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Abstract

We study an economy in which two types of agents have diverse beliefs about
the law of motion for an exogenous endowment. One type knows the true
law of motion, and the other learns about it via Bayes’s theorem. Financial
markets are incomplete, the only traded asset being a risk-free bond. Borrow-
ing limits are imposed to ensure the existence of an equilibrium. We analyze
how financial-market structure affects the distribution of financial wealth and
survival of the two agents. When markets are complete, the learning agent
loses wealth during the learning transition and eventually exits the economy
(Blume and Easley 2006). In contrast, in a bond-only economy, the learning
agent accumulates wealth, and both agents survive asymptotically, with the
knowledgeable agent being driven to his debt limit. The absence of markets for
certain Arrow securities is central to reversing the direction in which wealth is
transferred.
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1 Introduction

We study how market incompleteness affects the distribution of wealth when beliefs

are heterogeneous, extending research by Blume and Easley (2006) and Cogley and

Sargent (2009), among others. Blume and Easley describe conditions under which
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Friedman’s (1953) survival hypothesis holds. Roughly speaking, when markets are

complete and so allocations are Pareto optimal, agents that have to estimate more

parameters learn slower and are driven out of the market. However, they also provide

examples showing that agents with incorrect beliefs can survive when markets are

incomplete.1

Similarly, Cogley and Sargent (2009) study aspects of the transition in a compet-

itive complete-markets economy, including the rate at which less-well informed con-

sumers are driven out, how wealth is transferred between well- and less-well-informed

consumers, and how their financial positions affect subjective prices of risk. Their

model is populated by two types of consumers, one that knows the true transition

probabilities for an exogenous Markov endowment and another that learns about

them. The less-well-informed consumers are pessimistic, initially over-estimating the

probability of a contraction state. Because of their pessimism, Arrow securities pay-

ing off in that state are overpriced relative to rational-expectations valuations while

those paying off in an expansion state are underpriced. The better-informed con-

sumers regard these price gaps as attractive trading opportunities, buying low-priced

expansion-state securities and selling high-priced contraction-state securities. They

grow rich on average because the expansion state occurs more often and the contrac-

tion state less often than less-will-informed agents expect. But when a contraction

occurs, better-informed consumers not only suffer a decline in their endowment but

also are obliged to pay off on their contraction-state liabilities. Because their finan-

cial positions increase exposure to catastrophic risk, their subjective prices of risk

are high during the learning transition. And since less-well-informed consumers buy

‘contraction insurance,’ their subjective prices of risk are low.

In the Cogley-Sargent model, the ability to trade a complete set of Arrow securities

is central to the mechanism by which better-informed consumers grow rich at the

expense of less-well-informed consumers. Complete markets give the agents many

opportunities to make trades motivated solely by the different subjective probabilities

they put on future outcomes. In this paper, we study what happens when some of

those Arrow-security markets are closed. For a model very much like that of Cogley

and Sargent, we find that the direction in which wealth is transferred is reversed when

agents can trade only a risk-free bond. Less-well-informed consumers accumulate

financial assets, and better-informed consumers are driven to debt limits. Moreover,

both agents survive asymptotically, with better-informed agents rolling over their

debt forever.

Precautionary motives play a central role. Because less-well-informed consumers

1See also Kogan, et al. (2006), Becker and Espino (2011), Coury and Sciubba (2010), Cao (2011),
and Tsyrennikov (2011).
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are pessimistic, their precautionary motives are stronger than in the rational expec-

tations version of the model. When markets are complete, they can guard against

deep contractions by purchasing an Arrow security that pays off in that state. They

lose wealth on average because those states occur less often than they expect. In a

bond economy, they guard against deep contractions by buying risk-free bonds, thus

accumulating wealth. The real-interest rate adjusts so that better-informed agents

are content to sell risk-free bonds. This reverses the direction in which wealth is

transferred during the learning transition.

2 The Model

Time is discrete and is indexed by t ∈ {0, 1, 2, ...}. The set of possible states in

each period is finite and is denoted by G. In particular, G is the set of all possible

realizations of the aggregate income growth rate. The set of all sequences or histories

of states is denoted by Σ. The partial history of the state through date t of is denoted

by gt. The set of all partial histories of length t is Σt. We will also make use of the

“true” probability measure on Σ denoted by π0.

2.1 Preferences

There are two types of consumers, indexed by i = 1, 2. Agent i ranks different

consumption plans c = {c(gt) : ∀t, ∀gt ∈ Σt}∞t=0 using a time-separable, isoelastic

welfare function:

U i(c) = Ei
∞
∑

t=0

βtu(c(gt)), β ∈ (0, 1), (1)

where

u(c) =
c1−γ

1− γ
. (2)

We assume that the preference parameters β and γ are the same across types and

that the consumers differ in how they form expectations. The expectation opera-

tor Ei signifies that each type forms predictions by averaging with respect to his

own subjective probability distribution over future outcomes. The consumers choose

consumption and savings plans to maximize expected utility subject to flow budget

constraints and debt limits that are specified below.
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2.2 The aggregate endowment and distribution of income

The two types receive constant shares of a non-storable aggregate endowment

y(gt),

yi(gt) = φiy(gt), i = 1, 2. (3)

Growth in the aggregate endowment can take on one of three values {gh, gm, gl} ≡

G. The high-growth state represents an expansion, the medium-growth state is a

mild contraction, and the low-growth state is a deep contraction or disaster. These

outcomes depend on the realization of two independent random variables, s and d.

The random variable s is a Markov-switching process with a transition matrix,

Πs =

[

p11 1− p11
1− p22 p22

]

. (4)

The random variable d is an iid Bernoulli variate with success probability pd. The

mapping from (s, d) realizations to growth outcomes is as follows:

g =







gh when s = 1 and d = 1 or d = 2,
gm when s = 2 and d = 1,
gd when s = 2 and d = 2.

(5)

The high-growth state occurs when s = 1 independently of the outcome for d, a

mild contraction occurs when s = 2 and d = 1, and a deep contraction occurs when

s = d = 2. The resulting transition matrix for growth states is:

Πg =





p11 (1− p11)(1− pd) (1− p11)pd
1− p22 p22(1− pd) p22pd
1− p22 p22(1− pd) p22pd



 . (6)

2.3 Information and beliefs

We chose the specification for the aggregate endowment in order to make the

learning problem as simple as possible. In particular, because learning statistics

become part of the state vector, we want to reduce the learning problem to a single

unknown parameter. Toward that end, we assume that Πs is known to both agents

and that pd is known only to agent 2. It follows that agent 2 knows the true transition

matrix Πg, while agent 1 does not. Agent 1 learns about pd by applying Bayes’s

theorem.

Both agents observe realizations of the growth states gt but not realizations of the

underlying random variables (st, dt). Because s and d are independent and gh can

occur when d equals 1 or 2, entry into the high-growth state conveys no information
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about pd. Information about d is revealed only when the economy moves into a

contraction and agents see whether it is mild or deep.2

We assume that less-well-informed, type-1 consumers have identical beta priors

on pd,

f(pd) = B(n0, m0), (7)

where n0 − 1 is the prior number of disasters (d = 2) and m0 − 1 is the prior number

of non-disasters (d = 1). It follows that the prior mean for pd is p̂d = n0/(n0 +m0).

Because d is an iid Bernoulli random variable, the likelihood function is propor-

tional to

f(gt|pd) ∝ pnt

d · (1− pd)
mt , (8)

where gt represents the observed history of growth states and nt and mt are the

number of deep and mild contractions, respectively, counted through date t. These

counters evolve according to

(nt+1, mt+1) =







(nt, mt) when gt+1 = gh,
(nt, mt + 1) when gt+1 = gm,
(nt + 1, mt) when gt+1 = gl.

(9)

Since the prior is beta and the likelihood function is binomial, the posterior is also a

beta density,

f(pd|g
t) = B(n0 + nt, m0 +mt). (10)

The posterior predictive density over a potential future trajectory gft emanating

from gt is

f(gft |g
t) =

∫

f(gft |pd, g
t)f(pd|g

t)dpd. (11)

Type 1 consumers form expectations by averaging potential future sequences with

weights assigned by f(gft |g
t). Their one-step ahead transition matrix is

Π1
gt =





p11 (1− p11)(1− p̂dt) (1− p11)p̂dt
1− p22 p22(1− p̂dt) p22p̂dt
1− p22 p22(1− p̂dt) p22p̂dt



 , (12)

where p̂dt = (n0 + nt)/(n0 + nt + m0 + mt) is the posterior mean.3 The better-

informed type-2 consumers form expectations using the true transition probabilities

f(gft |pd, g
t). Because our model satisfies the conditions of a Bayesian consistency the-

orem, differences in beliefs vanish eventually. However, learning will be slow because

opportunities to learn arise only in contractions, which occur in 1 year out of 7 for

our calibration. Hence differences in beliefs remain active for quite some time.

2The second and third columns of Πg depend on pd, but the first column does not.
3For recursive versions of the model, the one-step transition matrix is all we need.
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Following Cogley and Sargent (2009), we study Walrasian equilibria in which

traders take prices as given and do not infer information from prices. We put in-

dividuals in a setting in which the only information revealed by prices is subjective

probabilities over future endowment paths. We short-circuit the problem of learning

from prices by endowing agents with common information sets along with knowl-

edge of each other’s prior. With this simplification, agents learn nothing from prices

because there is nothing to learn.

3 A Complete-Markets Benchmark

As a point of departure, we study how the model behaves when markets are

complete. We therefore temporarily assume that a full set of Arrow securities is

traded, one for each of the aggregate growth states.4 Our preliminary objective is to

establish a link with previous literature. We first establish that our model behaves

in much the same way as those of Blume and Easley (2006) and Cogley and Sargent

(2009). Then we address how matters differ when markets are incomplete.

Our model is a special case of one of Blume and Easley’s complete-markets frame-

works. Because the beliefs of type-2 consumers are correct and more parsimonious

than those of type-1 individuals, their results imply that

lim sup
t→∞

ĉ1t = 0, (13)

where variables with hats represent shares of aggregate income, x̂(gt) = x(gt)/y(gt).

Type-1 consumers eventually come arbitrarily close to exhausting their borrowing

capacity, after which time their consumption is arbitrarily close to zero.5 In that

sense, type-2 agents are the only ones who survive in a competitive equilibrium.

Cogley and Sargent (2009) study aspects of the transition. To make contact with

their model, we turn to a simulation.

3.1 Asset markets, budget constraints, and debt limits

An Arrow security j bought in period t pays one unit of consumption in period

t + 1 if the growth state gt+1 = j is realized and zero units otherwise. The security

that pays in state gt+1 = j trades at price Q(gt+1 = j|gt).

4Payoffs cannot be contingent on the realization of the disaster-state random variable d because
it is unobserved.

5Since the one-period utility function satisfies the Inada conditions, the natural borrowing limit
never actually binds in equilibrium.
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After history gt, the flow budget constraint for agent i is

yi(gt) + ai(gt = k|gt−1) > ci(gt) +
∑

j∈G

Q(gt+1 = j|gt)ai(gt+1 = j|gt). (14)

The variable yi(gt) represents income, ci(gt) is consumption, ai(gt+1 = j|gt) denotes

purchases at history gt of the Arrow security paying off when gt+1 = j. When there is

no risk of confusion, we will abbreviate the notation for Arrow prices and quantities

as Qj(g
t) and aj(g

t), respectively.

Individuals can borrow by taking negative positions in Arrow securities subject

to a debt limit. For the complete-markets version of our model, we adopt the natural

borrowing limit, which constrains total borrowing to be no greater than the maximum

that can be repaid with certainty,

B̃i(gt) =
∞
∑

τ=t

∑

gτ∈Στ

Q(gτ |gt)yi(gτ), (15)

where Q(gτ |gt) ≡ Q(gτ |gτ−1) · · ·Q(gt+1|gt). This borrowing limit equals the history-

gt value of the continuation of agent i’s endowment stream. This represents the

amount of debt service consumer i could sustain if all future income were devoted

to that purpose. Notice that the natural borrowing limit is in general history and

individual dependent.

3.2 Complete-markets equilibrium

Because the endowment is perishable, the aggregate resource constraint is

y(gt) ≡ y1(gt) + y2(gt) = c1(gt) + c2(gt), ∀t, gt ∈ Σt. (16)

Since Arrow securities are in zero net supply, financial markets clear when

a1j (g
t) + a2j (g

t) = 0, ∀t, gt ∈ Σt, j ∈ G. (17)

Initial endowments of Arrow securities are given and satisfy this market-clearing

condition.

We seek a recursive competitive equilibrium that satisfies the following conditions:

(i) individuals formulate consumption, savings, and portfolio plans by maximizing

subjective expected utility; (ii) beliefs are updated via Bayes theorem (iii) flow-budget

constraints and borrowing limits are satisfied; (iv) consumption plans respect the

aggregate-resource constraint; (v) and security prices adjust so that financial markets

clear.
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Appendix A describes a recursive formulation for the model and outlines an algo-

rithm for computing its equilibrium. The algorithm exploits the fact that a compet-

itive equilibrium solves a Pareto problem. We use a modified Negishi algorithm that

replaces Pareto weights with an initial distribution of consumption. The solution to

the Negishi problem tells us how to compute recursively consumption plans for each

agent. Asset prices are then calculated from their subjective Euler equations. Then

the consumption plans and price system are used to back out asset-trading plans. The

last step delivers an initial wealth distribution that supports the computed prices and

allocations as a competitive equilibrium. This relation can be inverted to compute a

competitive equilibrium for any initial wealth distribution.

3.3 A numerical example

We use simulation methods to study the transition. The time period is one year,

the discount factor β = 1.04−1, and the coefficient of relative risk aversion is γ = 2.

The endowment process is calibrated so that the high-growth state gh represents an

expansion, the medium-growth state gm a mild recession, and the low-growth state

gl a deep contraction,

gh = 1.03, gm = 0.99, gl = 0.90. (18)

The true transition probabilities Πg are calibrated so that the economy spends most

of its time in the expansion state and visits the deep-contraction state rarely,

p11 = 0.917, p22 = 0.50, pd = 0.10. (19)

These numbers imply that an expansion has a median duration of 8 years, a mild

recession has a median duration of 1 year, and that 1 in 10 contractions are deep.

The implied one-step transition matrix is

Πg =





0.917 0.0747 0.0083
0.50 0.45 0.05
0.50 0.45 0.05



 , (20)

and the ergodic probabilities are

pr(gh) = 0.8576, pr(gm) = 0.1281, pr(gl) = 0.0142. (21)

The unconditional probability of a deep contraction is therefore in the same ballpark

as the estimates of Barro and co-authors.6 Finally, we assume that each agent receives

50 percent of the aggregate endowment in each period: φi = 0.5, i = 1, 2.7

6E.g., see Barro (2006), Barro and Ursua (2008), and Barro, Nakamura, Steinsson, and Ursua
(2011).

7How φi is calibrated matters quantitatively but not qualitatively. Our main insights remain
valid for economies with φ1 = 0.2 and 0.8.
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Following Cogley and Sargent (2009), we assume that less-well-informed type-1

consumers are initially pessimistic, over-estimating the probability of a deep contrac-

tion. In particular, we assume their prior is

pd ∼ B(5, 5), (22)

implying a prior mean p̂d0 = 0.50. The implied prior transition and long-run proba-

bilities are

Π1

g0 =





0.917 0.0415 0.0415
0.50 0.25 0.25
0.50 0.25 0.25



 , (23)

and

pr1(gh) = 0.8576, pr1(gm) = 0.0712, pr1(gl) = 0.0712, (24)

respectively. Type 1 consumers therefore initially overestimate the likelihood of deep

contractions and underestimate that of mild recessions. Appendix B demonstrates

that type-1 consumers are only moderately pessimistic, in the sense that their pri-

ors would be statistically difficult to distinguish from those of type-2 consumers in

samples 50 years long. Their pessimism dissipates as events unfold, but this happens

slowly because opportunities to learn about pd arise only in recessions or contractions.

We simulate 10,000 sample paths for gt, each of length 200 years. Along each path,

we compute consumption and financial wealth for each agent as well as equilibrium

prices of Arrow securities. Figures 1-3 summarize the results.

We begin by examining prices for Arrow securities and comparing them with out-

comes in the full-information rational-expectations version of the model. Because

borrowing constraints never bind in equilibrium, Arrow-security prices can be ex-

pressed as

Q(gt+1|gt) = QFI(gt+1|gt)

[

ĉ1(gt)

(

π1(gt+1|gt)

π2(gt+1|gt)

)1/γ

+ (1− ĉ1(gt))

]γ

, (25)

where

QFI(gt+1|gt) = βg−γ
t+1π

2(gt+1|gt), (26)

represents security prices in the full-information, type-2 economy. When consumers

agree on transition probabilities (π1(gt+1|gt) = π2(gt+1|gt)), prices in the heterogenous-

beliefs economy coincide with those in the full-information model. Conditional on the

consumption share, Q(gt+1|gt) is increasing in the probability ratio π1(·)/π2(·), imply-

ing that Arrow securities are overpriced relative to full-information valuations when

π1(·) > π2(·) and underpriced when π1(·) < π2(·).
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Figure 1: Average prices of Arrow securities

The solid lines in figure 1 depict average prices across sample paths in the diverse-

beliefs economy, while dashed lines represent what prices would be in a homogenous-

beliefs economy populated entirely by well-informed type 2 consumers. Because all

consumers agree about transition probabilities into the high-growth state, the two

sets of prices coincide for the security paying off in that state (see the first column of

figure 1). Disagreements emerge about transition probabilities for entering mild and

deep contractions, and gaps between the two sets of prices appear for securities paying

off in those states. Relative to full-information rational-expectations values, the price

of the security paying off in mild recessions is too low while that of the security

paying off in deep contractions is too high. This follows from the fact that type-1

consumers overestimate the probability of deep contractions and underestimate that
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of mild contractions.

Prices eventually converge to full-information rational-expectations values, but

convergence is slow, with substantial gaps remaining after 100 years. Type-1 con-

sumers learn slowly because they update their posteriors for pd only in recessions

or contractions, which occur roughly 14 percent of the time. Many years must pass

before a large sample of recessions/contractions is available.

Well-informed type-2 consumers regard these price gaps as attractive trading op-

portunities, for they believe the deep-contraction security will pay off less often and

the mild-contraction security more often than type-1 consumers. They sell ‘over-

priced’ deep-contraction securities and buy ‘underpriced’ mild-contraction securities,

with type-1 consumers taking the opposite position. Type-1 consumers therefore pay

out on their financial liabilities when a mild recession occurs, while type-2 consumers

pay out in the event of a deep contraction.

Type-2 consumers profit on average from these trades because recession-state

securities do in fact pay off more often and contraction-state securities less often than

type-1 consumers expect. The consequences for consumption and wealth are shown

in figure 2. The left column portrays cross-sample-path averages of consumption and

financial wealth for the two agents, both normalized as a proportion of aggregate

income.8 Consistent with the results of Blume and Easley (2006), the less-well-

informed agent 1 loses wealth quickly. Her average debt is roughly 3 times aggregate

income after 20 years and 4 times income after 50 years. As her liabilities accumulate,

more and more of her income is devoted to debt service, and her consumption declines.

Eventually she is driven to the vicinity of her borrowing limit and effectively exits

the economy, although this usually does not occur within the first 100 years.

More formally, because borrowing constraints are slack in equilibrium, an ana-

lytical expression can be found for growth in the consumption share. After dividing

agent 1’s Euler equation by that of agent 2 and re-arranging terms, we find

ĉ1(gt+1)

ĉ1(gt)
=

[

ĉ1(gt) + (1− ĉ1(gt))

(

π2(gt+1|gt)

π1(gt+1|gt)

)1/γ
]−1

. (27)

When consumers agree on transition probabilities (π1(·) = π2(·)), their consumption

shares remain unchanged. Consumption shares therefore remain constant when the

economy transitions into the expansion state. Because agent 1 is usually pessimistic

about contractions, her consumption share declines when the economy transitions

into a mild recession (π1(gm|gt) < π2(gm|gt)), and it increases when the economy

transitions into a deep contraction (π1(gl|gt) > π2(gl|gt)). Because disasters are

infrequent, agent 1’s consumption share trends down on average.

8Multiply by 2 to measure them as proportions of individual income.
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Figure 2: Wealth and consumption dynamics under complete markets

The right panel of figure 2 portray quantiles of the consumption and wealth dis-

tribution for agent 2. Percentiles are computed date-by-date from the respective

cross-sample-path distributions. Consistent with the previous results, agent 2’s me-

dian wealth drifts upward over time, as does his median share of consumption. Notice,

however, that the marginal distributions are skewed to the left, and there is a small

probability that agent 2’s wealth and consumption shares decline over time. Agent

2 bets aggressively against deep contractions. With small probability, some sample

paths emerge with many deep contractions, and agent 2’s bets turn out badly in that

case. Those paths account for the lower tails shown in the figure.

More detail is provided in 3, which illustrates four sample paths from the ensemble.

The four paths correspond to the 1st, 10th, 90th, and 99th percentiles, respectively, of

cross-sectional distribution for agent 2’s consumption share in year 100. The top row

illustrates paths on which agent 2’s bets turn out well. No deep contractions and many

mild ones occur on the sample path shown in the upper-left panel. Agent 2 never
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Figure 3: Selected sample paths under complete markets

has to pay out on contraction-state liabilities and frequently collects on recession-

state assets. His consumption share ticks upward each time a mild recession occurs,

reflecting the gain in his financial wealth. Similarly, the upper-right panel depicts a

sample path with a single deep contraction and many mild ones. He again collects

often on recession-state assets and has to pay out only once on contraction-state

liabilities. Wealth and consumption tick up each time a mild recession occurs and

decline slightly in the deep contraction.

The bottom row illustrates sample paths on which agent 2’s bets turn out less well.

Fewer mild recession and two deep contractions occur on the sample path depicted in

the lower-left panel. Gains in mild recessions still offset losses in deep contractions,

but just barely. Agent 2’s wealth and consumption are only slightly higher at the end

of the sample than at the beginning. The lower-right panel portrays a rare sample

path with many deep contractions and few mild ones. Agent 2’s bets turn out badly

in this case, and wealth and consumption share both decline over time.
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These results establish that the complete-markets version of the model behaves

in essentially the same way as that of Cogley and Sargent (2009). We turn next

to our main question, which is how the evolution of the wealth and consumption

distributions differ when markets are incomplete.

4 A Bond Economy

There are many ways that markets could be incomplete. In this section, we shut

markets for Arrow securities and assume instead that only a risk-free bond is traded.

Hence the flow-budget constraint for individual i after history gt becomes

yi(gt) + bi(gt−1) > ci(gt) + qb(g
t)bi(gt), (28)

where qb(g
t) and bi(gt) represent the price of the bond and the quantity held by

consumer i, respectively. Individuals can borrow by taking a negative position in the

bond subject to a borrowing limit,

Bi(gt) ≡ Bi · y(gt). (29)

We initially assume that a consumer’s debt cannot exceed twice his annual income,

a constraint that is quite a bit tighter than the natural debt limit considered in the

previous section. Later we examine what happens when the debt limit is relaxed.

In all other respects, the model is identical to the one in sections 2 and 3. The

only differences are the number of assets traded and the limit on borrowing.

4.1 A recursive formulation

We solve for a wealth-recursive Markov equilibrium in which the distribution of

financial wealth is an endogenous state variable.9 Because the aggregate endowment

process is non-stationary, we need to scale the variables appropriately. Since the

one-period utility function is homothetic, we scale all variables by the current level of

aggregate income, using the notation x̂(gt) to represent x(gt)/y(gt). Note that bond

position at history gt is chosen at gt−1 and so is scaled by y(gt−1). Utilities are scaled

by [y(gt)]1−γ .

Let V i
b (b̂, ŵ, n,m, g) be the optimal value of individual i, normalized by y1−γ. The

state variables are the agent’s bond position b, the distribution of financial assets

9See Kubler and Schmedders (2003) for a discussion of this equilibrium concept. Krusell and
Smith (1998) employ the same equilibrium concept.
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ŵ = (b̂1, b̂2), the aggregate growth state g, and the counters (n,m) that summarize

agent 1’s beliefs. This value function satisfies the following Bellman equation,

V i
b (b̂, w, n,m, g) = max

ĉ,b̂′

[

u(ĉ) + β
∑

j∈G

V i(b̂′, w′, j, n′, m′)g1−γ
j πi(gj |g)

]

(30)

where the maximization is subject to the budget constraint,

ĉ+ qbb̂
′ = b̂/g + φi, (31)

and borrowing limit,

b̂′ > −Bi. (32)

Agents take the evolution of the aggregate states as given,

ŵ′ = Ω(ŵ, n,m, g, j), (33a)

(n′, m′) = L(n,m, j), (33b)

where the function L(·) summarizes Bayes updating and Ω(·) is the equilibrium

wealth-transition map, yet to be determined. Markets clear when ∀(ŵ, n,m, g),

b̂′1(ŵ, n,m, g) + b̂′1(ŵ, n,m, g) = 0, (34a)

ĉ1(ŵ, n,m, g) + ĉ2(ŵ, n,m, g) = 1. (34b)

Let z denote the combined exogenous aggregate state (n,m, g). A wealth-recursive

Markov equilibrium is a list of functions {(ρic(ω̂, z), ρ
i
b(ω̂, z))i∈{1,2}, qb(ω̂, z),Ω(ω̂, z)}

such that (i) the functions (ρic, ρ
i
b) solve problem (30-39) given the price system qb;

(ii) goods and financial markets clear; and (iii) the wealth-transition map Ω(ω̂, z) is

consistent with individual decisions: Ω(ω̂, z) = (ρ1b(ω̂, z), ρ
2
b(ω̂, z)).

When γ > 1, the argument in Duffie, et al. (1994) can be adapted to show that

Bi
6 min

gt+1

[gt+1ŷ
i(gt+1)]

is a sufficient condition for the existence of a wealth-recursive Markov equilibrium.10

This borrowing limit is extremely tight, however, because it guarantees that debt

can always be repaid within a single period, implying that debt never exceeds an

agent’s minimum income. An equilibrium might or might not exist when the debt

limit is more lax than this. In what follows, we successfully compute equilibria for

weaker debt limits, but we anticipate that the equilibrium would eventually break

down as the debt limit is progressively relaxed. It is important to bear existence

in mind. The example in Kubler and Polemarchakis (2002) shows that approximate

equilibria, which satisfy equilibrium conditions only approximately, may exist even

when an exact equilibrium does not.

10The assumption that γ > 1 is needed to insure that consumption is bounded away from zero.
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4.2 Computing the equilibrium

We solve for the equilibrium policy and price functions using a projection method.

For a given state z = (n,m, g), we use cubic splines to approximate the bond-price

map qb(b̂, z), the decision rules ρ1c(b̂, z), ρ
2
c(b̂, z), ρ

1
b(b̂, z), ρ

2
b(b̂, z), and the Lagrange

multipliers on borrowing constraints, µ1(b̂, z), µ2(b̂, z). The splines are defined on

[−B,B]. Our grid has 500×3×20×220 = 6, 600, 000 nodes. The state space for the

counter pair (n,m) is such that the probability of reaching the boundary after 500

periods is less then 0.0001.

Appendix C describes a number of tests for assessing the accuracy of the approx-

imation. There we demonstrate that the maximum approximation error amounts to

less than $22 per $10,000 of consumption, or 0.14% of total income. For compari-

son, the statistical discrepancy in the U.S. NIPA between 1929 and 2010 averaged at

0.54% of total income.
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Figure 4: Decision rules and equilibrium price functions

Figure 4 illustrates decision rules for agent 1 as well as the equilibrium map for

bond prices. The time-zero plot is based on the prior counters (n,m) = (5, 5), while

that for t = 50 conditions on the median value of the counters in that period, (n,m) =
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(6, 11). A number of salient features emerge. Agent 1’s consumption share depends

on financial wealth, but it varies little across growth states, being only slightly lower

in contractions than in expansions. In addition, consumption policies hardly change

as time passes and agent 1 learns. Third, bond prices are higher in contractions and

lower in expansions, but away from borrowing constraints they are insensitive to the

distribution of financial wealth.

4.3 Simulation results

To compare the bond economy with the complete-markets model, we simulate

consumption and savings outcomes and calculate equilibrium bond prices for the

same endowment paths as in section 3. We initialize the financial wealth distribution

at (b̂1, b̂2) = (0, 0). Figures 5-7 portray the results.

The left column of figure 5 depicts ensemble averages for consumption and fi-

nancial wealth, which are again expressed as proportions of aggregate income. In

contrast to the complete-markets model, the less-well-informed agent 1 accumulates

financial wealth in the bond economy, and better-informed agent 2 goes into debt.

On average, agent 2’s debt reaches approximately 50 percent of aggregate income

(100 percent of individual income) after 20 years and approaches his borrowing limit

of -1 (200 percent of individual income) after 60 years. Beyond that point, agent 2

rolls over his debt forever.

The underlying economics is primarily about precautionary saving and its ef-

fect on the equilibrium real-interest rate. Because agent 1 is pessimistic about deep

contractions, his precautionary motives are stronger than they would be in the full-

information rational-expectations version of this model. When markets are complete,

type-1 consumers guard against deep contractions by purchasing Arrow securities

which pay off in that state. They lose wealth on average because those states occur

less often than they expect. Because that market is closed in the bond economy,

they guard against deep contractions by buying risk-free bonds, thus accumulating

wealth.11

As shown in figure 6, agent 1’s attempts to save more initially drive up the equi-

librium bond price. Agent 2 is happy to borrow at this low real-interest rate in order

to transfer consumption from the future to the present. The consumption profile for

11To verify our intuition about precautionary saving, we also examined an economy in which type-1
agents are initially optimistic. As expected, this reverses the direction in which wealth is transferred.
Because type-1 consumers are less concerned about deep contractions, their precautionary motives
are weaker than under rational expectations. Hence they value bonds less than type-2 consumers and
decumulate wealth along the transition path. Nevertheless, their financial wealth and consumption
shares decline slowly. For instance, when the prior is B(1, 19), the consumption share for type-1
consumers drops only 2% in a hundred years.
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Figure 5: Wealth and consumption when markets are incomplete

agent 2 therefore slopes downward, while that of agent 1 slopes upward.12 As agent

1’s pessimism dissipates, he engages in less precautionary saving, and the bond price

falls. Beliefs eventually converge, and the two agents settle into a homogeneous-beliefs

equilibrium with a distribution of wealth favoring agent 1.

Thus, less-well-informed type-1 agents not only survive, they prosper. Indeed, the

direction in which wealth is transferred is reversed. This provides yet another example

in which market incompleteness disarms Blume and Easley’s survival hypothesis. For

instance, Tsyrennikov (2011) studies a model in which agents are allowed to renege on

their obligations, as in Alvarez and Jermann (2000). Because agents face endogenous

solvency constraints, financial markets are incomplete, yet all agents survive.13 Yet

12Appendix D provides analytical results along these lines for a two-period economy.
13Becker and Espino (2011) and Cao (2011) analyze closely-related environments and also demon-

strate that all agents can survive when markets are incomplete. Becker and Espino focus on ex-
plaining asset-pricing anomalies. Cao analyzes an environment with collateral constraints a la

Geanakoplos and Zame (2002).
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Figure 6: Bond price dynamics

another route to survival is that of Coury and Sciubba (2010), who demonstrate that

impatient traders with incorrect beliefs can survive and that their incorrect beliefs

impact prices. We rule out default and assume that agents have identical discount

factors, and we focus on the survival effects of financial-asset spanning.

The right column of figure 5 portrays quantiles of the respective cross-sample-

path distributions for agent 1. The distributions of consumption and wealth are

more tightly concentrated than under complete markets, and the distribution of con-

sumption shares stays close to that of income shares. This reflects the fact that policy

functions for consumption shares are less sensitive to recessions and contractions than

in the complete-markets model.

Figure 7 makes the same point, depicting outcomes for the bond-economy on the

endowment paths shown in figure 3. Whereas recessions and contractions induce big

jumps in figure 3, they result in little ticks in figure 7. This occurs because agent 2

can no longer bet against deep contractions or in favor of mild recessions because no
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Figure 7: Selected sample paths when markets are incomplete

markets exist in which to place those bets. Shutting Arrow-security markets therefore

deactivates the main mechanism through which the survival hypothesis operates in

section 3. As a consequence, consumption shares in the bond economy never stray far

from income shares, even on endowment paths in the tails of the complete-markets

economy.

Although precautionary motives are important for understanding the bond econ-

omy, they arise here for a different reason than in standard models of incomplete mar-

kets (see Heathcote, Storesletten and Violante (2009)). To understand why, rewrite

agent 1’s welfare function as

∞
∑

t=0

∑

gt

βtπ
1(gt)

π2(gt)
π2(gt)u(c1t (g

t)) = E2

[

∞
∑

t=0

π1(gt)

π2(gt)
u(c1t (g

t))

]

. (35)

It follows that our model is equivalent to one in which agents have the same beliefs

(those of agent 2) but in which agent 1 is hit by a preference shock of the form

π1(gt)/π2(gt).
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If beliefs were homogenous, these “preference shocks” would be absent, agents

would have no reason to trade, and consumption would always equal income. In this

case, income variation would enter Euler equations only through marginal utility, and

the degree of risk aversion would matter quantitatively for precautionary savings.
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Figure 8: Consumption and wealth dynamics with different degree of risk aversion

Figure 8 degree of risk aversion also matters when precautionary motives arise

from heterogeneity in beliefs. The figure portrays average financial wealth for agent

1 for two economies, one in which the coefficient of relative risk aversion γ = 2 and

another in which γ = 4. Consumption and financial wealth dynamics change little

when risk-aversion increases. Importantly, unlike the case with idiosyncratic income

risk, financial wealth decreases at a slower pace when risk-aversion is high. This

happens because higher risk aversion dampens the increase in the bond price, making

it less attractive for type-2 agents to borrow.

4.4 Relaxing the debt limit

According to conventional wisdom, market incompleteness matters more because

debt limits are typically tighter than the natural debt limit and less because of absence

of spanning. In our model, however, absence of spanning seems crucial because this

is what prevents agent 2 from exploiting the pessimism of agent 1. In this section, we

try to disentangle the effects of debt limits v. absence of spanning by progressively

relaxing the debt limit. If that is what really mattered, outcomes in the bond economy

would move toward those under complete markets when the debt limit is relaxed.

Figure 9 plots the path for agent 1’s average financial wealth in the economies

with debt limits of B = 1 and B = 4, respectively. Relaxing the debt limit moves the

bond economy farther away from the complete-markets allocation. Type-1 consumers
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Figure 9: Consumption and wealth dynamics under different borrowing restrictions

accumulate wealth even faster as the adverse effect of a binding borrowing limit is

not felt during the first 100 years. Absence of spanning therefore seems to be the

central force accounting for differences between complete-market outcomes and those

in the bond economy. Differences in the debt limit matter quantitatively, but less so

qualitatively.

4.5 A dogmatic-beliefs economy

Finally, to highlight the role of learning, we examine a heterogeneous-beliefs econ-

omy in which the pessimistic agent never learns. Since the pessimism of type-1 con-

sumers now remains constant, they accumulate wealth faster relative to consumers

who update their beliefs. Figure 10 confirms this intuition.
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Figure 10: Consumption and wealth dynamics under different learning strategies
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4.6 Welfare

Our model puts two Pareto-optimal allocations on the table. The complete-

markets equilibrium is an ex-ante Pareto-optimum, i.e. with respect to subjective

beliefs starting from date zero. On the other hand, the endowment is an ex-post

Pareto-optimum, i.e. with respect to the asymptotic beliefs of the two agents. Clos-

ing Arrow-security markets and introducing a risk-free bond moves the allocation

away from the ex-ante and toward the ex-post Pareto optimum.
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Figure 11: Welfare functions under complete and incomplete markets

The welfare effects are substantial. Figure 11 portrays expected utility as a func-

tion of agent 1’s initial wealth. For agent 2, initial and asymptotic beliefs are the

same, implying that welfare is the same whether evaluated from an ex-ante or ex-post

perspective. In either case, closing Arrow-security markets reduces agent 2’s welfare.

For instance, for an initial wealth distribution of (0, 0), closing Arrow-security mar-

kets reduces agent 2’s welfare by an amount equivalent to a permanent 9.8% decrease

in consumption. From an ex-ante point of view, agent 1 also believes that closing
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Arrow-security markets will reduce her expected utility, but it increases when eval-

uated with respect to the true probabilities. Again focusing on an initial wealth

distribution of (0, 0), her ex-ante expected utility falls by an amount equivalent to a

9.8% decrease in consumption , but it increases by an amount equivalent to a 33%

increase in consumption when evaluated with respect to true probabilities. Although

neither agent would vote to close markets at date zero, agent 1 would regret her

choice after the fact.

5 Concluding remarks

In ongoing research, we study a number of economies that occupy the middle

ground between the polar cases contrasted here. In each economy, a single Arrow

security trades along with a risk-free bond. That allows consumers to synthesize a

portfolio of Arrow securities across the remaining two states, leaving them one asset

short of a complete market. We study how wealth dynamics and survival depend

on which market is closed. When the additional asset is an expansion-state Arrow

security, we conjecture that the middle-ground economy will resemble the bond econ-

omy. But when the additional asset is one of the contraction-state securities, we

suspect that the results will resemble those under complete markets. In this way we

hope further to elucidate how the forces of the survival hypothesis depend on market

structure.
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A A recursive formulation for the complete-markets

model

Because the aggregate endowment is non-stationary, we begin by scaling the vari-

ables appropriately. Since the one-period utility function is homothetic, we scale all

variables by the current level of aggregate income. We use x̂(gt) to denote x(gt)/y(gt).

The bond position at history gt is chosen at gt−1 and so is scaled by y(gt−1). Utilities

are scaled by y(gt)1−γ .

We solve for a wealth-recursive Markov equilibrium. In a wealth-recursive Markov

equilibrium, the distribution of financial wealth ŵ = (â1, â2) is an endogenous state

variable. The other state variables for individual i are his own financial assets âi, the
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current aggregate growth state g, and the counters m,n that are sufficient statistics

for summarizing agent 1’s beliefs.

Let V i
cm(â, ŵ, n,m, g) be the optimal value of individual i, normalized by y1−γ.

This value function must satisfy the following Bellman equation,

V i
cm(â, ŵ, n,m, g) = max

ĉ,â′
j

[

u(ĉ) + β
∑

j∈G

V i
cm(â

′
j, ŵ

′, gj, n
′, m′)g1−γ

j πi(gj|g)
]

, (36)

where expectations are taken with respect to agent i′s predictive distribution, πi(gj|g).

The maximization is subject to the budget constraint,

ĉ+
∑

j∈G

Qj(ŵ, n,m, g)gjâ
′
j = â+ φi, (37)

and the natural borrowing limit,

â′j > −B̂i(ŵ′, n′, m′, gj). (38)

The borrowing limit can be computed recursively by iterating on

B̂i(ŵ, n,m, g) = φi +
∑

j∈G

Qj(ŵ, n,m, g, )B̂i(ŵ′, gj, n
′, m′).

Agents take the evolution of aggregate states as given, including those for aggre-

gate financial wealth and the counters,

ŵ′ = Ω(ŵ, n,m, g, g′), (39a)

(n′, m′) = L(n,m, g′). (39b)

The function L is given in equation (9), and the function Ω is the part of the equi-

librium map, which is yet to be computed.

Markets clear when

â1j
′(ŵ, n,m, g) + â2j

′(ŵ, n,m, g) = 0, ∀j ∈ G, (40a)

ĉ1(ŵ, n,m, g) + ĉ2(ŵ, n,m, g) = 1, (40b)

for all ŵ, n,m, g.

B How pessimistic is the prior?

To assess whether the assumed degree of pessimism is plausible, we consider

whether consumers could easily distinguish it statistically from the beliefs of type-2
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consumers based on a finite data sample. LetMi denote the prior probability model of

types i = 1, 2. Following Hansen and Sargent (2008), we measure a consumer’s ability

to distinguish models by the detection-error probability. Assuming prior weights of

1/2 on each of the models, the detection-error probability is

dep = 0.5[prob(L2(X) > L1(X)|M1) + prob(L1(X) > L2(X)|M2)] ∈ [0, 0.5],

where Li(X) is the likelihood of sample X evaluated using model Mi. The two models

are easy to distinguish when the detection-error probability is close to zero. Using

100,000 simulated samples of length T = 50 years, we obtain dep = 12.8%, a figure

comparable to those used for calibrating uncertainty aversion in models of robustness.

C Testing the accuracy of the approximation for

the bond economy

The solution consists of the consumption ρic(b̂, n,m, s) and the bond investment

ρib(b̂, n,m, s) policy functions, the Lagrange multipliers associated with borrowing

limits ρiµ(b̂, n,m, s) and the bond price function qb(b̂, n,m, s). We solve for the policy

functions iteratively using the system of equilibrium conditions. The stopping crite-

rion is that the sup distance between consecutive policy function updates is less than

eρ = 10−5. Decreasing this threshold improves accuracy only marginally.14

We verify the computed solution on a grid that is 5 times denser than the one

used to compute policy functions. Verification procedure consists of computing the

following errors:

e1(b̂, n,m, s) = 1−
1

ρ1c(b̂, n,m, s)

[

qb(b̂, n,m, s)

E[(ρ1c(b̂, n,m, s)g(s))−γ] + ρ1µ(b̂, n,m, s)

]1/γ

,

e2(b̂, n,m, s) = 1−
1

ρ1c(b̂, n,m, s)

[

qb(b̂, n,m, s)

E[(ρ2c(b̂, n,m, s)g(s))−γ] + ρ2µ(b̂, n,m, s)

]1/γ

,

e3(b̂, n,m, s) = 1−
1

ρ1c(b̂, n,m, s)
[0.5 + b̂− qb(b̂, n,m, s)ρ1b(b̂, n,m, s)].

The errors answer the following question: “what fraction should be added/subtracted

from an agent’s consumption so that the respective equilibrium condition holds ex-

actly?” The first two equations are the consumption Euler equations for agent 1

and 2 respectively. The third equation is the budget constraint of agent 1. Feasibil-

ity constraint is imposed on the solution; so, the budget constraint of agent 2 hold

exactly.

14This means that approximation errors begin to dominate numerical errors.
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The “free parameter” in the numerical analysis is the number of grid points for

the bond position. Starting from 50, we increase the number of grid points for the

bond position until a sufficient level of accuracy is achieved. With 500 grid points

the errors are smaller than 0.22% of the average consumption.15 For comparison the

statistical discrepancy in the U.S. NIA between 1929 and 2010 averaged at 0.54% of

the total income.16 Errors are larger for higher levels of risk-aversion but stay below

0.35% of individual consumption as long as γ 6 5 (holding the number of grid points

at 500).

Figure 12 plots maximal errors (over all possible pairs of counters) for each (b1, s)

pair for γ = 2 and 500 grid points. These errors are largest when g = 3 which is

expected.

We also conduct another test of solution accuracy. The error in equilibrium con-

ditions for the solution with 100 grid points is 1.13% of consumption; so, about 5

times that of the 500-grid-point solution. We ask: “how different are simulated paths

for solutions with 100 and 500 grid points?” The test path that we chose is a deter-

ministic repetition of the sequence 1, 1, 1, 1, 1, 2, 2, 2, 2, 3. In this path states 2 and 3

are over-represented relative to the true measure. It turns out (see figure 13) that,

even though differences exist, paths do not diverge and the difference stays bounded.

D A two-period example

Consider the following two-period setup. In period 0, aggregate income is 1. In

period 1, it is el > 0 with probability πl and eh > el with complementary probability.

Each agent receives half of aggregate income. Agent 2 has correct beliefs, and agent

1 is pessimistic. He assigns probability πl + d, d ∈ [0, 1 − πl) to the low endowment

state.

Agents rank a consumption stream (ci0, c
i
1l, c

i
1h) according to:

u(ci0) + πi
lu(c

i
1l) + πi

hu(c
i
1h),

where u is a strictly increasing and strictly concave function.

Financial markets trade only a risk-free bond. Clearly, when d = 0, competitive

equilibrium is autarkic. How does competitive equilibrium depend on d?

Let us analyze the bond-demand function of agent i for a given price qb. Her

consumption-Euler equation is

qbu
′(1/2− qbb

i) =
∑

s∈{l,h}

πi
su

′(es/2 + bi)

15This amounts to 22$ for every 10,000$ of consumption.
16Model errors when normalized by the total income are less than 0.14%.
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Figure 12: Bond economy: off the grid errors
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Figure 13: Comparing solutions with different degree of accuracy

For a fixed qb how does b1 change with d? It is easy to show that ∂b1(d, qb)/∂d > 0.

Since b2(qb) = b1(0, qb) we must have b1(d, qb) > b2(qb), ∀qb, d > 0. Then the bond-

market clearing condition implies: b1(d, q∗b ) = −b2(q∗b ) > 0, where q∗b is the equilibrium

bond price. This, in turn, implies that c10 < c20 and c11s > c21s, s ∈ {l, h}. Finally, using

the consumption Euler-equation again, we can show that the bond price must be

higher than in the homogenous beliefs case. Using strict concavity of u we get:

qb =
E2[u′(es/2 + b2)]

u′(1/2− qbb2)
>

E2[u′(es/2)]

u′(1/2)
.

The term on the right hand side equals the equilibrium bond price when beliefs are

homogeneous. This proves the following claim.

Claim. In the two-period economy, relative to the competitive equilibrium with homo-

geneous beliefs, the pessimistic agent holds a larger position in bonds and consumes
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less in period 0 and more in period 1. In addition, the equilibrium bond price is

higher.
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Figure 14: Decision rules and equilibrium price functions
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