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Abstract

Reinterpreting most of the market price of risk as a price of model uncertainty
eradicates a link between asset prices and measures of the welfare costs of aggregate
fluctuations that was proposed by Hansen et al. (1999), Tallarini (2000), and Alvarez
and Jermann (2004). Prices of model uncertainty contain information about the bene-
fits of removing model uncertainty, not the consumption fluctuations that Lucas (1987,
2003) studied. A max-min expected utility theory lets us reinterpret Tallarini’s risk-
aversion parameter as measuring a representative consumer’s doubts about the model
specification. We use model detection instead of risk-aversion experiments to calibrate
that parameter. Plausible values of detection error probabilities give prices of model
uncertainty that approach the Hansen and Jagannathan (1991) bounds. Fixed detec-
tion error probabilities give rise to virtually identical asset prices as well as virtually
identical costs of model uncertainty for Tallarini’s two models of consumption growth.
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No one has found risk aversion parameters of 50 or 100 in the diversification of

individual portfolios, in the level of insurance deductibles, in the wage premiums

associated with occupations with high earnings risk, or in the revenues raised by

state-operated lotteries. It would be good to have the equity premium resolved, but

I think we need to look beyond high estimates of risk aversion to do it.

Robert Lucas, Jr., January 10, 2003

1 Introduction

In terms of their effects on asset prices and real quantities, can plausible concerns about
robustness to model misspecification substitute for the implausibly large risk aversion pa-
rameters that bother Lucas in the above epigraph?1 To answer this question, we reinterpret
an elegant graph of Tallarini (2000) by transforming Tallarini’s CRRA risk-aversion param-
eter γ into a parameter that measures a set of probability models for consumption growth
that are difficult to distinguish and over which a representative consumer seeks a robust
valuation. To restrict γ, we use detection error probabilities that measure the proximity of
probability distributions, as advocated by Anderson et al. (2003) and Hansen and Sargent
(2007c, ch. 9), and we recast Tallarini’s key diagram in terms of model detection error proba-
bilities. A connection between model detection probabilities and a price of model uncertainty
transcends specific approximating models. That price compensates the representative con-
sumer for bearing model uncertainty, not risk.2 We show that modest amounts of model
uncertainty can substitute for large amounts of risk aversion in terms of choices and effects
on asset prices.

Reinterpreting risk prices as model uncertainty prices makes them uninformative about
the benefits of reducing aggregate fluctuations as defined by Lucas (1987, 2003) and implies
that those costs were mismeasured by Tallarini (2000) and Alvarez and Jermann (2004),
who used connections between risk prices and costs of fluctuations that had been set forth
by Hansen et al. (1999). To elaborate on this observation, we fashion a mental experiment
about the welfare benefits from removing model uncertainty, an experiment that differs
conceptually from Lucas’s, but about which prices of model uncertainty are informative.

Section 2 reviews Hansen and Jagannathan’s characterization of the equity premium and
risk free rate puzzles that emerge with time separable CRRA preferences. Section 3 describes
the stochastic setting and preferences that express aversion to model uncertainty. Sections
4 and 5 describe how Tallarini (2000) used a preference of Kreps and Porteus (1978) to
find values of a risk-aversion parameters γ, one for a random walk model of log consump-
tion, another for a trend stationary model, that can explain the risk-free rate puzzle of Weil

1Hansen et al. (1999) describe a locus of (β, γ) pairs that are observationally equivalent for consumption
and investment in linear-quadratic production economies, but that nevertheless imply different prices for risky
assets. This finding is the basis of what Lucas (2003, p. 7) calls Tallarini’s (2000) finding of “an astonishing
separation of quantity and asset price determination . . ..” Although this paper studies only pure endowment
economies, the analytical observational equivalence result of Hansen et al. (1999) and the approximate version
of that result in Tallarini (2000) make us confident that the theoretical values of quantities that will emerge
from production economies will not be affected by alterations in the risk-sensitivity parameter γ that we use
to measure concerns about model misspecification.

2See Anderson et al. (2003).
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(1990). But those values of γ are so high that they provoked Lucas’s skeptical remark. Sec-
tion 6 defines a concern about robustness to alternative models of log consumption growth
that are constructed using martingale perturbations that Hansen and Sargent (2005, 2007b)
and Hansen et al. (2006) used to represent alternative specifications that are statistically
near an approximating model. We then reinterpret Tallarini’s utility recursion in terms of
some max-min expected utility formulations in which the minimization operator expresses
an agent’s doubts about his stochastic specification. We describe senses in which risk aver-
sion and model uncertainty aversion are and are not observationally equivalent. Section 7
reinterprets Tallarini’s findings in terms of model uncertainty aversion. We use detection
error probabilities to justify selecting different context-specific values of γ for the two ap-
proximating models of log consumption growth used by Tallarini, then modify Tallarini’s key
figure by recasting it in terms of detection probabilities. The figure reveals a link between
the market price of model uncertainty and the detection error probability that transcends
differences in the stochastic specification of the representative consumer’s approximating
model for log consumption growth, an outcome that could be anticipated from the tight
relationship between the market price of model uncertainty and a large deviation bound
on detection error probabilities derived by Anderson et al. (2003). Section 8 measures the
benefits from a hypothetical experiment that removes model uncertainty, explains how this
experiment differs from the mental experiment that underlies calculations of the benefits of
reducing aggregate fluctuations by Lucas (1987, 2003), Tallarini (2000), and Alvarez and
Jermann (2004), and tells how the benefits of eliminating model uncertainty are reflected in
the market price of model uncertainty. Section 9 discusses whether and how someone can
learn not to fear model misspecification. Section 10 concludes.

Our analysis highlights how random shocks confront consumers with model ambiguity by
obscuring differences among statistical models. Here random shocks discomfort consumers
and investors in ways that Lucas (1987, 2003), Tallarini (2000), and Alvarez and Jermann
(2004) ignored.

2 The equity premium and risk-free rate puzzles

Along with Tallarini (2000), we begin with a characterization of the risk-free rate and equity
premium puzzles by Hansen and Jagannathan (1991). The random variable mt+1,t is said to
be a stochastic discount factor if it confirms the following equation for the time t price pt of
a one-period payoff yt+1:

pt = Et (mt+1,tyt+1) ,

where Et denotes the mathematical expectation conditioned on date t information. For
time-separable CRRA preferences with discount factor β, mt+1,t is simply the marginal rate
of substitution:

mt+1,t = β

(

Ct+1

Ct

)−γ

(1)
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Table 1: Sample moments from quarterly U.S. data 1948:1-2006:4, re is the real quarterly return on
the value-weighted NYSE portfolio and rf is the real quarterly return on the three month Treasury
bill. Returns are measured in percent per quarter.

Return Mean Std. dev.
re 2.27 7.68
rf 0.32 0.61

re − rf 1.95 7.67
Market price of risk: 0.25

where Ct is consumption and γ is the coefficient of relative risk aversion. The reciprocal of
the gross one-period risk-free rate is

1

Rf
t

= Et [mt+1,t] = Et

[

β

(

Ct+1

Ct

)−γ
]

. (2)

Let ξt+1 be the one-period excess return on a security or portfolio of securities. Using
the definition of a conditional covariance and a Cauchy-Schwarz inequality, Hansen and
Jagannathan (1991) deduce the following bound:

|Et [ξt+1]|

σt (ξt+1)
≤

σt (mt,t+1)

Et [mt,t+1]
. (3)

The left-hand side of (3) is the Sharpe ratio. The maximum Sharpe ratio is commonly called
the market price of risk. It is the slope of the (conditional) mean-standard deviation frontier
and is the increase in the expected rate of return needed to compensate an investor for
bearing a unit increase in the standard deviation of return along the efficient frontier. The
Sharpe ratio is bounded by the right-hand side of relation (3). With complete markets the
bound is attained.

A counterpart to this inequality uses unconditional expectations and results in Hansen
and Jagannathan’s statement of the equity premium puzzle.3 To reconcile formula (1) with
measures of the market price of risk extracted from data on asset returns and prices only
(like those in table 1) requires a value of γ so high that it elicits doubts like those expressed
by Lucas (2003) in the epigraph starting this paper.4 5

But another failure isolated by the X’s in figure 1 motivated Tallarini (2000). The figure
plots an unconditional version of the Hansen and Jagannathan bound (the parabola) as well

3Conditioning information is brought in through the back door by scaling payoffs by variables in the
conditioning information set and using an expanded collection of payoffs with prices that are one on average
in place of gross returns.

4The “market price of risk” reported in 1 ignores conditioning information, but it remains a valid lower
bound on the ratio of of the volatility of the intertemporal marginal rate of substitution relative to its mean.

5Precursors to Hansen and Jagannathan (1991) are contained in Shiller (1982) and a comment there by
Hansen. Shiller deduced an inequality from the marginal distributions of consumption and returns while
Hansen and Jagannathan (1991) use the marginal distribution for the stochastic discount factor and the
joint distribution for returns. Hansen and Jagannathan (1991) thus featured maximal Sharpe ratios in their
volatility bounds.
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Figure 1: Solid line: Hansen-Jagannathan volatility bound for quarterly returns on the value-
weighted NYSE and Treasury Bill, 1948-2006. Circles: Mean and standard deviation for in-
tertemporal marginal rate of substitution generated by Epstein-Zin preferences with random walk
consumption. Pluses: Mean and standard deviation for stochastic discount factor generated by
Epstein-Zin preferences with trend stationary consumption. Crosses: Mean and standard devi-
ation for intertemporal marginal rate of substitution for CRRA time separable preferences. The
coefficient of relative risk aversion, γ takes on the values 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 and
the discount factor β=0.995.

as the X’s, which are pairs of unconditional mean E(m) and the unconditional standard
deviation σ(m) implied by equations (1) and (2) for different values of γ.6 The figure
addresses whether values of γ can be found for which the associated

(

E(m), σ(m)
)

pairs are
inside the unconditional version of Hansen and Jagannathan bounds. The line of X’s shows
that high values of γ deliver high market prices of risk but also push the reciprocal of the
risk-free rate down and therefore away from the Hansen and Jagannathan bounds. This is
the risk-free rate puzzle of Weil (1990).

In section 5 we shall explain the loci of circles and crosses in figure 1. These loci depict
how, by adopting a recursive preference specification, Tallarini (2000) found values of γ that
pushed

(

E(m), σ(m)
)

pairs inside the Hansen and Jagannathan bounds. That achievement
registered as a mixed success because the values of γ that work are so high that, when
interpreted as measures of risk-aversion, they provoked Lucas’s skeptical remark.

3 The choice setting

To prepare the way for Tallarini’s findings and our reinterpretation of them, it is convenient
to introduce the following objects in terms of which alternative decision theories are cast.

6For CRRA time-separable preferences, formulas for E(m) and σ(m)/E(m) are, first, for the random walk

model, E [m] = β exp
[

γ
(

−µ +
σ2

ε
γ

2

)]

and σ(m)
E[m] =

{

exp
[

σ2
εγ2
]

− 1
}

1

2 and, second, for the trend stationary

model E [m] = β exp
[

γ
(

−µ +
σ2

ε
γ

2

(

1 + 1−ρ

1+ρ

))]

and σ(m)
E[m] =

{

exp
[

σ2
εγ2

(

1 + 1−ρ

1+ρ

)]

− 1
}

1

2

.
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3.1 Shocks and consumption plans

We let ct = log Ct, x0 be an initial state vector, εt = [εt, εt−1, . . . , ε1], and {εt+1, t ≥ 0} be
a sequence of random shocks with conditional densities πt+1(·)|εt, x0) and an implied joint
distribution Π∞(·|x0) over the entire sequence. Let C be a set of consumption plans C∞

whose time t elements Ct are measurable functions of (εt, x0). Soon we shall consider a
restricted class of consumption plans in C that have the following recursive representation:

xt+1 = Axt + Bεt+1

ct = Hxt (4)

where xt is an n×1 state vector, εt+1 is an m×1 shock, and the eigenvalues of A are bounded
in modulus by 1√

β
. Representation (4) implies that the time t element of a consumption plan

can be expressed as the following function of x0 and the history of shocks:

ct = H(Bεt + ABεt−1 + · · · + At−1Bε1) + HAtx0. (5)

We let C(A, B, H ; x0) denote the set of consumption plans with representation (4)-(5).
In this paper, we use one of the following two consumption plans that Tallarini finds fit

post WWII U.S. percapita consumption well:

1. geometric random walk:

ct = c0 + tµ + σε(εt + εt−1 + · · ·+ ε1), t ≥ 1 (6)

where
εt ∼ πt(·|ǫ

t−1, x0) = π(·) ∼ N (0, 1)

2. geometric trend stationary:7

ct = ρtc0 + µt + (1 − ρt)ζ + σε(εt + ρεt−1 + · · ·+ ρt−1ε1), t ≥ 1 (7)

where
εt ∼ πt(·|ǫ

t−1, x0) = π(·) ∼ N (0, 1).

3.2 Parameter estimates

We estimated both consumption processes using U.S. quarterly real consumption growth per
capita from 1948:2-2006:4. 8 Maximum likelihood point estimates are summarized in table
2. We shall use these point estimates as inputs into the calculations below.

7The recursive version of our trend stationary model is ct = ζ + µt + zt, zt = ρzt−1 + εt.
8Consumption is measured as real personal consumption expenditures on nondurable goods and services

and is deflated by its implicit chain price delator. We use the same deflator to deflate asset prices. We use
civilian noninstitutional population 16 years and older to get per capita series.
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Table 2: Estimates from quarterly U.S. data 1948:2-2006:4. Standard errors in parenthesis.

Parameter Random Walk Trend Stationary
µ 0.00495 0.00418

(0.0003) (0.0003)
σε 0.0050 0.0050

(0.0002) (0.0002)
ρ - 0.980

(0.010)
ζ - -4.48

(0.08)

3.3 Overview of Agents I, II, III, and IV

The preferences of our four types of agent over consumption plans C∞ ∈ C are defined in
terms of the following sets of objects:

Type I agent (Kreps-Porteus-Epstein-Zin-Tallarini):

(i) a discount factor β ∈ (0, 1); (ii) an intertemporal elasticity of substitution IES equal to
unity; (iii) a risk aversion parameter γ ≥ 1; and (iv) a conditional density πt+1(·|εt, x0) = π(·)
for εt+1 and an implied joint distribution Π∞(·|x0).

Type II agent (ambiguity averse Hansen and Sargent (2001) multiplier preferences):

(i) a discount factor β ∈ (0, 1); (ii) an intertemporal elasticity of substitution IES equal
to unity; (iii) a risk aversion parameter equal to 1; (iv) a conditional density πt+1(·|εt, x0)
for εt+1 and an implied joint distribution Π∞(·|x0); and (v) a parameter θ that penalizes
the entropy associated with a minimizing player’s perturbation of Π∞ relative to the iid,
standard normal benchmark.

Type III agent (ambiguity averse Hansen and Sargent (2001) constraint preferences):

(i) a discount factor β ∈ (0, 1); (ii) an intertemporal elasticity of substitution IES equal to
unity; (iii) a risk aversion parameter equal to 1; (iv) a conditional density πt+1(·|ε

t, x0) for
εt+1 and an implied joint distribution Π∞(·|x0); and (v) a parameter η that measures the
discounted relative entropy of perturbations to Π∞(·|x0) relative to an iid, standard normal
benchmark allowable to a minimizing player.

Type IV agent (pessimistic ex post Bayesian):

(i) a discount factor β ∈ (0, 1); (ii) an IES = 1; (iii) a risk-aversion parameter of 1; and (iv)
a unique pessimistic joint probability distribution Π̂∞(·|x0, θ).

Our reinterpretation of Tallarini’s quantitative findings as well as our mental experi-
ment that measures the costs of model specification uncertainty both hinge on the following
behavioral implications of these alternative preference specifications. Agents I and II are
observationally equivalent in the strong sense that they have identical preferences over C.
Agent III and IV are observationally equivalent with I and II in the more restricted, but
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for us still very useful, sense that their valuations of risky assets coincide at an exogenous
endowment process that we take to be the approximating model for the type II and type III
representative agents.

4 A type I agent: Kreps-Porteus-Epstein-Zin-Tallarini

Our type I agent has preferences over C that are defined via the value function recursion

log Vt = (1 − β)ct + β log
[

Et (Vt+1)
1−γ
]

1

1−γ

(8)

where γ ≥ 1. This is the risk-sensitive recursion of Hansen and Sargent (1995, 2007b) that for
a logarithmic period utility function Tallarini (2000) interpreted to be a case of the recursive
preference specification of Epstein and Zin (1989, 1991) in which the intertemporal elasticity
of substitution IES is fixed at unity and the atemporal coefficient of relative risk aversion is
γ.

4.1 Formulas for continuation values

To represent asset prices, we first compute continuation values for the two alternative con-
sumption processes. Define Ut ≡ log Vt/(1 − β) and

θ =
−1

(1 − β)(1 − γ)
. (9)

Then

Ut = ct − βθ log Et

[

exp
(−Ut+1

θ

)]

. (10)

When γ = 1 (or θ = +∞), recursion (10) becomes the standard discounted expected utility
recursion

Ut = ct + βEtUt+1.

For consumption processes C∞ ∈ C(A, B, H ; x0) associated with different specifications of
(A, B, H) in (4), recursion (10) implies the following Bellman equation:9

U(x) = c − βθ log

∫

exp

[

−U(Ax + Bε)

θ

]

π(ε)dε. (11)

For the random walk specification, the solution of (10) is

Ut =
β

(1 − β)2

[

µ −
σ2

ε

2θ (1 − β)

]

+
1

1 − β
ct. (12)

For the trend stationary model the solution of the value function recursion (10) is:

Ut =
βζ (1 − ρ)

(1 − β) (1 − βρ)
+

βµ

(1 − β)2
−

σ2
εβ

2θ (1 − β) (1 − βρ)2 +
µβ (1 − ρ)

(1 − βρ) (1 − β)
t+

1

1 − βρ
ct. (13)

9The notation Ut denotes the continuation value realized at date t for a consumption plan. In Bellman
equation (11), we use U(·) to denote the value function as a function of the Markov state.

8



4.2 Pricing implications

Arrow securities are defined relative to a measure used to integrate over states. We first use
the Lebesgue measure. For a type I representative agent economy, the price of a one-period
Arrow security is

(

β
Ct

Ct+1(ε∗)

)(

exp [−Ut+1(ε
∗)/θ]

∫

exp [−Ut+1(ε)/θ] dπ(ε)

)

π(ε∗).

We abuse notation to avoid proliferation. The notation Ct+1 is the random variable that
denotes consumption at date t + 1. Recognizing that the new information available at date
t + 1 is captured by the random vector εt+1, Ct+1(·) explicitly represents the dependence of
Ct+1 on εt+1 and similarly for Ut+1(·).

Instead of using the Lebesgue measure to integrate over states, the stochastic discount fac-
tor uses the underlying conditional probability distribution. As a consequence, the stochastic
discount factor is given by

mt+1,t =

(

β
Ct

Ct+1

)(

exp (−Ut+1/θ)

Et [exp (−Ut+1/θ)]

)

. (14)

The change in the reference measure for integration leads to π being omitted in (14).
In conjunction with a solution for the value function, for example, (12) or (13), equation

(14) shows how the standard stochastic discount factor
(

β Ct

Ct+1

)

associated with time sepa-

rable logarithmic utility is altered by a potentially volatile function of the continuation value
Ut+1 when the risk aversion parameter γ ≡ 1 + 1

(1−β)θ
> 1 (see equation (9)). For a type I

agent, γ is a risk aversion parameter that differs from the reciprocal of the IES when γ 6= 1.

5 A type I agent economy with high risk aversion at-

tains HJ bound

For the random walk and trend stationary consumption processes, Tallarini computed the
following formulas for E(m) and σ(m) for what we call a type I agent. For the random walk
model that follows, the mean and volatility of mt+1 conditioned on date t information are
constant. For the trend stationary models they depend on conditioning information, and we
will work with their unconditional counterparts.

• Random walk model:

E[m] = β exp

[

−µ +
σ2

ε

2
(2γ − 1)

]

(15)

σ (m)

E [m]
=
{

exp
[

σ2
εγ

2
]

− 1
}

1

2 (16)

• Trend stationary model:

E[m] = β exp

[

−µ +
σ2

ε

2

(

1 −
2 (1 − β) (1 − γ)

1 − βρ
+

1 − ρ

1 + ρ

)]

(17)
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σ (m)

E [m]
=

{

exp

[

σ2
ε

(

{

(1 − β) (1 − γ)

1 − βρ
− 1

}2

+
1 − ρ

1 + ρ

)]

− 1

}
1

2

(18)

Figure 1 is our version of Tallarini’s key figure. It follows Tallarini in using the above
formulas to plot loci of (E(m), σ(m)) pairs as the risk-aversion parameter γ varies.10 This
figure chalks up a striking success for Tallarini compared to the corresponding risk-free-rate-
puzzle laden X’s in Figure 1 for time separable CRRA preferences. Notice how for both
specifications of the endowment process, increasing γ pushes the volatility of the stochastic
discount factor upward toward the Hansen-Jagannathan bound while leaving E(m) essen-
tially unaffected, thus avoiding the risk-free rate puzzle of Weil (1990).11

However, to approach the Hansen-Jagannathan bound Tallarini had to set the risk aver-
sion parameter γ to very high values, 50 for the random walk model, about 250 for the trend
stationary model. These high values provoked the skeptical remarks we have cited from
Lucas (2003).

6 Reinterpretations

We respond to Lucas’s reluctance to use Tallarini’s findings as a source of evidence about a
representative consumer’s attitude about random consumption fluctuations by reinterpreting
γ as a parameter that expresses model specification doubts rather than risk aversion.

6.1 Language for robustness: an ‘approximating model’

To express doubts about model specification, we put multiple probability specifications on
the table. To stay as close as possible to rational expectations, we work with a setting
in which a representative agent has one fully specified model represented with particular
A, B, H and Π∞ in (4). In this paper, that model will be either the random walk model or
the trend stationary model described above. We shall call this the ‘approximating model’ to
acknowledge that the agent does not completely trust it. We express specification doubts in
terms of alternative joint distributions Π that the agent contemplates assigning to the shocks
ε∞. We imagine that the agent surrounds his approximating model with a set of unspeci-
fied models that are statistically nearby (as measured by conditional relative entropy) and
that he thinks might govern the data. Our type II and III agents want one value function
that will somehow let them evaluate consumption plans under all of those nearby models.
Before telling how they get those value functions, we first describe a mathematical formal-

10As observed by Kocherlakota (1990), for the random walk model, it is possi-
ble to generate the (E(m), σ(m)) pairs in figure 1 while sticking with the time sep-
arable CRRA model by changing β along with γ in the following way: (γ, β) =
(1, 0.9950), (5, 1.0147), (10, 1.0393), (15, 1.0637), (20, 1.0881), (25, 1.1124), (30, 1.1364), (35, 1.1602), (40, 1.1838),
(45, 1.2070), (50, 1.2300).

11By comparing the formulas for E(m) in footnote 6 with formula (15) for E(m) for the random walk case,
one sees how by locking the IES equal to 1, formula (15) arrests the force in the footnote 6 equation that
pushes downward E(m) as one increases γ via the term exp(−γµ). For power utility this is the dominant
effect of γ on E(m) when µ is much larger than σε, as it is in the data.
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ism for representing the unspecified densities over ε∞ that concern the agent as statistical
perturbations of Π∞(ε∞).

6.2 Using martingales to represent probability distortions

Let the representative consumer’s information set be Xt, which for us will be the history
of log consumption growth rates up to date t. Random variables that are Xt measurable
can be expressed as Borel measurable functions of x0 and εt. Hansen and Sargent (2005,
2007b) use a nonnegative Xt-measurable function Gt with E(Gt|x0) = 1 to create a distorted
probability measure that is absolutely continuous with respect to the probability measure
over Xt generated by one of our two approximating models for log consumption growth.12

Under the original probability measure the random variable Gt is a martingale with mean 1.
We can use Gt as a Radon-Nikodym derivative (i.e., a likelihood ratio) to generate a distorted
measure under which the expectation of a bounded Xt-measurable random variable Wt is
ẼWt

.
= EGtWt. The entropy of the distortion at time t conditioned on date zero information

is E (Gt log Gt|X0).

6.3 Recursive representations of distortions

We often factor a joint density Ft+1 over an Xt+1-measurable random vector as Ft+1 = ft+1Ft,
where ft+1 is a one-step ahead density conditioned on Xt. Following Hansen and Sargent
(2005), it is also useful to factor Gt+1. Form

gt+1 =

{

Gt+1

Gt
if Gt > 0

1 if Gt = 0.

Then Gt+1 = gt+1Gt and

Gt = G0

t
∏

j=1

gj. (19)

The random variable G0 is equal to unity. By construction, gt+1 has date t conditional
expectation equal to unity. For a bounded random variable bt+1 that is Xt+1-measurable,
the distorted conditional expectation implied by the martingale {Gt : t ≥ 0} is

E(Gt+1bt+1|Xt)

E(Gt+1|Xt)
=

E(Gt+1bt+1|Xt)

Gt

= E (gt+1bt+1|Xt)

provided that Gt > 0. We extend this distorted conditional expectation to a more gen-
eral collection of random variables by approximating unbounded random variables with a
sequence of bounded ones. For each t ≥ 0, construct the space Gt+1 of all nonnegative,
Xt+1-measurable random variables gt+1 for which E(gt+1|Xt) = 1. We use gt+1 to represent
distortions of the conditional probability distribution for Xt+1 given Xt.

12See Hansen et al. (2006) for a continuous time formulation.
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6.4 A type II agent: ambiguity averse multiplier preferences

We represent ambiguity aversion with the multiplier preferences of Hansen and Sargent
(2001) and Hansen et al. (2006).13These are defined in terms of a parameter θ that penalizes
the discrepancy between perturbed models and the approximating model and that is linked
via an application of the Lagrange multiplier theorem to a parameter η that occurs in what
we shall call the “constraint preferences” of our type III representative agent.

A type II agent’s multiplier preference ordering over C∞ ∈ C is described by

min
{gt+1}

∞
∑

t=0

E
{

βtGt

[

ct + βθE(gt+1 log gt+1|ε
t, x0)

]
∣

∣

∣
x0

}

(20)

where
Gt+1 = gt+1Gt, E[gt+1|ε

t, x0] = 1, gt+1 ≥ 0, G0 = 1. (21)

In this paper, we restrict ourselves to studying subsets C(A, B, H ; x0) of C with typical
element C∞. For this set of consumption plans C∞ ∈ C(A, B, H ; x0), a type II agent has a
value function

W (x0) = min
{gt+1}

∞
∑

t=0

E
{

βtGt

[

ct + βθE(gt+1 log gt+1|ε
t, x0)

]
∣

∣

∣
x0

}

(22)

where the minimization is subject to (4) and( 21). The value function solves the following
Bellman equation:

GW (x) = min
g(ε)≥0

G
(

c + β

∫

[

g(ε)W (Ax + Bε) + θg(ε) log g(ε)
]

π(ε)dε
)

. (23)

Dividing by G gives

W (x) = c + min
g(ε)≥0

(

β

∫

[

g(ε)W (Ax + Bε) + θg(ε) log g(ε)
]

π(ε)dε
)

where the minimization is subject to
∫

g(ε)π(ε)dε = 1. Solving the minimum problem
and substituting the minimizer into the above equation gives the risk-sensitive recursion of
Hansen and Sargent (1995, 2007b):

W (x) = c − βθ log

∫

exp

[

−W (Ax + Bε)

θ

]

π(ε)dε. (24)

The minimizing martingale increment is

ĝt+1 =

(

exp (−W (Axt + Bεt+1)/θ)

Et [exp (−W (Axt + Bεt+1)/θ)]

)

. (25)

13Maccheroni et al. (2006a,b) give an axiomatic foundation for variational preferences and describe how
they express ambiguity aversion. Both multiplier and constraint preferences are special cases of variational
preferences. Constraint preferences are particular instances of the multiple priors model of Gilboa and
Schmeidler (1989). Strzalecki (2008) and Cerreia et al. (2008) give axiomatic defenses for multiplier prefer-
ences. Hansen and Sargent (2007b) show the link between the smooth ambiguity formulation of Klibanoff
et al. (2005) and multiplier preferences, while Cerreia et al. (2008) show that the multiplier preferences used
here are the only preferences that are both variational and smooth in the sense of Klibanoff et al. (2005).
Specifically, smooth variational preferences necessarily use discrepancies between distributions measured
with relative entropy.
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6.5 Types I and II are observationally equivalent

Notice that equations (11) and (24) imply that

W (x) ≡ U(x). (26)

Therefore, agents I and II have identical preferences over elements of C∞ ∈ C(A, B, H ; x0).
14

In this strong sense, they are observationally equivalent, but the interpretation of θ differs
for type I and type II agents. For a type I agent, θ(γ) ≡ −1

(1−β)(1−γ)
is a measure of risk

aversion. For a type II agent, θ indicates his fear of model misspecification as measured by
how much the minimizing agent gets penalized for raising entropy.

6.6 A type III agent: ambiguity averse constraint preferences

Hansen and Sargent (2001, 2005) and Hansen et al. (2006) describe constraint preferences

that are directly related to the multiple priors model of Gilboa and Schmeidler (1989). Here
a primitive object is a set of probability densities that we attribute to the representative
type III consumer. We follow our earlier work by using ideas from robust control theory to
construct this set of densities. In particular, we follow Hansen and Sargent (2001, 2005) and
restrain the discounted relative entropy of perturbations to the approximating model:

βE
[

∞
∑

t=0

βtGtE(gt+1 log gt+1|ε
t, x0)

∣

∣

∣
x0

]

≤ η (27)

where η ≥ 0 measures the size of an entropy ball surrounding the distribution Π∞(ε∞|x0).
Given a set of models within an entropy ball η > 0, constraint preferences over C∞ ∈ C are
ordered by

min
{gt+1}

∞
∑

t=0

E
[

βtGtct

∣

∣

∣
x0

]

(28)

where the minimization is subject to Gt+1 = gt+1Gt and G0 = 1. If we restrict C∞ to be in
C(A, B, H ; x0), a type III agent has a value function

J(x0) = min
{gt+1}

∞
∑

t=0

E
[

βtGtct

∣

∣

∣
x0

]

(29)

where the minimization is subject to the discounted entropy constraint (27) and

xt+1 = Axt + Bεt+1

ct = Hxt, x0 given
Gt+1 = gt+1Gt, E[gt+1|ε

t, x0] = 1, gt+1 ≥ 0, G0 = 1. (30)

Hansen and Sargent (2001), Hansen et al. (2006), and Hansen and Sargent (2007c, chap. 6)
describe how constraint and multiplier preferences differ and also how θ and η can be chosen
to align choices and valuations along equilibrium paths of the associated two-player zero-sum
games. Briefly, they show how (1) ex post θ in the multiplier preferences can be viewed as
the Lagrange multiplier on the time 0 discounted entropy constraint, and (2) the multiplier
θ and continuation entropy can be chosen to align equilibrium outcomes that emerge from
multiplier and constraint preferences.

14It can also be established that they have identical preferences for C∞ ∈ C.
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6.7 A type IV agent: ex post Bayesian

A type IV agent is an ordinary expected utility agent with log preferences and a particular
(distorted) joint distribution Π̂∞(·|x0) over C∞:

Ê0

∞
∑

t=0

βtct. (31)

The joint distribution Π̂∞(·|x0) is the one associated with the preferences of a type II agent
and so depends on θ as well as on A, B, H when we restrict C∞ to lie within C(A, B, H ; x0).
The value function for a type IV agent equals the value function J(x) for a type III agent.

6.8 Types III and IV not observationally equivalent to I or II,

but . . .

While agents I and II have identical preference orderings over C(A, B, H ; x0) (and more
generally over C∞ ∈ C), they have different preference orderings than agents III and IV. Still,
there is a more limited but for us very important sense in which agents of all four types look
alike. It is true that for a fixed π̂(ε∞|A, B, H, θ), the type IV pessimistic agent makes different
choices over C(A, B, H ; x0) (i.e., plans C∞ represented in terms of (Ã, B̃, H̃) 6= (A, B, H))
than does the type I or type II agent. However, for the particular A, B, H plan and θ used
to derive the worst-case joint distribution Π̂(ε∞), the shadow prices of uncertain claims for
a type IV agent match those for a type II agent.15 This provides an interesting perspective
on what are ordinarily interpreted as prices of “risk” in settings in which no one fears model
uncertainty.

6.9 Interpretation of stochastic discount factor

The same representation of the stochastic discount factor

mt+1,t =

(

β
Ct

Ct+1

)

ĝ(ε(t + 1)) (32)

prevails for all four types of representative consumer, but the interpretation of ĝ varies
across the four types. With a type I representative consumer in the style of Tallarini (2000),
the distortion ĝ(εt+1) is a contribution from the Kreps and Porteus (1978) recursive utility
specification that gets intermediated through continuation values; ĝ(εt+1) deviates from being
identically unity when risk aversion γ > 1 exceeds the inverse of the IES. For the max-
min expected utility type II and III representative agents, ĝ(εt+1) is the likelihood ratio
that transforms the one-step conditional density π(ǫt+1) under the approximating model
to the worst-case density that these consumers use to evaluate risky streams. The fact
that ĝ(εt+1)π(εt+1) is the (unique) subjective conditional density for εt+1 for a type IV ex

post Bayesian representative agent means that as outside analysts we must introduce the
likelihood ratio ĝ(εt+1) into the stochastic discount factor whenever we want to use the
approximating model to price assets.

15This link extends to decision problems in which one can apply the Minimax Theorem. See Hansen et al.
(2006) for more discussion.
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6.10 Choice of data generating model

The sets of probability models that surround the approximating model and that help define
the preferences of the type II and III agents are in their heads. To make empirical statements,
we have to posit a data generating model. The rational expectations hypothesis assumes that
there is a unique distribution, i.e., that all subjective distributions equal a presumed objective
one, so that after a rational expectations is formulated, the data generating mechanism is not
an extra object to specify. But since we have put multiple probability models into the heads
of our types II and III agents, and a unique pessimistic one into the head of our type IV
agent, we have to make an explicit assumption about a unique data generating mechanism.
We assume that the approximating model is the data generating mechanism, so the fears
of model misspecification of our type II and III agents are, after all, only in their heads.
Having taken this stance, we shall use the Radon-Nikodym derivative ĝ to price the model
uncertainty feared by our type II and III representative consumers.

6.11 Value functions and discounted entropy

In terms of the minimizing martingale increment we can express the value function recursion
for a type II agent as

W (x) = c + β

∫

[ĝ(ε)W (Ax + Bε) + θĝ(ε) log ĝ(ε)]π(ε)dε. (33)

By solving (33), we can express W (x) as the sum of two components, the first of which is
the expected discounted value of C∞ under the worst case model, while the second is θ times
discounted entropy:

W (x) = J(x) + θN(x) (34)

where

J(x) = c + β

∫

[ĝ(ε)J(Ax + Bε)] π(ε)dε (35)

and

N(x) = β

∫

[ĝ(ε) log ĝ(ε) + ĝ(ε)N(Ax + Bε)] π(ε)dε. (36)

Here

J(xt) = Êt

∞
∑

j=0

βjct+j

is the expected discounted log consumption under the worst case joint density for C∞ and

GtN(xt) = GtβE

[ ∞
∑

j=0

βj Gt+j

Gt

E[gt+j+1 log gt+j+1|ε
t+j, x0]

∣

∣

∣
εt, x0

]

is continuation entropy.
While W (x) is the value function for a type II agent, evidently J(x) is the value function

for a type III agent as well as for a type IV agent. To evaluate W (x) and J(x) it is useful
first to find the minimizing martingale increment ĝ(ε) and then discounted entropy. We do
that in the next two subsections.
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6.12 Minimizing martingale increments

Using formula (25), we find that the minimizing martingale increment for the geometric
random walk model is:

ĝt+1 ∝ exp

(

−σεεt+1

(1 − β) θ

)

.

The implied distorted conditional density is

π̂ (εt+1) ∝ exp

(

−ε2
t+1

2

)

exp

(

−σεεt+1

(1 − β) θ

)

.

Completing the square gives
π̂(ε) ∼ N (w(θ), 1) (37)

where

w(θ) =
−σε

(1 − β) θ
. (38)

Pursuing an analogous calculation for the trend stationary model, we find that the worst
case conditional density again has form (37), where now

w(θ) = −
σε

(1 − ρβ) θ
. (39)

6.13 Discounted entropy

When the conditional densities for εt+1 under the approximating and worst case models are
π ∼ N (0, 1) and π̂ ∼ N (−w(θ), 1), respectively, we can compute that conditional entropy is

Etĝt+1 log ĝt+1 =

∫

(

log π̂(ε) − log π(ε)
)

π̂(ε)dε =
1

2
w′(θ)w(θ).

It then follows that discounted entropy becomes

βE
[

∞
∑

t=0

βtĜtE(ĝt+1 log ĝt+1|ε
t, x0)

∣

∣

∣
x0

]

= η =
β

2(1 − β)
w′(θ)w(θ) (40)

Formula (40) gives a mapping between θ and η that allows us to set these parameters to
align multiplier and constraint preferences along an exogenous endowment process. We shall
use this mapping to interpret θ below. In particular, after we introduce detection error
probabilities in section (7), we shall argue that it is more natural to fix η rather than θ when
we make comparisons by altering the consumer’s baseline approximating model from the
random walk to the trend stationary model. For this purpose, it is useful to note that by
using formulas (38), (39), and (40), we find that the following choices of θ’s for the random
walk and trend stationary models imply identical discounted entropies:16

θTS =

(

σTS
ε

σRW
ε

)

1 − β

1 − ρβ
θRW (41)

16The ratio σTS
ε /σRW

ε = 1 at the parameter values in table 2.
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6.14 Value functions for random walk log consumption

Using the formula for w(θ) from the random walk model (38) tells us that discounted entropy
is

N(x) =
β

2(1 − β)

σ2
ε

(1 − β)2θ2
. (42)

For the random walk model, we can then compute the value function for a type II agent to
be

W (xt) =
β

(1 − β)2

[

µ −
σ2

ε

2(1 − β)θ

]

+
1

1 − β
ct (43)

and for a type III agent to be

J(xt) =
β

(1 − β)2

[

µ −
σ2

ε

(1 − β)θ

]

+
1

1 − β
ct, (44)

so that W (xt) = J(xt) + θN(xt). To interpret J(xt) as the value function for a type III
agent, we use formula (40) to align θ and η. We shall use these value functions to construct
compensating variations in the initial condition for log consumption c0 in an elimination-of-
model-uncertainty experiment to be described in section 8.

6.15 Market prices of risk and model uncertainty

Hansen et al. (1999) and Hansen et al. (2002) note that the conditional standard deviation
of the Radon-Nikodym derivative ĝ(ε) is

MPU = stdt(ĝ) = [exp(w(θ)′w(θ)) − 1]
1

2 ≈ |w(θ)|. (45)

By construction Etĝ = 1. We call stdt(g) the market price of model uncertainty (MPU). It
can be verified that for the random-walk and trend-stationary models, |wt+1| given by the
above formulas comprises the lion’s share of what Tallarini (2000) interpreted as the market
price of risk given by formulas (16) and (18). This is because the first difference in the log
of consumption has a small conditional coefficient of variation in our data (this observation
is the heart of the equity premium puzzle). Thus, formula (45) is a good approximation to
Tallarini’s formulas (16) and (18). It follows from formula (40) that

MPU =

√

2η(1 − β)

β
.

6.16 Interpretation of MPU

As the slope of the mean-standard deviation frontier, the market price of risk (MPR) tells
the increase in the expected return needed to compensate an investor for accepting a unit
increase in the standard deviation of the return along the efficient frontier. Our type II and
III consumers’ worst-case beliefs encode their concerns about model misspecification. We
can measure the market price of model uncertainty (MPU) in terms of how a representative
investor’s worst case model distorts mean returns. When measured using the approximating
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model, the worst case model’s distortion in mean rates of return amplifies objects that
are usually interpreted as a market price of risk. In a continuous time limit, the MPU
is the maximal expected rate of return distortion in the worst case model relative to the
approximating model, per unit of standard deviation of return. For example, see Anderson
et al. (2003).

7 Reinterpreting Tallarini

Tallarini interprets γ as a parameter measuring aversion to atemporal gambles. The quote
from Lucas (2003) and the reasoning of Cochrane (1997), who applied ideas of Pratt (1964),
tell why economists think that only small positive values of γ are plausible when it is inter-
preted as a risk-aversion parameter. The mental experiment of Pratt confronts a decision
maker with choices between gambles with known probability distributions (i.e., the type of
risks that the type I agent thinks he faces).

The observational equivalence between our types I and II agents means that we can
just as well interpret γ as measuring the consumer’s concern about model misspecification.
But how should we think about plausible values of γ (or θ) when it is to be interpreted as
encoding responses to gambles that involve unknown probability distributions? We answer
this question by using detection error probabilities that tell how difficult it is to distinguish
probability distributions on the basis of a fixed finite number of observations. These measures
inspire us to argue that it is not appropriate to regard γ or θ as a parameter that remains fixed
when we vary the stochastic process for consumption under the consumer’s approximating
model, e.g., the random walk or trend stationary model for log consumption. Instead, we
shall see that it is more plausible to fix the size of the discounted entropy ball η as we think
of moving across approximating models. This is because the detection error probabilities
turn out to be functions of η that vary little across the trend stationary and random walk
models. Thus, our mental experiment under model uncertainty leads us to use the same
values of the discounted entropy constraint η or the implied detection error probabilities,
but different values of γ, for different approximating models.

7.1 Calibrating γ using detection error probabilities

This section describes how to use Bayesian detection error probabilities to calibrate a plau-
sible value for γ or θ when it is interpreted as a parameter measuring a representative con-
sumer’s concern about model misspecification.17 The idea is that it is plausible for agents
to be concerned about models that are difficult to distinguish from one another with data
sets of moderate size. We implement this idea by focusing on statistically distinguishing the
approximating model (call it model A) from a worst case model associated with a particular
θ (call it model B). Imagine that before seeing any data, the agent had assigned probability
.5 to both the approximating model and the worst case model associated with θ. After seeing
T observations, the representative consumer performs a likelihood ratio test for distinguish-
ing model A from model B. If model A were correct, the likelihood ratio could be expected
falsely to say that model B generated the data pA percent of the time. Similarly, if model

17Also see Anderson et al. (2003) and Hansen and Sargent (2007c).
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B were correct, the likelihood ratio could be expected falsely to say that model A generated
the data pB percent of the time. We weight pA, pB by the prior probabilities .5 to obtain
what we call the detection error probability:

p
(

θ−1
)

=
1

2
(pA + pB) . (46)

The detection error probability p(θ−1) is a function of θ−1 because the worst-case model
depends on θ. When γ = 1 (or θ−1 = 0, see equation (9)), it is easy to see that p(θ−1) = .5
because then the approximating and worst-case models are identical. As we raise θ−1 above
zero, p(θ−1) falls below .5.

We use introspection to instruct us about plausible values of p(θ−1) as a measure of
concern about model misspecification. Thus, we think it is sensible for a decision maker to
want to guard against possible misspecifications whose detection error probabilities are .2 or
even less.

As a function of θ−1, p(θ−1) differs for different specifications of the approximating model.
In particular, it will change when we switch from a trend stationary to a random walk model
of log consumption. When comparing outcomes across different approximating models, we
advocate comparing outcomes for the same detection error probabilities p(θ−1) and adjusting
the θ−1’s appropriately across models. We shall do that for our version of Tallarini’s model
and will recast his figure 1 in terms of loci that record (E(m), σ(m)) pairs as we vary the
detection error probability.

7.2 Tallarini’s figure again

The left panel of Figure 2 describes the detection probability p(θ−1) for the random walk
(dashed line) and trend stationary (solid line) models. We simulated the approximating and
worst-case models 100,000 times and followed the procedure described above to compute the
detection error probabilities for a given θ−1. The simulations were done for T = 235 periods,
the sample size for quarterly consumption growth data over the period from 1948II-2006IV.

The left panel of figure 2 reveals that for the random walk and the trend stationary
models, a given detection error probability p(θ−1) is associated with different values of θ−1.
Therefore, if we want to compute E(m), σ(m) pairs for the same detection error probabilities,
we have to use different values of θ−1 for our two models of log per capita consumption growth.
We shall use figure 2 to find these different values of θ−1 associated with a given detection
error probability, then redraw Tallarini’s figure in terms of detection error probabilities.

The right panel of figure 2 plots the detection error probabilities against the values of
discounted entropy η for each model for the random walk and trend stationary models. As
functions of η, the detection error probabilities for the two models are the same.

Thus, to prepare a counterpart to figure 1, our updated version of Tallarini’s graph, we
invert the detection error probability functions p(θ−1) in the left panel of figure 2 to get θ−1

as a function of p(θ−1) for each model, then use this θ−1 either in formulas (15), (16) or in
formulas (17), (18) to compute the (E(m), σ(m)) pairs to plot á la Tallarini. We present the
results in figure 3.

We invite the reader to compare our figure 3 with figure 1. The calculations summarized
in figure 1 taught Tallarini that with the random walk model for log consumption, the

19



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

5

10

15

20

25

30

35

40

45

50

θ−1

p(
θ−

1 )

 

 

RW
TS

(a) Detection error vs. θ−1

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

Discounted Entropy (η)

p(
η)

 

 

RW
TS

(b) Detection error vs. entropy

Figure 2: Panel A: detection error probabilities versus θ−1 for the random walk and trend sta-
tionary models. Panel B: detection error probabilities versus discounted entropy η for the random
walk and trend stationary models (the two curves coincide).
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Figure 3: Reciprocal of risk free rate, market price of risk pairs for the random walk (◦) and trend
stationary (+) models for values of p(θ−1) of 50, 45, 40, 35, 30, 25, 20, 15, 10, 5 and 1 percent.
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(E(m), σ(m)) pairs approach the Hansen and Jagannathan bound when γ is around 50,
whereas under the trend stationary model we need γ to be 75 in order to approach the
bound when β = .995. Figure 3 simply repackages those results by using the detection error
probabilities p(θ−1) reported in the left panel of figure 2 to trace out loci of (E(m), σ(m))
pairs as we vary the detection error probability.

Figure 3 reveals the striking pattern that varying the detection error probabilities traces
out nearly the same loci for the random walk and the trend stationary models of consump-
tion. This outcome faithfully reflects a pattern that holds exactly for large deviation bounds
on the detection error probabilities that were studied by Anderson et al. (2003). Their work
established a tight link between those bounds and the market price of model uncertainty
that transcends details of the stochastic specification for the representative consumer’s ap-
proximating model.

In terms of the issue raised in the quote from Lucas (2003), figure 3 reveals that regardless
of the stochastic specification for consumption, what we regard as conservative detection
error probabilities of between .15 and .2 take us half of the way toward the Hansen and
Jagannathan bound.

To appreciate the significance of this finding, recall that Tallarini (2000) showed how to
explain both the equity premium and the risk-free rate by using Epstein-Zin-Weil preferences
to separate a CRRA parameter γ from an IES parameter that he fixed at 1. To make things
work, Tallarini needed very different levels of risk aversion depending on whether he used a
random-walk with drift or a trend stationary model for log consumption. In figure 1, Tallarini
needed to set γ = 50 for the random walk model and γ = 75 for the trend stationary model.
For that figure, we follow Tallarini in setting β = 0.995, which implies an E(m) whose inverse
does not match the risk free rate in the economy very well: notice that in our figure 3, the
circles and crosses lie a bit to the left of the Hansen-Jagannathan bound.18

Figure 3 reveals that for the same detection error probability both models of consumption
growth imply the same values of (what is ordinarily interpreted as) the market price of
risk. We say “what is ordinarily interpreted as” in order to indicate that on our preferred
interpretation, the contribution from ĝ, which accounts for most of it, should be interpreted
as a “market price of model uncertainty”. Figure 3 alters our sense of how plausible a given
setting of γ is when we see that one gets pretty close to the bound with a detection error
probability of 5 per cent. A representative consumer who sets a detection error probability
that small does not seem to be as timid as one who sets a CRRA coefficient as high as 50
or 75.

8 Welfare gains from eliminating model uncertainty

Obstfeld (1994), Dolmas (1998), and Tallarini (2000) studied the welfare costs of business
cycle with Epstein-Zin preferences, while Hansen et al. (1999) described links between asset

18We can get inside the Hansen-Jagannathan bound by increasing the discount factor β. But, doing
so requires even higher levels of the coefficient of risk aversion, especially for the trend stationary model.
Adjusting the parameters in this way pushes the circles and pluses in our figure 3 to the right as we increase
the discount factor. The level of detection error probability necessary to achieve a certain market price of
model uncertainty is almost unaltered when we alter the discount factor.
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prices and welfare costs of consumption fluctuations in settings that featured both risk-
sensitivity and robustness. In this section, we revisit welfare calculations under our robust-
ness interpretation instead of Tallarini’s risk-sensitivity interpretation.

We have argued that the lion’s share of what Tallarini (2000) and Alvarez and Jermann
(2004) interpret as market prices of risk should instead be interpreted as market prices of
uncertainty . This means that those uncertainty prices reveal the representative consumer’s
attitude about a very different mental experiment than the one that interested Lucas (1987,
2003). The question posed by Lucas (1987, 2003) was “how much consumption would the
representative consumer be willing to sacrifice in order to avoid facing the risk associated
with a known distribution of consumption fluctuations?” In the epigraph above, Lucas
doubts that useful measures of the representative consumer’s attitudes toward the type of
macroeconomic risk that he had in mind can be recovered from asset market prices and
returns by adopting the risk-sensitive interpretations of risk-premia in Hansen et al. (1999),
Tallarini (2000), and Alvarez and Jermann (2004).

In this section, we describe how market prices of uncertainty extracted from asset market
data contain information about how much the representative consumer would be willing to
pay to eliminate model uncertainty.

8.1 Comparison with risk-free certainty equivalent path under

logarithmic random walk

In the spirit of Lucas (1987), we follow Tallarini (2000) by using as our point of comparison
the certainty equivalent plan

ct+1 − ct = µ +
1

2
σ2

ε . (47)

We seek an adjustment to initial consumption, and therefore the scale of the entire process,
that renders a representative consumer indifferent between the certainty equivalent plan and
the original risky consumption plan. For the same initial conditions, the certainty equivalent
path of consumption exp(ct+1) has the same mean as for the original plan ct+1 − ct =
µ + σεεt+1, but its conditional variance has been reduced to zero. We let cJ

0 denote the level
of initial log consumption in the certainty equivalent plan for a type J agent, where J is I,
II, III or IV.

8.1.1 Type I agent

Recall formulas (12) and (43) for the value functions of type I and II representative agents
facing a random walk process for log consumption, namely

U(x0) = W (x0) =
β

(1 − β)2

[

µ −
σ2

ε

2(1 − β)θ

]

+
1

1 − β
c0.

We seek a proportional decrease in the certainty equivalent trajectory (47) that leaves U
equal to its value under the risky process. Let cI

0 denote the initialization of the certainty
equivalent trajectory for a type I agent. Evidently, it satisfies the equation:

β

(1 − β)2

(

µ +
σ2

ε

2

)

+
1

1 − β
cI
0 =

β

(1 − β)2

[

µ −
σ2

ε

2(1 − β)θ

]

+
1

1 − β
c0.
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The left side is the value under the certainty equivalent plan, while the right side is the value
under the original risky plan starting from c0. Solving for c0 − cI

0 gives

c0 − cI
0 =

β

(1 − β)

[σ2
ε

2
+

σ2
ε

2(1 − β)θ

]

(48)

=
βσ2

ε

2(1 − β)

[

1 +
1

(1 − β)θ

]

(49)

=
βσ2

εγ

2(1 − β)
. (50)

8.1.2 Type II agent

Because the value functions U and W for type I and II agents are identical, the compensating
variation (50) renders both types indifferent between the original risky process and the
certainty equivalent path. Thus cI

0 = cII
0 . But the reasons for indifference differ for the two

types of agent. For our Kreps-Porteus type I agent, expression (50) makes risk aversion,
as measured by γ, the reason that the consumer is willing to accept a lower initialization
of the consumption path in order to eliminate volatility in the growth of the logarithm of
consumption. However, for our type II agent with multiplier preferences indexed by θ, the
reduction in initial consumption contains contributions from both risk-aversion and aversion
to model uncertainty. The compensation c0 − cII

0 emerges from comparing what a type II
agent regards as a trajectory that is both risky and model-uncertain with a trajectory that is
both risk-free and model-certain. By itself, this comparison does not allow us to distinguish
responses to risk and model uncertainty. To separate the parts contributed by risk and
uncertainty, we construct a certainty equivalent for another type II agent, but one who does
not fear model misspecification. This certainty equivalent starts from cII

0 (r) instead of cII
0 .

Thus, consider a type II agent who does not fear model uncertainty, so that θ = +∞.
We ask how much adjustment in the initial condition of a certainty equivalent path (47)
a θ = +∞ type II consumer would require.19 For θ = +∞, (50) asserts a compensating
variation for the elimination of risk alone of

c0 − cII
0 (r) =

βσ2
ε

2(1 − β)
. (51)

For the random walk model, (51) corresponds to the compensation formula that Lucas (1987)
computed for a consumer with time separable logarithmic preferences, i.e., the special case
of the preferences used by Tallarini (2000) for a consumer whose coefficient of relative risk
aversion and intertemporal elasticity of substitution are both unity.

When γ in (50) is large, so that θ < +∞, it means that the type II agent fears model
misspecification. Then notice that the risk-aversion term (51) contributes only a small frac-
tion of the total compensation required to accept the certainty equivalent path. Evidently,
for the type II agent, the part of the compensation in equation (50) that is accounted for by

19Of course, this will be the same compensation that a type I agent with γ = 1 would require.
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aversion to model uncertainty is20

cII
0 (r) − cII

0 =
βσ2

ε

2(1 − β)

[

1

(1 − β)θ

]

=
βσ2

ε

2(1 − β)
(γ − 1) . (52)

8.1.3 Type III agent

Consider next a type III agent with θ chosen to support constraint η on discounted entropy.
For the certainty equivalent path (47), the indifference calculation made with value function
J given by (44) is

β

(1 − β)2

(

µ +
σ2

ε

2

)

+
1

1 − β
cIII
0 =

β

(1 − β)2

[

µ −
σ2

ε

(1 − β)θ

]

+
1

1 − β
c0.

Therefore

c0 − cIII
0 =

βσ2
ε

2(1 − β)
(2γ − 1) (53)

and

cIII
0 (r) − cIII

0 =
βσ2

ε

(1 − β)
(γ − 1). (54)

This is twice the compensation (52) required by a type II agent with the same value of θ.

8.1.4 Type IV agent

Finally, consider a type IV agent. Though he ranks plans according to the value function
J given by (44), his attitude is really that of a type I agent with γ = 1 (θ = +∞) but
a pessimistic view of the mean of log consumption growth, with the mean being altered
according to

µ̃ = µ −
σ2

ε

(1 − β) θ

where the θ in this formula is the robustness parameter of an associated type III agent whose
worst-case model our type IV agent believes without doubt. We again obtain (53) when we
ask our type IV agent to tell us how much we could lower the certainty equivalent path (47)
to render him indifferent between it and the risky path governed by

ct+1 − ct = µ̃ + σεεt+1.

8.2 Comparison with risky but free-of-model-uncertainty equiva-

lent path

We now describe an alternative measure of the welfare benefits of removing fear of model
mispecification. We no longer use the no-risk certainty equivalent path of section 8.1. We

20Here we use the decomposition in logarithms c0 − cII
0 = (c0 − cII

0 (r)) + (cII
0 (r) − cII

0 ). Notice that the
implied decomposition in the level of consumption exp(ct) is multiplicative.
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take a different approach. We isolate the compensation for model uncertainty by allowing
only one change in the path for consumption, in particular, time 0 consumption. We compare
two paths whose risky consumptions for all dates t ≥ 1 are identical, so all compensation
for model uncertainty occurs by adjusting time 0 consumption. We adjust c0 to equate the
value functions for (i) a θ < +∞ type II agent who fears model misspecification with (ii) a
θ = + ∞ type II agent who does not fear model misspecification.

Thus, we consider two trajectories for consumption governed by the random walk for
log consumption. For both trajectories, we use a common initial condition c0 to construct
identical continuation log consumptions ct for t ≥ 1. But for the path that liberates the type
II agent from fear of model misspecification, we reduce date zero consumption to cII

0 (u).
For indifference between situations with fear of model mispecification (the left side of the
following equation) and without fear of model misspecification (the right side), we require
that

β

(1 − β)2

[

µ −
σ2

ε

2(1 − β)θ

]

+
1

1 − β
c0 =

β

(1 − β)2
(µ) +

1

1 − β
c0 + (cII

0 (u) − c0)

In constructing the right side, we have set θ = ∞ and replaced c0 with cII
0 (u). Solving the

above equation for c0 − cII
0 (u) gives

c0 − cII
0 (u) =

βσ2
ε

2(1 − β)2

[ 1

(1 − β)θ

]

=
βσ2

ε

2(1 − β)2
(γ − 1) . (55)

Note how this formula is 1
1−β

times the expression on the right side of (52).
Consider next a type III agent facing the same choice, that is, the same compensation

scheme for being able to avoid model uncertainty. Let cIII
0 (u) denote the consumption

that leaves the agent indifferent between the risky but uncertain process and the risky and

uncertain processes. Then

β

(1 − β)2

[

µ −
σ2

ε

(1 − β)θ

]

+
1

1 − β
c0 =

β

(1 − β)2
(µ) +

1

1 − β
c0 + (cIII

0 (u) − c0).

Solving for c0 − cIII
0 (u) gives

c0 − cIII
0 (u) =

βσ2
ε

(1 − β)2

[ 1

(1 − β)θ

]

=
βσ2

ε

(1 − β)2
(γ − 1) ,

which equals 1
1−β

times the term on the right side of (54).
The compensations in subsection 8.1 took a deterministic trajectory as a point of com-

parison, while the ones here use a random path. Here we exploit the fact that current
consumption is known and pile all of the compensation into the first period, leaving the
remainder of the path unchanged under the approximating model. Because the only ad-
justment to consumption occurs at time 0, a multiplicative factor 1

1−β
appears relative to

comparable formulas in subsection 8.1.
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Table 3: Benefits of eliminating model risk and uncertainty

Type Compensation Random walk Trend stationary Compensation for

I c0 − cI
0

βσ2
ε

2(1−β)
γ σ2

εβ

2(1−βρ2)
+ βσ2

ε(1−β)(γ−1)
2(1−βρ)2

risk

II c0 − cII
0

σ2
εβ

2(1−β)
+ βσ2

ε

2θ(1−β)2
σ2

εβ

2(1−βρ2)
+ βσ2

ε

2θ(1−βρ)2
risk and uncertainty

II c0 − cII
0 (r) βσ2

ε

2(1−β)
σ2

εβ

2(1−βρ2)
risk

II cII
0 (r) − cII

0
βσ2

ε

2θ(1−β)2
βσ2

ε

2θ(1−βρ)2
uncertainty

III c0 − cIII
0

βσ2
ε

θ(1−β)2
+ βσ2

ε

2(1−β)
βσ2

ε

θ(1−ρβ)2
+ βσ2

ε

2(1−βρ2)
risk and uncertainty

III c0 − cIII
0 (r) βσ2

ε

2(1−β)
σ2

εβ

2(1−βρ2)
risk

III cIII
0 (r) − cIII

0
βσ2

ε

θ(1−β)2
βσ2

ε

θ(1−ρβ)2
uncertainty

8.3 Formulas for trend stationary model

Table 3 summarizes the above formulas and comparable formulas for the trend stationary
model worked out in appendix A. In the next section, we apply these formulas.

8.4 Quantitative results

The two panels of figure 4 are designed to bring out the difference between an elimination-
of-risk experiment of the type imagined by Lucas (1987, 2003) and Tallarini (2000) and our
elimination-of-model-uncertainty experiment. Both panels set β = .995 while calibrating θ
to set p(θ−1) = 0.10.

The left panel illustrates our elimination of model uncertainty and risk experiment for a
type II agent. The ‘fan’ in the left panel shows a one-standard deviation band that describes
j-step ahead conditional distributions for c for our calibrated random walk model for log
consumption. The straight dashed line below the fan shows the certainty equivalent path
with date zero consumption reduced by (c0 − cII

0 ). This reduction makes our representative
agent of type II indifferent between this deterministic trajectory and the one illustrated by
the ‘fan’ and therefore compensates him for bearing both risk and model ambiguity. The
solid line in the left panel illustrates another certainty equivalent path for a type II consumer
who does not fear model uncertainty (θ = ∞) and therefore measures the contribution from
“risk” to (c0 − cII

0 ). Here the consumption trajectory is initialized at a value (c0 − cII
0 (r))

lower than the initial value of the original process. This is the value computed in formula
(51). At our calibrated values for the parameters, it is very small. As a result the solid line
is only slightly below the center of the ‘fan’. So along with Lucas (1987, 2003), we also find
that the welfare gains from eliminating well understood risks are very small. We reinterpret
the large welfare gains found by Tallarini (2000) as coming not from reducing risk, but from
reducing model uncertainty.

The right panel illustrates the amount of model uncertainty that our representative agent
of type II fears by displaying one standard deviation bands that describe j-step ahead con-
ditional distributions for several stochastic processes: (1) the same calibrated random walk
with drift log consumption model depicted in the left panel and (2) two elements drawn from
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Figure 4: Panel A: An elimination of risk and uncertainty experiment for the random walk
model. Panel B. Set of models considered by the ambiguity averse agent and an elimination
of model uncertainty and risk experiment for the random walk model.

a cloud of models that the minimizing player inside our type II representative consumer’s
head is allowed to choose among, both of which start from the same initial condition as
process (1).21 We also plot the deterministic path (47) that we have initialized using for-
mula (50) to make the agent indifferent between facing this certainty equivalent path and
confronting model uncertainty and risk.

As a function of discounted entropy η, figure 5 plots the benefits cIII
0 (r)− cIII

0 to a type
III agent of eliminating model uncertainty as a proportional reduction in initial consump-
tion. The quantities plotted are given by formulas (54) for the random walk model and the
corresponding entry in Table 3 for the trend stationary model. The benefits are half as much
for a type II agent with a corresponding θ. But relative to the amounts estimated by Lucas
(1987, 2003), they are very big.22

9 Dogmatic Bayesians and learning

9.1 Robust dogmatic Bayesians

Consider the geometric random walk model for consumption. Tallarini (2000) follows many
other rational expectations researchers in assigning to his representative consumer a dogmatic
prior over the growth rate µ and the innovation volatility σε. One way to think about our

21The lower element is a worst-case distribution obtained by adjusting the mean to µ+σεw(θ) where w(θ)
is the worst case shock for θ that sets p(θ−1) = .1, while the upper element adjusts the mean to µ− σεw(θ).

22Proposition 10 of Cerreia et al. (2008) characterizes more uncertainty averse preference relations in terms
of pointwise smaller G functions, in their notation. (For our type II agent with multiplier preferences, their
G function equals θ times the present value of discounted entropy.) That finding allows us to measure model
uncertainty aversion of our agents in terms of alternative θ’s for a type II agent and η’s for a type III agent.
However, it provides no basis for comparing G’s across type II and type III agents.
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Figure 5: Proportions cIII
0 (r)−cIII

0 of initial consumption that a representative III consumer would
surrender not to confront model uncertainty; top line is for random-walk model of consumption
growth, bottom line is for trend-stationary model.

type II or III representative consumer is that at the end of the day he examines how robust
his evaluations are with respect to alternative dogmatic priors over µ. That leads him to
price assets like a type IV consumer who has a prior for the mean of log consumption growth
concentrated on µ + σεw(θ).

The left panel of figure 6 compares log consumption to the two lines c0 + µt and c0 +
(µ + σεw(θ))t for a θ associated with a detection error probability p(θ−1) = .2. These lines
are close in the informal eyeball sense that we have shown them to empirically sophisticated
friends and upon asking them to tell us which one fits the data best, have received the modal
answer ‘difficult for me to tell’. The right panel of figure 6 conveys the same idea from a
different perspective by plotting µ + σεw(θ) as a function of the associated detection error
probability p(θ) compared to a two standard deviation band around the maximum likelihood
estimate of µ.

The two panels of figure 6 and the logic underlying our detection error probabilities
indicate that the differences in mean consumption growth that our analysis features are
difficult to distinguish with samples of the size, for example, that Tallarini (2000) used
to estimate mean consumption growth. Our type II representative agent copes with this
situation by doing a prior robustness analysis, but we have effectively constrained him to
compare priors, all of which are dogmatic. A natural question to ask is: if it is so difficult
to learn about µ, wouldn’t it make more sense to endow our representative consumer with a
non-dogmatic prior over µ?

9.2 Learning?

An affirmative answer to that question is the starting point for Hansen and Sargent (2007a),
who use the analytical framework of Hansen and Sargent (2007b) to endow a representative
consumer with a non-dogmatic prior over µ. They model µ as a hidden Markov state
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Figure 6: Left panel: log consumption and two lines; right panel: worst case mean consump-
tion growth versus detection error probability.

and allow the representative consumer to learn about mean consumption growth as data
arrive. But because he does not completely trust the posterior probabilities that emerge
from Bayes’ law, the representative consumer engages in a worst-case analysis that leads
him to slant posterior probabilities pessimistically. By including a hidden state variable
that indexes alternative submodels for consumption growth, Hansen and Sargent (2007a)
also study a difficult on-going model selection problem. They posit an associated set of
specification doubts that lead the representative consumer to slant posterior probabilities
over the submodels pessimistically. These learning problems are sufficiently difficult that the
representative consumer is unable to resolve his specification doubts within a sample of the
length that Tallarini (2000) studied. Robust learning gives rise to countercyclical uncertainty
premia because the representative consumer interprets good news about consumption growth
as temporary and bad news about consumption growth as permanent.

10 Concluding remarks

It is easy to agree with Lucas that the coefficients γ that Tallarini calibrated to match asset
market data are implausibly high when they are interpreted as measures of atemporal risk
aversion. Those high γ’s become more plausible when we interpret them as measures of
the representative consumer’s reluctance to face model uncertainty. How we interpret γ has
important ramifications about whether risk premia measure (a) the benefits from reducing
well understood stochastic aggregate fluctuations, or (b) the benefits of reducing uncertainty
about the representative consumer’s stochastic specification for consumption growth. We
have argued that they measure (b), not (a).

The main point of Lucas (2003) was that after one takes into account what has been
achieved by using systematic monetary and fiscal policies to smooth aggregate fluctuations
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in in the post WWII U.S., only small additional welfare gains can be attained by smoothing
transitory shocks further. Under our robustness interpretation, those transitory shocks play
a role excluded by Lucas’s analysis: by obscuring the consumer’s ability to discriminate
among alternative models, they put the consumer in a position in which his concerns about
model misspecification make him want evaluations of future outcomes that are cautious with
respect to a set of plausible statistically nearby models. The process of constructing worst-
case scenarios to assist in making those cautious evaluations transforms transient risks into
concerns about misspecifications of lower frequency aspects of the representative consumer’s
approximating model.23

A Formulas for trend stationary model

The worst case mean of εt+1 for the trend stationary model is

w(θ) =
−σε

(1 − ρβ) θ
. (56)

Using this, we find that discounted entropy is

N(xt) =
βσ2

ε

2θ2 (1 − β) (1 − βρ)2
(57)

so the value function for a type III or IV agent is

J(xt) =
βζ (1 − ρ)

(1 − β) (1 − βρ)
+

βµ

(1 − β)2 −
σ2

εβ

θ (1 − β) (1 − βρ)2
+

µβ (1 − ρ)

(1 − βρ) (1 − β)
t +

1

1 − βρ
ct

(58)
and the value function for a type II agent is

W (xt) =
βζ (1 − ρ)

(1 − β) (1 − βρ)
+

βµ

(1 − β)2 −
σ2

εβ

2θ (1 − β) (1 − βρ)2 +
µβ (1 − ρ)

(1 − βρ) (1 − β)
t +

1

1 − βρ
ct.

(59)

The geometric trend stationary model obeys the following difference equation:

ct+1 = ρct + ζ(1 − ρ) + ρµ + µ(1 − ρ)(t + 1) + σεǫt+1

We first construct the path of conditional expectations for our original process with fluctu-
ations. Iterating the equation above forward we find that:

ct+j = ρjct + µj + (1 − ρ)(ζ + µt)(1 + ρ + . . . + ρj−1) + σε(ǫt+j + ρǫt+j−1 + . . . + ρj−1ǫt+1)

23The formulas for the worst-case means wt+1 in subsection 6.12 reveal this transformation. In the simple
models of this paper, concerns about misspecification translate into (permanent) distortions in the means
of shocks. In more general dynamic models, they translate into more richly altered distortions in frequency
responses. See Hansen and Sargent (2007c, chap. 7).
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and therefore

log Et[exp(ct+j)] = ρjct + µj + (1 − ρ)(ζ + µt)(1 + ρ + . . . + ρj−1) +
σ2

ε

2
(1 + ρ2 + . . . + ρ2(j−1))

= ρjct + µj + (ζ + µt)(1 − ρj) +
σ2

ε

2

1 − ρ2j

1 − ρ2
.

We then proceed to compute the value function under the certainty equivalent trajectory.

Ũ(xt) =
∞
∑

j=0

βj (log Et[exp(ct+j)])

=

∞
∑

j=0

βj

(

ρjct + µj + (ζ + µt)(1 − ρj) +
σ2

ε

2

1 − ρ2j

1 − ρ2

)

=
ζβ (1 − ρ)

(1 − β) (1 − βρ)
+

µβ

(1 − β)2
+

σ2
εβ

2(1 − β)(1 − βρ2)
+

µβ(1 − ρ)

(1 − β)(1 − ρβ)
t +

ct

1 − ρβ
.

We report in table 3 the elimination of risk and uncertainty compensations for the trend
stationary model that we have computed using the same procedure as for the random walk
model. Note that when ρ = 1 the compensating variations are identical to the ones for the
random walk model.

The alternative subsection 8.2 welfare measure that compares the risky but free-of-model-
uncertainty equivalent path with the original path for the trend stationary model is

c0 − cII
0 (u) =

βσ2
ε

2θ(1 − β)(1 − βρ)2

=
βσ2

ε

2(1 − βρ)2
(γ − 1).

for a type II agent. The same measure for a type III agent is given by

c0 − cIII
0 (u) =

βσ2
ε

θ(1 − β)(1 − βρ)2

=
βσ2

ε

(1 − βρ)2
(γ − 1).
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