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Abstract

The cross-section distribution of U.S. wealth is more skewed than the distribution

of labor earnings. Stachurski and Toda (2019) explain how plain vanilla Bewley-

Aiyagari-Huggett (BAH) models with infinitely lived agents can’t generate that pat-

tern because an equilibrium risk-free rate is lower than the time rate of preference

and each person’s wealth process is stationary. We provide two modifications of a

BAH model that generate this pattern: (1) overlapping generations of agents who

have low wealth at birth and pass through N ě 1 life-stage transitions of stochastic

lengths, and (2) labor-earnings processes that exhibit stochastic growth. With only a

few parameters such a model can well approximate mappings from the Lorenz curve

and Gini coefficient for cross-sections of labor earnings to their counterparts for cross

sections of wealth. Three forces amplify inequality in wealth relative to inequality

in labor-earnings: stochastic life-stage transitions; a precautionary savings motive

for high wage earners that is especially strong after they receive positive permanent

earnings shocks; and an energetic life-cycle saving motive for agents who have low

wealth at birth. An equilibrium risk-free interest rate that exceeds a time preference

rate fosters a fat-tailed wealth distribution.
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I. Introduction

We calibrate a sparsely parameterized continuous-time life-cycle model and use it to show

how responses to permanent labor-earning shocks by households with high labor earnings

widen its equilibrium distribution of wealth. Except for assuming a nonstationary labor

earnings process and a stochastic multiple life-stage overlapping generations demographic

structure, our model stays close to the discret- time Bewley-Aiyagari-Huggett (BAH) mod-

els with stationary labor earnings processes that have struggled to put sufficient mass at

upper quantiles of equilibrium wealth distribution. That feature of BAH models led re-

searchers to change assumptions in ways designed to make wealthier agents want to save

more. Examples of such alterations include the warm-glow bequest and human capital mo-

tives of De Nardi (2004), very large earnings risk for high-earning households of Castañeda,

Dı́az-Giménez, and Rı́os-Rull (2003), heterogenous preferences of Krusell and Smith (1998),

and the importance of entrepreneurship of Quadrini (2000) and Cagetti and De Nardi (2006,

2009).

We purposefully exclude these additional motivations to save because we want to de-

termine how far nonstationary labor earnings processes and a stochastic life cycle by them-

selves go toward allowing a basic BAH’s model to put enough mass in the upper end of an

equilibrium wealth distribution. We show that by themselves, they do most of the job.

We use a pure counting process to model an agent’s life cycle. At birth each agent has no

wealth, the same initial labor earnings, and the same fixed numberN of sequentially ordered

life stages. Transition from life stage n to stage pn ` 1q occurs at an exogenous constant

probability per unit of time. At the final life stage N , the agent purchases an actuarially

fairly priced (reverse) life annuity and dies with zero wealth. Our life-stage model is a

continuous-time generalization of discrete-time life-cycle models used by Gertler (1999) and

Castañeda, Dı́az-Giménez, and Rı́os-Rull (2003) and nests the “perpetual youth” model of

Yaari (1965) and Blanchard (1985) as a special case. Agents are born owning little wealth.

Our model’s equilibrium interest rate exceeds the agent’s time preference rate by enough

to motivate sufficient savings to match the empirical aggregate capital-output ratio and

to activate a force that helps make the cross-section distribution of wealth fatter than the

distribution of labor earnings.
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The exogenous labor-earnings process displays random growth within each life stage n,

a feature that generates a cross-section fat-tailed earnings distribution via a mechanism

similar to ones in Gabaix (1999), Luttmer (2007, 2011), Toda and Walsh (2015), and Jones

and Kim (2018). In our quantitative analysis, we economize on parameters by assuming

that the labor-earnings process remain unchanged over the agent’s life cycle. Gabaix (1999)

shows that the distribution of city populations is well described by a Pareto distribution,

also known as Zipf’s law. Luttmer (2007, 2011) constructs models that generate fat-tailed

firm size distributions. Toda and Walsh (2015) show that cross-section distributions of

US consumption and its growth rate obey the double power law.1 Jones and Kim (2018)

generate an endogenous cross-section fat-tailed earnings distribution in a Schumpeterian

creative-destruction model with heterogeneous entrepreneurs. We build on an insight of

Gabaix, Lasry, Lions, and Moll (2016) and Jones and Kim (2018) that a properly tweaked

random earnings growth model implies that earnings inequality is fractal.2

In conjunction with discounted constant-relative-risk-averse (CRRA) preferences, the

random growth with drift labor-earnings process implies decision rules that induce wealthier

agents to save enough to generate an equilibrium wealth distribution whose upper quantiles

approximate US data well. Our model’s analytic tractability allows us to unveil basic forces

that shape saving decision rules and equilibrium outcomes.

De Nardi (2015) points out that the heart of the problem with BAH-style models is

that they predict that “rich people are not nearly rich enough, middle-class people are

too rich, and poor people are too poor, compared with the actual data.” This is because

“the nature of precautionary savings implies that households save to self-insure against

earnings risk but that, as a result, the saving rate decreases and then turns negative when

a person’s net worth is large enough relative to her labor earnings. Hence, the saving rate

1. Gabaix (2009) and Luttmer (2010) survey these mechanisms. A key insight in the power-law literature
is that random growth (properly modified to account for stationarity) and ex ante heterogeneity naturally
generate Pareto distributions and that a parameter fixing the random growth rate governs the fatness of the
tail. For early classics on Pareto distributions, see Champernowne (1953), Simon (1955), and Mandelbrot
(1960).

2. Here is an example of (constant) fractal inequality: Jones and Kim (2018) write, “What fraction of
the income going to the top 10 percent of earners accrues to the top 1 percent? What fraction of the income
going to the top 1 percent of earners accrues to the top 0.1 percent? What fraction of the income going
to the top 0.1 percent of earners accrues to the top 0.01 percent? The answer to each of these questions –
which turns out to be around 40 percent in the United States today – is a simple function of the parameter
that characterizes the power law.”
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of the wealthy in these models is negative.” She concludes that “basic Bewley models,

whether featuring infinitely-lived agents or life-cycle agents with more realistic patterns of

earnings and savings over the life cycle, are far from doing a good job of matching the

observed distribution of wealth . . . While in the data wealth is concentrated in the hands

of a small number of rich people and the saving rate of the rich is high, many models used

for quantitative policy evaluation fail to match these facts.”

In our model, permanent shocks to levels of their labor earnings make rich people

keep saving at high rates, as they do in U.S. data. This happens because precautionary

savings motives of those with high earnings stay strong even after a long sequence of positive

earnings shocks. Even though earnings are expected to grow and shocks are permanent, the

marginal propensity to consume (MPC) out of permanent shocks to earnings stays lower

than one except for very large wealth-earnings ratios.3 Because they have little wealth

at birth, young agents also have strong incentives to save. Strong saving motives are

promoted by an equilibrium interest rate that exceeds a representative agent’s subjective

discount rate, something that does not occur in BAH models with infinitely-lived agents.

A combination of permanent earnings shocks and a high equilibrium interest rate makes

strong savings motives persist throughout even a wealthy person’s life. That leads to big

wealth inequality.

We capitalize on the tractability of continuous-time stochastic modeling techniques

that also underly mean field game theory. We solve Hamilton-Jacobi-Bellman equations

“almost by hand.” We use optimal decision rules and Kolmogorov forward equations to

characterize a stationary joint distribution of labor earnings and wealth.4 Optimal saving

rules at different stages of life indicate how permanent earnings shocks ignite precautionary

savings motives that affect even wealthier people of all ages and that enable our model to

generate a cross-section wealth distribution that has a fatter tail than cross-section earnings.

3. We describe an equilibrium in which an agent’s MPC out of permanent earnings shocks approaches
zero as her wealth-earnings ratio x approaches zero, either because her financial wealth approaches zero or
because her earnings are extremely high.

4. There is a recent surge of interest in using continuous-time models via Kolmogorov forward equations
(also knowns as Fokker-Planck equations) to analyze equilibrium distributions of economic objects including
city size, firm size, income, and wealth. An incomplete list includes Gabaix (1999), Wang (2002), Luttmer
(2007, 2011), Toda and Walsh (2015), Benhabib, Bisin, and Zhu (2016), Gabaix, Lasry, Lions, and Moll
(2016), Achdou, Han, Lasry, Lions, and Moll (2017), and Jones and Kim (2018).
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We report both the Gini coefficient and Lorenz curve as Castañeda, Dı́az-Giménez, and

Ŕıos-Rull (2003) and De Nardi (2004) have also done.

Concavity of optimal consumption decision in the wealth-earnings ratio x reflects an

agent’s enduring precautionary saving motive and fosters wealth inequality. An agent with

high labor earnings can also have a low wealth-earnings ratio, x, making it optimal to

save a lot. Furthermore, when an agent with high labor earnings receives a sequence of

positive earnings shocks, its motive to save becomes even stronger, providing a force that

contributes to high equilibrium wealth inequality.

A typical BAH model’s joint cross-section distribution of wealth and labor earnings

also describes the fraction of time that each individual spends in each set of wealth, labor

earnings states. Equality between these two probability distributions in BAH models is

an essential ingredient of Stachurski and Toda (2019)’s finding that wealth cannot have

a fatter tail than labor earnings in BAH models with infinitely-lived agents. Our model

decouples those two joint distributions: an equilibrium cross section distribution of wealth

and labor earnings does not describe life-time fractions that each individual spends in

possible wealth, labor earnings pairs. That disarms the Stachurski-Toda mechanism and

makes the equilibrium joint cross-section distribution of wealth and earnings have fatter

tails for wealth than for labor earnings.5

Research papers that generate endogenous Pareto distributions for wealth include Ben-

habib, Bisin, and Zhu (2011, 2015, 2016), Toda (2014), Hubmer, Krusell, and Smith (2016),

Nirei and Aoki (2016), and Moll et al. (2019). The mechanisms that produce those Pareto

distributions operate via either an asset accumulation equation (random growth models) or

a capital accumulation equation in a neoclassical growth model. In contrast, we start with

an empirically plausible fat-tailed cross-section earnings distribution and use the standard

BAH consumption-smoothing mechanism endogenously to generate a cross-section distri-

bution for wealth that has a fatter tail than earnings.

Because they do not start with exogenous earnings and don’t allow for endogenous

savings, most continuous-time wealth distribution models are not in the BAH tradition.

But there are notable exceptions. Achdou, Han, Lasry, Lions, and Moll (2017) formulate

5. Stachurski and Toda (2019, sec. 4) describe modifications of canonical BAH models that disarm their
impossibility theorem.
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BAH-style models in continuous time. Unlike our model, they retain the assumption that

labor earnings are governed by a stationary stochastic process.

II. Decisions

Time and an agent’s age t P r0,`8q are both continuous. Equal measures of agents are

born and die over each small interval of time. Markets are incomplete. Agents are iden-

tical at birth but differentiated afterwards by their luck. Each agent receives statistically

independent realization of an exogenous stochastic labor earnings stream over a stochastic

life time that is almost surely finite.

An agent’s life stage tStu is a non-decreasing integer-valued stochastic process that at

age t takes a value inside a set of integers t1, 2, . . . , Nu, where N ě 1 is finite. An agent

begins life in stage n “ 1 at age t “ 0. Conditional on being in life stage n at age t, over

a small age interval pt, t ` dtq, an agent remains in life stage n with probability 1 ´ λndt

and advances to life stage pn` 1q with probability λndt. This structure induces a sequence

tτnu
N
n“1 of random ages at which an agent moves from life stage n to life stage pn`1q, so that

τn “ inftt : St “ n`1u. An agent is exposed to mortality risk only during life stage St “ N .

Wang (2002) uses this stochastic life-cycle model to study equilibrium wealth distribution

with negative exponential utility and an affine labor-earnings process.6 Luttmer (2011)

uses a closely related stochastic process to model dynamics of firms’ blueprints.

Interpretations of Life Stages. Two interpretations of St are plausible. One is that

life-stage St indexes a single person’s age-t health status. Here we would calibrate stage-

dependent labor-earnings processes to make health-related productivity be correlated with

age t.

An alternative interpretation is that the entity being modeled is a family dynasty with

parents who are altruistic. Parents in stage n want to leave bequests to heirs in stage pn`1q

and cannot fully hedge their own death risk until the dynasty reaches its terminal stage

N . A dynasty stochastically transitions from one generation to the next and eventually

6. See Duffie (2010) for applications of affine processes to term structure of interest rates and credit risk
models.
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Figure I

Probability densities of life lengths z at birth in four models with N “ 1, 3, 6, 12 life stages.
Transition intensities λn “ λ for all n in each of four models but N{λ “ 60 across the four
models.

becomes extinct. By adopting this interpretation, we could account for accidental bequests.

Thus, there is a sense in which the mechanism of De Nardi (2004) and other bequest models

is also at work in our model.

Benhabib, Bisin, and Luo (2019) quantified an equilibrium model of the U.S. wealth

distribution and social mobility. We can use a family dynasty instance of our model to study

inter-generational economic mobility together with a cross-section wealth distribution.

Let z be the remaining length of life of an agent now in stage n who has pN ´ n ` 1q

remaining life stages. The random variable z is the sum of pN ´ n` 1q independently and

identically distributed exponentially random variables each with the rate parameter λ (and

hence a mean of 1{λ). It has the following probability density function:

φnpz;Nq “
λe´λzpλzqN´n

pN ´ nq!
. (1)

This instance of a Gamma function generates an Erlang distribution with two parameters:

the shape parameter k equals pN ´ n ` 1q, the number of remaining life stages, and the

rate parameter is λ. When n “ 1, z is also the random length of life for a new born whose
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distribution is given by equation (1) in a model with N life stages.

Figure I plots density functions φ1pz;Nq of life lengths z and also of the remaining

lengths of life for an agent in stage 1 with N remaining life stages in models with N “

1, 2, 6, 12. To show how models with N ą 1 can provide more realistic mortality with few

parameters, we set transition intensities λn “ λ for all n in each of four models and set

N{λ “ 60 to deliver the same average life lengths of 60 years for each N . An N “ 1

perpetual youth model generates too many very old people. Thus, if λ is calibrated to

yield a realistic average (working) life span of λ “ 1{60 years,7 then the probability of

living longer than 120 years is e´120{60 “ 13.5%. The probability of living longer than 120

years is 9.2%, 2.0%, and 0.3%, for N “ 2, N “ 6, and N “ 12 models. Evidently, increasing

the number of life-stages N while holding average age fixed at N{λ delivers thinner and

thinner right tails for life lengths. In an N ą 1 model, an older agent is more likely to be

in a later than an early life-stage n.

An agent ranks consumption processes tCtu
8
t“0 by discounted expected utilities:8

E
„
ż τN`1

0

e´ρt UpCtq dt



, (2)

where ρ ą 0 is a discount rate and Er ¨ s is a mathematical expectation with respect to

probability distributions of the stage of life process tStu and of the labor-earnings process

tYtu. We assume a constant relative-risk-aversion instantaneous utility function

UpCq “

$

&

%

C1´γ

1´γ
if γ ą 0, γ ‰ 1

lnpCq if γ “ 1

Although many BAH models assume a stationary labor-earnings process, econometric

studies have often estimated nonstationary processes that include permanent shocks.9 For

that reason, we assume that labor earnings tYtu follow diffusion processes with permanent

7. We interpret an age of 0 in our model as the beginning of a living individual’s age of 18 in real life.
8. For the agent’s objective function, without loss of generality, we set the agent’s birth time τ1 to 0.
9. For example, see MaCurdy (1982), Abowd and Card (1989), and Meghir and Pistaferri (2004), and

Blundell, Pistaferri, and Preston (2008). Here we ignore important fixed effects such as education and
gender, as well as other life-cycle variations across agents. Our labor-earnings process could be extended
to also feature a transitory component. For example, see Section 10 in Wang, Wang, and Yang (2016) for
one such generalization.
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shocks only. Thus, each agent has the following labor earnings process during life stage St:

dYt “ µStYt dt` σStYt dBt , 0 ď t ă τN`1 , (3)

where B is a standard Brownian motion, Y0 ą 0 is initial labor earnings at birth, and

µSt and σSt are stage-St-dependent growth rates and volatilities of labor earnings, respec-

tively. Process (3) asserts that within each life stage St, the growth rate of labor earnings,

dYt{Yt, is independently and identically distributed. Therefore, shocks to labor earnings

are permanent in levels. Specification (3) lets labor earnings growth and volatility both

depend on stage of life St, a random variable that is correlated with age and that lets

us approximate plausible age-earnings profiles. Although details differ, our labor-earnings

process has both permanent shocks and some life-cycle features similar to those used by

Zeldes (1989), Deaton (1991), Carroll (1997), and Gourinchas and Parker (2002).

Random earnings growth models with adjustments to ensure stationarity generate

Pareto distributions with fat tails as demonstrated by Gabaix (1999), Luttmer (2007),

Gabaix, Lasry, Lions, and Moll (2016), and Jones and Kim (2018).10 We recognize that

there is persuasive evidence that the earnings process has other interesting features such

as skewness (see Guvenen, Ozkan, and Song (2014) and De Nardi, Fella, and Paz-Pardo

(2020)). We choose a simple earnings model in order to focus on the channel through which

we generate a fatter tailed distribution for wealth than for earnings while acknowledging

that our simple random growth model neglects how labor earnings respond to transient

shocks.

Applying Ito’s formula to equation (3) verifies that the dynamics of lnY during life

stage n are:

d lnYt “ gndt` σndBt , (4)

where the expected change of log income during life stage n, i.e., the drift in (4), equals

gn “ µn ´
σ2
n

2
. (5)

10. We can generalize our earnings model to allow for jumps as in Gabaix, Lasry, Lions, and Moll (2016)
and Section 9 in Wang, Wang, and Yang (2016), but we omit jumps because our diffusion model is sufficient
to deliver our key results that cross-section wealth is more skewed and fat tailed than earnings.
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where σ2
n{2 is a Jensen’s inequality correction term at stage n.

The arithmetic Brownian motion (4) implies the following discrete-time process:

lnYt`1 ´ lnYt “ gn ` σnεt`1 , (6)

where the time-t conditional distribution of εt`1 is a standard normal random variable.

Thus, during life stage n, lnY , is a unit-root process whose first difference is independently

and normally distributed with mean gn and volatility σn. The Ito correction term can

make the expected labor earnings growth rate in logarithms gn differ substantially from

the growth rate of labor earnings Y in levels, µn. For example, at an annual frequency,

with µn “ 1.5% and σn “ 10%, we have gn “ 1%, which is one third lower than the growth

rate µn “ 1.5% due to the Jensen’s inequality term, σ2
n{2 “ 0.5%. Because labor earnings

growth shocks are i.i.d., shocks to levels of Y are permanent.

Let X denote an agent’s wealth process and set initial wealth X0 to zero. During each

stage of life, an agent can trade a risk-free financial asset that offers a constant rate of

return r. At age t and life stage St ă N , over a small increment pt, t` dtq, the agent faces

zero mortality risk. Therefore, whenever St ă N , or equivalently when 0 ď t ă τN , where

τN “ inftu : Su “ Nu, wealth evolves as:

dXt “ prXt ` Yt ´ Ctqdt, 0 ď t ă τN . (7)

During end-of-life stage N an agent purchases an actuarially fair “reverse-life-insurance”

contract that provides a flow of life-time payments in exchange for having agreed to transfer

end-of-life wealth XτN`1
to the insurance company. Preferences of an agent in life stage

N are the same as those of a perpetual youth with a discount rate ρ that is augmented

by a mortality hazard rate λN ą 0 to become an effective discount rate ρ ` λN . When

τN ă t ă τN`1, an agent is in life stage N and her wealth evolves as:

dXt “ prXt´ ` λNXt´ ` Yt´ ´ Ct´qdt´Xt´dSt , τN ă t ă τN`1 . (8)

Thus, during life stage N two new terms augment the saving rates prXt´ ` Yt´ ´ Ct´q

during life stages n ă N : paq an actuarially fair payment rate λNXt´ from the insurance
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company to the agent; and pbq a one-time transfer of wealth XτN`1´ from the agent to the

insurance company at the stochastic death moment t “ τN`1 when dSt “ dSτN`1
“ 1.

An agent cannot borrow against future labor earnings, i.e.,

Xt ě 0, for all t ě 0 , (9)

but she can dissave when her assets are positive. Financial income consists of interest

income rXt and also, but only during end-of-life stage N , reverse life insurance payments

λNXt. Non-financial income equals labor earnings Yt.

A representative firm operates a production function F pK,Lq “ AKαL1´α, where A ą

0, α P p0, 1q, K is the aggregate capital stock, and L is the aggregate labor stock. Physical

capital depreciates at a constant rate δ. The firm rents capital and labor in competitive

markets.

III. Saving

We compute optimal decision rules and an object that we call “certainty equivalent wealth”

as functions of wealth, labor earnings, and life stage in closed forms up to some intercon-

nected ordinary differential equations with economically interpretable boundary conditions

for each life stage.

III.A Recursions

We work backwards from stage N to stage 1. An agent in the final stage N acts as

a perpetual Yaari-Blanchard youth so her value function satisfies the Hamilton-Jacobi-

Bellman (HJB) equation:

pρ` λNqVNpX, Y q “ max
Cą0

UpCq ` ppr ` λNqX ` Y ´ CqVN,XpX, Y q

`µNY VN,Y pX, Y q `
σ2
NY

2

2
VN,Y Y pX, Y q . (10)

The left side of HJB equation (10) multiplies value function by the rate of pρ ` λNq in

order to account for the probability of death per unit of time. The coefficient on VN,X on
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the right side of (10) sets the rate of return on savings at r ` λN ; r is contributed by the

risk-free rate while λN is a revenue flow from reverse life insurance. The insurance company

collects an agent’s entire wealth X at the instance of death. The agent optimally sets C to

equate the two sides of (10).

Value functions for life stages n P p1, N ´ 1q satisfy HJB equations:

ρVn “ max
Cą0

UpCq ` prX ` Y ´ CqVn,XpX, Y q ` µnY Vn,Y pX, Y q `
σ2
nY

2

2
Vn,Y Y pX, Y q

`λnpVn`1pX, Y q ´ VnpX, Y qq . (11)

When life-stage St “ n ď N´1, an agent’s death probability is zero over every infinitesimal

time interval.11 A reverse annuity is purchased only in life stage N , so the rate of return

on savings X equals the risk-free rate r in stages n ă N . The last term in (11) comes from

the stochastic transition from stage n to stage pn` 1q.

Value functions have a homogeneity property that lets us write them as

VnpX, Y q “
pbnPnpX, Y qq

1´γ

1´ γ
1 ď n ď N , (12)

where PnpX, Y q is an agent’s “certainty equivalent wealth” at life stage n, an object inter-

pretable as a welfare measure expressed in units of the consumption good. Thus, imagine

that at some stage of life, an agent has two options: either (1) adhering to the saving

plan prescribed by the model; or (2) surrendering both her savings X and her continuation

life-stage-dependent labor earnings processes Y in exchange for retiring immediately with

wealth level Ω, from which she can either consume or else save and earn the risk-free rate

r for the rest of life. Wealth Ω “ PnpX, Y q makes the agent indifferent between these two

options. From knowing PnpX, Y q, we can uniquely pin down bn.

The coefficient bn in the value function (12) is

bn “ mγ{pγ´1q
n . (13)

To compute the tmn; 1 ď n ă Nu sequence, start from the following formula for the

11. The probability attached to two consecutive jumps over an infinitesimal time interval dt is zero.
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coefficient mN at stage N ,

mN “ r `
1

γ
pρ´ rq ` λN , (14)

and work backwards to compute the coefficient mn for stage n via the recursion:

mn “ r `
1

γ
pρ´ rq `

λn
γ

«

1´

ˆ

mn`1

mn

˙´γ
ff

. (15)

We restrict parameters to make economic sense. For example, we impose parameter re-

strictions that make the right side of equation (14) be positive.

The PnpX, Y q functions allow us to characterize optimal consumption rules. The

homogeneity property of VnpX, Y q depicted in equation (12) generates policy functions

and other important objects that scale by labor earnings. The wealth-earnings ratio

x “ X{Y becomes a state variable that lets us express optimized utility in terms of a

function pnpxq “ PnpX, Y q{Y and the optimal consumption rule in terms of a function

cnpxq “ CnpX, Y q{Y .

First-order conditions for consumption associated with HJB equations (10) and (11)

imply

cnpxq “ mn pnpxq pp
1
npxqq

´1{γ . (16)

An important result is that incomplete markets make p1pxq ą 1 for all finite values of x,

which means that financial wealth is valuable beyond its pure purchasing value. Certainty-

equivalent wealth scaled by labor earnings Y for life stage n “ N , pnpxq, satisfies the

ODE:

0 “

ˆ

γmNp
1
Npxq

1´1{γ ´ pρ` λNq

1´ γ
` µN ´

γσ2
N

2

˙

pNpxq ` p
1
Npxq

`pr ` λN ´ µN ` γσ
2
Nqxp

1
Npxq `

σ2
Nx

2

2

ˆ

p2Npxq ´ γ
pp1Npxqq

2

pNpxq

˙

. (17)
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For earlier life stages St “ n ď N ´ 1, pnpxq satisfies the ODE:

0 “

ˆ

γmnp
1
npxq

1´1{γ ´ ρ

1´ γ
` µn ´

γσ2
n

2

˙

pnpxq ` p
1
npxq ` pr ´ µn ` γσ

2
nqxp

1
npxq

`
σ2
nx

2

2

ˆ

p2npxq ´ γ
pp1npxqq

2

pnpxq

˙

`
λnpnpxq

1´ γ

«

m´γ
n`1

m´γ
n

ˆ

pn`1pxq

pnpxq

˙1´γ

´ 1

ff

. (18)

When wealth X “ 0, the no-borrowing constraint (9) implies that consumption C

cannot exceed labor earnings pC ď Y q. We can express (9) in terms of scaled variables as:

cnp0q ď 1 , for 1 ď n ď N , (19)

a constraint that may or may not bind. If cnp0q ă 1, the agent’s saving motive is strong

enough to keep wealth X always strictly positive. In this case, relaxing constraint (19) has

no value, so a Lagrange multiplier on constraint X ě 0 is zero.

If cnp0q “ 1 and constraint (19) binds, then zero wealth X “ 0 is an absorbing state.

Campbell and Mankiw (1990) and Kaplan and Violante (2014) refer to consumers with zero

wealth who set C “ Y as hand-to-mouth consumers and document that they constitute a

sizable proportion of consumers. For such consumers, cnp0q “ 1. This condition and the

optimal consumption rule (16) jointly imply that certainty equivalent wealth pnp0q and its

first derivative p1np0q are linked via mn pnp0q pp
1
np0qq

´1{γ “ 1, a boundary condition on the

function pn at x “ 0.

To find another boundary condition for pnpxq, we note that as x approaches infinity

the agent uses holdings of the single risk-free asset completely to buffer all idiosyncratic

labor-earnings shocks, but stage-of-life shocks remain uninsurable. We can show that as

xÑ 8, pnpxq satisfies the condition:

lim
xÑ8

pnpxq “ x` qn , for 1 ď n ď N , (20)

where scaled certainty-equivalent values of labor earnings defined as tqn : 1 ď n ď Nu

satisfy

qn “
m´γ
n ` λnm

´γ
n`1qn`1

m´γ
n pr ´ µnq ` λnm

´γ
n`1

, 1 ď n ă N , (21)
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and

qN “
1

r ` λN ´ µN
. (22)

Having computed the sequence of tmn : 1 ď n ď Nu from the recursion defined by (14)

and (15), we can solve (21) recursively for tqn} by starting from (22) at stage N .

We have thus established that an agent’s optimal consumption rule is (16) and that the

scaled certainty equivalent wealth pnpxq satisfies (18) at life stages n ď N ´ 1 and (17) at

life stage N , subject to boundary conditions (19) and (20).

Dynamics of Scaled Wealth x. By using Ito’s Lemma, we express the dynamics for

agent’s scaled wealth xt when 0 ď t ă τN :

dxt “
“

1`
`

r ´ µn ` σ
2
n

˘

xt ´ cnpxtq
‰

dt´ σnxt dBt , 0 ď t ă τN . (23)

During life’s final stage N , scaled wealth evolves as

dxt “
“

1`
`

r ` λN ´ µN ` σ
2
N

˘

xt´ ´ cNpxt´q
‰

dt´ σNxt´ dBt ´ xt´dSt . (24)

III.B Optimal Value Functions and Decision Rules

For parameter values described in Section V., Figures II and III portray scaled certainty

equivalent wealth pnpxq and the optimal consumption-earnings ratios cnpxq at stages n for

our N “ 1 and the N “ 2 models.

III.B.1 The N “ 1 Model

Figure II plots N “ 1 objects. Panels A and B show that net scaled certainty-equivalent

wealth, ppxq´x, is increasing and concave in the wealth-earnings ratio x and that p1pxq´1 ě

0. The dashed lines in Panels A and B depict ppxq ´ x “ q “ 15.24 and p1pxq “ 1,

the solution under a complete markets in which earnings and life-stage shocks are both

insurable. The wedge between ppxq ´ x and q “ 15.24 captures the loss of the certainty

equivalent wealth that comes from incomplete markets. For a penniless agent, certainty

equivalent wealth pp0q “ 13.37 of labor earnings is 12.3% lower than q “ 15.24 under

complete markets. Thus, an agent values a marginal unit of wealth at a premium of about

14
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Figure II

Net scaled certainty-equivalent wealth ppxq ´ x, marginal certainty-equivalent value of
wealth p1pxq ´ 1, consumption-earnings ratio cpxq, and MPC c1pxq for the N “ 1 model.
Dashed red and solid blue lines delineate outcomes for our complete and incomplete markets
models, respectively. Under complete markets, ppxq ´ x “ q “ 15.24 and cpxq “ mppxq,
where the MPC is given by m “ 7.2%. Parameter values are reported in Table I.

12%, i.e., p1p0q “ 1.12. Even when x “ 10, pp10q ´ 10 “ 14, which is still 8% lower than

q “ 15.24. Thus, the wedge between ppxq´x and q remains substantial even for very large

values of x. Evidently, incomplete-markets have first-order effects on an agent’s welfare as

measured by certainty equivalent wealth.

Panels C and D of Figure II show that an agent’s consumption-earnings ratio, cpxq, is

increasing and concave in the wealth-earnings ratio x. The MPC c1pxq starts at c1p0q “ 8.4%

and slowly decreases towards the CM benchmark value, m “ 7.2% as x Ñ 8, indicating

that the rich want to save much more than the poor, as they indeed do in US data. With
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Figure III

Net scaled certainty-equivalent wealth ppxq ´ x, marginal certainty-
equivalent value of wealth p1pxq ´ 1, consumption-earnings ratio cpxq, and
the MPC c1pxq for the N “ 2 model. Scaled certainty-equivalent values of labor
earnings are q1 “ 18.70 and q2 “ 12.35, for stages 1 and 2, respectively, while m1 “ 6.31%
and m2 “ 8.83%. Parameter values are reported in Table I.

complete markets, cpxq “ mpx ` qq. As measured by reduced consumption, the wedge

between the two lines in Panel C describes the loss of utility that comes from markets

being incomplete.

III.B.2 The N “ 2 Model

Figure III plots features of our N “ 2 model. Panels A and B again show that net scaled

certainty-equivalent wealth, ppxq´x, is increasing and concave in the wealth-earnings ratio

x, as it also is in Figure II for the N “ 1 model. Evidently, ppxq ´ x and its derivative
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p1pxq ´ 1 are both higher in life stage 1 than in life stage 2. This makes sense because an

agent with the same levels of X and Y in her earlier life stage is relatively wealthier in terms

of certainty equivalent wealth, p1pxq ą p2pxq, and therefore is relatively poor in terms of

liquid financial wealth, i.e., is more “liquidity constrained”, which leads to a higher marginal

valuation for a unit increase of wealth X, i.e., p11pxq ą p12pxq. For example, a penniless agent

values a dollar windfall at a 14.4% premium in stage 2 (p12p0q´1 “ 0.144), while she would

assign a 20.3% premium to the same windfall in life stage 1 (p11p0q ´ 1 “ 0.203).

Panels C and D show that an agent’s consumption is increasing and concave in the

wealth-earnings ratio x in both stages due to incomplete markets as also occurs for the

N “ 1 model in Figure II. The results for consumption are less obvious than for ppxq. Why

does an agent consume more in stage 2 than in stage 1 at a given level of x, as Panel C

shows? This outcome might seem peculiar because certainty-equivalent wealth is lower in

stage 2 than in stage 1 for a fixed level of pX, Y q, i.e., p1pxq ą p2pxq as depicted in Panel

A. We call this outcome a “certainty-equivalent wealth” effect and impute it to forces that

end up causing c2pxq to exceed c1pxq and that we now turn to explain.

First, because there is no bequest motive, the consumption motive is stronger in later

life stages. Second, in our model the agent uses the reverse annuity market in the final

life stage, stage 2 in this case, to exchange her end-of-life wealth for higher consumption.

Indeed, that the MPC in stage 2 in the limit as x Ñ 8, m2, exceeds the MPC m1 in

stage 1, i.e., m2 “ 8.83% ą m1 “ 6.31%, reflects these two forces. Third, uninsurable

labor-earnings shocks induce smaller distortions to an agent’s consumption in her last life

stage because her shorter expected life span weakens her precautionary saving motive. For

that reason, p1npxq falls with advancing life stage n, as we see in Panel B. These three forces

encourage an agent to consume more in stage 2 than in stage 1. Together, these three

forces induce a (highly nonlinear) intertemporal substitution that, since both m2 ą m1 and

p12pxq ă p11pxq, make c2pxq exceed c1pxq. Thus, the optimal consumption rule (16) teaches

us that the “intertemporal substitution” effect dominates the “certainty-equivalent wealth”

effect and causes an agent to consume more at a given x when in stage 2 than when in

stage 1.

An agent’s consumption increases as she moves into later stages of life, a force that

weakens our model’s ability to generate high wealth accumulation for the rich. Nevertheless,

17



our model can still generate a large wealth concentration, as we show in Section V..

We note that the MPC increases with stage n. For example, the MPC for a penniless

(x “ 0) agent is 10.63% in life stage 2, which is larger than 8.11%, her MPC in life stage 1.

MPC out of (permanent) earnings. Although earnings grow (µ ą 0) and earnings

shocks are permanent, a precautionary savings motive often causes CY pX, Y q, the MPC out

of earnings, to be below one (especially in an empirically plausible range). The homogeneity

property implies CY pX, Y q “ cpxq´c1pxqx and hence CY equals cp0q in all stages when x “

0. For the N “ 1 model, when x “ 0, CY “ 0.91 and in the limit as xÑ 8, CY approaches

the complete-markets level: mq “ 1.1 (recall that m “ ρ` λ` p1´ 1{γq pr ´ ρq “ 7.2% is

q “ 1{pr ` λ´ µq “ 15.24.) For the N “ 2 model, when x “ 0, CY “ cp0q “ 0.85 in stage

1 and 0.87 in stage 2, respectively.12

In Figure IV, we plot the MPC CY “ cpxq ´ xc1pxq as a function of x for the N “ 1

and N “ 2 models (both stages for the latter.) We see that the MPC out of earnings

increases with x. This follows from CY x “ xc2pxqX{Y 2 “ x2c2pxq{Y ă 0, as optimal

consumption cpxq is concave in x. An agent can self-insure better the higher is the value

of x. Accordingly, for a given level of wealth X, an agent who has a higher level of Y or

receives a positive earnings shock is less self-insured than desired, fostering higher saving.

This generates a force that contributes to fattening the tail of the distribution of wealth

relative to the distribution of earnings. Also, note that CY is higher in stage 2 than in

stage 1 since a stage-2 agent has a shorter life horizon and is able to hedge mortality risk.

IV. Stationary Equilibrium

By assuming no aggregate shocks and a continuum of agents, we follow Aiyagari (1994)

and focus on steady-state equilibria. Agents have identical but statistically independent

labor-earnings processes.13

12. That the MPC out of earnings is lower than one at x “ 0 follows from CY p0, Y q “ cp0q ´ c1p0q ˆ 0 “
cp0q ď 1, which follows from the no-borrowing constraint, cp0q ď 1. In equilibrium, cp0q ă 1. This is
because if cp0q “ 1, there could be not be a positive aggregate capital stock.

13. Krusell and Smith (1998) analyze how the joint distribution of income and wealth responds to ag-
gregate shocks.
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MPCs out of permanent earnings CY pX, Y q for both the N “ 1 model (black dotted line)
and the N “ 2 model in stage 1 (blue solid line) and stage 2 (red dashed line). Parameter
values are reported in Table I.

Stationary demographics. Let Πn denote the measure of agents in life stage n and

normalize the measure of the living agents (in all stages) to unity so that
řN
n“1 Πn “ 1.

Stationarity requires that measures of agents in each stage are constant over time and that

flows into stage pn ` 1q from stage n occur at the same rates as flows into stage n from

stage pn´ 1q, so that

Πn λn “ Πn´1 λn´1 . (25)

Because
řN
n“1 Πn “ 1 and equation (25) holds for n “ 2, . . . , N , we obtain

Πn “
λ´1
n

řN
n“1 λ

´1
n

. (26)

Market clearing for capital and labor. Equality of aggregate demand and supply of

capital requires:

K “ EpXq ”
ż 8

0

XφXpXqdX , (27)
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where φXpXq is the cross-section stationary probability density of wealth X.

Let H denote an agent’s endowed labor units (e.g., hours). Each agent supplies labor

inelastically. In equilibrium labor demand equals labor supply: L “ H. Let w “ EpY q{H
denote the average wage rate across all agents. Because aggregate labor cost for production

wL equals aggregate labor earnings for all agents, using a law of large numbers,14 we have

wL “ wH “ EpY q ”
ż 8

0

Y φY pY qdY , (28)

where φY pY q is the cross-section stationary distribution of labor earnings across all ages:

φY pY q “
řN
n“1 Πnφn,Y pY q and φn,Y pY q is the cross-section stationary distribution of labor

earnings Y for agents in life stage n. Therefore, an agent’s labor earnings Yt exceeds the

average level EpY q if and only if her wage rate Yt{H at t exceeds w.

The steady-state equilibrium interest rate r and average wage rate (which is also the

wage rate received by an agent with average labor efficiency) satisfy

r “ FKpK,Lq ´ δ “ AαpK{Lqα´1
´ δ “

α

1´ α

wH

K
´ δ “

α

1´ α

EpY q
EpXq

´ δ , (29)

w “ FLpK,Lq “ Ap1´ αqpK{Lqα “ Ap1´ αq

ˆ

EpXq
H

˙α

. (30)

Stationary distribution of earnings and wealth. To calculate the cross-section sta-

tionary distribution of labor earnings, starting from stage 1, we recursively solve the fol-

lowing Kolmogorov Forward (Fokker-Planck) equations:

0 “ ´
BpµnY φn,Y pY qq

BY
`

1

2

B2pσ2
nY

2φn,Y pY qq

BY 2
´ λnφn,Y pY q ` λn´1φn´1,Y pY q (31)

for stages 2 ď n ď N and

0 “ ´
Bpµ1Y φ1,Y pY qq

BY
`

1

2

B2pσ2
1Y

2φ1,Y pY qq

BY 2
´ λ1φ1,Y pY q (32)

for stage 1. For any stage n, computing φn,Y pY q involves solving a one-dimensional ordinary

differential equation.

14. See Sun (2006) for technical conditions under which we can construct the associated probability and
agent measures that allow invoking a law of large numbers.
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We can calculate the cross-section stationary distribution of wealth by first computing

the cross-section joint distribution of wealth and earnings. Let φn,XY pX, Y q denote this

cross-section joint distribution in stage n. The following Kolmogorov Forward (Fokker-

Planck) equations hold:

λ1φ1,XY “ ´
B pµ1,XpX, Y qφ1,XY q

BX
´
B pµ1Y φ1,XY q

BY
`

1

2

B2 pσ2
1Y

2φ1,XY q

BY 2
, (33)

λnφn,XY “ ´
Bpµn,XpX, Y qφn,XY q

BX
´
BpµnY φn,XY q

BY
`

1

2

B2pσ2
nY

2φn,XY q

BY 2
` λn´1φn´1,XY ,

(34)

where µn,XpX, Y q is the drift of wealth X is given by

µn,XpX, Y q “ rX ` Y ´ CnpX, Y q, 1 ď n ď N ´ 1 , (35)

in stage n ď N ´ 1 and by

µN,XpX, Y q “ pr ` λNqX ` Y ´ CNpX, Y q (36)

in stage N . After obtaining φn,XY pX, Y q, we can compute the cross-section stationary

distribution of wealth by integrating over Y : φn,XpXq “
ş8

0
φn,XY pX, Y qdY .

Our model’s homogeneity property simplifies computing the cross-section equilibrium

wealth distribution. It can be accomplished as follows. First, we simulate a path of the

standard Brownian motion Bt starting with B0 “ 0. Second, we obtain the corresponding

sample path for Y by substituting the simulated path of Bt into the dynamics (3) for Y

with the initial condition Y0 “ 1. Third, we use the process for xt given in (23) for stage

n ă N and (24) for stage N together with the optimal scaled-consumption rule cpxtq given

in (16) to obtain the paths for xt and ct starting with x0 “ X0{Y0 “ 0. Finally, we obtain

Xt by multiplying the two paths xt and Yt at each t. When an agent dies, we bring in

a new agent with no wealth and Y0. We continue this process until we reach a very high

number of years, e.g., t “ 108.

Next, we introduce widely used measures of inequality.
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Lorenz curve, Gini coefficient, and fractal inequality. For a nonnegative random

variable W with cumulative distribution function GW p ¨ q, the Lorenz curve LW pzq is defined

on 0 ď z ď 1 as:

LW pzq “

şz

0
G´1
W puqdu

ş1

0
G´1
W puqdu

, (37)

where G´1
W p ¨ q denotes the inverse of GW p ¨ q. Evidently, LW pzq is the proportion of total

W owned by the bottom z percent of people. The Gini coefficient for W is a widely used

measure of wealth inequality. It equals twice the area between the 45% line of equality and

the Lorenz curve LW pzq:

ΓW “ 2

ż 1

0

pz ´ LW pzqqdz . (38)

To describe fat right tails, we use both power-law exponents and “fractal inequality”

(FI) as in Jones and Kim (2018). For a given random variable W , fractal inequality FIW puq

is defined as the fraction of W that goes to the top p10 ˆ uq percent of agents divided by

the fraction of W that goes to the top u percent:

FIW puq ”
1´ LW p1´ 0.01ˆ uq

1´ LW p1´ 0.1ˆ uq
. (39)

Stationary Equilibrium. A competitive equilibrium consists of value functions (or,

alternatively, certainty equivalent wealth functions) and optimal saving functions at all

stages n; the interest rate r, the wage rate w for an agent with average productivity,

stationary population demographics, and a stationary distribution for the cross-section

distribution for wealth and earnings pX, Y q that satisfy

1. Given r and the stochastic labor-earnings process tYs : s ě 0u and X0, value functions

and optimal policies satisfy and attain, respectively, the HJB equations described in

Section III..

2. The interest rate r and w satisfy (29) and (30), respectively.

3. Equations (27) and (28) hold so that markets for capital and labor clear.
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4. The cross-section distribution of wealth and earnings pX, Y q is invariant over time

and characterized by (33) and (34).

V. Quantities

After setting parameter values, we describe properties of an equilibrium cross-section wealth

distribution as manifested in Lorenz curves, Gini coefficients, and power-law exponents.

V.A Imported and Newly Calibrated Parameters

Table I describes parameter values that we shall use to compute equilibria for N “ 1 and

N “ 2 instances of our model. Panel A.1 reports parameters that we intentionally import

from prominent BAH papers. Panel A.2 reports parameters that we set to hit expected

life length targets of 60 years for both the N “ 1 and N “ 2 models. Panel B reports

parameters calibrated specifically for this study, namely, drifts and volatilities governing

labor-earnings processes.

Panel A.1 describes a suite of parameters set at consensus values in BAH papers. We

adopted these consensus values purposefully in order to help us isolate sources of new

findings about the equilibrium wealth distribution that our model brings. We set preference

and production function parameters to values used by Huggett (1996) and De Nardi (2004).

Following Prescott (1986) and Cooley and Prescott (1995), we set the capital share of

income, α, to 0.36. We set an annual depreciation rate of capital, δ, to 6% to match an

estimate of the US depreciation-output ratio reported by Stokey and Rebelo (1995). We

want an aggregate capital-output ratio to 3 as in Castañeda, Dı́az-Giménez, and Ŕıos-

Rull (2003) and De Nardi (2004), which in light of equation (29) leads to an equilibrium

interest rate r equals 6% per annum as in Huggett (1996) and De Nardi (2004). We set

the productivity parameter A to 0.9, so that the wage rate w for an agent with the average

labor efficiency equals unity. We set the coefficient of relative risk aversion at γ “ 2, a

commonly used value.

Panel A.2 of Table I reports how we set parameters that governing life-stage transitions

to make life expectancies under the N “ 1 and N “ 2 versions of the model be equal.15

15. Our model with N “ 2 corresponds to the discrete-time version of the stochastic life-cycle model
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TABLE I

Parameter settings and calibration

Panel A.1 Assigned

Parameters Symbol N “ 1, 2

Risk aversion γ 2
Subjective discount rate ρ 5%
Capital share α 0.36
Capital depreciation rate δ 6%
Productivty A 0.9

Panel A.2 Life-stage

Parameters Symbol N “ 1 N “ 2

Transition intensity λ 0.0167 0.033

Panel B. Calibration

Parameters Symbol N “ 1 N “ 2

Earnings growth volatility σ 9.9% 12.7%
Expected earnings growth µ 1.11% 1.26%

Targets: (labor-earnings Gini ΓY , capital-output ratio K{F pK,Lqq “ p0.63, 3q

For our N “ 1 model, we set the hazard parameter λ1 “ 0.0167 in order to target an

agent’s expected lifetime at 1{λN “ 60 years, as in Castañeda, Dı́az-Giménez, and Ŕıos-

Rull (2003). For our N “ 2 model, we set λ2 “ λ1 and target expected durations of

1{λ1 “ 30 years for both life-stages so that we obtain the same expected total lifetime of

60 “ 30` 30 years as for our N “ 1 model. In this way, we approximate a setting in which

mortality risk is lower for most younger people and higher for most older people.

Panel B of Table I reports outcomes from jointly calibrating the expected labor earnings

growth µ and labor earnings growth volatility σ by targeting a pair of quantities: a Gini

coefficient for the cross-section labor earnings of 0.63 and a capital-output ratio of 3, as

in Castañeda, Dı́az-Giménez, and Ŕıos-Rull (2003). Similarly, De Nardi (2004) uses labor

used by Castañeda, Dı́az-Giménez, and Ŕıos-Rull (2003). Gertler (1999) used a discrete-time version of an
N “ 2 version of our model to study social security. Heathcote, Storesletten, and Violante (2017) use an
N “ 1 model in their study of optimal tax progressivity.
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TABLE II

Cross-Section Distributions of Earnings and Wealth. The Parameter Val-
ues for Both the N “ 1 and N “ 2 Models Are Reported in Table I

Panel A. Percentage earnings in the top

Gini 1% 5% 20% 40% 60%

U.S. data 0.63 15 31 61 84 97
N “ 1 0.63 33 49 69 81 89
N “ 2 0.63 29 46 67 81 90

Panel B. Percentage wealth in the top

Gini 1% 5% 20% 40% 60%

U.S. data 0.78 30 54 79 93 98
N “ 1 0.77 39 58 79 91 96
N “ 2 0.72 34 53 75 88 95

earnings growth volatility to match the Gini coefficient of labor earnings. The calibrated

values are µ “ 1.11% and σ “ 9.9% for the N “ 1 model and are µ “ 1.26% and

σ “ 12.7% for the N “ 2 model. While we have calibrated earnings expected growth

rate µ and growth volatility σ to target two macro moments, these values are broadly in

line with micro estimates reported in the literature (see Meghir and Pistaferri (2011) for a

survey.)

V.B Implications for Cross-Section Earnings and Wealth Dis-

tributions

Table II reports the model-implied Lorenz curves for exogenous labor earnings and en-

dogenous wealth in Panels A and B, respectively, for both the N “ 1 and N “ 2 models

in addition to the empirical distributions of earnings and wealth in the U.S.16 For the

N “ 1 and N “ 2 models separately, we calibrate λ to a Gini coefficient target of 0.63 for

16. Data for distributions of earnings and wealth in the U.S. Economy are borrowed from Castañeda,
Dı́az-Giménez, and Ŕıos-Rull (2003).
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cross-section earnings that characterizes the data.

Let’s look at exogenous labor earnings first. In Appendix B, we report that the cross-

section labor earnings Y follows a double Pareto distribution, also used in Luttmer (2007),

Gabaix (2009), and Toda and Walsh (2015).

The N “ 1 model. Although our simple model of labor earnings model neglects re-

sponses to transient shocks, the implied earnings distribution is able to capture key fea-

tures of the empirical Lorenz curve. In the N “ 1 model, the top 1% receive 33% of the

total earnings while in the data they receive 15% of the total earnings. This aspect of our

model contrasts with properties of classic BAH models that generate too little earnings

concentration at the top. For example, the model-implied Gini coefficient for cross-section

earnings in Aiyagari (1994) is 0.1 and the top 1% earnings-rich receive only 6.8% of total

earnings.

Next, we turn to the endogenous wealth distribution reported in Panel B for our N “ 1

model. Our N “ 1 model delivers a Gini coefficient for cross-section wealth of 0.77 that

closely approximates the wealth Gini coefficient 0.78 in the US data.17

A successful feature of our model is that it predicts that the Gini coefficient for wealth is

larger than that for earnings (0.63). The model generates an endogenous wealth distribution

that has a fatter tail than exogenous earnings distribution, something that classic BAH with

stationary exogenous labor earnings processes don’t do.

Our model is too stingy with free parameters to approximate the entire wealth Lorenz

curve well. Compared with observed wealth concentration, our model generates more

concentrated wealth holdings for the rich. For example, the top 1% wealth-rich owns

about 39% of the total wealth, while the top 1% earnings-rich makes about 33% of the

total earnings in the model. As they were also for the earnings distribution, our models

predictions here differ qualitatively from those of classic BAH models with stationary labor

earning processes in which model-implied wealth concentration at the top is much lower

17. Sargent, Wang, and Yang (2020) analyze a special N “ 1, σ “ 0 model with nonrandom labor
earnings. That simplified setting lets us derive explicit formulas for Lorenz curves, Gini coefficients, fractal
inequalities, and power law exponents for equilibrium distributions of wealth and earnings. But the strong
precautionary savings motives and resulting concave consumption functions that play such important roles
here are absent, as is the more realistic life/dynasty cycle structure that we include here when N ą 1.
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than what is observed. For example, in Aiyagari (1994), the Gini coefficient for cross-section

wealth is 0.38 and the top 1% only owns about 3.2% of the aggregate wealth as opposed

to about 30% in the data. Thus, relative to the data, our model with non-stationary labor

earnings generates too much wealth concentration at the top, reversing a salient finding

from BAH models with stationary labor earnings. To help our model match the observed

upper tail of the wealth distribution, we would somehow have to attenuate forces that push

wealth toward the wealthiest, not strengthen them as has been done in BAH models with

stationary labor earnings processes.

What happens when we move from the N “ 1 model to the N “ 2 model? We shall see

that qualitative features of key predictions (e.g., fatter tailed distribution for wealth than

earnings) continue to hold while fits improve.

The N “ 2 model. Evidently, calibrating our N “ 2 earnings model by setting the

model-implied Gini coefficient at 0.63 as we do for the N “ 1 model yields a better fit

with the empirical Lorenz curve. While the N “ 2 model still generates too much earnings

concentration at the top, it gets closer to the observations than does the N “ 1 model.

The Gini coefficient for cross-section wealth equals 0.72, which is further away from the

0.78 in the data than is the N “ 1 model. But the Lorenz curve for the N “ 2 model is

closer to the data than is the N “ 1 model. For example, the top 1% wealth-rich owns

about 34% of total wealth compared to 30% in the data, and the top 5% wealth-rich owns

53% of aggregate wealth, which agrees with the data. Overall, our N “ 2 model generates

a cross-section wealth distribution that is reasonably close to the empirical distribution.

In summary, with the caveat that our earnings model generates too much concentration

of earnings at the top, our N “ 1 and N “ 2 models both generate cross-section wealth

distributions with large wealth concentrations at the top, broadly consistent with U.S data.

VI. Concluding Remarks

Putting multi-stage stochastic life cycles and permanent labor-earnings shocks into an

otherwise standard BAH model unleashes forces that create substantial wealth inequality

as measured by Lorenz curves, Gini coefficients, fat tail (power law) exponents, and fractal
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inequality. We have kept our model ruthlessly parsimonious in terms of parameters because

we want to isolate what drives our results. We could extend the model to do more by being

less stingy with parameters. We anticipate that we can apply similar analytical techniques

to the ones we have deployed here to capture features that we have ignored, for example,

transients shocks to labor earnings.

Our model generates a distribution of marginal propensities to consume (MPCs), an

object of interest for a number of topics.18 To take an example of substantial contempo-

rary interest, in our model taxing wealth and transferring it to the very young can have

substantial effects on social welfare as measured by a utilitarian welfare criterion as well as

on wealth and the interest rate. A subsection III.B concave consumption function would

activate such effects. We anticipate using our model soon to study this and other policy

experiments in future research.

We have excluded aggregate shocks and focused on a stochastic steady state. By deploy-

ing techniques from mean field game theory, we hope to adapt the model to incorporate

aggregate shocks and follow in the steps of Gabaix, Lasry, Lions, and Moll (2016) who

use mean field games to analyze the dynamics of inequality. They show that standard

random-growth-based models generate transition dynamics that are too slow relative to

those observed in the data. Guvenen, Karahan, Ozkan, and Song (2015) and De Nardi,

Fella, and Paz-Pardo (2020) document that logarithmic earnings innovations are very fat-

tailed. We aspire to include richer earnings processes and aggregate transition dynamics in

future work.

18. Kaplan and Violante (2014) study consequences of fiscal stimuli. Other papers study transition
mechanisms of monetary policy (Kaplan, Moll, and Violante (2018), Auclert (2019)), effects of a credit
crunch or house price movements on consumer spending (e.g. Guerrieri and Lorenzoni (2017); and how
inequality affects aggregate demand, e.g., Auclert and Rognlie (2018).
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Appendices

Appendix A sketches proofs of main results in Section III. Appendix B summarizes the

cross-section earnings distribution and provides proofs for the N “ 1 model. Appendix C

provides additional details about how we calculate aggregate variables.

A Proofs for Solutions in Section III

First, by using the HJB equations given in (10) and (11), we obtain the following FOC for

consumption:

U 1pCnq “ Vn,XpX, Y q , (A.1)

which equates the marginal benefit of consumption U 1pCnq with the marginal utility of

savings Vn,XpX, Y q. Using the value function given in (12) and the homogeneity property

PnpX, Y q “ pnpxqY , we obtain the optimal scaled consumption rule cnpxq given in (16).

Substituting (12), PnpX, Y q “ pnpxqY , and (16) into the HJB equations (10) and (11), we

obtain the ODE (17) for pNpxq and the ODE (18) for pnpxq where n ď N ´ 1.

Substituting pNpxq “ x` qN into (17), letting xÑ 8, and using (13), we obtain

0 “

˜

γb
1´1{γ
N ´ pρ` λNq

1´ γ
` µN

¸

px` qNq ` 1` pr ` λN ´ µNqx

“

ˆ

γmN ´ pρ` λNq

1´ γ
` r ` λN

˙

x`

ˆ

γmN ´ pρ` λNq

1´ γ
` µN

˙

qN ` 1 . (A.2)

As (A.2) must hold for all x, we obtain the explicit formula (14) for mN . And then

substituting (14) into (A.2), we obtain (22) for qN . Similarly, substituting pnpxq “ x ` qn

into (18) and letting xÑ 8, we obtain

0 “

˜

γb
1´1{γ
n ´ ρ

1´ γ
`

λn
1´ γ

«

ˆ

bn`1

bn

˙1´γ

´ 1

ff

` µn

¸

px` qnq ` 1` pr ´ µnqx

`λn

ˆ

bn`1

bn

˙1´γ

pqn`1 ´ qnq

“

˜

γmn ´ ρ

1´ γ
`

λn
1´ γ

«

ˆ

mn`1

mn

˙´γ

´ 1

ff

` r

¸

x` 1
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`

ˆ

γmn ´ ρ

1´ γ
´

λn
1´ γ

´ µn

˙

qn ` λn

ˆ

mn`1

mn

˙´γ

qn`1 . (A.3)

Since (A.3) must hold for all x, we obtain mn as given by (15). Finally, substituting (15)

into (A.3) gives (21) for qn.

B Cross-section Earnings Distribution for the

N “ 1 Model

Closed-Form Solutions

Proposition B.1. The cumulative distribution function of labor earnings Y is given by:

ΦY pY q “

$

’

’

&

’

’

%

β2
β2´β1

´

Y
Y0

¯β1
, Y ă Y0 ,

1´ β1
β1´β2

´

Y
Y0

¯β2
, Y ě Y0 .

(B.1)

where β1 ą 0 and β2 ă ´1 are the two roots of following the quadratic equation for β:19

0 “ λ`

ˆ

µ´
σ2

2

˙

β ´
σ2β2

2
. (B.2)

The distribution function ΦY pY q in (B.1) is known as the double Pareto distribution

and has been studied in Luttmer (2007), Gabaix (2009), and Toda and Walsh (2015). The

right tail is governed by a power law: for large pY , ProbrY ě pY s “ β1
β1´β2

´

pY
Y0

¯1{ξY
where ξY

is the power-law exponent

ξY “ ´β2 ą 1 ą 0 , (B.3)

where β2 ă ´1 is the negative root for (B.2).

The cross-section average of labor earnings is

EpY q “
β1β2

pβ1 ` 1qpβ2 ` 1q
Y0 “

λ

λ´ µ
Y0 . (B.4)

19. When σ ‰ 0, equation (B.2) has two roots, β1 ą 0 and β2 ă ´1, as λ ą 0 and λ´ µ ą 0. When the
earnings process is deterministic (σ “ 0), an important special case, equation (B.2) is linear with only one
root: β2 “ ´λ{µ.
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The Lorenz curve LY p ¨ q of labor earnings Y is:

LY pzq “

$

’

’

’

&

’

’

’

%

β2`1
β2

´

β2´β1
β2

¯
1
β1 z

β1`1
β1 , 0 ď z ă β2

β2´β1
,

1´ β1`1
β1

´

β1´β2
β1

¯
1
β2
p1´ zq

β2`1
β2 , β2

β2´β1
ď z ď 1 .

(B.5)

Using the definition of the Gini coefficient ΓY in (38), we find that the Gini coefficient of

labor earnings is

ΓY “
2β2

2 ` 2β2
1 ´ β1β2 ` β2 ` β1

pβ2 ´ β1qp2β1 ` 1qp2β2 ` 1q
. (B.6)

The “fractal inequality” FIY pzq for earnings is

FIY pzq “
1´ L1,Y p1´ zq

1´ L1,Y p1´ 10ˆ zq
“

ˆ

1

10

˙

β2`1
β2

, (B.7)

provided that z ď β1
β1´β2

.

Proofs

Using the Kolmogorov Forward equation (32) for the case with N “ 1 we obtain

0 “ pσ2
´ µqφY pY q ` p2σ

2
´ µqY φ1Y pY q `

σ2Y 2

2
φ2Y pY q ´ λφY pY q . (B.8)

The density function φY pY q takes the form of a double Pareto (power law) distribution:

φY pY q “

$

&

%

κ1Y
β1´1 , Y ă Y0 ,

κ2Y
β2´1 , Y ě Y0 ,

(B.9)

where β1 ą 1 and β2 ă ´1 are roots of the quadratic equation

0 “ pλ` µ´ σ2
q ` pµ´ 2σ2

qpβ ´ 1q ´
σ2pβ ´ 1qpβ ´ 2q

2
, (B.10)

which implies (B.2).
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Because φY pY q must be continuous at Y0, we have

κ1Y
β1´1

0 “ κ2Y
β2´1

0 . (B.11)

By integrating the density, we obtain:

1 “

ż Y0

0

pκ1Y
β1´1

qdY `

ż 8

Y0

pκ2Y
β2´1

qdY “
κ1Y

β1
0

β1

´
κ2Y

β2
0

β2

. (B.12)

Jointly solving (B.11) and (B.12), we obtain:

κ1 “
β1β2

β2 ´ β1

Y ´β10 “
λ

a

pµ´ σ2{2q2 ` 2λσ2
Y ´β10 , (B.13)

κ2 “
β1β2

β2 ´ β1

Y ´β20 “
λ

a

pµ´ σ2{2q2 ` 2λσ2
Y ´β20 . (B.14)

Substituting (B.13) for κ1 and (B.14) for κ2 into (B.9), we obtain the cross-section

stationary distribution of earnings φY pY q

φY pY q “

$

’

’

&

’

’

%

λ?
pµ´σ2{2q2`2λσ2

Y ´β10 Y β1´1 , Y ă Y0 ,

λ?
pµ´σ2{2q2`2λσ2

Y ´β20 Y β2´1 , Y ě Y0 ,

(B.15)

By integrating φY pY q, we obtain ΦY pY q is given by (B.15). Let Φ´1
Y p¨q denote the

inverse distribution function of Y . We can show that

Φ´1
Y puq “

$

’

’

’

&

’

’

’

%

´

β2´β1
β2

u
¯

1
β1 Y0 , 0 ď u ă β2

β2´β1
,

´

β1´β2
β1
p1´ uq

¯
1
β2 Y0 ,

β2
β2´β1

ď u ď 1 .

(B.16)

By integrating Φ´1
Y p¨q, we obtain

ż z

0

Φ´1
Y puqdu (B.17)
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“

$

’

’

’

’

&

’

’

’

’

%

β1
β1`1

´

β2´β1
β2

¯
1
β1 Y0z

β1`1
β1 , 0 ď z ă β2

β2´β1
,

β2
β2`1

´

β1´β2
β1

¯
1
β2 Y0

«

´

β1
β1´β2

¯

β2`1
β2
´ p1´ zq

β2`1
β2

ff

`
β1β2

pβ1`1qpβ2´β1q
Y0 ,

β2
β2´β1

ď z ď 1 .

Finally, by using LY p¨q “
şz
0 Φ´1

Y puqdu
ş1
0 Φ´1

Y puqdu
, we obtain the Lorenz curve (B.5) for earnings.

C Computing Aggregates

We compute equilibrium objects by iterating over candidate interest rates. First, for a

given r, we compute total savings EpXq by aggregating over individual’s optimal savings

demand. Second, equations (30) and (29) imply that the wage rate w can be deduced from

the factor price frontier

w “ Ap1´ αq

ˆ

r ` δ

Aα

˙
α
α´1

. (C.1)

Third, endowed labor units H are exogenous and the agent does not value leisure.

Thus, the total wage payment to labor equals total labor earnings: wH “ EpY q. Since we

fix µ and σ when we perform comparative static analyses, we infer the value of Y0 from

wH “ EpY q.
Fourth, we solve for the aggregate capital stock K by using the equilibrium increasing

relation between K and w given in (30). Finally, we check whether the aggregate K

obtained in step 4 equals the aggregate savings EpXq obtained in step 1. If so, we have

found a fixed point. Otherwise, we continue the iteration process until we find one. From

a fixed point, we obtain equilibrium objects, r, w, Y0, K, with the implied aggregate

capital-output ratio K{F pK,Lq “ pK{Hq1´α

A
.
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