemployment. If α0 = 0, our decision maker should implement the trivial
policy vt = 0 for all t.9 However, if α0 > 0, the policy maker is willing to set vt 6= 0
partly to exploit a probable inflation-unemployment tradeoff and partly to refine α.

Cogley, Colacito, and Sargent (2007) study how decision rules for this problem
vary with different values of the decision maker’s preference parameter λ. By com-
paring the decision rules from (14) with those from an associated ‘anticipated utility’
model, they provide a way to quantify the returns from experimentation.

4 Quantitative findings

4.1 Decision rules without robustness

As a benchmark, we first display the value function and decision rules for a
version of the model without robustness (i.e., for θ1 = θ2 = +∞). Figures 1 and
2 depict results for λ = 0.1 and β = 0.995, the parameters favored by Cogley,
Colacito, and Sargent (2007). Notice that the value function slopes upward along

8As we shall see below, the T
1 operator that we use in section 4.5 allows us to analyze robustness

to model perturbations that can be interpreted as coefficient uncertainty.
9Cogley, Colacito, and Sargent adopt a timing protocol that eliminates the inflationary bias.
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Figure 1: Value function V (U, α) without robustness for λ = 0.1.
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Figure 2: Decision rules without robustness. Black lines represent optimal experi-
ments, and the linear red lines indicate the anticipated-utility approximations de-
fined in Cogley, Colacito, and Sargent (2007).
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the α-axis. Since α is the probability that the Samuelson-Solow model is true, the
upward-sloping value function means that the policy maker is better off inhabiting
a Keynesian than a classical world. That is because the Samuelson-Solow model
provides a lever for controlling unemployment that the Lucas model does not. The
inability to control unemployment is costly when λ = 0.1 because in that case the
policy maker cares a lot about unemployment.

Also notice that for most α the decision rule for programmed inflation slopes up-
ward along the U -axis, reflecting the countercyclical nature of policy. In addition,
the policy rules are approximately linear, which signifies that there is only a modest
incentive to experiment. If the connection between current actions and future beliefs
were disregarded, as they are in the anticipated-utility models of Cogley, Colacito,
and Sargent (2007), there would be no incentive to experiment, and the problem
would reduce to a linear-quadratic dynamic program, implying linear decision rules.
(The linear decision rules displayed in figure 2 are the anticipated utility decision
rules.) The presence of α in the state vector breaks certainty equivalence and makes
decision rules nonlinear, but in our example there is only a slight departure from
linearity. Optimal monetary-policy experiments involve small, opportunistic per-
turbations to programmed inflation relative to anticipated-utility policies, not great
leaps.

4.2 Activating T
2 only: robustness with respect to the prior

Next we activate a concern for robustness by reducing θ2 to 0.1. We chose this
value partly because it has a noticeable influence on decision rules. The left panel
of figure 3 plots the worst-case distortion to αt derived formally in appendix A, and
the right panel plots a pair of decision rules for inflation vt as a function of (Ut, αt).
Robust decision rules are shown in red and Bayesian decision rules in gray.

A robust policy maker updates α with Bayes’s theorem, then twists by increasing
the probability weight on the worst-case submodel. The left panel compares the
worst-case probability α̌ with the Bayesian probability α. On the boundaries where
α is 0 or 1, α̌ = α. Concerns that the prior is misspecified are irrelevant when there
is no model uncertainty. When α lies between 0 and 1, the worst-case model weight
α̌ is always smaller than the Bayesian update α. Since α is the probability attached
to the Samuelson-Solow model, the policy maker twists by reducing his prior weight
on that submodel and increasing the probability on the Lucas model. This reflects
that the policy maker is worse off if the Lucas model is true because then he lacks an
instrument for damping fluctuations in unemployment. Thus, it is understandable
that a policy maker who cares a lot about unemployment will seek robustness by
setting α̌ less than α.
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Figure 3: Robust policy with T
2 operator only, with λ = 0.1 and θ2 = .1. In the

right panel, the grey line is the decision rule for the θ2 = +∞ no-robustness decision
rule, while the dark line is the θ2 = 0.1 robust decision rule.

The right-hand panel of figure 3 shows how concerns about robustness with
respect to the prior over submodels alter the policy rule. Robustness matters most
for intermediate values of α and high values of |U |. When α is close to 0 or 1, there is
little model uncertainty and therefore little reason to worry about having the wrong
model weight. In that case, the robust policy closely tracks the original decision
rule. Similarly, the robust rule closely tracks the Bayesian policy when U is close to
the point where the Samuelson-Solow model recommends zero inflation.10 In that
neighborhood of U , the two models recommend similar actions, and since there is
little disagreement, there is also little reason to worry about α. Robustness matters
more when the models recommend very different actions, i.e. when |U | is large. For
intermediate values of α but high values of U , the robust decision maker sets a lower
inflation target than does one who has no doubts about his prior probabilities. This
is because the policy maker makes robust decisions by in effect increasing the prior
weight that he attaches to the Lucas model, under which inflation is ineffective as a
tool for affecting unemployment. The analysis is analogous for negative values of U ,

10This occurs when U is slightly less than zero. When U = 0, the Samuelson-Solow model
recommends a small, positive inflation rate.
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for the robust policy maker continues to twist by edging the inflation target toward
zero.

Comparing these outcomes with section 5.2 of Cogley, Colacito, and Sargent
(2007) shows that by expressing distrust of his prior distribution over submodels,
application of the T

2 operator diminishes the incentives of the policy maker to
experiment. Such distrust mutes the “opportunistic” experimentation motive that
Cogley, Colacito, and Sargent (2007) found to prevail especially when |U | is high.

4.3 Role of λ in determining worst-case submodel

Worst-case probabilities are context specific because they depend on the deci-
sion maker’s objective function. To bring this out, we now explore how the pre-
ceding results change as we increase the decision maker’s weight on inflation λ. A
higher λ reduces the relative weight on unemployment in the period-loss function
and increases the weight on inflation. Therefore, it also alters the policy maker’s
perceptions about worst-case scenarios.

When λ is 16, the policy maker cares more about inflation than unemployment,
and the Samuelson-Solow model becomes the worst-case scenario. Figure 4, which
portrays the value function for the non-robust version of this model, shows that the
value function now slopes downward along the α-axis, indicating that the authorities
are better off when the Lucas model is true. When α = 0, they refrain from varying
inflation to stabilize unemployment, for they are unable to affect unemployment in
any case, and they focus exclusively on maintaining price stability. That reduces
inflation volatility at no cost in terms of higher unemployment volatility. Central
bankers who care mostly about inflation are happier in a classical world because
their job is easier in that environment.
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Figure 4: Value function V (U, α) without robustness for λ = 16.

Figure 5 illustrates how this affects robust policies. If we were to hold θ2 constant
while increasing λ, a concern for robustness would vanish for λ = 16, so we also
reduce θ2 to 0.001 to compensate.11 Because the Samuelson-Solow model is the worst
case, a robust planner twists by increasing its probability weight. This explains why
in the left panel the twisted model weight α̌ is greater than α in almost all states
of the world. This raises programmed inflation when unemployment is low, but
because λ is so high, vt always remains close to zero, with or without robustness.
Thus, differences in the policy functions are slight, amounting to just a few basis
points.

11When θ2 = 0.001 and λ = 0.1, the robust planner becomes hypervigilant, and the value function
ceases to be concave in vt and convex in the choice of the perturbation to the approximating model.
Whittle (1990) describes a breakdown value of θ1 as a point of ‘utter psychotic despair’.
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Figure 5: Robust policy with T
2 operator only, with λ = 16 and θ2 = 0.001. In

the right panel, the dark line is the decision rule for the θ2 = +∞ no-robustness
decision rule, while the grey line is the θ2 = 0.001 robust decision rule.
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For intermediate values of λ, either model could be the worst, so the distortion
to α could go either way. It follows that a concern for robustness could make policy
more or less countercyclical. For example, figures 6 and 7 display the value function,
α-distortion, and decision rules, respectively, for λ = 1 and θ2 = 0.001. When
inflation and unemployment are equally weighted, the non-robust value function
still slopes upward, which means that the Lucas model is still associated with the
worst-case scenario, and the robust planner twists in most states of the world by
reducing α̌ relative to the Bayesian update α.12 Accordingly, the robust policy rule
is still less countercyclical than the Bayesian decision rule.
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Figure 6: Value function V (U, α) without robustness for λ = 1.

12An exception occurs when α is close to zero, where the robust planner twists toward the
Samuelson-Solow model. This matters only slightly for policy because programmed inflation is
always close to zero when α is close to zero.
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Figure 7: Robust policy with T
2 operator only, with λ = 1 and θ2 = 0.001. In the

right panel, the grey line is the decision rule for the θ2 = +∞ no-robustness decision
rule, while the dark line is the θ2 = 0.001 robust decision rule.

4.4 Dwindling effect of T
2 operator

Colacito, Cogley, and Sargent (2007) indicate how, when one of the two submod-
els is true, αt converges either to zero or one as t → +∞. Furthermore, even when
the data are generated by a third submodel not considered by the decision maker, it
is often the case that αt still converges to zero or one. The preceding figures indicate
that at the dogmatic boundary α = 0 or α = 1, there is no room for the T

2 operator
to distort beliefs. This means that the inexorable working of Bayes’ law causes the
effects of the T

2 operator to die off over time.
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4.5 Activating T
1: robustness with respect to each sub-

model

Keeping λ = 0.1, we now use the T
1 operator to express a concern about misspec-

ification of the unemployment-inflation dynamics within each of the two submodels.
To begin, by setting θ2 = +∞ we shall assume that the decision maker is confi-
dent about his prior. We express a concern for misspecification of the submodels by
replacing the Es∗α∗ in (14) with the T

1 operator. In particular, we replace

β

∫
V (Azst +Bzvt + Czǫt+1, πα(αt, Azst +Bzvt + Czǫt+1))dF (ǫt+1)

in (14) with (T1(βV )(st, αt, vt, z; θ1).
Figures 8 and 9 display the conditional means and variances of the worst-case

conditional densities (22) for the Samuelson-Solow and Lucas models, respectively,
for θ1 = 0.1 and θ2 = +∞13 The nature of the worst-case scenario is similar in
the two models. In both cases, the worst-case model envisions a higher probability
of drawing a deviation-amplifying shock when |U | is already large. The expected
values of the distorted unemployment shocks in the two models, η1 and η2, are
positive when unemployment is high and negative when it is low, and this directly
amplifies unemployment volatility. Similarly, the expected values of the distorted
inflation shocks, η3 and η4, are negative when U is high and positive when U is
low. This indirectly increases unemployment volatility because U varies inversely
with respect to unexpected inflation. In addition, the shock variances are altered to
increase volatility, being greater when |U | is large.

Figure 10 displays the corresponding robust decision rule. To offset the greater
risk of a deviation-amplifying shock, the robust policy authority adopts a more ag-
gressive countercyclical stance relative to that set by a policy maker who fully trusts
the specification of each model. Thus, concerns about possible misspecifications of
the submodels have an opposite effect from a concern about the prior alone that we
summarized in figure 3.

13We set θ1 = .1 because this value delivers noticeable affects on the decision rule.
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robust decision rule.
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4.6 How the two forms of misspecification interact: activat-

ing both the T
1 and T

2 operators

Figure 11 activates concerns about both features of the specification. As might
be guessed from the complexion of the earlier results, turning on both sources of
concern about robustness yields a decision rule that is close to the one we obtained
without any concerns about robustness. When λ = 0.1, the decision maker makes
programmed inflation less countercyclical to guard against misspecification of the
prior, but makes vt more countercyclical to protect against misspecification of the
two submodels. In effect, the worst-case α shown in the left panel of figure 11 offsets
the worst-case dynamics coming from the dependence of the worst-case conditional
mean on (Ut, αt), so that the combined effects of T

1 and T
2 approximately cancel.

Thus, the optimal Bayesian decision rule with experimentation – calculated without
explicit reference to robustness – is robust to a mixture of concerns about the two
types of misspecification.14

α ≈ 0

0

0.02

0.04

α = 0.2

In
fla

tio
n

α = 0.4

0

0.02

0.04

α = 0.6

In
fla

tio
n

−.015  0  .015  .03

α = 0.8

Unemployment
−.015 0     .015 .03  

0

0.02

0.04

α ≈ 1

Unemployment

In
fla

tio
n

0

0.5

1

−0.01

0

0.01

0.02

0.03

0.95

0.96

0.97

0.98

0.99

1

α
t

U
t

d(
U t,α

t)

Figure 11: Worst-case α and decision rule with concerns about both source of mis-
specification, captured by T

1 and T
2 with θ1 = θ2 = .1. The black line on the

right panel indicates the θ1 = θ2 = +∞ decision rule and the grey line indicates the
θ1 = θ2 = .1 decision rule.

14Results like this also obtain for other values of λ.
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4.7 How the two operators influence experimentation

Next we examine more closely how the two risk-sensitivity operators affect mo-
tives to experiment. Figure 12 compares robust, Bayesian, and anticipated-utility
decision rules. To highlight their differences, we set α = 0.4 to focus on a part
of the state space where experimental motives are strongest. We interpret differ-
ences of robust decision rules relative to the non-experimental, anticipated-utility
decision rule. When a risk-sensitivity operator moves a decision rule closer to the
anticipated-utility policy, we say that it tempers experimentation.

−0.01 0 0.01 0.02 0.03
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06
α = 0.4

 

 

−0.01 0 0.01 0.02 0.03
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06
α = 0.4

 

 

−0.01 0 0.01 0.02 0.03
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06
α = 0.4

 

 

Anticipated Utility
θ

1
=∞, θ

2
=0.1

θ
1
=∞, θ

2
=∞

Anticipated Utility
θ

1
=0.1, θ

2
=∞

θ
1
=∞, θ

2
=∞

Anticipated Utility
θ

1
=0.1, θ

2
=0.1

θ
1
=∞, θ

2
=∞

Figure 12: Robust, Bayesian, and Anticipated-Utility Policy Rules

The left panel of figure 12 illustrates the influence of the backward-looking T
2

operator. On balance, T
2 mutes experimentation. For small values of |U |, the

robust and Bayesian policies are essentially the same, while for larger values the
robust policy curls back toward the nonexperimental decision rule. Since the robust
rule calls for no more experimentation than the Bayesian policy when unemployment
is close to the natural rate and calls for less when the unemployment gap is large in
magnitude, less experimentation occurs along a learning transition path.15

The middle panel examines the influence of the forward-looking T
1 operator. In

this case, experimentation is muted for small values of |U | but strongly enhanced for

15It is conceivable that T
2 results in more experimentation for larger values of |U | not shown on

the graph, but those states are rarely visited.
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large values. Since realizations of |U | in the neighborhood of 0.02 are not unusual,T1

typically results in more experimentation.
Finally, the right-hand panel illustrates what happens when both operators are

active. Since one operator mutes and the other enhances experimentation, the two
operators offset, so that a decision rule coming from the application of both operators
is about the same as the Bayesian decision rule. In summary, the net effect of
robustness on experimentation is ambiguous and depends on the penalty parameters
θ1 and θ2.

4.8 How long does it take to learn the truth?

In this subsection we analyze how a preference for robustness affects the number
of quarters that are needed to learn the true model. We address this question by
simulation. For each simulation, we assume that either the Lucas’ model or the
Samuelson and Solow model is the actual data generating process. We initialize
the state space at various levels of (α0, U0) and let the system run according to the
dynamics of the true model under the optimal inflation rate impelled by the relevant
Bellman equation. For each experiment we report the median number of quarters,
that are needed for α to get within a 0.01 neighborhood of what it should be under
the true data generating process. We also report the 10%-90% confidence interval
for each case. Each experiment is based on 1000 simulations of length 700 quarters.
The results are reported in table 1, and they can be summarized by comparison to
the baseline case (i.e. (λ = 0.1,θ1 = +∞, θ2 = +∞)).

1. A fear for prior misspecification (i.e., θ1 = +∞, θ2 = 0.1) increases the time
needed to learn the true model. This is particularly apparent for high initial
levels of unemployment. In these cases, the distorted probability distribution
makes the Samuelson and Solow model less likely. Hence, the optimal decision
rule calls for a lower inflation rate, which damps experimentation and makes
it harder to discover the actual data generating process (see figure 3).

2. A fear of misspecification of the probability distribution within each sub-model
(i.e., θ1 = 0.1, θ2 = +∞) increases the speed of convergence. In this case, the
policy maker sets higher rates of inflation in the rise of unemployment (see
figure 8). The higher the degree of experimentation results in a usually very
quick convergence to the true model.

3. When both risk-sensitivity operators are turned on, there is no significant
difference with respect to the baseline model. This is the result of the two fears
of misspecification offsetting each other in the choice of the optimal inflation
rate (see figure 11).
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Waiting time

True Model α0 U0
θ1 = +∞ θ1 = +∞ θ1 = 0.1 θ1 = 0.1
θ2 = +∞ θ2 = 0.1 θ2 = +∞ θ2 = 0.1

SS 0.01 0 218 223 214 231
[128,439] [130,444] [123,416] [128,451]

SS 0.01 0.025 229 233 224 241
[141,459] [135,453] [143,404] [147,441]

Lucas 0.99 0 89 96 66 89
[32,197] [39,204] [22,150] [34,202]

Lucas 0.99 0.025 66 80 54 71
[20,175] [27,203] [4,149] [19,194]

SS 0.5 0 40 37 38 37
[21,79] [20,75] [18,71] [20,70]

SS 0.5 0.025 22 27 9 20
[5,61] [10,73] [2,51] [4,53]

Lucas 0.5 0 72 78 60 74
[26,192] [26, 180] [17,160] [23,188]

Lucas 0.5 0.025 58 71 28 59
[15,167] [23,187] [2,127] [14,177]

Table 1: Waiting Times (in quarters) for various data-generating processes and
initial (α0, U0) pairs. The variable that we call waiting time represents the number
of quarters that are needed for α to return to within a 0.01 neighborhood of what
it should be under the data generating process. For each experiment, we report the
true model, the initial prior, the initial unemployment rate, the median waiting time,
and the 10% - 90% confidence sets in square brackets for various pairs of (θ1, θ2).
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5 Concluding remarks

In this paper, we study how concerns for robustness modify incentives to ex-
periment. We use a decision theory that explores robustness of decision rules by
calculating bounds on value functions over a set of probability models near a deci-
sion maker’s approximating model. Seeking bounds on value functions over a set of
probability models automatically leads to a worst-case analysis. We study a setting
in which a decision maker’s approximating model is an average of two submodels.
The decision maker uses Bayes’ law to update priors over submodels as new data ar-
rive. Our T

1 operator checks robustness of each submodel. Our T
2 operator checks

robustness with respect to a prior over submodels.
Our working example is the model in Colacito, Cogley, and Sargent (2007) in

which a Samuelson-Solow submodel offers a permanently exploitable trade-off be-
tween inflation and unemployment and another Lucas submodel lacks a trade-off
that is even temporarily exploitable. This is a good setting for illustrating how
the worst-case model is worst relative to the decision maker’s objective. When the
monetary policy decision maker puts more weight on unemployment (λ = 0.1), the
Lucas model is worse. That makes the robust policy less countercyclical than the
policy that completely trusts the model. When more weight is on inflation (λ = 16),
the Samuelson-Solow model is worse for the policy maker. That makes the robust
policy more countercyclical than the nonrobust policy.

Robust policy makers have an incentive to experiment for the same reason that
Bayesian policy makers do. The decision maker’s posterior is still an element of the
state vector, so robust Bellman equations continue to instruct the decision maker to
experiment with an eye toward tightening the posterior in the future. What changes
are the costs and benefits of experimentation. How decision rules are altered is model
specific, so robustness could in principle either enhance or mute experimentation.

In the present context, the T
1 and T

2 operators have countervailing effects on
policy. When λ = 0.1, concerns that the submodels are misspecified make policy
more countercyclical than in a Bayesian setting, while concerns that the prior is
misspecified make policy less countercyclical. When these results are compared to
Cogley, Colacito, and Sargent’s (2007) measures of the contribution of an exper-
imentation motive to the policy rule, they show that with complete trust in the
prior over submodels, distrust of the submodels increases the motive to experiment,
while with complete trust in the submodels, distrust of the prior over submodels
diminishes the motive to experiment. When both operators are active, their effects
approximately cancel, and the robust policy well approximates the Bayesian decision
rule. Since Cogley, Colacito, and Sargent (2007) showed that the Bayesian decision
rule well approximates an ‘anticipated-utility’ policy that suppresses experimenta-
tion altogether, it follows that with both of our T operators active, the optimally
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robust policy has little or no experimentation. Thus, the disagreement between the
ordinary Bellman equation’s recommendation to experiment and Blinder’s and Lu-
cas’s advice not to experiment, cited at the beginning of this paper, can in principle
be rationalized by using the T

2 operator to express a distrust of the decision maker’s
prior over the submodels that offsets other motives to experiment.

A Details

A.1 The Bellman equation

Our Bellman equation without fear of model misspecification is:

V (st, αt) = max
vt

{r(st, vt) (14)

+ βαt

∫
V (A1st +B1vt + C1ǫt+1, πα(αt, A1st +B1vt + C1ǫt+1))dF (ǫt+1)

+ β(1 − αt)

∫
V (A2st +B2vt + C2ǫt+1, πα(αt, A2st +B2vt + C2ǫt+1))dF (ǫt+1)}

The optimal decision rule can be represented recursively as

vt = v(st, αt). (15)

Repeated substitution of (7) into (15) yields the policy maker’s strategy in the form
of a sequence of functions

vt = σt(s
t, α0). (16)

Cogley, Colacito, and Sargent (2007) derive the function πα(st, αt). To summarize
their calculations, let Ωi = CiC

′
i, Rt = αt

1−αt

, and define

g(ǫt+1; st, αt) = logRt −
1

2
log |Ω1| +

1

2
log |Ω2| −

1

2
(C1ǫt+1)

′ Ω−1
1 (C1ǫt+1)

+
1

2
[(A1 −A2)st + (B1 − B2)vt + C1ǫt+1]

′

× Ω−1
2 [(A1 −A2)st + (B1 − B2)vt + C1ǫt+1] (17)

and

h(ǫt+1; st, αt) = logRt −
1

2
log |Ω1| +

1

2
log |Ω2| +

1

2
(C2ǫt+1)

′ Ω−1
2 (C2ǫt+1)

−
1

2
[(A2 − A1)st + (B2 − B1)vt + C2ǫt+1]

′

× Ω−1
1 [(A2 − A1)st + (B2 − B1)vt + C2ǫt+1]. (18)
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The Bellman equation (14) becomes

V (st, αt) = max
vt

{
r(st, vt) + βαt

∫
V

(
A1st + B1vt + C1ǫt+1,

eg(ǫt+1)

1 + eg(ǫt+1)

)
dF (ǫt+1)

+β(1 − αt)

∫
V

(
A2st + B2vt + C2ǫt+1,

eh(ǫt+1)

1 + eh(ǫt+1)

)
dF (ǫt+1)

}
. (19)

Cogley, Colacito, and Sargent (2007) also describe how to approximate the solution
of (19) and the robust counterpart to it that we propose in subsection 3.2.

A.2 The two operators

We describe details of how the operators T
1,T2 apply in our particular setting.

A.3 T
1 operator

For a given value function V (st+1, αt+1) and a given decision rule vt = v(st, αt),
define

T
1(V (st+1, αt+1)((st, αt, vt, z; θ1) (20)

= −θ1 log

∫
exp

(
−
V (Azst +Bzvt + Czǫt+1, πα(αt, Azst +Bzvt + Czǫt+1))

θ1

)
dF (ǫt+1).

= min
φ(st,vt,αt,ǫt+1)≥0

∫ [
V (Azst +Bzvt + Czǫt+1, πα(αt, Azst +Bzvt + Czǫt+1))

+ θ1 log φ(st, vt, αt, ǫt+1)
]
φ(st, vt, αt, ǫt+1)dF (ǫt+1) (21)

where the minimization is subject to E[φ(st, vt, αt, ǫt+1)|st, αt, vt, j] = 1. The mini-
mizer in (21) is a worst-case distortion to the density of ǫt+1:

φ∗(ǫt+1, st, αt) =
exp
(
−V (Azst+Bzvt+Czǫt+1,πα(αt,Azst+Bzvt+Czǫt+1))

θ1

)

∫
exp
(
−V (Azst+Bzvt+Czǫt+1,πα(αt,Azst+Bzvt+Czǫt+1))

θ1

)
dF (ǫt+1)

,

where it is understood that vt on the right side is evaluated at a particular decision
rule v(st, αt). The distorted conditional density of ǫt+1 is then

φ̌(ǫt+1, st, αt) = φn(ǫt+1)φ
∗(ǫt+1, st, αt), (22)

where φn(ǫt+1) is the standard normal density.
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A.4 T
2 operator

For j = 1, 2, let V̌ (s, α, v, z) be distinct functions of (s, α, v) for z = 0, 1. Define

T
2(V̌ (s, α, v, z; θ2)(s, α, v) (23)

= −θ2 log
[
α exp

(−V̌ (s, α, v, 0)

θ2

)
+ (1 − α) exp

(−V̌ (s, v, α, 1)

θ2

)]

= min
ψ0≥0,ψ1≥0

{
[V̌ (s, α, v, 0) + θ2 logψ1]ψ0α

+ [V̌ (s, α, v, 1) + θ2 logψ1]ψ1(1 − α)
}

(24)

where the minimization is subject to ψ0α + ψ1(1 − α) = 1. The minimizers of (24)
are

ψ∗
0(s, α, v) = k exp

(−V̌ (s, v, α, 0)

θ2

)

ψ∗
1(s, α, v) = k exp

(−V̌ (s, v, α, 1)

θ2

)

where k−1 = exp
(

−V̌ (s,α,v,0)
θ2

)
α + exp

(
−V̌ (s,v,α,1)

θ2

)
(1 − α). An associated worst-case

probability that z = 0 is given by

α̂ = ψ∗
0(s, α, v)α. (25)
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