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Abstract

We study optimal monetary and fiscal policies in a New Keynesian model with het-
erogeneous agents, incomplete markets, and nominal rigidities. Our approach uses
small-noise expansions and Fréchet derivatives to approximate equilibria quickly and
efficiently. Responses of optimal policies to aggregate shocks differ qualitatively from
what they would be in a corresponding representative agent economy and are an order
of magnitude larger. A motive to provide insurance that arises from heterogeneity and
incomplete markets outweighs price stabilization motives.
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1 Introduction

We approximate recursive representations of optimal monetary and fiscal policies in an
incomplete markets economy with agents who face both aggregate and idiosyncratic risks.
Agents differ in wages, exposures to aggregate shocks, holdings of financial assets, and
abilities to trade assets. They cannot fully insure themselves because financial markets
are incomplete. Firms are monopolistically competitive. Price adjustments are costly. We
examine how a Ramsey planner’s policies for nominal interest rates, transfers, and flat-rate
taxes on labor earnings, dividends, and interest income respond to aggregate shocks.

It is challenging to approximate a Ramsey plan in our setting. The aggregate state in
a recursive formulation of the Ramsey problem includes the joint distribution of individual
asset holdings and auxiliary promise-keeping variables chosen earlier by a planner. The law
of motion for that high-dimensional object must be determined jointly with the optimal poli-
cies, and the distributions along the transition path differ substantially from the invariant
distribution without aggregate shocks. These aspects render inapplicable common com-
putational strategies that approximate policy functions after summarizing cross-sectional
distributions with a small number of moments or that linearize policy functions around
some time-invariant distribution.

We forge a new computational approach that can be applied to economies with substan-
tial heterogeneity and that does not require knowing long-run properties in advance. Our
approach builds on a perturbation theory that constructs a sequence of small-noise expan-
sions with respect to a one-dimensional parameterization of uncertainty along simulations
of sample paths of our economy. The procedure is recursive and unfolds over time. At each
time period along a simulated sample path, we approximate policy functions by applying
a perturbation algorithm at that period’s cross-section distribution. We use these approxi-
mate decision rules for that period to determine outcomes that include government policy
decisions and the cross-section distribution next period. Then we move forward one period
and perturb around next period’s cross-section distribution to approximate next period’s
government decision rules and other outcomes. In this way, along an equilibrium sample
path we sequentially update cross-section distributions around which we approximate policy
functions.

Our perturbation approach requires that each period we compute derivatives of policy
functions with respect to all state variables, one of which is a Fréchet derivative with respect
to a distribution over a multi-dimensional vector of agents’ characteristics. It is usually hard
to compute this Fréchet derivative directly. What makes our approach practical is that, in
an interesting class of heterogeneous agent competitive equilibrium models, we can stream-
line this computationally-intensive step by representing parameters of approximate policy
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functions as a collection of low-dimensional linear equations that are independent of each
other. This is possible because in standard competitive environments, conditional on prices
and aggregate quantities, different agents’ optimal choices can be solved separately. These
systems of linear equations are independent across agents and thus easily parallelizable. This
helps us manage the ample heterogeneity present in our model. Agents’ optimal choices can
then be aggregated into a set of equilibrium conditions that lead to a low-dimensional fixed
point problem whose solution determines prices and aggregate quantities. A similar com-
putationally convenient linear structure prevails for second- and higher-order expansions,
making our approach applicable to many optimal policy problems in which aggregate risks
have important effects on equilibrium dynamics.

We apply our approach to a textbook sticky price model (see, e.g., Galí, 2015) aug-
mented with heterogeneous agents. In the tradition of Bewley (1977, 1980), Huggett (1993),
and Aiyagari (1994), financial markets are incomplete: agents can trade only non-state-
contingent nominal debt. Agents’ wages are subject to idiosyncratic and aggregate shocks
that we calibrate to match U.S. business cycles and cross-sectional properties of labor earn-
ings. We set the initial joint distribution of nominal and real claims, and wages to match
cross-sectional moments in the Survey of Consumer Finances. We posit two aggregate
shocks: one to productivity, and another to the elasticity of substitution between differenti-
ated intermediate goods that affects firms’ optimal markups. We pose two Ramsey problems.
In the first, a “purely monetary policy” planner can adjust only nominal interest rates and
transfers in response to shocks, while keeping all other tax rates at fixed levels chosen in
period 0. This is a common assumption used in New Keynesian models. In addition to
interest rates and transfers, our second Ramsey planner has more tools and can adjust tax
rates on all sources of income. Since standard calibrations of Bewley-Aiygari economies
imply a slow drift towards a long-run distribution with much smaller asset heterogeneity
than observed in the U.S. data, we focus our attention on optimal policy responses in the
initial 100 periods, when the cross-sectional distribution of earnings and assets is similar to
the initial one.

We find that inflation, nominal interest rates, and taxes are substantially more volatile
in our calibrated heterogeneous agent (HANK) economy than in its representative agent
(RANK) counterpart. For example, the standard deviation of inflation chosen by the “purely
monetary policy” planner is an order of magnitude higher in HANK. Moreover, the mag-
nitudes and signs of correlations between nominal and real variables differ in HANK and
RANK. We run diagnostics that show that providing insurance against aggregate shocks to
heterogeneous agents accounts for most of the differences between optimal monetary and
fiscal policies in the two economies.

To understand how insurance concerns shape optimal policies, consider the optimal mon-
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etary response to a one-time positive markup shock that motivates firms to increase their
prices. A standard optimal response in New Keynesian models is to stabilize the price level.
The planner increases nominal interest rates and in that way decreases firms’ marginal costs
by lowering aggregate demand. This response rationalizes the prescription to “lean against
the wind” by raising interest rates when firms’ desired markups increase (Galí, 2015). The
markup shock also changes relative shares of payments to labor and owners of equity. When
firm owners and wage earners are the same people, such movements in factor shares have
no welfare consequences, but they can have adverse risk-sharing consequences if different
agents have different sources of incomes. When agents are heterogeneous and cannot trade
Arrow securities, the Ramsey planner can use monetary and fiscal policy to compensate
for missing insurance markets. Since a positive markup shock creates an unexpected drop
in wage income and a rise in profits, a Ramsey planner can provide insurance payments
to workers by lowering nominal rates to boost wages. A negative markup shock makes the
planner want to synthesize insurance payouts to equity owners, making the optimal response
a mirror image of the response to a positive markup shock.

Quantitatively, the strength of the insurance motive depends on the correlation between
labor and capital incomes: less positive correlations call for more insurance. That the dis-
tribution of stock ownership is much more skewed to the right than is the distribution of
labor earnings implies that there are potentially large welfare gains from supplying insur-
ance. As a result, in our calibrated economy optimal monetary responses to markup shocks
are an order of magnitude larger and opposite in direction from those in a corresponding
representative agent economy.

An insurance motive also shapes a Ramsey planner’s responses to TFP shocks. While
TFP shocks push profits and wages in the same direction, the consequences of TFP shocks
are not shared equally by borrowers and lenders. When agents can trade only non-state-
contingent bonds, a TFP shock changes total output while keeping nominal obligations
unchanged. So a negative TFP shock hurts borrowers while a positive TFP shock hurts
lenders. A Ramsey planner can provide insurance and improve welfare by lowering (raising)
the real return on debt in response to a negative (positive) TFP shock. That optimal
response contrasts with the standard New Keynesian prescription of adjusting the nominal
interest rate one-for-one with the “natural” rate of interest (i.e., the interest rate that would
prevail if nominal prices were perfectly flexible). That we observe substantial dispersion in
ownership of nominal claims indicates that the planner’s insurance motive is strong in our
calibrated economy.

We also consider a number of extensions and robustness checks to explore the impli-
cations of different assumptions about the redistributive objective of the planner, price
stickiness, asset trading frictions, and heterogeneity in marginal propensities to consume on
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optimal policies. In all cases, that we considered, insurance considerations account for most
differences between optimal policies in HANK and RANK economies.

1.1 Related literature

Our paper contributes to two literatures: one that approximates equilibria of incomplete
markets economies with heterogeneous agents, and another that computes Ramsey plans for
fiscal and monetary policies.

We compute small-noise expansions around transition paths like those deployed by Flem-
ing (1971), Fleming and Souganidis (1986), and Anderson et al. (2012), all of whom study
problems with state vectors that are much smaller than ours. That makes direct applica-
tions of approaches in those papers computationally impractical for us. Instead, we use
functional derivatives techniques1 to cope with the most computationally intensive step and
reformulate the problem of computing approximate policy functions as a manageable collec-
tion of low-dimensional linear equations. Our techniques can be used to construct second-
and higher-order approximations via a convenient set of recursions.

Relative to popular approaches such as Krusell and Smith (1998) or Reiter (2009), our
method brings benefits and costs. In the Krusell and Smith approach, one summarizes the
distribution of agents’ characteristics with a small number of moments and approximates
the law of motion of those moments. In contrast, our method allows for complicated mul-
tidimensional distributions that are hard to summarize with few parameters but relies on
local expansions with respect to shocks. In Reiter’s approach, while policy functions are
accurate with respect to idiosyncratic shocks, they are approximated only to the first order
with respect to aggregate shocks around the invariant distribution of the no-aggregate-shock
economy. In comparison, our method is not constrained to linear approximations, and we re-
peatedly update the approximation as the state of the economy moves along an equilibrium
path. Our method is particularly well suited for economies with possibly non-stationary
transition dynamics or when impulse responses depend on past shocks or when higher-order
moments of aggregate variables play important roles. Despite its accuracy in approximating
optimal responses to aggregate shocks, our method is less accurate in approximating the
dependence of optimal policies on idiosyncratic shocks.

We assess the numerical accuracy of our method by computing the competitive equilib-
rium for a special case of our model that corresponds to an economy studied by Acharya
and Dogra (2018) under fixed government policies. An advantage of studying their econ-
omy is that we can analytically compute an equilibrium. This allows us to compare both

1Childers (2018) combines related functional derivative techniques with a Reiter (2009) method, but
unlike our approach, his still requires that distributions remain close to the invariant distribution of a
no-aggregate-shock economy. We build on and extend Evans (2015).
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our approximation and Reiter’s to a pencil-and-paper answer. Under Acharya and Dogra’s
calibration, maximum numerical errors in our approximated policy functions are less than
0.05%. Moreover, approximation errors in policy functions of aggregate variables are two
orders of magnitude smaller than those obtained with Reiter’s method. While our method
is less accurate in approximating responses to idiosyncratic shocks, those errors average out
in the aggregate. (However, second-order errors in approximating responses to aggregate
shocks under Reiter’s method do not average out). We also show that because errors in
approximating responses to aggregate shocks compound over time under Reiter’s approach,
they adversely affect approximating long-run distributions. Finally, we also illustrate how
the drift of the distribution of assets away from the point of approximation leads to errors
in impulse responses under a Reiter method that do not emerge with our method.

A substantial literature on optimal monetary and fiscal policies in the Ramsey tradition
has mostly studied economies with few if any sources of heterogeneity. For treatments of
optimal monetary policies in representative agent New Keynesian models, see Galí (2015)
and Woodford (2003).2 Bilbiie and Ragot (2017), Challe (2017), Bilbiie (2019), and Debor-
toli and Galí (2017) study optimal monetary policy in economies with limited heterogeneity
and in which a cross-sectional distribution disappears from the formulation of a Ramsey
problem and analysis can be done using traditional techniques. Like us, those papers em-
phasize that uninsurable aggregate shocks create reasons for the planner to sacrifice price
stability. Notable recent papers by Nuno and Thomas (2016), LeGrand and Ragot (2017)
and LeGrand et al. (2020) develop alternative methods to approximate Ramsey allocations
in incomplete market economies with heterogeneity. Nuno and Thomas (2016) study dy-
namics of a Ramsey allocation in a small open economy using continuous time methods.
LeGrand and Ragot (2017) and LeGrand et al. (2020) truncate idiosyncratic histories and
then linearize with respect to aggregate shocks. Their approximations to optimal policies for
a standard Aiyagari-Bewley incomplete markets model with nominal rigidities indicate that
inflation contributes little to shaping an optimal allocation in the long-run. However, stan-
dard calibrations of Aiyagari-Bewley economies like theirs display a much smaller dispersion
in the distribution of wealth than those presented in the U.S. data to which we calibrate
our model. That means that there are fewer gains that a Ramsey planner can reap from
providing insurance using state-contingent movements in inflation in a long-run steady state.
More broadly, the scope for insurance depends crucially on the joint distribution of earnings,
nominal and real assets. It is important to study optimal monetary policy in models that
closely match those distributions in the data because they pin down the heterogeneity in

2There are several papers that study optimal monetary and fiscal policies in calibrated representative
agent settings. For instance, see Chari and Kehoe (1999) for a neoclassical setup, and see Schmitt-Grohe and
Uribe (2004a) and Siu (2004) for optimal responses to government spending shocks in setups with nominal
rigidities.

6



the unhedged exposures to aggregate shocks.

2 Environment

There is a continuum of infinitely lived households indexed by i ∈ [0, 1]. Individual i’s
preferences over final consumption good {ci,t}t and hours {ni,t}t are ordered by

E0

∞∑
t=0

βtu (ci,t, ni,t) , (1)

where Et is a mathematical expectation operator conditioned on time t information, β ∈
(0, 1) is a time discount factor, and u is an infinitely differentiable utility function that
is concave in c and −n and satisfies Inada conditions. Partial derivatives are denoted by
uc,i,t ≡ uc (ci,t, ni,t), un,i,t ≡ un (ci,t, ni,t), and so on. A random variable with subscript t is
measurable with respect to time t information.

Agent i supplies εi,tni,t units of effective labor, where εi,t is an exogenous productivity
process. A unit of effective labor receives nominal wage PtWt, where Pt is the nominal price
of the final consumption good at time t. Agents trade a one-period risk-free nominal bond.
The price of the bond is denoted by Qt, which equals the inverse of the gross nominal rate
between periods t and t+1. We use Ptbi,t to denote the face value of nominal bonds owned by
agent i at end of period t , and Ptdi,t to denote nominal dividends received from intermediate
goods producers during period t. In what will serve as our baseline specification, we assume
that agent i’s dividends in period t are di,t = siDt, where si is fixed over time, a specification
that restricts agents not to trade equity.

Let Πt = Pt
Pt−1
− 1 denote the net inflation rate. Households receive a uniform lump-sum

transfer Tt and face a linear tax Υn
t on their labor earnings, a tax Υd

t on their dividends,
and a tax Υb

t on their interest income.3 The budget constraint of household i at date t in
units of final goods is

ci,t +Qtbi,t = (1−Υn
t )Wtεi,tni,t + Tt +

(
1−Υd

t

)
di,t +

(
1−Υb

t

) bi,t−1

1 + Πt
. (2)

The government’s budget constraint at time t is

Ḡ+ Tt +
Bt−1

1 + Πt
=

∫ [
Υn
tWtεi,tni,t + Υd

t di,t +
Υb
tbi,t−1

1 + Πt

]
di+QtBt,

3Although Υb
t multiplies bi,t−1, we refer to it as a tax on the interest income because it is equivalent to a

tax on the return on a one-period bond. To see this, rewrite the budget constraint using the market value
of nominal debt bi,t = Qtbi,t and notice that

(
1−Υb

t

) bi,t−1

1+Πt
=
(
1−Υb

t

)
(Rt−1,t) bi,t−1, where Rt−1,t =(

1
Qt−1

)(
1

1+Πt

)
is the real return from holding a nominal bond from t− 1 to t.
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where Ḡ is a time-invariant level of non-transfer government expenditures. We denote
Υt ≡

(
Υn
t ,Υ

d
t ,Υ

b
t

)
.

A final good Yt is produced by competitive firms that use a continuum of intermediate
goods {yt(j)}j∈[0,1] as inputs into a production function

Yt =

[∫ 1

0
yt(j)

Φt−1
Φt dj

] Φt
Φt−1

,

where the elasticity of substitution Φt is stochastic. Final good producers take the final
good price Pt and the intermediate goods prices {pt(j)}j as given and solve

max
{yt(j)}j∈[0,1]

Pt

[∫ 1

0
yt(j)

Φt−1
Φt dj

] Φt
Φt−1

−
∫ 1

0
pt(j)yt(j)dj. (3)

Outcomes of optimization problem (3) are a demand function for intermediate goods

yt(j) =

(
pt(j)

Pt

)−Φt

Yt (4)

and a final goods price that satisfies

Pt =

(∫ 1

0
pt(j)

1−Φt

) 1
1−Φt

.

Intermediate goods yt(j) are produced by monopolists with production functions

yt(j) =
[
nDt (j)

]α
[ht (j)]1−α , (5)

where nDt (j) is effective labor hired by firm j and ht (j) is an intermediate input measured
in units of the final good. Intermediate goods monopolists face downward sloping demand

curves
(
pt(j)
Pt

)−Φt
Yt and choose prices pt(j), while bearing quadratic Rotemberg (1982)

price adjustment costs ψ
2

(
pt(j)
pt−1(j) − 1

)2
measured in units of the final consumption good.

Intermediate goods producing firm j chooses prices {pt(j)}t and factor inputs
{
ht(j), n

D
t (j)

}
t

that solve

max
{pt(j),nD

t (j),ht(j)}
t

E0

∑
t

St(1−Υd
t )

{
pt(j)

Pt
yt(j)−Wtn

D
t (j)− ht (j)− ψ

2

(
pt(j)

pt−1(j)
− 1

)2
}
, (6)

subject to (4) and (5), where Wt is the real wage per unit of effective labor and St is a
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stochastic discount factor (SDF) process defined recursively via

St = St−1Qt−1(1 + Πt)/
(

1−Υb
t

)
, (7)

with S−1 = 1.4 In a symmetric equilibrium, pt(j) = Pt, yt(j) = Yt, ht (j) = Ht, and nDt (j) =

Nt for all j. Market clearing conditions in labor, goods, and bond markets are

Ct =

∫
ci,tdi, Nt =

∫
εi,tni,tdi, Dt = Yt −Ht −WtNt −

ψ

2
Π2
t , (8)

Yt = Nα
t H

1−α
t , Πt = Pt/Pt−1 − 1 (9)

Ct + Ḡ = Yt −Ht −
ψ

2
Π2
t , (10)∫

bi,tdi = Bt. (11)

There are aggregate and idiosyncratic shocks. Aggregate shocks are a “markup” shock
Φt and an aggregate productivity shock Θt that follow AR(1) processes

ln Φt =ρΦ ln Φt−1 + (1− ρΦ) ln Φ̄ + EΦ,t,

ln Θt =ρΘ ln Θt−1 + (1− ρΘ) ln Θ̄ + EΘ,t,

where EΦ,t and EΘ,t are mean-zero random variables that are i.i.d. over time and uncorrelated
with each other at all times.

Individual productivity εi,t follows a stochastic process described by

ln εi,t = ln Θt + ln θi,t + εε,i,t, (12)

ln θi,t = ρθ ln θi,t−1 + εθ,i,t, (13)

where innovations εε,i,t and εθ,i,t are mean-zero, uncorrelated with each other, and i.i.d.
across time.

We set the initial price level P−1 = 1. In period 0, agent i is characterized by a triple
(θi,−1, bi,−1, si), where θi,−1 is agent i’s initial persistent component of productivity, bi,−1

denotes the bonds that agent i initially owns, and si denotes agent i’s initial ownership of
equity. Initial conditions include the set {θi,−1, bi,−1, si}i for individuals states and a vector
(Φ−1,Θ−1) for the aggregate shocks.

4In economies with heterogeneous agents and incomplete markets, a stand must be taken on how firms
are valued. To explain our numerical methods most transparently, we chose a simple specification of the
SDF that discounts future profits at the after-tax real risk-free rate. Our quantitative results are virtually
identical when we use other choices of SDFs: equally and asset-weighted averages of individual intertemporal
marginal rates of substitutions as well as a risk-neutral SDF.
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2.1 Ramsey problems

Before diving into details about how we approximate a Ramsey plan in section 3, it is useful
here to provide definitions of a Ramsey plan.

Definition 1. Given initial conditions and a monetary-fiscal policy {Qt,Υt, Tt}t, a competi-
tive equilibrium is a stochastic process

{
{ci,t, ni,t, bi,t}i , Ct, Nt, Bt,Wt, Pt, Yt, Ht, Dt,Πt, St

}
t

that satisfies: (i) {ci,t, ni,t, bi,t}i,t maximize (1) subject to (2) and natural debt limits;5 (ii)
final goods firms choose {yt(j)}j to maximize (3); (iii) intermediate goods producers’ prices
and factor inputs solve (6) and satisfy pt(j) = Pt, yt(j) = Yt, ht (j) = Ht, and nDt (j) = Nt

for all j; and (iv) market clearing conditions (8)-(11) are satisfied.

We can characterize competitive equilibria by feasibility constraints (7), (8), (9), and
(10); consumers’ and firms’ optimality conditions

(1−Υn
t )Wtεi,tuc,i,t = −un,i,t, (14)

Qtuc,i,t = βEtuc,i,t+1

(
1−Υb

t+1

)
/ (1 + Πt+1) , (15)

0 =
1

ψ
Yt

[
1− Φt

(
1− 1

1− α

(
1− α
α

Wt

)α)]
−Πt(1 + Πt)

+ Et
St+1

St

(
1−Υd

t+1

1−Υd
t

)
Πt+1(1 + Πt+1), (16)

1− α
α

Wt =
Ht

Nt
, (17)

and agents’ budget constraints that, by using equation (14) to eliminate (1−Υn
t )Wtεi,t , we

can represent as

ci,t−Tt− (1−Υd
t )siDt−

(1−Υb
t)bi,t−1

1 + Πt
=

(
un,i,t
uc,i,t

)
ni,t+Et

(
uc,i,t+1

uc,i,t

)
(1−Υb

t+1)bi,t

1 + Πt+1
. (18)

A Ramsey planner orders allocations by

E0

∫ ∞∑
t=0

βtϑiu (ci,t, ni,t) di, (19)

5We impose natural debt limits by imposing for all t

lim
s→∞

Et

(
s∏

k=1

Qt+k
(

1−Υb
t+k+1

))
Pt+sbi,t+s = 0.
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where ϑi ≥ 0 is a Pareto weight attached to agent i and
∫
ϑidi = 1.

Definition 2. Given initial conditions and a time-invariant tax policy satisfying Υt = Ῡ for
some Ῡ, an optimal monetary policy is a stochastic process {Qt, Tt} t that brings about a
competitive equilibrium allocation that maximizes (19). Given initial conditions, an optimal
monetary-fiscal policy is a stochastic process {Qt,Υt, Tt}t that implements a competitive
equilibrium allocation that maximizes (19). A maximizing monetary or monetary-fiscal
stochastic process is called a Ramsey plan; an associated allocation is called a Ramsey
allocation.

We construct an optimal monetary-fiscal policy and an associated competitive equilib-
rium by maximizing the welfare criterion (19) subject to constraints (7)-(10) and (14)-(18).
Choice of an optimal monetary policy is subject to the constant-tax-rate constraints Υt = Ῡ

for all t ≥ 0.

2.2 Discussion of the environment

To bring out economic forces that shape how optimal policies respond to aggregate shocks,
we use two baselines that differ in whether a Ramsey planner can adjust tax rates. In
what we call our optimal monetary-fiscal policy baseline, a Ramsey planner can freely adjust
the nominal interest rate and all tax rates in response to aggregate shocks. In what we
call our optimal monetary policy baseline, the Ramsey planner can adjust only the nominal
interest rate. Our use of a monetary-policy-only baseline follows a New Keynesian tradition
that, in our notation, imposes time-invariant tax rates Υt = Ῡ and assumes that only the
nominal interest rate Q−1

t and lump sum transfers Tt can respond to shocks, with lump sum
transfers adjusting to satisfy the government’s budget constraint. A popular justification
for this restriction is that central banks can adjust interest rates fast enough to react to
shocks at business cycle frequencies, while institutional constraints prevent governments
from adjusting tax rates quickly. Optimal monetary policy depends on Ῡ; following the
New Keynesian tradition, our section 4 quantitative application focuses on a level of Ῡ that
maximizes welfare (19) under an optimal monetary policy associated with that Ῡ.

We extend a New Keynesian model like that of Galí (2015, ch. 3) to allow for incom-
plete markets and heterogeneous agents as in the models of Bewley (1977, 1980), Huggett
(1993), and Aiyagari (1994). Galí’s setup has the advantage that policy prescriptions for the
representative agent version are widely understood. That allows us to isolate modifications
of those prescriptions that heterogeneity and incomplete markets bring. In our baseline
environment, we model heterogeneity with a wage process representative of ones used in the
macro labor literature–for instance, Low et al. (2010). In section 6.4, we enrich the baseline
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process for wage dynamics to allow for some of the diverse responses of labor earnings to
recessions documented by Guvenen et al. (2014).

In our two baseline models, we assume that all agents can freely trade bonds subject to
natural debt limits. This means that Ricardian equivalence holds so that optimal timings
of transfers are undetermined.6 This is a natural baseline since economies with ad hoc debt
limits often imply Ramsey plans that prescribe a non-stationary optimal fiscal policy that
front-loads transfers in order to undo those debt constraints.7 We relax that assumption in
section 6.2 by including a subset of liquidity-constrained agents.

In our baseline models, we assume that agents can trade debt but not equity. We relax
the nontradability of claims to dividends in section 6.3 when we introduce mutual funds
that hold corporate equity and government debt and that issue mutual fund shares that
households trade in a competitive market.

3 Approximating a Ramsey plan

We approximate Ramsey plans for heterogeneous agent (HA) economies that present a
continuation Ramsey planner with a state vector that includes a joint probability distribution
of agents’ characteristics. For reasons anticipated in section 1.1, this feature prevents us from
approximating with a projection method like that of Krusell and Smith (1998) or a method
like that of Reiter (2009) who perturbs around an economy with no aggregate shocks.

A Krusell-Smith approach can work well when the dimension of a state vector is small
and when policy functions are nearly affine over sufficiently large parts of the state space to
make agents’ policy rules aggregate well. Even in simple versions of our problem, the state
vector includes a high dimensional joint distribution, so a Krusell-Smith approach would
require tracking too many moments. Reiter designed his approach for situations in which
it is easy to compute an invariant distribution when there are no aggregate shocks and in
which the state vectors stay near the support of that invariant distribution when aggregate
shocks are active. These conditions can prevail in some models operating under arbitrarily
fixed government policies, but not in our setting.8

6In the general formulation of the Ramsey problem, we do not restrict lump-sum transfers Tt to be
positive. However, in our section 4 quantitative application, transfers are always positive, since households
are unequal and the planner cares about redistribution.

7Bhandari et al. (2017) study a Ramsey problem with ad hoc debt limits, in which a planner who enforces
both debt contracts and tax liabilities can time transfers to undo the ad hoc debt limits. But sometimes a
Ramsey planner can improve outcomes by not enforcing private debt contracts; see Yared (2013) for related
results.

8The long-run behavior of the state variables in even the simplest Ramsey problems can differ dramatically
with and without aggregate shocks in otherwise identical economies. One can readily see this from the classic
tax-smoothing model of Barro (1979), in which government debt is the only endogenous state variable.
Without aggregate shocks to government expenditures, it stays at its initial level, while with aggregate
shocks it follows a random walk; thus, whether aggregate shocks are present has important implications
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We propose an alternative method that constructs a stochastic sequence of small-noise
expansions along a simulated optimal path. A key step uses functional derivative techniques
to characterize how government decisions depend on a high-dimensional state vector that
changes over time in response to aggregate shocks. We present fast computational techniques
that work at any order of approximation.9

Section 3.1 considers a special case in which the state vector for a continuation Ramsey
problem is a joint distribution of agents’ characteristics. This example allows us to describe
essential aspects of our approach. Section 3.2 then extends things to settings with additional
state variables that appear in the quantitative applications presented in later sections. Sec-
tion 3.3 discusses numerical accuracy, computational speed, and comparisons with earlier
methods for approximating equilibria of HA economies.

3.1 An enlightening special case

In the following case, (i) utilitarian (i.e., equal) Pareto weights are imposed: (ii) equity
holdings si are uniform across households; (iii) α = 1, so that no intermediate goods are
used as inputs; (iv) all shocks are i.i.d. These restrictions reduce the size of the state space
while keeping it large enough to convey essential features of our technique. The second and
third assumptions imply that the Phillips curve constraint (16) is slack in all periods and
so can be omitted from the optimal monetary-fiscal policy problem. The last assumption
implies that past shocks do not appear as arguments in optimal policy functions.

There are alternative ways to choose state vectors. Our approach works best when state
vectors satisfy an independence property that we define below. In the simple economy under
study, most popular choices of state variables satisfy this property. We purposefully adopt
a recursive formulation that preserves the independence property in more general settings.

Let Mt ≡
∫
uc,i,tdi be the average marginal utility of consumption at time t, and let

mi,t ≡ uc,i,t/Mt be the scaled marginal utility of consumption of agent i at time t. We can
interpret mi,t as (an inverse of) a "Negishi" weight that the planner attaches to agent i at

for the long-run distribution of debt. Similarly, Aiyagari et al. (2002), Farhi (2010), and Bhandari et al.
(2017) all study Ramsey policies and find that the invariant distribution of state variables, while being well
defined in all cases that they consider, is discontinuous with respect to the size of aggregate shocks around
a no-aggregate-shock case.

9While we compare our techniques to alternatives in detail in section 3.3, an informal summary might
help at this point. Perturbation methods of Reiter (2009) and Kaplan et al. (2018) are exact with respect to
the dependence of policy functions on idiosyncratic shocks but only first-order approximate with respect to
aggregate shocks, all around a fixed distribution Ω̄. That means that approximation errors are on the order
of O

(
σ2
agg, ‖Ω− Ω̄‖2

)
, where σagg measures the size of aggregate shocks. Childers (2018) provides a formal

treatment. Our approach constructs expansions with respect to both aggregate and idiosyncratic shocks
around the time t distribution Ωt in that period, and can be done to an arbitrary order of approximation.
Approximation errors are of the order O

(
σn+1
agg , σ

n+1
idiosync

)
for arbitrary n. The two approaches are therefore

complementary and have advantages and disadvantages in different applications.
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time t.10 Replace (15) with

QtMtmi,t = βEtuc,i,t+1

(
1−Υb

t+1

)
/ (1 + Πt+1) , mi,t = uc,i,t/Mt, Mt =

∫
uc,i,tdi. (20)

Let βtµi,t be a Lagrange multiplier on constraint (18) for agent i. Following Marcet and
Marimon (2019), the monetary-fiscal Ramsey planner’s Lagrangian is

inf sup E0

∞∑
t=0

βt
∫ [

u (ci,t, ni,t) +
(
uc,i,tci,t + un,i,tni,t − uc,i,t(Tt +

(
1−Υd

t

)
Dt)
)
µi,t

+
(

1−Υb
t

) bi,t−1

1 + Πt
uc,i,t (µi,t−1 − µi,t)

]
di (21)

subject to µi,−1 = 0; the infimum is with respect to {µi,t}i,t and the supremum is with
respect to the stochastic process

{ci,t, ni,t, bi,t,mi,t, Ct, Nt, Dt, Tt,Mt, Qt,Πt,Υt}i,t

subject to constraints (8)-(10), (14), and (20).

3.1.1 Computational strategy

In the online appendix, we show that the solution to (21) can be conveniently split into a
set of functions that describe the t = 0 choices of the Ramsey planner, and a set of functions
for t ≥ 1 choices. We also show that the t ≥ 1 allocation is a function of the bivariate
distribution over zi,t−1 ≡ (mi,t−1, µi,t−1). We denote this distribution by Ω and use z to
denote a typical value in the support of Ω. Working backwards, we solve problem (21) in
two steps. First, we solve a typical continuation Ramsey planner’s problem for a t ≥ 1.
Second, we solve a time t = 0 Ramsey problem to obtain an allocation {ci,0, ni,0}i and a
distribution Ω0, both as functions of the initial state {θi,−1, si,−1, bi,−1}i confronting the
Ramsey planner. We devote most of the text to the continuation Ramsey plan and focus on
how policy functions depend on the cross-section distribution of agent’s characteristics.11

3.1.2 Computing a continuation Ramsey plan

We use tildes to denote policy functions for a time t ≥ 1 continuation Ramsey plan. Aggre-
gate policy functions determine the time t values of all upper-case choice variables in problem
(21). We denote the vector of these functions by X̃ (Ω,E), where E is a vector of aggregate
shocks. Individual policy functions determine all lower-case time t choice variables for the

10We call mi,t as "Negishi" weights to distinguish from Pareto weights ϑi.
11See the online appendix for details about the time t = 0 Ramsey problem.
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planner in problem (21). We denote individual policy functions by x̃ (z,Ω, ε,E), where ε is
a vector of idiosyncratic shocks. Policy functions for individual states z̃ are components of
x̃. We define p to be a matrix that selects z̃ from x̃ so that z̃ = px̃. The law of motion for
the aggregate state is Ω′ = Ω̃ (Ω,E).

Consider the subset of first-order optimality conditions for problem (21) for t ≥ 1. We
split these conditions into two groups. The first group consists of optimality conditions
for individual choices that connect current period individual and aggregate policy func-
tions x̃, X̃; current period realizations of shocks (ε, E); and expectations of current and
next period policy functions, E [x̃|z,Ω] and E

[
x̃(z̃(z,Ω, ε,E), Ω̃(Ω,E), ·, ·)|z,Ω, ε,E

]
. To

economize notation, we denote these two mathematical expectations by E−x̃ and E+x̃,
respectively. The first group of conditions can be written as

F
(
E−x̃, x̃,E+x̃, X̃, ε,E, z

)
= 0 (22)

for a collection of functions F .12 The second group of optimality conditions for a continuation
Ramsey problem are various aggregate feasibility constraints and first-order conditions with
respect to X̃ that connect aggregate functions and averages of individual policy functions.
These conditions can be written as

R

(∫
x̃dΩ, X̃,E

)
= 0 (23)

for some mapping R. The law of motion for measure Ω is

Ω′ (z) = Ω̃ (Ω,E) (z) =

∫
ι (z̃ (y,Ω, ε,E) ≤ z) dPr (ε) dΩ (y) ∀z (24)

where ι (z̃ ≤ z) is 1 if all elements of z̃ are less than or equal to all elements of z and zero
otherwise.

At each point in time t ≥ 1, we use perturbation methods to approximate how continu-
ation Ramsey policy functions depend on ε,E shocks as the cross-section distribution Ωt of
individual characteristics evolves through a simulated history. From these approximations,
we can deduce how the aggregate shock Et affects the time t + 1 distribution Ωt+1. See
the online appendix for the list of equations that constitute the F and R mappings for the
Ramsey problem (21).

To construct small-noise approximations of policy functions, we consider a family of
economies parameterized by a positive scalar σ that multiplies all shocks ε,E , so that

12Strictly speaking, if x̃ consists of all lower-case choice variables and multipliers in problem (21), then the
relevant objects are E−f(x̃) and E+g(x̃) for some transformations f and g. Our exposition would become
more general if we were to extend the definition of x̃ to include variables f (x̃) and g (x̃), for example, by
including variable ũc in vector x̃ and its definition ũc = uc (c̃, ñ) in mapping F .
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policy functions are X̃(Ω, σE;σ) and x̃(z,Ω, σε, σE;σ). Let X̄ (Ω) and x̄(z,Ω) denote
these functions evaluated at σ = 0. We will often suppress dependence on Ω when it is
clear from the context.13 We assume that policy functions are smooth enough to justify
taking derivatives. We let X̄E , x̄E(z), x̄ε(z) be gradients of policy functions with respect to
aggregate and idiosyncratic shocks, and X̄σ and x̄σ(z) denote their derivatives with respect
to σ, all evaluated at σ = 0. Similarly, Ω̄E refers to the gradient of Ω̃ (Ω, σE;σ) with respect
to aggregate shocks at σ = 0. First-order small noise expansions of policy functions are

X̃(Ω, σE;σ) = X̄ + σ
(
X̄EE + X̄σ

)
+O(σ2) (25)

and
x̃(z,Ω, σε, σE;σ) = x̄(z) + σ (x̄ε(z)ε+ x̄E(z)E + x̄σ(z)) +O(σ2). (26)

Higher-order expansions are constructed analogously.

3.1.3 Zeroth-order expansions

Higher-order approximations of policy functions use inputs from lower-order approximations,
so we start with a zeroth-order approximation constructed from an economy without shocks.
We use bars to denote zeroth-order approximations to functions.

Lemma 1. For any Ω and any z, zeroth-order approximations to policy functions satisfy
z̄(z,Ω) = z and therefore Ω̄(Ω) = Ω.

Proof. The first-order condition with respect to bi,t−1 in (21) is

E
[
ũc (z,Ω, ·, ·)
1 + Π̃ (Ω, ·, )

(µ− µ̃ (z,Ω, ·, ·))
]

= 0,

which implies µ̄ (z,Ω) = µ for all z,Ω. To the zeroth-order equation (20) is

Q̄(Ω)M̄(Ω)m = βm̄ (z,Ω) M̄
(
Ω̄(Ω)

) (
1 + Π̄

(
Ω̄(Ω)

))−1
.

Since Negishi weights m(z,Ω) integrate to one, this equation implies

Q̄(Ω)M̄(Ω) = βM̄
(
Ω̄(Ω)

) (
1 + Π̄

(
Ω̄(Ω)

))−1

and therefore that m̄ (z,Ω) = m for all z,Ω.

The cross-sectional distribution of characteristics Ω stays constant because in a σ =

0 economy a continuation Ramsey planner wants to keep Negishi weights and Lagrange
13For instance, X̄ would refer to the function X̄(Ω) ≡ X̃(Ω,0, 0), x̄(z) would refer to the function x̄(z,Ω) ≡

x̃(z,Ω,0,0, 0), and so on.
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multipliers on individuals’ budget constraints constant over time for all agents. This makes
sense because the σ = 0 economy shuts down all randomness, and so a market structure with
a risk-free bond only is enough to support perfect smoothing of agents’ quantity choices.

Lemma 1 implies that x̄(z̄ (z,Ω) , Ω̄ (Ω)) = x̄ (z,Ω). Therefore, we can compute X̄ and
x̄(z) by solving a system of non-linear equations

F̄ (z) ≡ F
(
x̄(z), x̄(z), x̄(z), X̄,0,0, z

)
= 0, R̄ ≡ R

(∫
x̄(z)dΩ(z), X̄,0

)
= 0. (27)

From zeroth-order terms X̄ and x̄(z), we construct several objects that we use to com-
pute higher-order terms. Let R̄x be the derivative of the mapping R with respect to its
first argument

∫
x̄dΩ, and let R̄X and R̄E be derivatives of R with respect to its sec-

ond and third arguments, respectively, all evaluated at σ = 0. Similarly, let subscripts
x−,x, x+, X, ε, E and z of F̄ denote corresponding derivatives of F with respect to
each of its arguments evaluated at σ = 0. From the implicit function theorem, we have
x̄z(z) =

[
F̄x−(z) + F̄x(z) + F̄x+(z)

]−1
F̄z(z). All of these objects can be constructed from

X̄, x̄(z).
Finally, we use ∂x̄(z,Ω), ∂X̄(Ω) to denote Fréchet derivatives of x̄(z,Ω) and X̄(Ω) with

respect to the measure Ω.14 Fréchet derivatives generalize the notion of gradients to infinite-
dimensional variables and capture how changes in the distribution Ω affect policy functions.
In principle, these Fréchet derivatives could be calculated from (27), but except for some
very simple cases, that approach is impractical because of how the number of unknowns in
the operators ∂x̄(·,Ω) and ∂X̄(Ω) grows exponentially with the size of Ω. We show that
this problem can be overcome when policy functions satisfy an independence property that
we define in the next corollary.

Corollary 1. Policy function z̄ satisfies the independence property: ∂z̄(z,Ω) = 0 for
all z,Ω.

Corollary 1 asserts that at σ = 0, the Fréchet derivative of policy functions for individ-
ual states equals zero. This property eases the task of calculating ∂Ω̄, a key term in our
expansions. In the case studied in this section, corollary 1 and lemma 1 imply ∂Ω̄ = I.
More generally, we show that as long as the independence property is satisfied, ∂Ω̄ can be
expressed in terms of z̄z(z), which is easy to compute.

14A Fréchet derivative of some variable X̄(Ω) is a linear operator from the space of distributions Ω to R
with a property that lim‖∆‖→0

‖X̄(Ω+∆)−X̄(Ω)−∂X̄(Ω)·∆‖
‖∆‖ = 0. It can be found by fixing a feasible direction

∆ and calculating a directional (Gateaux) derivative, since when both derivatives exist, they coincide,
∂X̄(Ω) · ∆ = limα→0

X̄(Ω+α∆)−X̄(Ω)
α

. Following Luenberger (1997), we refer to ∂X̄(Ω) · ∆ as a Fréchet
derivative of X̄ at a point Ω with increment ∆. Think of ∂X̄(Ω) as a measure and ∂X̄(Ω) ·∆ as an integral
of function ∆ with respect to ∂X̄(Ω).
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3.1.4 First-order expansions

We can now construct a first-order Taylor expansion of equations (22)-(24). As a preliminary
step, use lemma 1 and observe that expansions of E−x̃ and E+x̃ are

E+x̃ = x̄(z) +
[
x̄z(z)px̄E(z) + ∂x̄(z) · Ω̄E

]
σE + [x̄z(z)px̄ε(z)]σε+ x̄σ(z)σ +O(σ2),

E−x̃ = x̄(z) + x̄σ(z)σ +O(σ2).

This implies that the Ramsey planner’s optimality conditions equations (22) and (23) satisfy,
up to O(σ2),

F̄ (z) +
[(
F̄x (z) + F̄x+ (z) x̄z(z)p

)
x̄E(z) + F̄x+ (z) ∂x̄(z) · Ω̄E + F̄X (z) X̄E + F̄E (z)

]
σE

+
[(
F̄x (z) + F̄x+ (z) x̄z(z)p

)
x̄ε(z) + F̄ε (z)

]
σε

+
[(
F̄x− (z) + F̄x (z) + F̄x+ (z)

)
x̄σ(z) + F̄XX̄σ

]
σ = 0

(28)

and

R̄+

[
R̄x

∫
x̄E(z)dΩ + R̄XX̄E + R̄E

]
σE +

[
R̄x

∫
x̄σ(z)dΩ + R̄XX̄σ

]
σ = 0. (29)

Equations (28) and (29) must hold for all ε, E and σ and characterize
{
x̄ε(z), x̄σ(z), X̄σ, x̄E(z), X̄E

}
.

Let’s consider each of these functions in turn. From (28), we immediately get

x̄ε(z) = −
(
F̄x (z) + F̄x+ (z) x̄z(z)p

)−1
F̄ε (z) .

All the terms on the right-hand side are known from the zeroth-order expansion, so we can
compute x̄ε(z) by matrix inversion. This step is easily parallelizable because the computa-
tion can be done separately for each z. Terms x̄σ(z) and X̄σ can be computed in a similar
way; it is straightforward to verify that they equal zero.

Calculating x̄E(z) and X̄E is more challenging. The aggregate shock E changes next
period’s state by Ω̄E and that alters expectations of next period’s policies by ∂x̄(z) · Ω̄E , as
can be seen from the first square bracket in (28). Neither ∂x̄(z) nor Ω̄E is known at this
stage. The next theorem and proof use functional derivatives to construct ∂x̄(z) · Ω̄E .

Theorem 1. From the zeroth-order expansion, we can construct matrices A(z) and C(z)
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that satisfy

∂x̄(z) = C(z)∂X̄, (30a)

∂x̄(z) · Ω̄E = C(z)∂X̄ · Ω̄E = C(z)

∫
A(y)x̄E(y)dΩ (y) . (30b)

Proof. Lemma 1 implies ∂Ω̄ = 1. Fréchet derivatives of (22) and (23) with arbitrary incre-
ment ∆ satisfy

(
F̄x−(z) + F̄x(z) + F̄x+(z) + F̄x+x̄z(z)p

)
∂x̄(z) ·∆ + F̄X(z)∂X̄ ·∆ = 0, (31a)

R̄x∂

(∫
x̄ (y) dΩ (y)

)
·∆ + R̄X∂X̄ ·∆ = 0. (31b)

The first equation yields (30a) with C(z) = −
(
F̄x−(z) + F̄x(z) + F̄x+(z) + F̄x+x̄z(z)p

)−1
F̄X(z).

Since directional and Fréchet derivatives coincide, by fixing a direction ∆ and computing
the directional derivative (see footnote 14), we obtain

∂

(∫
x̄ (y) dΩ (y)

)
·∆ =

∫
(∂x̄ (y) ·∆) dΩ (y) +

∫
x̄ (y) d∆ (y) . (32)

We want to evaluate the integral on the right side at ∆ = Ω̄E . Differentiating (24) at any
z = (m,µ) and applying lemma 1 gives

Ω̄E (m,µ) = −
∫
y2≤µ

m̄E (m, y2)ω (m, y2) dy2 −
∫
y1≤m

µ̄E (y1, µ)ω (y1, µ) dy1,

where ω is the density of Ω. The density of Ω̄E (m,µ), which is denoted by ω̄E (m,µ), is
then

ω̄E (m,µ) = − d

dm
[m̄E (m,µ)ω (m,µ)]− d

dµ
[µ̄E (m,µ)ω (m,µ)] .

Substitute this equation and (30a) into (32) to get

∂

(∫
x̄ (y) dΩ (y)

)
· Ω̄E =

∫
C(y)∂X̄ · Ω̄EdΩ (y)−

∫
x̄ (y)

d

dm
[m̄E (y)ω (y)] dy

−
∫
x̄ (y)

d

dµ
[µ̄E (y)ω (y)] dy

=
(
∂X̄ · Ω̄E

) ∫
C(y)dΩ (y) +

∫
x̄z (y) px̄E (y) dΩ (y) ,

where the second equality follows from integration by parts. Substitute this expression into
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(31b) and solve for ∂X̄ · Ω̄E to obtain

X̄ ′E ≡ ∂X̄ · Ω̄E =

∫
A(y)x̄E(y)dΩ (y) , (33)

where A(z) = −
(
R̄x
∫

C(y)dΩ (y) + R̄X
)−1

R̄xx̄z(z)p. Together with (30a), we get (30b).

Economic forces drive theorem 1. In a competitive equilibrium, agents care about the
distribution Ω only because it helps them predict aggregate prices and income. That means
that effects ∂x̄ on individual variables from a perturbation of distribution Ω can be factored
into effects ∂X̄ on aggregate variables and a known loading matrix C(z), which captures
how individual variables respond to changes in the aggregates. Equation (30a) captures this.

Feasibility and market clearing impose a tight relationship between how individual policy
functions respond to aggregate shocks in the current period, x̄E(z), and how aggregates
are expected to change next period, X̄ ′E . This relationship sets up a fixed point problem
presented in equation (33). Together with (30a), equation (33) allows us to express the
Fréchet derivative ∂x̄ · Ω̄E as a linear function of x̄E (z).

The preceding analysis puts us in a position to compute the coefficients x̄E and X̄E .
Setting the first square brackets in (28) and (29) to zero and using the definition of X̄ ′E from
(33), we obtain the following system of linear equations in the unknowns X̄E , x̄E(z) for all
z:

(
F̄x(z) + F̄x+(z)x̄z(z)p

)
x̄E(z) + F̄x+(z)C(z)X̄ ′E + F̄X(z)X̄E + F̄E(z) = 0 (34a)

R̄x

∫
x̄E(y)dΩ (y) + R̄XX̄E + R̄E = 0. (34b)

This linear system allows us to split one large problem of simultaneously finding x̄E(z) for
all z into a large number of small problems that independently characterize x̄E(z) for each
z. Thus, we use equation (34a) to calculate matrices D0(z) and D1(z), which define the
affine function

x̄E(z) = D0(z) + D1(z) ·
[
X̄E X̄ ′E

]T
.

We can substitute this function into equations (33) and (34b) to compute X̄E and X̄ ′E .
Values of x̄E(z) can be found either from the previous equation or from (30a). This completes
calculations comprising first-order terms.

3.1.5 Higher-order expansions

Because a generalization of theorem 1 applies to higher-order expansions, our approach pre-
serves linear and parallelizable structures when used to construct second- and higher-order
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expansions. The independence property, ∂z̄(z,Ω) = 0, allows a counterpart to equation
(30a) to hold for all higher-order Fréchet derivatives. This enables us to compute higher
order analogues of ∂x̄ · Ω̄E explicitly as weighted sums of higher-order coefficients x̄EE , x̄Eσ,
x̄σσ . . ., with weights known from lower-order expansions. We then can form higher-order
analogues of equations (34). The structure of these equations allows us again to split one
large system of equations into a large number of low-dimensional linear problems that can
be solved fast and simultaneously. Formal proofs and constructions involve much additional
notation, but the steps mirror those in section 3.1.4. An online appendix provides details.

3.2 Approximations more generally

To use our small-noise expansion method to approximate a Ramsey plan for the section 2
economy, we modify two features of the section 3.1 computations. First, now the optimal-
ity condition (16) typically binds and cannot be omitted. We add this constraint to our
Lagrangian formulation (21), so its multiplier Λ now becomes an aggregate state variable
for the continuation Ramsey problem. Second, since shocks are persistent, policy func-
tions also depend on previous period values of aggregate shocks Θ = (Θ,Φ) as well as
idiosyncratic shocks θ. Thus, now z = (m,µ, s, θ, ϑ) is the individual state, Ω is a mea-
sure over z, and the aggregate and individual policy functions are functions X̃ (Ω,Λ,Θ,E)

and x̃ (z,Ω,Λ,Θ,E, ε), respectively. Zeroth-order terms have non-trivial (deterministic)
transition paths that can be computed with a shooting algorithm.

With persistent shocks, two ways to perturb policy functions yield approximation errors
of the same orders of magnitude. One is to scale {σE, σε} and expand with respect to σ
around current values of (Θ, θ) and Ω. Since to the zeroth-order θ̄ (z,Ω) 6= θ, it is no longer
true that Ω̄(Ω) = Ω, so lemma 1 does not apply.15 However, functional derivative techniques
used to prove theorem 1 still apply, and we can construct required Fréchet derivatives along
the transition path. Tractability is preserved because policy functions still satisfy the in-
dependence property; that is, ∂z̄(z,Ω) = 0 for all z,Ω. The law of motion for exogenous
variables does not depend on the distribution Ω, so adding those variables to vector z leaves
the independence property intact.

An alternative approach is to scale as {σE, σε, σΘ, σθ} and then to expand around
σ = 0. Since θ is a component of the vector z of individual characteristics, z and therefore
Ω are now also functions of the scaling parameter σ. A zeroth-order approximation satisfies
lemma 1, but expansions of policy functions involve additional Fréchet derivatives including
∂X̄ · Ω̄σ and ∂x̄ (z) · Ω̄σ. These derivatives are easy to compute using techniques deployed
in theorem 1 .

15When persistence of the idiosyncratic shocks ρθ is close to one, we can recover lemma 1 if we approximate
ρθ by ρθ (σ) = 1− σρ for some ρ ≥ 0 and expand ρθ (σ) with respect to σ.
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Although the two approaches imply errors of the same orders of approximation, one ap-
proach can be better than the other depending on circumstances. We use the first approach
in our application, but in some cases, the second approach maybe can be faster to implement
as it does not require computing a transition path. The online appendix provides explicit
formulas and extensions of theorem 1 for both approaches.

3.3 Accuracy and comparisons

Our method builds on perturbation techniques widely used in computational economics
(see, for example, Judd and Guu, 1993, Judd and Guu, 1997, and Schmitt-Grohe and Uribe,
2004b). We perturb “around the current state” in a way closely related to practices of Flem-
ing (1971), Fleming and Souganidis (1986), Anderson et al. (2012), Bhandari et al. (2017),
and Phillips (2017). In all of those applications, the state vector has low dimension, and ap-
proximations do not require computing high-dimensional Fréchet derivatives. Our approach
is designed to apply even when the underlying state is a complicated, high-dimensional
object, as typically occurs in HA economies.

To our knowledge, ours is the first method that incorporates effects of the complete
current state on continuation Ramsey plans in HA economies. Our approach applies to HA
economies for which equilibrium dynamics can be written in the form given by equations
(22)-(24), a large class of economies.16

To assess accuracy, we approximate a competitive equilibrium for a given monetary-
fiscal policy within an environment that we have simplified enough to allow us to compute
an equilibrium analytically. We then compare that analytical solution to our approximation
by varying key parameters likely to affect approximation quality.

In particular, we follow Acharya and Dogra (2018) and assume that labor is supplied
inelastically at ni,t = 1; preferences are given by U(ct, nt) = − exp(−γct); equity holdings
are uniform across consumers; there are no aggregate shocks; idiosyncratic shocks εi,t are
i.i.d. normal; government spending and all tax rates equal zero; and interest rates are set
according to a Taylor rule Q−1

t − 1 = a0 (1 + Πt)
a1 for coefficients a0 and a1 chosen to make

steady state inflation equal zero.
Under these assumptions, household income Wtεi,t + Tt + Dt is normally distributed.

Together with the CARA utility function, that means that the consumption-saving problem
can be solved analytically. One can then derive explicit expressions both for steady-state
aggregate quantities and for deterministic transition paths from given initial conditions.

16HA economies with inequality constraints, such as ones with additional ad-hoc debt limits, can be
written in this form by including appropriate complementary slackness conditions. Inequality constraints
often imply policy functions with kinks. Although such kinks violate the smoothness assumption that we
imposed on equations (25) and (26), we foresee no impediments to extending our method to such structures
in our future work.
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Acharya and Dogra (2018) called this a Pseudo Representative Agent New Keynesian
economy (abbreviated as PRANK) and drew from it useful insights about how more compli-
cated HANK models work. They showed that their PRANK economy has a unique steady
state in which all aggregate variables, including output, inflation, and real interest rates,
are constant. In a steady state, individual assets follow a random walk, so the dispersion
of asset holdings across agents grows without limit. The availability of explicit expressions
for policy functions along the transition path means that there are also expressions for how
this PRANK economy is affected by an unanticipated aggregate shock.

We list equilibrium conditions and calibrated parameter values in the online appendix.
We start at the steady state and study equilibrium responses to a one-time, unanticipated
1.23% shock to aggregate productivity in period t that then decays deterministically.17 We
compare our second-order approximation to the exact solution. We report two comparisons:
one in which the shock occurs in period t = 1 and another one in which it occurs in period
t = 250. In both cases, shocks arrive when all aggregate variables are at the same steady
state values; the two cases differ only in spreads of asset distributions at the time of the
shock.

Blue and black solid lines in figure I show exact and approximate impulse responses
of output, inflation, and asset inequality measured by the standard deviation of individual
wealth. They are almost identical in both experiments. The PRANK economy is engineered
to make impulse responses of output and inflation be independent of the asset distribution,
so dynamics of output and inflation are the same in the top and bottom rows of figure I.
This is not the case for other items of potential interest such as dynamics of asset inequality,
as can be seen in the rightmost panels in figure I.

By comparing the two experiments, we can evaluate the precision of our approximation
and how it deteriorates with the time horizon. In the PRANK economy, we can calculate
distribution Ωt exactly for all t and the corresponding impulse responses. Our approach
approximates policy functions and distributions for t = 1, 2, ..., so approximation errors can
accumulate over time as we compute responses far into the future. Individual wealth follows
a random walk process so approximation errors accrued by our method endure forever,
making this environment a worst-case test bed for our approximation method. Despite
that, we find that our approximate distribution is very close to the exact distribution even
at t = 250 (see online appendix) and that we capture responses of asset inequality to an
aggregate shock in that period very well.

To document the accuracy, we compute several types of approximation errors. For the
individual policy functions, we compute: (i) % gap in the approximated and true policies
(ii) % gap in the approximated and policy rules implied by the Euler equation (or the Euler

17This corresponds to a one standard deviation shock to productivity in our baseline economy.
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Figure I: Comparisons of impulse responses to a 1% TFP shock at t = 1 in the top panel and t = 250
in the bottom panel across approximation methods. The bold lines are are the exact solution (black)
and our method applied to second-order (blue). The dashed black line are responses under the Reiter
method.

equation errors) and (iii) dynamic Euler Equation errors from Den Haan (2010). The first
two errors are acquired from the formulas18

Epolc,t (b, ε) ≡ 100× |c
True
t (b, ε)− capprxt (b, ε)|

Ct
(35)

EEEc,t (b, ε) ≡ 100× |c
imp
t (b, ε)− capprxt (b, ε)|

Ct
, (36)

where cTruet (b, ε) are constructed using the exact solution and cimpt (b, ε) is defined as

cimpt (b, ε) = − 1

α
log

(
β

Qt
Et
[

1

1 + πt+1
exp(−αcapproxt+1 (b′, ε′))

])
.

The dynamic Euler equation errors are constructed by simulating a panel
{
b̃i,t, c̃i,t

}
i,t

in

the following recursive fashion. For some agent i, fix an initial value for assets b̃i,−1 and a
history of shocks {εi,t}. At any period t apply the function cimpt (·) to the pair

(
b̃i,t−1, εi,t

)
to construct ˜ci,t, and then use the budget constraint to construct b̃i,t. The dynamic Euler

18As CARA preferences feature an aversion to absolute risk and, possibly, negative consumption, we report
the absolute errors scaled by average consumption.
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Maximum Errors (%) Ind. Consumption Agg. Output Inflation Interest Rate

2nd Order

γ = 1, σε = 0.50 0.0039 4.2e-6 3.1e-5 4.3e-5
γ = 1, σε = 0.75 0.0134 2.6e-5 1.5e-4 2.2e-4
γ = 1, σε = 1.00 0.0328 8.2e-5 4.9e-4 6.9e-4
γ = 3, σε = 0.5 0.0453 0.0011 0.0024 0.0034

Reiter-based

γ = 1, σε = 0.50 0.0374 0.0616 0.0337 0.0505
γ = 1, σε = 0.75 0.0466 0.0610 0.0335 0.0501
γ = 1, σε = 1.00 0.0492 0.0602 0.0329 0.0493
γ = 3, σε = 0.5 0.0896 0.2252 0.1327 0.1991

TABLE I: Percentage errors in policy functions in response to an one standard deviation unantici-
pated shock to aggregate TFP at date t = 1. The values reported are the maximum errors across
states (b, ε) and time t relative to the true solution.

equation errors are computed using the analogue of expression (36) in which we compare
c̃t to c

apprx
t , where the later is computed for the same sequence of shocks and initial assets.

These errors have the advantage of allowing for the possibility of small errors accumulating
into large errors over time. For aggregate variable Xt we simply report

EX,t = 100× |X
True
t −Xapprx

t |
XTrue
t

.

We will often report maximum errors where the max is taken over state space (b, ε) as well
as t.

For brevity, we summarize the % gap in the approximated and true policies errors and
details of computational speed of our approach in Table I. (See the online appendix for
Euler Equation and Dynamic Euler Equation errors.) The errors reported are all for a
quadratic approximation. Percent errors relative to the true solution for the individual
consumption policies are less than 0.05% and vary between 0.004%-0.033% as we double
volatility of idiosyncratic shocks, while percent errors for aggregate output, inflation, and
the interest rate range from 4.3× 10−5% to 0.0007%. In terms of percent errors, increasing
the coefficient of relative risk aversion to 3 increases approximation errors by roughly the
same amount as does doubling the volatility of the idiosyncratic shocks. Since our approach
is easily parallelizable and sidesteps the computationally intensive step of computing Fréchet
derivatives, it works quickly and allows us to simulate transition dynamics of a path of 100
periods in 1.5 seconds on a dual AMD EPYC 7351 processor with 32 cores.
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3.4 Comparison to Reiter’s method

We can also compare our method to a widely-used approach of Reiter (2009). Our method
with order n yields approximation errors that scale with the size of both idiosyncratic and
aggregate shocks, that is, O

(
σn+1
agg , σ

n+1
idiosync

)
. An approximation like Reiter’s delivers policy

functions that are linear in aggregate shocks and globally accurate with respect to idiosyn-
cratic shocks around a fixed distribution Ωt = Ω̄. Therefore, errors in such an approximation
scale with both the size of the aggregate shock and the distance of the current distribution
from the point of approximation O

(
σ2
agg, ‖Ω− Ω̄‖2

)
. We use the PRANK setting to show

the trade-offs involved in these two types of errors. All of our comparisons assume n = 2.

The bottom four rows of Table I present the percentage errors of the Reiter method19

relative to the analytic solution, allowing us to compare our method directly to Reiter’s
approach. Both approaches yield accurate approximations of the analytic solution with
small percentage errors range from 0.04% to 0.9%. Despite that, we observe that our method
yields errors for the individual consumption policy rules that are consistently smaller than
those of the Reiter approach while errors for the aggregate variables are two orders of
magnitude smaller than the Reiter approach. Our approach is less accurate with respect to
the idiosyncratic risk, but those errors partially average out for the aggregates. Meanwhile,
second-order errors in aggregates variables under the Reiter approach propagate down to
the individual policy rules.

To extract long run consequences of these approximation errors, we augment the PRANK
economy with a non-degenerate stochastic process for aggregate TFP. In line with standard
calibrations, aggregate shocks are much less volatile than idiosyncratic shocks (standard
deviation of innovations about 1% for aggregate TFP vs. 50% for individual productivities).
We then simulate a long sequence of aggregate shocks and compare distributions of assets
at t = 250 associated with our method and Reiter’s. We find that the obtained asset
distributions are visibly different under the two methods, with the standard deviation of
assets being more than 1 percent larger under Reiter’s approach. To understand the source
of these differences, we drop the second-order terms with respect to aggregate risk from
our expansions and re-compute the long run distribution associated with using this inferior
approximation. This distribution, which has error of the order O

(
σ2
agg, σ

3
idiosync

)
, is almost

identical to the distribution generated by Reiter’s method. That finding prompts us to
conclude that ignoring higher-order effects of aggregate shocks can inject long-run drifts
into approximation errors. We report details about this and some related experiments in

19Conventional applications of Reiter’s method requires expanding policy functions around the invariant
distribution in the economy without aggregate shocks. Since individual assets follow a random walk, no
such distribution exists in the PRANK economy. In our application of Reiter’s method, we used initial
distribution Ω0 as the point of expansion.
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the online appendix.
Consequences of ignoring movements of Ωt away from Ω̄ can be gleaned from responses

of the standard deviation of assets in figure I. While the PRANK economy is constructed so
that responses of output and inflation do not depend on the asset distribution, the responses
of other moments, including those that describe dispersion of individuals’ asset holdings, do
depend on it. This implies that Reiter’s approximation of these impulse responses deterio-
rates progressively as the distribution of assets drifts away from the point of approximation.
In this example, movement of the distribution away from the point of approximation is due
to idiosyncratic income risk.

4 Calibration

To isolate key trade-offs that a continuation Ramsey planner faces, we start from a baseline
economy that is close to specifications commonly used in the New Keynesian literature. We
start with an initial calibration that ignores important features, including the ample het-
erogeneities in marginal propensities to consume and effects of recessions on labor earnings
that have been documented to prevail in U.S. data. We incorporate these as extensions in
section 6.

Preferences and technology parameters

We assume u (c, n) = c1−ν

1−ν −
n1+γ

1+γ and set ν = 3, γ = 2. This yields a Frisch labor supply
elasticity of 0.5. We calibrate to annual data and set the discount factor β = 0.96. We
set Θ̄ = 1 and Φ̄ = 6 to attain average markups of 20%. We abstract from the use of
intermediate goods in production and set α = 1. We choose the cost of nominal price
changes ψ to match the slope of the aggregate Phillips curve. Sbordone (2002) estimated
the slope of the U.S. Phillips curve in quarterly data to be about 6%. We convert that to
an annual frequency by multiplying by 4. To a first-order approximation the slope of the
Phillips curve in our model is

(
Φ̄− 1

)
/ψ, which implies ψ = 21.

Idiosyncratic and aggregate uncertainty

We assume that all shocks are Gaussian and set the standard deviations of εε,i,t and εθ,i,t to
8.7% and 10.3% and the autocorrelation ρθ =0.992 to match evidence on individual wage
dynamics from Low et al. (2010).

We calibrate the stochastic process for the markup shocks so that movements in the
labor share of output are consistent with movements in the U.S. corporate sector’s labor
share (Table 1.14, NIPA) over the period 1947-2016. Calibrated values for (ρΦ, σΦ) are
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(0.85, 4.6%).20 We calibrate the stochastic process for aggregate labor productivity log Θt

so that output per hour is consistent with detrended U.S. non-farm real output per hour
(BLS) over the period 1947-2016. Calibrated values for (ρΘ, σΘ) are (0.73, 1.23%).

Initial conditions

A common approach in the heterogeneous agent macro-labor literature is to specify govern-
ment policy

(
Ḡ,Υt, Qt

)
and study long-run allocations in an associated competitive equi-

librium. A deficiency of some current workhorse models is that their invariant distributions
understate wealth inequality.21 As we shall see, asset inequality has important implications
for optimal policy responses. We calibrate initial conditions {θi,−1, bi,−1, si}i to be consistent
with empirical distributions of wages, nominal claims, and claims to real firm profits. In
section 6.1, we show that drift from this distribution is slow and that its presence matters
very little for optimal policy responses. We use the 2007 wave of the Survey of Consumer
Finances (SCF) as our benchmark for earnings and asset inequality. We adopt a proce-
dure proposed by Doepke and Schneider (2006) to map household-level direct and indirect
holdings of financial assets to the joint distribution of claims to nominal debt and claims
to equity.22 Table II reports summary statistics for our sample. Of particular relevance to
results presented in section 5 is the fact that earnings and assets are positively correlated
and that inequality in asset holdings is much larger than earnings inequality.

We calibrate government expenditures Ḡ to be consistent with the ratio of non-transfer
government expenditures to tax revenues. To obtain tax revenues, we model a stylized
U.S. tax system. To be consistent with estimates of consolidated federal and state-level
average marginal tax rates calculated in Bhandari and McGrattan (2019), we assume that
tax rates on labor income, dividends, and interest income are time invariant and set to(
Ῡn, Ῡd, Ῡb

)
= ῩUS = (0.38, 0.34, 0).23 We set Ḡ so that on average the ratio of non-transfer

20There is substantial variety in how macro and financial economists have modeled and calibrated markup
shocks. In the DSGE literature, for instance, Smets and Wouters (2007), Justiniano et al. (2010), and Galí
et al. (2007) use ARMA(1,1) processes and estimate the quarterly persistence to be in the range of 0.90–0.95.
In the finance literature, for instance, Greenwald et al. (2014) estimate factor share shocks with a monthly
persistence of 0.995. Our calibrated value for ρΦ = 0.85 lies within the range of these estimates.

21Incorporating one or more of the popular “fixes” to obtain a sufficiently skewed invariant distribution
of wealth–for instance, allowing persistent shocks to discount factors (Krusell and Smith, 1998), bequests
(De Nardi, 2004), entrepreneurial choice (Cagetti and De Nardi, 2006), or persistent idiosyncratic differences
in returns to financial assets (Benhabib et al., 2019), and then computing a Ramsey allocation for such an
economy would be interesting but is not something that we do in this paper.

22The online appendix contains details the sample restriction as well as how we apply the Doepke and
Schneider (2006) procedure.

23To arrive at the estimate of the marginal tax rate on capital income, we combine the Bhandari and
McGrattan (2019) estimates of the effective marginal tax rate on corporate business income, on distributed
dividends, and the schedule of marginal tax rates on non-corporate business income into a single number by
using the Barro and Redlick (2011) procedure. We use the same steps to combine the schedule of marginal
tax rates on wage income into the flat tax rate used above. We set the tax rate on bond income to zero in
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TABLE II: FIT OF THE INITIAL DISTRIBUTION

Moments

Fraction of pop. with zero equities 30%
Std. share of equities 2.63
Std. bond 6.03
Gini of financial wealth 0.82
Std. ln wages 0.80
Corr(share of equities, ln wages) 0.40
Corr(share of equities, bond holdings) 0.62
Corr(bond, ln wages) 0.33

Notes: Moments correspond to SCF 2007 wave after scaling wages, equity holdings, and debt holdings by
the average yearly wage in our sample. The share of equities refers to the ratio of individual equity holdings
to the total in our sample; the weighted sum of shares equals one. Financial wealth is defined as the sum of
nominal and real claims.

government expenditures to total tax receipts equals 50%, also estimated by Bhandari and
McGrattan (2019).

Continuation Ramsey responses depend on the joint distribution of assets and after-tax
incomes. For our baseline simulations, we choose Pareto weights so that average optimal
levels of taxes are similar to U.S. data. In particular, we assume that Pareto weights are
described by

ϑi ∝ exp (δ1θi,−1) + exp (δ2si,−1) + exp (δ3bi,−1) , (37)

where (θi,−1, si,−1, bi,−1) are the three dimensions of initial heterogeneity and δ = (δ1, δ2, δ3)

are parameters that we set so that in the non-stochastic economy setting Ῡ = ῩUS is
optimal. In section 6.1, we discuss how outcomes vary with alternative choices of Pareto
weights.

5 Optimal monetary and monetary-fiscal policies

The Ramsey planner sets a common lump-sum transfer for all agents as well as the nominal
interest rate and tax rates on labor income, dividends, and bond income. The government
acquires revenues directly through taxes and indirectly through nominal interest rates and
inflation. It spends these revenues on servicing government debt, paying for exogenous
expenditures Ḡ, and financing transfers. Ricardian equivalence prevails, disarming effects

order to represent the observation that most of government bonds are held through tax-deferred accounts.
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TABLE III: RAMSEY ALLOCATION: MOMENTS

RANK HANK

Std. Correlations Std. Correlations

Dev(%) it Πt Wt lnYt Dev(%) it Πt Wt lnYt

Nominal Rate it 0.87 1 1.82 1
Inflation Πt 0.03 -0.01 1 0.46 -0.94 1
Labor Share Wt 1.18 -0.09 -0.32 1 2.13 -0.78 0.78 1
Log Output lnYt 0.92 -0.98 -0.09 0.24 1 0.88 -0.31 0.10 0.12 1

Notes: Moments are computed using allocations under RANK (left) and HANK (right) optimal monetary
policies.

that might otherwise be produced by altering the timing of transfers.24 Explicit taxes and an
implicit tax via inflation generate dead-weight losses. Average levels of taxes and transfers
depend on inequalities in incomes from labor and assets and on Pareto weights.

We compare continuation Ramsey plans in our baseline HANK setting to continuation
Ramsey plans in a representative agent version of our model (abbreviated as RANK). In
the RANK economy, we keep all the parameters the same, except we assume that agents
are identical with initial conditions being equal to the average levels in our baseline HANK
calibration, and there are no idiosyncratic shocks. When we compute optimal monetary
policy in the RANK economy, we set

(
Ῡn, Ῡd, Ῡb

)
= (−1/Φ̄, 0, 0), which corresponds to the

non-stochastic optimum.
Table III reports several statistics that summarize stochastic properties of optimal mone-

tary policies in the HANK and the RANKmodels (stochastic properties of optimal monetary-
fiscal policies are similar and are omitted). We refer to these statistics as cyclical properties
of optimal policies. To compute these moments, we run 1000 simulated paths, each 50
periods long, and for each simulated path we compute the covariance matrix for output, in-
flation, wages per effective hour, and nominal rates. We then average the covariance matrix
across simulations.25 As one can see from table III, inflation and nominal interest rates are
much more volatile in HANK, and the co-movement of labor share with output is lower. Co-
variances of inflation with output and labor share have different signs in HANK and RANK
settings.

24Extending the model as we do in 6.2 to introduce liquidity-constrained households rearms the timing of
transfers as a government instrument. In that section, we shall explore optimal timing of transfers.

25We also experimented with running longer simulations, such as 100 periods, and did not find substantial
differences in the results.
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5.1 Sources of welfare gains

We first want to understand what drives differences in optimal policies between representa-
tive and heterogeneous agent economies. In the representative agent economy, an optimal
policy is determined by a trade-off between maintaining price stability and reducing the
deviation in output from its efficient level, the so-called “output gap”. Two additional con-
siderations affect optimal policy in heterogeneous agents settings. Government policies can
redistribute resources across ex-ante different agents and increase welfare that the planner
measures using a Pareto-weighed sum of agents life-time utilities. The planner can also
increase welfare by providing better insurance ex-post. To understand whether differences
in policy responses between HANK and RANK economies are driven by redistribution or
insurance concerns, we run diagnostics.

The first diagnostic uses a method proposed by Bhandari et al. (2021) to separate welfare
changes resulting from switching from some policy A to another policy B into three compo-
nents: aggregate efficiency , that measures welfare effects of changes in the level of aggregate
resources induced by the policy switch; redistribution, that measures welfare effects from
changes in expected shares of resources received by ex-ante different agents; and insurance,
that measures effects of changes in the ex-post volatility of consumption. The Bhandari
et al. (2021) decomposition is similar in spirit to the approaches developed by Benabou
(2002) and Floden (2001) but, unlike those papers, can be applied to a much larger class of
heterogeneous agent environments that includes the one studied here.

In order to construct our decomposition, we need counterparts of optimal RANK policies
for our heterogeneous agents setting. Average levels of taxes and transfers are very different
in optimal policies for HANK and RANK economies. In the RANK economy, labor tax rates
are negative and are financed by lump-sum taxes in order to offset markups. In the HANK
economy, labor tax rates are positive and finance transfers. Since our focus is on cyclical
properties of optimal policies, we construct a RANK-equivalent policy as follows. We set
the average level of tax rates to be the same as under the HANK optimum, but choose
stochastic processes for deviations of policy variables from their means to be the same as
in a RANK optimum. The allocation in the heterogeneous agent economy with RANK-
equivalent policies closely mimics the cyclical properties of the RANK economy reported in
table III. We use it as “policy A” in our Bhandari et al. (2021) decomposition. “Policy B”
is the Ramsey optimal allocation in a HANK economy.

By construction, policy B has higher welfare than policy A. Table IV decomposes
this welfare gain into aggregate efficiency, insurance, and redistribution components and
reports decompositions for both optimal monetary and monetary-fiscal policies, as well as
for several extensions that we consider in section 6. This table shows several insights that
carry through all of our extensions: the insurance component is positive and greater than
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100%; the redistribution component is small; and the aggregate efficiency component is
negative. This means that essentially all the welfare gains from optimal HANK policies
arise from the additional insurance that they provide. Provision of insurance comes at the
cost of sacrificing price stability, which creates deadweight losses and lowers total aggregate
resources available for consumption. This explains why the aggregate efficiency component
is negative. Finally, cyclical variations in monetary and fiscal policies contribute little to
redistribution. Most of the redistribution is done by setting average tax rates appropriately.
Deviations of tax rates from those average levels mostly provide insurance, not additional
redistribution.

A second diagnostic test helps us to distinguish between insurance against aggregate
and idiosyncratic shocks. In the online appendix, we study how optimal policies are affected
when we switch off idiosyncratic shocks, and also when we allow agents to trade a full set of
Arrow securities. We find that the latter experiment accounts for nearly all the differences in
cyclical properties of optimal policies reported in table III. While switching off idiosyncratic
shocks has little effect optimal policies, adding Arrow securities contingent on aggregate
shocks brings optimal policies close to those in the RANK economy. From these findings we
conclude that the planner’s desire to replace the missing insurance markets for aggregate
risk explains the differences in the optimal HANK and RANK policies.

5.2 Policy responses to aggregate shocks

To gather further insights into how the Ramsey planner sets optimal policies in HANK
settings, we focus on studying policy responses to specific shocks. We summarize optimal
policies with implied nonlinear impulse response functions. We define an impulse response
of variable Xt to unexpected shock Ek of size ∆ in a particular period k ≥ t + 1 (often
k = t+ 1) as

E[Xt|Ω−1,Θ−1,Φ−1, Ek = ∆]− E[Xt|Ω−1,Θ−1,Φ−1, Ek = 0]

where Ω−1,Θ−1,Φ−1 are time 0 states for the Ramsey planner and conditional mathematical
expectations are taken over the ensemble of paths generated by iterations on the optimal
policy functions. We approximate conditional expectations by taking averages over N =

1000 simulations of sample paths. Below, we typically set ∆ to be one standard deviation
of E . Impulse response functions are state-dependent and non-linear in sizes of shocks. We
report impulse responses for several values of the shock arrival date k.
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TABLE IV: WELFARE DECOMPOSITION

Efficiency Redistribution Insurance

Baseline
(a) Optimal monetary policy -122 9 213
(b) Optimal monetary and fiscal policy -16 1 115

Extensions
(c) Liquidity Frictions -78 -4 182
(d) Mutual Fund -154 -12 266
(e) Heterogeneous labor income exposures -327 -7 334

Alternative Pareto Weights
(f) High Labor Tax -180 -125 405
(g) High Bond Tax -115 52 163
(h) High Dividend Tax -165 -1 266

Notes: We decompose welfare differences between optimal HANK and optimal RANK policies using the
Bhandari et al. (2021) procedure. For all cases, the point of comparison (optimal RANK policy) is set so
that expected levels of policy variables equal their optimal HANK counterparts in the absence of aggregate
risk and stochastic processes for deviations of the policy variables from their means are optimal in the
representative agent version. Lines (a) and (b) report results for our baseline calibration applied to both
monetary and monetary-fiscal policies. Lines (c), (d), (e) report our decomposition of the optimal monetary
policy for extensions that we describe in sections 6.2, 6.3, 6.4, respectively. Lines (f), (g), (h) consider
alternative specifications of Pareto weights discussed in section 6.1.
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5.2.1 Monetary policy responses to a markup shock

We describe an optimal monetary policy response to a negative innovation in EΦ,t. Because
this shock increases the desired markup 1/(Φt − 1), we call it a positive markup shock.
Figure II plots optimal responses of the nominal interest rate, inflation, the real pre-tax
wage per unit of effective labor, and real output to a positive markup in period one.

Figure II shows that optimal responses in the HANK and RANK economies differ sig-
nificantly. While the RANK Ramsey planner slightly increases nominal interest rates in
response to a markup shock, the HANK planner aggressively cuts them. The response of
inflation in HANK is an order of magnitude larger, and paths of real wages and output are
temporarily above their RANK counterparts.

To illustrate how the insurance considerations drive the shapes of the impulse responses,
we construct responses in intermediate economies located between HANK and RANK. We
(i) start with our calibrated HANK economy (plotted as a solid blue line labeled as “HANK”),
(ii) shut down idiosyncratic shocks (plotted as a dashed line with square markers labeled as
“HANK No Idio. risk”), (iii) allow agents to trade Arrow securities contingent on aggregate
shocks (plotted as a dashed line with circle markers labeled as “HANK CM”), and finally
(iv) shut down heterogeneity in initial productivities and assets to obtain our RANK econ-
omy (plotted as a solid red line labeled as “RANK”). This procedure allows us to isolate
contributions from providing insurance against idiosyncratic shocks by comparing responses
of economy (ii) with those of economy (i); contributions from providing insurance against
aggregate shocks by comparing the responses of economy (iii) with those of economy (ii);
and contributions from redistribution by comparing responses in economy (iv) with those of
economy (iii).

Before interpreting figure II, note that when lump-sum transfers are available, complete
and incomplete market versions of RANK are identical. Not so with HANK: the presence
of heterogeneity means that the absence of complete markets puts concerns about insurance
into the mind of a HANK Ramsey planner. Monetary policy can’t provide redistribution
or insurance against idiosyncratic shocks beyond what taxes Ῡ can do. However, monetary
policy can provide insurance against aggregate shocks and imperfectly substitute for missing
markets in Arrow securities.

The decomposition in figure II shows that nearly all differences in policy responses be-
tween HANK and RANK are driven by the planner’s wish to provide insurance against
aggregate shocks. To understand how motives to provide insurance account for key differ-
ences between RANK and HANK economies, it is helpful to study a one-time, fully transient
positive markup shock. The textbook effect of this shock is an increase in inflationary pres-
sure that monetary policy can offset by depressing marginal costs. Since marginal costs are
proportional to aggregate demand, a contractionary increase in nominal rates is optimal in
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the RANK economy. Galí (2015) calls this “leaning against the wind.”
Such a one-time markup shock also changes the mix of factor payments by increasing

dividends and lowering wages. When households are homogeneous as they are in the RANK
economy, or when they can trade Arrow securities ex-ante, a change in the composition of
firms’ payments does not affect welfare: agents who receive mainly wage income will hold
a portfolio of Arrow securities that payoff when their wage income is low. When Arrow
securities are missing, monetary policy can improve welfare by providing insurance against
aggregate shocks. To offset a drop in labor income, the Ramsey planner sets interest rates
to increase real wages. Since real wages are firms’ marginal costs, a monetary policy action
that provides insurance is opposite to one that promotes price stability.

The net effect of a markup shock on optimal monetary policy depends on relative
strengths of the Ramsey planner’s motives to provide price stability and insurance. The
cost of inflation is set by the price adjustment cost parameter ψ, while insurance provision
motives depend on inequalities in stock ownership relative to inequalities in wage income. If
stock holdings are perfectly aligned with labor earnings in the sense that the share of stocks
that each person owns equals his or her share of aggregate labor compensation, then the in-
surance provision motive vanishes; a positive effect on dividends exactly offsets the negative
effect on labor earnings. In that case, optimal responses are similar to those in RANK.26

HANK responses in figure II differ so much from responses that would support price stabil-
ity because stock holdings are much more skewed than labor earnings in U.S. data, making
insurance concerns the principal motive in our calibration.

Figure II shows that the most efficient way to provide insurance is to front-load it:
virtually all differences in HANK and RANK optimal outcomes occur in policy decisions in
period t = 1. Households can borrow and lend freely so that their utilities depend only on
present values of factor payments, not their timing. But price-setting firms care about the
path of factor prices. A first-order approximation of a firm’s optimality condition (16) is
written as

πt = βEtπt+1 + const · ŵt + const · (− ln Φt) , (38)

where πt is log inflation, ŵt is the log deviation of the wage per unit of effective labor from
its average level. Solving difference equation (38) forward shows that inflation in period
t is proportional to the discounted present value of future wages. As a consequence, an
increase in ŵ in some period k increases inflation in all t ≤ k. Therefore, to minimize costs
of inflation it is optimal to deliver all of the adjustment in the present discounted value of
unit labor costs at the moment the shock arrives.

26The RANK economy is a special case in which both shares are equal to one, but the same result holds
in an economy with heterogeneity so long as shares of dividends and earnings are aligned. See the online
appendix for an illustration.
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Figure II: Optimal monetary response to a markup shock. The bold blue and red lines are the
calibrated HANK and RANK responses respectively. The dashed black lines with squares and
circles are responses under HANK with idiosyncratic shocks shut down and with complete markets,
respectively.

An optimal response to a negative markup shock is virtually a mirror image of an optimal
response to a positive markup shock. Averaged over time, the expected net flow of resources
to each agent generated by a monetary policy response is approximately zero; an outcome
consistent with optimal responses being driven mainly by the planner’s insurance motive
and not redistribution.

5.2.2 Monetary-fiscal responses to a markup shock

We now study a Ramsey planner who chooses monetary and fiscal policies. Figure III shows
optimal responses to the markup shock. The planner offsets the shock by combining a labor
subsidy with a dividend tax while holding the nominal interest rate unchanged.

In the RANK economy, lump-sum taxes are non-distortionary while taxes on dividend
and interest income are redundant. Under the optimal monetary-fiscal policy, the planner
achieves a first best by setting Υn

t = −1/Φt to offset monopoly distortions, setting a path
of nominal rates that delivers a constant price level and setting lump-sum taxes to satisfy
the government’s budget constraint.

In the HANK economy, the burden of lump-sum taxes falls disproportionately on poor
households. The RANK prescription of a proportional labor subsidy financed by reducing
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Figure III: Optimal monetary-fiscal response to a markup shock. The bold blue and red lines are
the calibrated HANK and RANK responses, respectively. The dashed black lines with squares and
circles are responses under HANK with idiosyncratic shocks shut down and with complete markets,
respectively.

lump-sum transfers is therefore not optimal. Instead, a HANK Ramsey planner finances
the labor income subsidy by levying a one-time tax on dividends. This tax exactly offsets
the gains that stock owners receive from the higher markups and thus the policy response
provides complete insurance against the markup shock.

5.2.3 Optimal responses to productivity shocks

Figure IV shows optimal monetary response to a negative TFP shock. HANK responses
differ significantly from RANK; the decomposition reveals that differences are once again
driven by the absence in HANK of a market for insuring against aggregate shocks.

To understand what motivates the Ramsey planner to provide insurance, first observe
that an adverse TFP shock reduces both profits and labor earnings, so firm owners and
workers both suffer. A TFP shock affects agents differently when they hold different quan-
tities of bonds: agents who own substantial quantities of bonds suffer less than do otherwise
identical agents who are debtors. Market incompleteness prevents borrowers and savers from
directly hedging TFP shocks. Monetary policy fills this gap by lowering returns on debt,
thereby transferring resources from savers to borrowers and smoothing relative consumption
shares.
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Figure IV: Optimal monetary response to a TFP shock. The bold blue and red lines are the
calibrated HANK and RANK responses, respectively. The dashed black lines with squares and
circles are responses under HANK with idiosyncratic shocks shut down and with complete markets,
respectively.

The optimal policy response evidently departs from RANK and, more generally, from
the prescription that monetary policy should aim to minimize fluctuations in inflation and
an “output gap.” In response to TFP shocks, by setting the interest rate to a “natural
rate” that would prevail if prices were flexible, a planner can eliminate fluctuations in both
inflation and the output gap. Optimal responses in the RANK economy and in the complete
market version of a HANK economy both follow this prescription.27 That prescription is
not optimal in the incomplete markets economy because it does not provide insurance to
borrowers and savers. To transfer resources from savers to borrowers, the planner lowers
ex post real returns on debt by engineering surprise inflation and pushing the expected real
rate of interest below the natural rate. A lower real rate requires temporarily higher output.
A higher output triggers more inflation, as indicated by equation (38). To offset extra
inflationary pressure, the Ramsey plan sets the stage for deflation at t = 2.

The strength of planner’s insurance motive depends on heterogeneity in holdings of
nominal bonds. U.S. data indicate considerable heterogeneity in nominal asset holdings,
which explains a big difference between an optimal policy in the HANK economy relative
to the one in RANK.

27Blanchard and Galí (2007) refer to this property of New Keynesian models as a “divine coincidence.”
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Figure V: Optimal monetary-fiscal response to a TFP shock. The bold blue and red lines are
calibrated HANK and RANK responses, respectively. The dashed black lines with squares and
circles are responses under HANK with idiosyncratic shocks shut down and with complete markets,
respectively.

If fiscal policy can be adjusted in response to the TFP shock, then the Ramsey plan
provides optimal insurance to borrowers and savers directly via a state-contingent tax on
interest income. That tax effectively completes markets and brings together optimal policy
responses for HANK and RANK economies. (See figure V).

6 Extensions and robustness

We describe several extensions to the baseline calibration and environment.

6.1 Roles of key parameters

Optimal responses vary with parameters that shape a trade-off between price stabilization
and insurance motives. The strength of a price stabilization motive is driven by the price
adjustment cost parameter ψ. The strength of the planner’s insurance motive depends on
relative sizes of post-tax inequalities in dividends and labor earnings. These inequalities, in
turn, depend on the joint distribution of assets and labor productivities and on tax rates
Ῡ that are pinned down by initial Pareto weights. In this section, we study how optimal
monetary policy responses vary with these objects. We report main findings here and details
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in the online appendix.
We set the value of ψ according to estimates of Sbordone (2002). In a staggered price

adjustment model, her numbers indicate that firms change prices on average every nine
months. Studies using micro evidence on price changes (see Nakamura and Steinsson 2013)
recover estimates that range from 6.8 to 12 months. In the online appendix, we study the
sensitivity of our results to variations in ψ between half to twice of our baseline value. We
find on-impact changes in the nominal rates that are fairly similar to the baseline, while the
peak response of inflation varies roughly linearly in ψ over this range. In addition, we set
ψ ≈ 0 to study a benchmark with fully flexible prices.

Next we study sensitivity of outcomes to Pareto weights. In section 4, we assigned Pareto
weights using the exponential specification presented in equation (37). This specification
maps a three dimensional vector δ (loadings on the three dimensions of initial heterogene-
ity) to optimal tax rates Ῡ(δ). Our baseline calibration set Ῡ(δ) = ῩUS . We explore the
dependence of policy on Pareto weights by raising each component of Ῡ to 50%, one at a
time, and computing the optimal responses for the corresponding δ. In table IV, lines (f), (g)
and (h) report the welfare decompositions for the optimal policy with higher labor, bond,
and dividend taxes respectively. In line with the benchmark model, the vast majority of
welfare gains are generated by insurance, which comes at the cost of aggregate efficiency.
Int the online appendix, we corroborate this fact by showing that the impulse responses are
quantitatively similar to the baseline responses in figures II and IV for each of these cases
as well as alternative experiments where we lower the tax rates from their U.S. values.

Since inequality drifts over time in our economy, optimal responses depend on time t. In
our calibrated economy, the drift is slow and therefore responses in t = 25 and t = 50 appear
to be very similar to those at t = 1. When we initialize a Ramsey plan at an approximation
to a long-run distribution of assets and productivities gleaned from simulating a competitive
equilibrium for 100 periods, we find responses that are approximately the same as those in the
baseline model. This outcome reflects a balance of two forces. On the one hand, the passage
of time decreases the correlation between stock holdings and labor earnings, which renders
inequality more misaligned. That increases the planner’s gains from providing insurance.
On the other hand, the correlation between shares of equities and bond holdings decreases,
which diminishes gains from insuring using unanticipated inflation.

6.2 Liquidity frictions

Thus far, we have assumed that households have unrestricted access to risk-free bond mar-
kets. Empirical work documenting large marginal propensities to consume points to pres-
ence of liquidity constrained households (see, for instance Jappelli and Pistaferri 2014 and
Johnson et al., 2006). In this section, we investigate how liquidity frictions affect optimal
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monetary policy. We augment our model with “hand-to-mouth” agents who own equities
and fixed amounts of nominal assets. They can consume dividends, interest on their nominal
bond holdings, and their labor income; but they cannot trade financial assets. Therefore,
the budget constraint of a hand-to-mouth agent satisfies equation (2) subject to the re-
striction that the market value of nominal debt holdings PtQtbi,t must be constant over
time. Thus, we modify our baseline model to include an additional dimension of permanent
heterogeneity–namely an indicator variable hi ∈ {0, 1}, where hi = 1 if the agent is a hand-
to-mouth type and hi = 0 if the agent is not a hand-to-mouth type. All other aspects of the
baseline model remain the same, including how we set initial conditions.

To calibrate a distribution of hand-to-mouth agents, we need data on individual marginal
propensities to consume (MPCs) broken down by observable characteristics that we can
map to our model. Such data for the U.S. are not readily available. However, using Italian
data, Jappelli and Pistaferri (2014) measure average MPCs by cash-in-hand (defined as
financial wealth plus current period wage minus taxes). Their findings are broadly consistent
with Kaplan et al. (2014) and Kaplan et al. (2018), who, based on U.S. data, incorporate
substantial heterogeneity among liquidity constrained agents. In view of such evidence, we
incorporate liquidity-constrained agents by binning households into cash-in-hand quantile
groups and, for each quantile group randomly assign a hand-to-mouth status to calibrate the
model-generated MPC gradient with respect to cash-in-hand. This approach also preserves
the distribution of real and nominal claims of the baseline model, which presents the same
insurance motives to a Ramsey planner and, therefore, allows us to isolate effects on optimal
policies that are attributable to the ‘liquidity frictions’ that constrain hand-to-mouth agents.

Figures VI and VII show optimal monetary responses to markup and aggregate TFP
shocks for the calibration with hand-to-mouth agents and compare them to optimal responses
in the baseline calibration. Evidently, the trading frictions that give rise to heterogeneities
in MPCs make paths for nominal rates, real wages, and inflation smoother than they are
in the baseline model. Since Ricardian equivalence no longer holds, an optimal path of
transfers is now uniquely pinned down.

We show next that deviations of optimal policy responses from those in our baseline
model are driven by the inability of hand-to-mouth agents to borrow and save in order to
smooth consumption over time, as well as the substantial heterogeneity within the set of
liquidity constrained households. We start with optimal monetary policy responses to a
markup shock in figure VI. In the baseline calibration (solid blue line), the planner provides
insurance against the shock by front-loading higher wages and avoiding additional future
inflation from firms’ rationally anticipating higher future marginal costs. Such a front-
loading policy would be costly for hand-to-mouth agents because they would have too much
income (equal to consumption) in the short run relative to the future. Thus, in addition to
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providing insurance, the Ramsey planner wants to smooth over time the consumption paths
of hand-to-mouth agents.

A natural way to achieve insurance and also to smooth consumption would be to adjust
the timing of lump-sum transfers. But hand-to-mouth agents are not homogeneous. A
path of transfers that would smooth the consumption of poor hand-to-mouth agents, who
rely mainly on wage income, would exacerbate the volatility of consumption of rich hand-
to-mouth agents, who rely mostly on their dividend income. Thus, heterogeneity among
liquidity constrained agents makes transfers a less effective tool.28

In addition to timing transfers, the planner distorts allocations to induce a smoother
path for the real wage (dashed black line). A smoother path means a real wage above a
“natural wage” that would prevail with flexible prices when markups are high and below
that “natural wage” when the economy recovers. Implementing such a path for real wages
requires expansionary monetary policy and associated inflation upon arrival of the shock to
be followed by a contractionary monetary policy that brings persistent deflation.

Figure VII displays optimal responses to a productivity shock. Overall, the policy actions
help approximate within-agent transfers that would occur if all agents, including those who
are hand-to-mouth, were free to trade assets. The TFP shock widens disparities in total
income between hand-to-mouth agents who are borrowers and those who are lenders. As in
the baseline, the planner inflates away debt in the short run, thereby transferring resources
from lenders to borrowers during a recession. In addition, the planner engineers a persistent
but small deflation. A higher price level acts like a tax on wealth by lowering obligations of
hand-to-mouth borrowers and reducing assets of hand-to-mouth lenders. Since the shock is
transitory, agents would want to reverse that reshuffling of resources after the shock wears
off. Since they cannot trade, the planner uses a post-shock deflation to generate a smooth
path of repayments from borrowers to asset holders as TFP reverts to its steady-state value.
Like responses to markup shocks, these paths of prices and real interest rates require lower
nominal interest rates for a few periods, followed by high nominal interest rates, later making
the path of nominal rates smooth relative to outcomes in the baseline model.29

The preceding discussion suggests that the persistence of individual MPC, as well as
their dispersion, has important quantitative implications for optimal policy. The calibration

28To highlight this point and isolate the role of wealthy hand-to-mouth consumers, in the online appendix,
we study optimal policy in an alternative calibration in which the bottom 15% of the cash-in-hand distri-
bution is set to be hand-to-mouth. This example has the flavor of typical calibrations of one-asset-Aiyagari
models because constrained hand-to-mouth agents are more homogeneous and depend almost entirely on
their labor incomes. We show that the dynamics of interest rates, inflation, output and wages are almost
identical to those of the baseline economy with no liquidity frictions. When liquidity-constrained agents
are homogeneous, the planner can effectively borrow on their behalf and use transfers to smooth their
consumption.

29In the online appendix, we report results for an extension that allows marginal propensity to consume
to vary across sources of income. The general principles guiding the optimal policy are unchanged.
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Figure VI: Optimal monetary response to a markup shock with liquidity frictions. The bold blue
lines are responses under the baseline without hand-to-mouth agents; the dashed black lines with
circles are responses with hand-to-mouth agents. Transfers are not plotted for the baseline because
Ricardian equivalence holds and timing of transfers is indeterminate.

in this section implicitly assumes that individual MPCs are permanent. The more frequently
the identities of liquidity constrained agents switch, the smaller the persistence will be. Less
persistence would reduce motives for the planner to smooth insurance benefits over time
and bring impulse responses closer to the baseline model. Empirical work on persistence in
MPCs is still in early stages, although Auclert et al. (2018) and Kaplan et al. (2018) provide
valuable insights into MPC dynamics.

6.3 Mutual Fund

In the baseline model, we calibrated households’ portfolios to counterparts in the SCF but
imposed that households could not trade claims to dividends. In this section, we follow
Gornemann et al. (2016) by having agents trade shares in a mutual fund. A competitive
mutual fund sector invests in corporate equity and government bonds and remits after-tax
earnings to households in proportion to their holdings of the mutual fund. Shares in the
mutual fund are indirect claims to returns from a common financial portfolio and are traded
by all households in a competitive market.
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Figure VII: Optimal monetary response to a TFP shock in an economy with liquidity frictions. The
bold blue lines are responses under the baseline without hand-to-mouth agents; the dashed black
lines with circles are responses when hand-to-mouth agents are present. Transfers are not plotted
for the baseline because Ricardian equivalence holds and the timing of transfers is indeterminate.

The mutual fund solves
max
Bt

E0

∑
t

Smft Da,t

QtBt +Da,t =

(
1−Υb

t

)
Bt−1

1 + Πt
+ (1−Υd

t )Dt,

where we follow Gornemann et al. (2016) and set Smft+1

Smft
to be an asset-weighted average

of intertemporal marginal rates of substitutions across households. Households’ budget
constraint (2) becomes

ci,t + Pa,tai,t = (1−Υn
t )Wtεi,tni,t + Tt + (Da,t + Pa,t) ai,t−1, (39)

where ai,t are household i’s holdings of the mutual fund and
∫
ai,tdi=1. Households freely

trade ai,t. The production side of the model is unchanged.
We study optimal responses to markup and TFP shocks and contrast them with our

baseline model. Our calibration in this mutual fund setting closely follows section 4. We
initialize the distribution of mutual fund holdings by using the distribution of financial
wealth from the SCF 2007 formed by summing claims to all bonds and stocks; we again set
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Figure VIII: Optimal monetary responses to a markup shock with mutual fund. The bold blue lines
are responses under the baseline and the dashed black lines with circles are responses under the
mutual fund setting.

Pareto weights to rationalize observed U.S. average tax rates. Other parameters are those
in the baseline model. When we study optimal monetary policy, we impose Bt = B0.30

Figure VIII plots optimal monetary policy responses to a markup shock. Responses
in the baseline model and those for the model with a mutual fund are very close because
optimal policy is driven largely by insurance motives largely drive optimal policy, as discussed
extensively in section 5. Magnitudes of optimal policy responses are determined by cross-
sectional heterogeneity in exposures of labor and non-labor incomes to aggregate shocks.
Even after we sum bond and stock claims, total financial wealth remains quite skewed relative
to labor earnings. As was the case before, the planner provides insurance in response to
markup shocks by boosting the present discounted value of wages. In the online appendix,
we show that responses to the TFP shock are also similar to those in the baseline. In the
row labeled “Mutual fund” in table IV, we show that insurance considerations drive most of
the welfare gains.

30This is mainly done to assure comparability of results. Different from the baseline, in which we had
Ricardian equivalence, the planner in the mutual fund economy is motivated to vary the level of debt and
change the riskiness of returns on the mutual fund. Setting the debt level to a constant imposes parity
between the baseline monetary planner and the mutual fund monetary planner in their abilities to affect
returns. We relax this restriction when we study optimal monetary-fiscal policies in a mutual fund economy
in which the planner can use taxes on bonds income or dividends to directly affect returns. See the online
appendix.
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6.4 Heterogeneous labor income exposures

In our baseline calibration, percentage falls in labor income during recessions are the same
across workers. Using administrative data on W2 forms over the period 1978-2010, Guvenen
et al. (2014) document that relative to a typical worker, individuals who have either low
past incomes or very high past incomes face larger drops in earnings in recessions. In this
section, we compute optimal monetary and fiscal responses under a richer stochastic process
for idiosyncratic risk that captures the Guvenen et al. (2014) patterns.

We modify equation (12) to

ln εi,t = (1 + f(θi,t−1)) ln Θt + ln θi,t + εε,i,t, (40)

and set f(θ) so that the aggregate productivity shock has different loadings for agents
with different earning histories. We assume a quadratic function f(θ) = f0 + f1θ + f2θ

2

and normalize f0 so that an agent with median productivity faces a drop similar to the
drop in aggregate TFP. We then simulate a competitive equilibrium for 30 periods and
extract “recessions” as consecutive periods in which the growth rate of output falls one
standard deviation below zero. Following the empirical procedure in Guvenen et al. (2014),
we rank workers by percentiles of their average log labor earnings 5 years prior to the shock
and compute the percent earnings loss for each percentile relative to the median. We set
parameters f1 and f2 to match earnings losses of the 5th and 95th percentiles.

In figure IX, we report the optimal monetary policy response to a TFP shock with
heterogeneous exposures. Amplified inequality induced by a recession increases gains that
the planner earns from providing insurance. As compared to our baseline monetary response,
the planner further lowers the nominal rate and thereby induces higher inflation in the short
run and a lower ex-ante real rate.31

7 Concluding Remarks

We forged a method to approximate Ramsey plans in economies with heterogeneous agents
and used it to reassess quantitative lessons for monetary and fiscal policy brought by ear-
lier contributions to New Keynesian economics. Heterogeneity adds an insurance motive
that quantitatively dominates the motives to stabilize nominal prices that have typically
driven New Keynesian policy prescriptions. For our laboratory, we combined basic versions

31In the online appendix, we plot the monetary-fiscal responses. With optimal monetary as well as fiscal
policy, the planner responds by increasing labor income taxes in addition to the tax on bond income. For
reasons similar to Werning (2007), the marginal cost of extracting resources from high-income agents is lower
in times of higher inequality. Therefore, optimal labor tax rates are higher on impact and then revert as
effects of inequality shocks decay to a permanently higher level.
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Figure IX: Optimal monetary responses to a TFP shock with heterogeneity in labor income expo-
sures. The bold blue lines are responses under the baseline, and the dashed black lines with circles
are responses when the idiosyncratic productivity process has heterogeneous exposures to aggregate
TFP.
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of the New Keynesian model and the incomplete market models. We are convinced that
our method will be useful for computing optimal policies in environments that have more
detailed household balance sheets, richer labor market dynamics that include realistic wage-
setting frictions, and asset markets formulations capable of fitting observed returns. Adding
these features is likely to affect how a Ramsey planner would deliver insurance in order to
supplement missing markets and financial frictions. Nevertheless, we suspect that insurance
concerns with respect to aggregate shocks and other determinants of heterogeneous income
exposures will remain decisive determinants of optimal policies.
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Online Appendix

A Additional details for section 3

We fill in the missing steps for section 3. First, in section A.1, we show how to formulate
the Ramsey problem recursively, then in the context of the section 3.1 economy, how our
method extends to higher-order approximations. Second, we show how to generalize the
expansions so that we can deal with persistent aggregate and idiosyncratic shocks as well as
additional state variables, as discussed in section 3.2.

A.1 Recursive Formulation of Ramsey problem

Here we show that the Lagrangian in equation (21) in section 3 of the main text admits a
recursive solution from t ≥1. We will also describe the F and R mappings that appear in
equation (22) and (23) in this case. For completeness, we repeat the maximization problem
here and list all implementability constraints. Given {bi,−1}iand µi,−1 = 0, the planning
problem is

inf sup E0
∑∞

t=0 β
t
∫ [
u (ci,t, ni,t) +

(
uc,i,tci,t + un,i,tni,t − uc,i,t

{
Tt +

(
1−Υd

t

)
Dt

})
µi,t

+
(

1−Υbt
1+Πt

)
bi,t−1uc,i,t (µi,t−1 − µi,t)

]
di

subject to
Qt−1Mt−1 = βm−1

i,t−1Et−1

[
uc,i,t

(
1−Υb

t

)
(1 + Πt)

−1
]

(41a)

uc,i,tWt(1−Υn
t )Etε,i,t = −un,i,t (41b)

Mt = m−1
i,t uc,i,t (41c)∫

uc,i,tdi = Mt (41d)∫
ci,tdi = Ct (41e)

Ct + Ḡ =

∫
Etε,i,tni,tdi−

ψ

2
Π2
t (41f)

Dt = (1−Wt)

∫
Etε,i,tni,tdi−

ψ

2
Π2
t (41g)
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First-order conditions Let βt−1ρi,t−1, β
tφi,t, β

tϕi,t be Lagrange multipliers on household-
level constraints (41a)–(41c); let βtλt, βtχt, βtΞt, βtζt be Lagrange multipliers on aggregate
constraints (41d)–(41g). First-order conditions with respect to household-level variables:
bi,t−1, ci,t, ni,t,m

−1
i,t , µi,t are

0 =Et−1

(
1−Υb

t

1 + Πt

)
uc,i,t (µi,t−1 − µi,t) , (42a)

0 =µi,t

(
ucc,i,t

[
ci,t − (Tt +

(
1−Υd

t

)
Dt

]
+ uc,i,t

)
+

(
1−Υb

t

1 + Πt

)
bi,t−1ucc,i,t (µi,t−1 − µi,t)

− φi,tWt(1−Υn
t )εi,tucc,i,t + ρi,t−1m

−1
i,t−1

(
1−Υb

t

)
(1 + Πt)

−1ucc,i,t

+ ϕi,tucc,itm
−1
i,t − χt − λt + uc,i,t, (42b)

0 =un,i,t + µi,t (unn,i,tni,t + un,i,t)− φi,tunn,i,t + [Ξt + ζt(1−Wt)] Etε,i,t, (42c)

0 =βEt
[
ρi,tuc,i,t+1

(
1−Υb

t+1

)
(1 + Πt+1)−1

]
+ ϕi,tuc,it, (42d)

0 =
(
uc,i,tci,t + un,i,tni,t − uc,i,t

{
Tt +

(
1−Υd

t

)
Dt

})
−
(

1−Υb
t

1 + Πt

)
bi,t−1uc,i,t + βEt

(
1−Υb

t+1

1 + Πt+1

)
bi,tuc,i,t+1. (42e)

First-order conditions with respect to aggregate variables: Ct, Dt,Mt, Qt,Wt, (1 + Πt)
−1,Tt,Υd

t ,Υ
b
t ,Υ

n
t

are
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0 =χt − Ξt, (43a)

0 =−
(

1−Υd
t

)∫
uc,i,tµi,tdi− ζt, (43b)

0 =−
∫
ρi,tQt −

∫
ϕi,tdi+ λt, (43c)

0 =−
∫
ρi,t−1di, (43d)

0 =−
∫
φi,tuc,i,t(1−Υn

t )Etε,i,tdi− ζt
∫
Etε,i,tni,tdi, (43e)

0 =
(

1−Υb
t

)∫
bi,t−1uc,i,t (µi,t−1 − µi,t) di+ ψΠt(1 + Πt)

2 (Ξt + ζt)

+ β
(

1−Υb
t

)∫
ρi,t−1m

−1
i,t−1uc,i,tdi, (43f)

0 =

∫
uc,i,tµi,tdi, (43g)

0 =

∫
uc,i,tµi,tdi, (43h)

0 =−
∫
bi,t−1uc,i,t (µi,t−1 − µi,t) di− β

∫
ρi,t−1m

−1
i,t−1uc,i,tdi, (43i)

0 =Wt

∫
φi,tuc,i,tEtε,i,t. (43j)

We can simplify some equations. We can set Πt = ζt = 0 and define T̂t ≡ Tt+
(
1−Υd

t

)
Dt

and ignore (43f). Solving equations (42a)–(43j) is then the same as solving the following
equations
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0 =Et−1

(
1−Υb

t

)
uc,i,t (µi,t−1 − µi,t) , (44a)

0 =µi,t

(
ucc,i,t

[
ci,t − T̂t

]
+ uc,i,t

)
+
(

1−Υb
t

)
bi,t−1ucc,i,t (µi,t−1 − µi,t)

− φi,tWt(1−Υn
t )εi,tucc,i,t + ρi,t−1m

−1
i,t−1

(
1−Υb

t

)
ucc,i,t

+ ϕi,tucc,itm
−1
i,t − Ξt − λt + uc,i,t, (44b)

0 =un,i,t + µi,t (unn,i,tni,t + un,i,t)− φi,tunn,i,t + Ξtεi,t, (44c)

0 =βEt
[
ρi,tuc,i,t+1

(
1−Υb

t+1

)]
+ ϕi,tuc,it, (44d)

0 =uc,i,tci,t + un,i,tni,t − uc,i,tT̂t,

−
(

1−Υb
t

)
bi,t−1uc,i,t + βEt

(
1−Υb

t

)
bi,tuc,i,t+1, (44e)

0 =−
∫
ϕi,tdi+ λt, (44f)

0 =

∫
ρi,t−1di, (44g)

0 =

∫
φi,tuc,i,tεi,tdi, (44h)

0 =

∫
bi,t−1uc,i,t (µi,t−1 − µi,t) di, (44i)

0 =

∫
uc,i,tµi,tdi. (44j)

Recursive Ramsey problems For t ≥ 1, define individual-level states

zi,t−1 ≡ (mi,t−1, µi,t−1) ,

and the aggregate state as a joint distribution over zi,t−1 to be denoted Ωt−1; the individual-
level choice variables as

x̃i,t ≡ (ci,t, ni,t, bi,t−1, ρi,t−1, φi,t, ϕi,t, µi,t,mi,t) ,

and the aggregate-level choice variables as

X̃t ≡
(
Ct, Dt, Qt,Wt,Mt, T̂t,Υ

b
t ,Υ

n
t , λt,Ξt

)
.

For t ≥ 1, given Ωt−1 and shocks
(
Et, {ε,i,t}i

)
, functions X̃ (Ω,E), x̃ (z,Ω, ε,E), in the main

text are defined as solutions to 17 equations (41a)–(41g) and (44a)–(44j) to be solved for 17
unknowns x̃i,t and Xt. The collection of equations (41a)–(41g) constitutes the F mapping

4



in the text, and the collection of equations (44a)–(44j) constitutes the R mapping in the
text.

For t = 0, define vectors x̃i,0 and X̃0 as

x̃i,0 ≡ (ci,0, ni,0, φi,0, ϕi,0, µi,0,mi,0)

X̃0 ≡
(
C0, D0, Q0,W0,M0, T̂0,Υ

b
0,Υ

n
0 , λ0,Ξ0

)
.

Given an initial condition Ωb
−1 ≡ {bi,−1}i and shocks

(
E0, {ε,i,0}i

)
the time-0 policy func-

tions X̃0

(
Ωb
−1,E

)
, x̃0

(
b,Ωb

−1, ε, E
)
solve 15 equations (41b)–(41g), and (44b)–(44j) for 15

unknowns x̃i,0 and X̃0 given x̃i,1 and X̃1.

A.2 Higher order approximations for section 3.1

We start with a second-order approximation to the model presented in section 3.1. These
are given by

X̃(Ω, σE;σ) =X̄ + σ
(
X̄EE + X̄σ

)
+

1

2
σ2
(
X̄EE .(E,E) + 2X̄EσE + X̄σσ

)
+O(σ3),

where the symbol a · (b, c) denotes a bilinear map.32 A similar expansion can be written for
x̃(z,Ω, σε, σE;σ).

To obtain the necessary terms, we proceed in two steps: section A.2.1 computes inter-
mediate terms including higher-order Fréchet derivatives for individual and aggregate policy
functions, and section A.2.2 uses these terms to compute the second-order expansion. Al-
though the second-order expansion requires additional notation, the steps below highlight
how the the same fundamental insights presented in section 3 maintain the tractability of
the problem.

32Specifically, if a is a n1 × n2 × n3 tensor, b is a n2 × n4 matrix and c is a n3 × n5 matrix then
d = a · (b, c) is n1 × n4 × n5 tensor defined by

dilm =
∑
j,k

aijkbjlckm.

This definition generalizes to when a, b, or c is infinite dimensional, such as with ∂x̄z.
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A.2.1 Intermediate terms for second-order expansions

Differentiating equation (22) twice with respect to z we find

0 =F̄x−x̄zz + F̄xx̄zz + F̄x+ (x̄zz + x̄zpx̄zz)

+ F̄zz + F̄zx− · (I, x̄z) + F̄zx · (I, x̄z) + F̄zx+ · (I,xz)

+ F̄x−z · (x̄z, I) + F̄x−x− · (x̄z, x̄z) + F̄x−x · (x̄z, x̄z) + F̄x−x+ · (x̄z,xz)

+ F̄xz · (x̄z, I) + F̄xx− · (x̄z, x̄z) + F̄xx · (x̄z, x̄z) + F̄xx+ · (x̄z,xz)

+ F̄x+z · (x̄z, I) + F̄x+x− · (x̄z, x̄z) + F̄x+x · (x̄z, x̄z) + F̄x+x+ · (x̄z,xz),

where I represents the identity matrix and we use a · (b, c) to denote a bilinear map. Lines 2-5
appear complicated but are actually simply combining all of the already known derivatives of x
with cross derivatives of F. It will prove convenient to combine all of these terms into a single term:∑
α,β∈{z,x−,x,x+} F̄αβ · (ᾱz, β̄z) with the knowledge that z̄z ≡ I, x̄−z ≡ x̄z, and x̄+

z ≡ x̄z. In doing
this x̄zz can be represented by a simple linear equation

x̄zz = −
[
F̄x− + F̄x + F̄x+ (I + x̄zp)

]−1

 ∑
α,β∈{z,x−,x,x+}

F̄αβ · (ᾱz, β̄z)

 .

In a similar manner one can show that

∂xz ·∆ = −
[
F̄x− + F̄x + F̄x+ (I + x̄zp)

]−1


∑

α ∈ {z,x−,x,x+}
β ∈ {x−,x,x+,X}

F̄αβ ·
(
ᾱz, ∂β̄ ·∆

)

,

where we use ∂x̄− ·∆ ≡ ∂x̄+ ·∆ ≡ ∂x̄ ·∆.
The last of the derivatives with respect to the state variables that are required for the second

order expansion is ∂2x̄·(∆1,∆2).We will use the pre computed expressions for ∂x̄ and ∂X̄ evaluating

them in the directions ∆1 and ∆2. Differentiating (22) we find

0 =F̄x−∂
2x̄ · (∆1,∆2) + F̄x∂

2x̄ · (∆1,∆2) + F̄x+

(
∂2x̄ · (∆1,∆2) + x̄zp∂2x̄ · (∆1,∆2)

)
+ F̄X∂

2X̄ · (∆1,∆2)

+
∑

α,β ∈ {x−,x,x+,X}

F̄αβ ·
(
∂ᾱ ·∆1, ∂β̄ ·∆2

)
.

In solving this equation for ∂2x̄ · (∆1,∆2) we find

∂2x̄ · (∆1,∆2) = A(z,∆1,∆2) + C(z)∂2X̄ · (∆1,∆2)

6



where

A(z,∆1,∆2) = −
[
F̄x− + F̄x + F̄x+ (I + x̄zp)

]−1

 ∑
α,β ∈ {x−,x,x+,X}

F̄αβ ·
(
∂ᾱ ·∆1, ∂β̄ ·∆2

)
from terms already known and C(z) is the same term computed in section 3.1. To find
∂2X̄ · (∆1,∆2) we differentiate (23) to find

0 =R̄x

∫
∂2x̄(y) · (∆1,∆2)dΩ(y) + R̄X∂

2X̄ · (∆1,∆2) +

∫ ∑
α,β∈{x(y),X}

R̄αβ · (∂α ·∆1, ∂β ·∆2) dΩ(y)

+ R̄x

∫
∂x̄(y) ·∆1d∆2(y) + R̄x

∫
∂x̄(y) ·∆2d∆1(y).

Plugging in for ∂2x̄ · (∆1,∆2) yields a linear equation which can be easily solved for ∂2X̄ ·
(∆1,∆2).

A.2.2 Second-order expansions

We can use these derivatives to compute the second-order terms. To find x̄εε, differentiate
F twice with respect to ε to get the linear equation33

0 = F̄xx̄εε + F̄x+x̄zpx̄εε +
∑

α,β∈{x,x+,ε}

F̄αβ ·
(
ᾱε, β̄ε

)
,

where x̄+
ε ≡ x̄zpx̄ε and εε ≡ I. Similarly, x̄εE solves the following linear equation

0 = F̄xx̄εE + F̄x+x̄zpx̄εE +
∑

α∈{x,x+,ε}
β∈{x,x+,X,E}

F̄αβ ·
(
ᾱε, β̄E

)
,

with the understanding that ĒE ≡ I and x̄+
E ≡ x̄zpx̄E + ∂x̄ · Ω̄E .

Differentiating twice with respect to E yields

0 =F̄xx̄EE + F̄x+

(
x̄zpx̄EE + ∂x̄ · Ω̄EE

)
+ F̄XX̄EE

+ F̄x+

(
x̄zz · (px̄E , px̄E) + ∂x̄z · (px̄E , Ω̄E) + ∂x̄z · (Ω̄E , px̄E) + ∂2x̄ · (Ω̄E , Ω̄E)

)
(45)

+
∑

α,β∈{x,x+,X,E}

F̄αβ · (ᾱE , β̄E)

33For parsimony we have dropped the dependence on z when not necessary.
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and ∫
R̄xx̄EE(y) + R̄XX̄EE +

∑
α,β∈{x̄(y),X̄}

R̄αβ · (ᾱE , β̄E)dΩ(y). (46)

All the terms in the second line can be computed from our analysis of the previous section
and all the terms in the third line are known. What remains is to find x̄EE and X̄EE . This
requires us extend the steps we used in the proof of theorem 1.

Differentiating (24) twice with respect to E , evaluated at σ = 0, yields

Ω̄EE(y) =−
∫ ∑

i

δ(zi − yi)
∏
j 6=i

ι(zj − yj)z̄iEE(z)dΩ(z)

−
∫ ∑

i

δ′(zi − yi)
∏
j 6=i

ι(zj − yj)
[
z̄iE(z)

]2
dΩ(z)

+

∫ ∑
i

δ(zi − yi)
∑
j 6=i

δ(zj − yj)
∏
k 6=i,j

ι(zk − yk)z̄jE(z)z̄iE(z)dΩ(z).

The density is then

ω̄EE(y) =
∂nz

∂y1∂y2 · · · ∂ynz
Ω̄EE(y) = −

∑
i

∂

∂yi
(
z̄iEE(y)ωE(y)

)
+
∑
i

∑
j

∂2

∂yi∂yj

(
z̄iE(y)z̄jE(y)ωE(y)

)
.

The identical steps to (1) then show that

∂x̄(z) · Ω̄EE = C(z)∂X̄ · Ω̄EE ≡ C(z)X̄ ′EE

with

X̄ ′EE = −
(
R̄x

∫
C(y)dΩ(y) + R̄X

)−1

R̄x

(∫
x̄z(y)px̄EE(y) + x̄zz(y) · (px̄E , px̄E) dΩ(y)

)
.

(47)
As with X̄E , rather than solving for x̄EE(z) and X̄EE jointly, we substitute for ∂x̄(z) · Ω̄EE
in (45) and solve for x̄EE(z) yielding the linear relationship

x̄EE(z) = D1(z) ·
[
X̄EE X̄ ′EE

]ᵀ
+ D2(z)

where D1(z) is identical to the D1 in section 3.1. We then use this relationship to substitute
into equations (46) and (47) to find X̄EE and X̄ ′EE .

A key part of the second-order approximations is capturing the effect of risk via the
terms x̄σσ(z) and X̄σσ(z).34 Let Cε ≡ Eεᵀε and CE ≡ EEᵀE be the variance-covariance
matrix of the idiosyncratic and aggregate shocks respectively. Differentiating (22) and (23)

34It is easy to verify that the cross derivatives with shocks and σ are zero.
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yields35

0 = F̄x− (x̄εε · Cε + x̄EE · CE)+F̄xx̄σσ+F̄XX̄σσ+Fx+

(
x̄εε·Cε+x̄EE ·CE+x̄zpx̄σσ+∂x̄·Ω̄σσ

)
(48)

and
0 = R̄x

∫
x̄σσ(y) + x̄εε(y) · CεdΩ(y) + R̄XX̄σσ. (49)

Before this set of equations can be solved for x̄σσ, we must evaluate Ω̄σσ. Differentiating
(24) and evaluating at σ = 0 yields

Ω̄σσ(y) =−
∫ ∑

i

δ(zi − yi)
∏
j 6=i

ι(zj − yj)
(
z̄iσσ(z) + z̄iεε · Cε

)
dΩ(z)

−
∫ ∑

i

δ′(zi − yi)
∏
j 6=i

ι(zj − yj)
[
z̄iε(z)

]2 · CεdΩ(z)

+

∫ ∑
i

δ(zi − yi)
∑
j 6=i

δ(zj − yj)
∏
k 6=i,j

ι(zk − yk)
(
z̄jε(z)z̄iε(z)

)
· CεdΩ(z)

which gives

ω̄σσ(y) =−
∑
i

∂

∂yi
((
z̄iσσ(y) + z̄iεε(y) · Cε

)
ω(y)

)
+
∑
i

∑
j

∂2

∂yi∂yj
((
z̄iε(y)z̄jε(y)

)
· Cεω(y)

)
.

Following the identical steps as theorem (1) to show that show that

∂x̄(z) · Ω̄σσ = C(z)∂X̄ · Ω̄σσ ≡ C(z)X̄ ′σσ

with

X̄ ′σσ =−
(
R̄x

∫
C(y)dΩ(y) + R̄X

)−1

R̄x

∫ (
x̄z(y)p (x̄σσ(y) + x̄εε(y) · Cε)

+ x̄zz(y) · (px̄ε, px̄ε) · Cε

)
dΩ(y). (50)

We then substitute for ∂x̄ · Ω̄σσ = C(z)X̄ ′σσ in (48) to and solve for x̄σσ(z) to find the
35If a is a n1 × n2 × n2 tensor and C is a n2 × n2 matrix then d = a ·C is length n1 vector defined

by
di =

∑
j,k

aijkCjk.
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linear relationship
x̄σσ(z) = E0(z) + E1(z)

[
X̄σσ X̄ ′σσ

]ᵀ
.

This relationship can then be plugged into (49) and (50) to yield a linear equation for X̄σσ

and X̄ ′σσ.

A.3 Expansions in the general case of section 3.2

We extend our method to handle persistent shocks and other endogenous persistent state
variables besides the distributional state Ω. To do so, we extend the equilibrium conditions
in the following manner

F
(
E−x̃, x̃,E+x̃, X̃,Λ,Θ, ε,E, z

)
= 0, (51)

which must hold for all z in the support of Ω,

R

(∫
x̃dΩdPr(ε), X̃,E+X̃,Λ,Θ,E

)
= 0, (52)

and a first-order vector autoregression model Θ′ = ρΘΘ + (1− ρΘ)Θ̄ +E for the exogenous
shocks. The law of motion of the distribution is given by

Ω̃ (Ω,Λ,Θ,E) (z) =

∫
ι (z̃ (y,Ω,Λ,Θ, ε,E) ≤ z) dPr (ε) dΩ (y) ∀z. (53)

We consider a family of perturbations indexed by a positive scalar σ that scales all shocks
ε,E so that the policy functions are X̃(Ω,Λ,Θ, σE;σ) and x̃(z,Ω,Λ,Θ, σε, σE;σ). We will
use ·̄ to denote these functions evaluated at σ = 0.

Unlike section 3.1, we cannot assume that Ω̄(Ω,Λ,Θ) is stationary but we recover the
independence property

Lemma 2. For any Ω,Λ,Θ, the policy functions z̄(z,Ω,Λ,Θ) satisfy ∂z̄(z,Ω,Λ,Θ) = 0

for all z and z̄z(z,Ω,Λ,Θ) independent of z.

Proof. We proceed similar to the proof of Lemma 1 in the main text. The first order
condition with respect to bi,t−1 yields

E
[

[c̃ (z,Ω,Λ,Θ, ·, ·)]−ν

1 + Π̃ (Ω,Λ,Θ, ·, )
(µ− µ̃ (z,Ω,Λ,Θ, ·, ·))

]
= 0.

When σ = 0, this yields µ̄(z,Ω,Λ,Θ) = µ for all z. While equation (20) to the zeroth order
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is

Q̄(Ω,Λ,Θ)M̄(Ω,Λ,Θ)m = m̄ (z,Ω,Λ,Θ) M̄
(
Ω̄(Ω,Λ,Θ)

) (
1 + Π̄

(
Ω̄(Ω,Λ,Θ)

))−1
.

By construction, the Pareto weights integrate to one which implies m̄ (z,Ω,Λ,Θ) = m for
all z. Finally, the law of motion for θ implies

θ̄ (z,Ω,Λ,Θ) = ρθθ.

Together they imply ∂z̄(z,Ω,Λ,Θ) = 0 for all z and z̄z(z,Ω,Λ,Θ) independent of z.

A by product of 2 is that z̄z is diagonal. Although we exploit this property in the next
section it is not essential.

We start by showing how our expansion extends to the transition path. We assume
for a given Ω,Λ,Θ we have solved for the σ = 0 transition dynamics {Ω̄n, Λ̄n, Θ̄n}Nn=0

with (Ω̄0, Λ̄0, Θ̄0) = Ω,Λ,Θ and (Ω̄N , Λ̄N , Θ̄N ) = (Ω̄, Λ̄, Θ̄) at a non-stochastic steady
state. Solving the the transition dynamics is eased by the fact that we know, a priori, the
transition dynamics of Ω. For the remainder of this appendix we use ·̄n to denote derivatives
evaluated at (Ω̄n, Λ̄n, Θ̄n) and, to save on notation, and use ·̄ to denote derivatives evaluated
at the steady state (Ω̄N , Λ̄N , Θ̄N ). We’ll start by showing how to compute derivatives at
the steady state and then show how to evaluate derivatives along the path.

The policy rules for X and x can then be approximated via Taylor expansion. The first
order expansions for these variables are given by

X̃(Ω,Λ,Θ, σE;σ) = X̄0 + σ(X̄0
EE + X̄0

σ) +O(σ2)

and
x̃(z,Ω,Λ,Θ, σε, σE;σ) = x̄0(z) + σ

(
x̄0
ε(z)ε+ x̄0

E(z)E + x̄0
σ(z)

)
+O(σ2).

For brevity, we present the necessary derivatives for the first order expansions. Higher order
terms extend analogously to section A.2 .

A.3.1 Derivatives at the steady state

The derivatives of the policy functions with respect to Λ and Θ as well as the Fréchet
derivative with respect to the distribution Ω are used repeatedly in what follows.

Differentiating (51) with respect to Λ yields (lemma 2 implies that Ω̄Λ = 0).

F̄x−(z)x̄Λ(z) + F̄x(z)x̄Λ(z) + F̄x+(z)
(
x̄Λ(z)Λ̄Λ

)
+ F̄X(z)X̄Λ = 0
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and
R̄x

∫
x̄Λ(z)dΩ(z) + R̄XX̄Λ + R̄X+X̄ΛΛ̄Λ + R̄Λ = 0.

The object Λ̄Λ is unknown. It requires solving a nonlinear equation which we show below
can be expressed using operations that involve matrices of small dimension. First note that

x̄Λ(z) = −(F̄x−(z) + F̄x(z) + Λ̄ΛF̄x+(z))−1F̄X(z)X̄Λ

Let A(z) = −(F̄x−(z) + F̄x(z) + Λ̄ΛF̄x+(z))−1F̄X(z), then

X̄Λ = −
(
R̄x

∫
A(z)dΩ(z) + R̄X + Λ̄ΛR̄X+

)−1

R̄Λ.

Let P be such that Λ = PX. Therefore, Λ̄Λ must solve

Λ̄Λ = −P

(
R̄x

∫
A(z)dΩ(z) + R̄X + Λ̄ΛR̄X+

)−1

R̄Λ.

This can be found easily with a 1-dimensional root solver as all the matrices that need to
be inverted are small dimensional.

Next differentiating (51) with respect to Θ yields (lemma 2 implies that Ω̄Θ = 0).

F̄x−(z)x̄Θ(z) + F̄x(z)x̄Θ(z) + F̄x+(z)
(
x̄Θ(z)ρΘ + x̄Λ(z)PX̄Θ

)
+ F̄X(z)X̄Θ + F̄Θ(z) = 0.

This yields a linear equation in x̄Θ and X̄Θ which we can solve for x̄Θ.36 Plugging in for
the linear relationship between x̄Θ and X̄Θ in

R̄x

∫
x̄Θ(z)dΩ(z) + R̄XX̄Θ + R̄X+X̄ΘρΘ + R̄X+X̄ΛPX̄Θ + R̄Θ = 0.

yields a linear equation for X̄Θ.

Finally to determine the Fréchet derivative, we differentiate (51) along the direction ∆.
Doing so yields

(
F̄x−(z) + F̄x(z)

)
∂x̄(z)·∆+F̄x+(z)∂x̄(z)·∂Ω̄·∆+F̄x+(z)x̄Λ(z)P∂X̄ ·∆+F̄X(z)∂X̄ ·∆ = 0.

We first derive an analogue of the property ∂Ω̄ ·∆ = ∆. This holds in the simple section 3.1
economy but fails in the more general case. We proceed by showing that we can evaluate
∂Ω̄ along a direction ∆j that satisfies the property that there exists a function a(·) such

36Easiest to exploit ρΘ =

(
ρΘ 0
0 ρΦ

)
and solve for each column of x̄Θ separately.
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that the density of ∆j takes the form

∂

∂yj
(a(y)ω̄(y))

Begin by differentiating the law of motion for Ω̃ at σ = 0. Since ∂z̄ = 0, we get

(∂Ω̄ ·∆j)(y) =

∫ ∏
i

ι(z̄i(z) ≤ yi) ∂

∂zj
(a(z)ω̄(z)) dz

=

∫ ∑
i

δ(z̄i(z)− yi)
∏
k 6=i

ι(z̄k(z) ≤ yk)∂z̄
i

∂zj
(z)a(z)ω̄(z)dz.

= z̄jz

∫
δ(z̄j − yj)

∏
k 6=j

ι(z̄k ≤ yk)a(z)ω̄(z)dz

where the second line was achieved through integration by parts. The third line was achieved
by noting that ω̄ is the density of the steady state so z̄(z) = z for all z in its support and
exploiting that ∂z̄i

∂zj
(z) is both independent of z and diagonal. We can also compute the

density of (∂Ω̄ ·∆j)(y) by applying the derivative ∂nz

∂y1∂y2···∂ynz which gives

z̄jz
∂

∂yj

∫ ∏
k

δ(zk − yk)a(z)ω̄(z)dz = z̄jz
∂

∂yj
(a(y)ω̄(y)) .

We conclude that ∂Ω̄ ·∆j = z̄jz∆j .

Evaluating the Fréchet derivative of (51) in this particular direction ∆j we find

(
F̄x−(z) + F̄x(z) + F̄x+(z)x̄zp + zjzF̄x+(z)

)
∂x̄(z)·∆j+F̄x+(z)x̄Λ(z)P∂X̄·∆j+F̄X(z)∂X̄·∆j = 0.

Solving for ∂x̄(z) ·∆j we conclude that37

∂x̄(z) ·∆j = −
(
F̄x−(z) + F̄x(z) + F̄x+(z)x̄zp + zjzF̄x+(z)

)−1 (
F̄x+(z)x̄Λ(z)P + F̄X(z)

)
∂X̄ ·∆j

≡ Cj(z)∂X̄ ·∆j .

Taking the derivative of R along this direction we get

∂X̄ ·∆j = −
(
R̄x

∫
Cj(z)dΩ(z) + R̄X+(zjzI + X̄ΛP) + R̄X

)−1

R̄x

∫
x̄(z)d∆j(z)

≡
(
Dj
)−1

R̄x

∫
x̄(z)d∆j(z).

37For generality we have written this as one value of C for each individual state, i.e. Cj . In fact, one only
needs one value for each level of z̄jz which in our case is two: 1 and ρθ.
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From the definition of ∆j , we can use integration by parts to find that

∂X̄ ·∆j =
(
Dj
)−1

R̄x

∫
x̄zj (z)a(z)dΩ(z).

A.3.2 Expansion along the path

We will use the derivatives of the state variables at the end of the transition path to evaluate
our expansion along the path using backward induction. This approach is recursive, so we’ll
compute the derivatives at (Ω̄n, Λ̄n, Θ̄n) assuming derivatives at period n+1 of the transition
are known.

Differentiating (51) and (52) with respect to Λ we obtain

F̄nx−(z)x̄nΛ(z) + F̄nx (z)x̄nΛ(z) + F̄nx+(z)x̄n+1
Λ (z)PX̄n

Λ + F̄X(z)X̄n
Λ = 0

and
R̄nx

∫
x̄nΛ(z)dΩ(z) + R̄nXX̄

n
Λ + R̄nX+X̄

n+1
Λ PX̄n

Λ + R̄nΛ = 0.

As both x̄n+1
Λ (z) and X̄n+1

Λ are already known we can solve for x̄nΛ(z) to find

x̄nΛ(z) = −
(
F̄nx−(z) + F̄nx(z)

)−1
(
F̄nx+(z)x̄n+1

Λ (z)P + F̄nX(z)
)
X̄n

Λ,

and, therefore, X̄n
Λ equals

−
(
−R̄nx

∫ (
F̄nx−(z) + F̄nx(z)

)−1
(
F̄nx+(z)x̄n+1

Λ (z)P + F̄nX(z)
)
dΩ(z) + R̄nX + R̄nX+X̄

n+1
Λ P

)−1

R̄nΛ

Differentiating with respect to Θ we find

F̄nx−(z)x̄nΘ(z)+F̄nx (z)x̄nΘ(z)+F̄nx+(z)
(
x̄n+1

Θ (z)ρΘ + x̄n+1
Λ (z)PX̄n

Θ

)
+F̄nX(z)X̄n

Θ+F̄nΘ(z) = 0.

This yields a linear equation in x̄nΘ and X̄n
Θ which we can solve for x̄nΘ as a linear function

of X̄n
Θ. Plugging in for the linear relationship between x̄nΘ and X̄n

Θ in

R̄nx

∫
x̄nΘ(z)dΩ(z) + R̄nXX̄

n
Θ + R̄nX+X̄

n+1
Θ ρΘ + R̄X+X̄

n+1
Λ PX̄n

Θ + R̄nΘ = 0

yields a linear equation that can be solved for X̄n
Θ.

To compute the Fréchet derivative, we’ll evaluate the derivative in direction ∆j,n with
density of the form

∂

∂yj
(an(y)ω̄n(y))

where ω̄n is the density of Ω̄n and an(y) is some arbitrary function. For this derivative we
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find

(∂Ω̄n ·∆j,n)(y) =

∫ ∏
i

ι(z̄i(z) ≤ yi) ∂

∂zj
(an(z)ω̄n(z)) dz

=

∫ ∑
i

δ(z̄i(z)− yi)
∏
k 6=i

ι(z̄k(z) ≤ yk)∂z̄
i,n

∂zj
(z)an(z)ω̄n(z)dz.

= z̄jz

∫
δ(z̄i(z)− yj)

∏
k 6=j

ι(z̄i(z) ≤ yk)an(z)ω̄n(z)dz.

The density of (∂Ω̄n ·∆j,n)(y) is found by applying the derivative ∂nz

∂y1∂y2···∂ynz to get

z̄jz
∂

∂yj

∫ ∏
k

δ(z̄k − yk)an(z)ω̄n(z)dz = z̄jz
∂

∂yj
(
an+1(y)ω̄n+1(y)

)
,

where an+1(y) = an(z̄−1(y)).We conclude therefore that ∂Ω̄n ·∆j,n = z̄jz∆j,n+1 were we ac-
knowledge the implicit relationship between ∆j,n and ∆j,n+1 through an+1(y) = an(z̄−1(y)).

The Fréchet derivative of F then is

(
F̄nx−(z) + F̄nx (z)

)
∂x̄n(z) ·∆j,n + zjzF̄x+(z)∂x̄n+1(z) ·∆j,n+1

+F̄nx+(z)x̄n+1
Λ (z)P∂X̄n ·∆j,n + F̄X(z)∂X̄ ·∆j,n = 0.

Since the previous equation is recursive in ∂x̄n(z) ·∆j,n, we can solve it forward to obtain

∂x̄n(z) ·∆j,n =

N−n∑
k=0

Cj,nk (z)∂X̄n+k ·∆j,n+k

with Cj,N0 defined from Cj in the previous section and

Cj,n0 (z) = −
(
F̄nx−(z) + F̄nx (z)

)−1 (
F̄nx+(z)x̄n+1

Λ (z)P + F̄X(z)
)

Cj,nk (z) = −zjz
(
F̄nx−(z) + F̄nx (z)

)−1
Cj,n+1
k−1 (z).

Similarly, differentiating R generates

R̄nx

∫
∂x̄n(z) ·∆j,ndΩn(z) + zjzR̄

n
X+∂X̄

n+1 ·∆j,n+1 + X̄n+1
Λ P∂X̄n ·∆j,n)

+R̄nX(z)∂X̄n ·∆j,n + R̄nx

∫
x̄n(z)d∆j,n(z) = 0

15



Substituting for ∂x̄n(z) ·∆j,n yields a recursive equation with solution

∂X̄n ·∆j,n = −
(
Dj,n

)−1

(
R̄nx

∫
x̄n(z)d∆j,n +

N−n∑
k=1

Ej,nk ∂X̄n+k ·∆j,n+k

)

with Dj,N defined by Dj in the previous section and

Dj,n = R̄nx(z)

∫
Cj,n0 (z)dΩn(z) + R̄nX+X̄

n+1
Λ P + R̄nX

and
Ej,nk = R̄nx

∫
Cj,nk (z)dΩn(z) + 1k=1z

j
zR̄

n
X+.

Finally we can use this knowledge to solve for X̄E . We’ll give expressions for X̄0
E all

others are analogous. Differentiating with respect to E yields

F̄0
x(z)x̄0

E(z)+ F̄0
x+(z)

(
x̄1

Θ(z) + x̄1
z(z)px̄0

E(z) + ∂x̄1(z) · Ω̄0
E + x̄1

Λ(z)PX̄0
E
)

+ F̄0
X(z)X̄0

E + F̄0
E(z) = 0.

(54)
In order to proceed, we need to determine Ω̄0

E . Differentiating the law of motion of Ω gives

Ω̄0
E = −

∑
j

∫
δ(z̄j(z)− yj)

∏
i

ι(z̄i(z) ≤ yi)z̄j,0E (z)ω̄0(z)dz.

The density of Ω̄0
E is therefore

−
∑
j

∂

∂yj

∫ ∏
i

δ(z̄i(z)− yi)z̄j,0E (z)ω̄0(z)dz = −
∑
j

∂

∂yj

(
z̄j,0E

(
z̄−1(y)

)
ω̄1(y)

)
≡
∑
j

ω̄0,j,1
E ,

where 1 here represents that the objects are evaluated using the density of the transition path at
time 1, ω̄1(y). If we define Ω̄0,j,n

E as the measure with density

ω̄0,j,n
E (y) = − ∂

∂yj

z̄j,0E

z̄−1
(
. . . z̄−1(y)

)︸ ︷︷ ︸
n times

 ω̄n(y)

 ,

then

∂x̄1(z) · Ω̄0,j,1
E =

N−1∑
k=0

Cj,1k (z)∂X̄1+k · Ω̄0,j,1+k
E ≡

N−1∑
k=0

Cj,1k X̄
′j,1+k
E .

Combined with (54) gives a linear system

M0(z)x̄0
E(z) = N0(z)

[
I X̄ ′

1,1
E X̄ ′

2,1
E . . . X̄ ′

nz,N
E

]ᵀ
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and which can be solved for x̄0
E(z). To find X̄ ′j,nE , we note that they satisfy the equation

X̄ ′
j,n
E = −

(
Dj,n

)−1

R̄nzj + R̄nx

∫ x̄nzj (z)z̄j,0E

z̄−1
(
. . . z̄−1(z)

)︸ ︷︷ ︸
n times


 dΩn(z) +

N−n∑
k=1

Ej,nk X̄ ′
j,n+k
E

 .

Combining the previous equation with

R̄0
x

∫
x̄0
E(z)dΩ0(z) + R̄0

XX̄
0
E + R̄0

X+

(
X̄1

Θ + X̄1
E + X̄1

ΛPX̄0
E
)

+ R̄0
E = 0

yields a linear system

O ·
[
X̄0

E X̄ ′
1,1
E X̄ ′

2,1
E . . . X̄ ′

nz,N
E

]ᵀ
= P

which can be solved for X̄0
E .

The term x̄0
ε(z) satisfies

x̄0
ε(z) =

(
F̄ 0
x(z) + F̄ 0

x+(z)x̄1
z(z̄(z))p

)−1
F̄ 0
ε (z).

A.3.3 An Alternative Approximation

In this section we present the alternative approach highlighted in section 3.2 where we scale
{σE, σε, σΘ, σθ} and expand with respect to σ instead of just {σE, σε}.

For this approach, the full policy function forX can be written as X̃(Ω(σ),Λ, σΘ, σE;σ)

where Ω(y;σ) incorporates the fact that we are scaling θ with σ and therefore also scaling
Ω. Formally, we have (assuming the simplest case where m,µ and θ are the only individual
state variables for our problem)

Ω(y;σ) =

∫
ι(m ≤ y1)ι(µ ≤ y2)ι(σθ ≤ y3)dΩ(m,µ, θ). (55)

The same proof can be used to show that Lemma 2 holds for this approximation as well.
There still may be transition dynamics with respect to Λ, at which point it will be necessary
to follow sections A.3.1 and A.3.2 to compute the relevant derivatives for the expansion.38

X̃ and x̃ can then be approximated using Taylor expansions with respect to σ. For
brevity we only report the first order expansion of X̃ which given by

X̃(Ω(σ),Λ, σΘ, σE;σ) = X̄0 + σ(∂X̄0 · Ω̄σ + X̄0
ΘΘ + X̄0

EE + X̄0
σ) +O(σ2).

38In the case where there is no endogenous aggregate sate variable only section A.3.1 is required.
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To obtain ∂X̄ · Ω̄σ, we differentiate (55) with respect to σ to obtain

Ω̄σ(y) = −
∫
ι(m ≤ y1)ι(µ ≤ y2)δ(0− y3)θdΩ(m,µ, θ).

The density of this object is constructed by applying the derivative ∂3

∂y1∂y2∂y3
to get

ω̄σ(y) =− ∂

∂y3

(∫
δ(m− y1)δ(µ− y2)δ(0− y3)θdΩ(m,µ, θ)

)
=− ∂

∂y3

(
δ(0− y3)

∫
ω(y1, y2, θ)θdθ

)
=− ∂

∂y3
(Eθ(y1, y2)ω̄(y))

where in the last equality we defined Eθ(y1, y2) =
∫
ω(y1,y2,θ)θdθ∫
ω(y1,y2,θ)dθ

as the cross-sectional mean
of θ conditional on (m,µ) = (y1,y2). From this expression, we know that ∂X̄0 · Ω̄σ can be
solved for in the same manner as ∂X̄0 · Ω̄0

E using the tools in section (A.3.2).

A.3.4 Simulation and Clustering

To simulate an optimal policy at each date with N agents, we discretize the distribution
across agents with K grid points that we find each period using a k-means clustering al-
gorithm. Let {zi}Ni=1 represent the current distribution of agents. The k-means algorithm
generates K points {z̄k}Kk=1 with each agent i assigned to a cluster k(i) to minimize the
squared error

∑
i ‖zi − z̄k(i)‖2. We let Ω represent the distribution of N agents and Ω̄

represent our approximating distribution of clusters.39 At each history, we compute Ω̄ and
then apply our algorithm to approximate the optimal policies around Ω̄.40 When K = N

we exactly approximate around Ω, but for K < N we can speed up the computations by a
factor of NK .

A.3.5 Solving the t = 0 problem

For the Ramsey problem (21), optimality conditions at t = 0 are different from t ≥ 1.
The full set of optimality conditions are represented by expanding equations (22)–(24). We
describe how to apply our procedure for the section 3.1 simple case. The extension to the
general problem in section 2 is straightforward.

We start with some notation. Let ΩB be a measure over the claims to risk-free debt.
Denote the t = 0 aggregate policy functions as X̃0

(
ΩB,E0

)
and individual policy functions

39Formally Ω(z) has density
∑
i

1
N
δ(z − zi) while Ω̄(z) has density

∑
i

1
N
δ(z − z̄k(i)).

40Similar to section (A.3.3) this is done by constructing a distribution Ω(σ) with density
∑
i

1
N
δ(z−z̄k(i)−

σ(zi − z̄k(i))) and then computing ∂X̄0 · Ω̄σin the same manner as section (A.3.3).
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as x̃0

(
b,ΩB, ε0,E0

)
. Augment the system (22)–(24) with mappings F0 and R0, capturing

the time 0 first order conditions, such that

F0

(
x̃0,E+x̃, X̃0, ε0,E0, b0

)
= 0 (56)

R0

(∫
x̃0dΩB, X̃0,E0

)
= 0 (57)

Policy functions for t ≥ 1 individual states z0 = (m0, µ0) are components of x̃0. Let function
Ω0

(
ΩB,E0

)
map the initial condition ΩB and aggregate shock E0 to a measure Ω over z

using

Ω0

(
ΩB,E0

)
(z) =

∫
ι
(
z̃0

(
y,ΩB, ε0,E0

)
≤ z

)
dPr (ε0) dΩB (y) ∀z (58)

Section 3.1 characterizes the small-noise approximations of the t ≥ 1 policy functions
around an arbitrary Ω. We update Ω along the path by iterating between an approximation
and a simulation step. At some t ≥ 1, taking as input Ωt−1, we draw idiosyncratic shocks
ε for each agent as well as aggregate shocks E , and use the policy functions approximated
around Ωt−1 to move to the next period Ωt. All that remains to be specified is how the
t = 1 state, Ω0, is obtained. We do that below by constructing small-noise approximations
to t = 0 policy functions: X̃0(ΩB, σE0;σ) and x̃0(b,ΩB, σε0, σE0;σ). We present a first
order expansion. Higher order expansions along the lines of A.2 are analogous.

1. Zeroth-order: For some choice of ΩB, the σ = 0 allocation consists of {x̄0(b), x̄(b)} for
b in support of ΩB as well as

{
X̄0, X̄

}
such that

F0

(
x̄0, x̄, X̄0, 0, 0, b0

)
= 0, R0

(∫
x̄0(b)dΩB(b), X̄0,E0

)
= 0

F
(
x̄, x̄, x̄, X̄, 0, 0, z̄

)
= 0, R

(∫
x̄(b)dΩB(b), X̄, 0

)
= 0

2. To compute derivatives
{
x̄0,ε(b), x̄0,E(b), x̄0,σ(b), X̄0,E , X̄0,σ

}
, we use the formulas

from section (A.3.2). The expressions that appear in section (A.3.2) use superscript
n to denote the period of transition path for the σ = 0 allocation. We can obtain{
x̄0,ε(b), x̄0,E(b), x̄0,σ(b), X̄0,E , X̄0,σ

}
by using those formulas after replacing F 0

• with
F0,• , Fn• with F• for n ≥ 1 and similarly for R0

• and Rn• .

3. Simulation: Draw idiosyncratic shocks ε0 for each agent as well as aggregate shocks
E0 and use the approximations to policy functions

X̃0(ΩB, σE0;σ) = X̄0 + σ
(
X̄0,EE0 + X̄0,σ

)
+O(σ2)
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and

x̃(b,ΩB, σε0, σE0;σ) = x̄0(b) + σ (x̄0,ε(b)ε0 + x̄0,E(b)E0 + x̄0,σ(b)) +O(σ2)

to obtain the Ω0(z0) for t = 1.

A.4 Additional details for section 3.3

In this section, we provide more details concerning Acharya and Dogra (2018) “PRANK”
economy, which we use as a laboratory to test the accuracy of our algorithm and compare it to
alternative methods. We start with equilibrium conditions, next we discuss the calibration,
and report the accuracy tests for our method. Finally, we present a simplified version of
this economy for which we can solve for all gradients in closed form.

Equilibrium in the PRANK economy To obtain the PRANK setting we impose
the following assumptions: (i) labor is supplied inelastically, and period utility function
U(ct, nt) = − exp(−γct), (ii) the distribution of shares is uniform, (iii) Idiosyncratic produc-
tivity shocks are i.i.d, and (iv) All tax rates are constant and the monetary policy follows a
Taylor rule given by

Q−1
t − 1 = a0 (1 + Πt)

a1 (59)

In the PRANK economy, a perfect foresight equilibrium is constructed as follows. For a
sequence of innovations to TFP {EΘ,s}Ts=0, Agent is consumption ci,t satisfies

ci,t = Ct + µt

(
bi,t−1

1 + Πt
+ yi,t

)
, (60)

where yi,t = (1 − Υt)Wtεi,tni,t + Tt + di,t is the households income at date t. The two
parameters Ct and µt that are common to all agents are given by

µt =
µt+1

(
Qt

1+Πt+1

)
1 + µt+1

(
Qt

1+Πt+1

) (61)

Ct
[
1 + µt+1

(
Qt

1 + Πt+1

)]
= −1

γ
lnβ

(
Qt

1 + Πt+1

)
+ Ct+1 + µt+1ȳt+1 −

γµ2
t+1σ

2
y,t+1

2
(62)

where ȳt+1 =
∫
yi,t+1di is the average household income, and σ2

y,t+1 is the variance in
household level income. A perfect foresight equilibrium can by solving equations (59)–(62)
along with equations (8), (10),(16), and (17).

We check the accuracy of our approximations using an exact solution to the perfect
foresight equilibrium. Section (A.4) discusses how we calibrate the PRANK economy, section
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(A.4) and (A.4) compare approximation errors using several diagnostics.

Calibration We study several cases. For the parameters that are common across these
cases we use Acharya and Dogra (2018) targets which are are quite standard in the repre-
sentative agent New Keynesian literature. The discount rate β to 0.96 to get a real rate of
4% per year, the elasticity of substitution parameter, Φ, to 6 to target an average markup of
20%. The share of intermediate inputs α, is set to 0.6 to target a labor income share of 2/3,
and we set the adjustment cost parameter ψ to 41.6 to target a slope of the Phillips curve
of 0.06. Aggregate productivity follows an AR(1) process with a decay parameter 0.73, and
the standard deviation of the innovation is set to 1.23% to be consistent with de trended
output per hour and we turn off the markup shocks. For the Taylor rule parameters, we set
a1 = 1.5 and choose a0 to target 0% inflation rate in absence of aggregate risk. We vary the
standard deviation of idiosyncratic risk, σε ∈{0.5, 0.75, 1}, and the risk aversion parameter,
γ ∈ {1, 3}. Our calibrationscover a range that includes Acharya and Dogra (2018) as well as
what we use in our baseline section 4. Since the distribution of assets is non-stationary, we
set Ω0(b) to be Gaussian and calibrate the parameters to be consistent with the distribution
of wealth in the SCF. For simulation, we approximate the distribution with 150 points and
the idiosyncratic shocks with 10 point Gaussian quadrature.

Diagnostics In this section, we compare the accuracy of our policy functions in two
settings. We start with a stationary environment with no aggregate risk and study the policy
function for individual consumption as well as values for the aggregate variables. Then, we
study impulse responses of several aggregate variables to a TFP shock. As mentioned before,
the advantage of PRANK is that in both cases, the true solution can be solved for exactly.

We report three types of approximation errors for the individual policy functions that
are defined in the main text. For all the experiments we use a second-order approximation
of our method. As a point of comparison, we report the errors when policy functions are
approximated using the Reiter-approach (also used in Acharya and Dogra (2018)) in which
the no-aggregate risk economy is solved exactly and then the policy functions are linearized
with respect to aggregate shocks. In all our plots, our method will be represented by a bold
blue line, the Reiter approximation will be represented by a dashed black line and the exact
solution will be a bold black line.

We begin with the approximation errors turning off aggregate risk. By construction,
the errors for the Retier-method are zero and so we report the error diagnostics just for
our method for several values of {σε, γ} in table 1. The maximum percent errors in the
individual policy rules for consumption relative to the exact solution are small starting at
0.0039% for our baseline calibration and raising to only 0.0328% when we double the size of
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Individual consumption

Maximum Errors (%) Policy Euler Dyn. Euler Agg. Output Inflation Interest Rate

γ = 1, σε = 0.5 0.0039 0.0031 0.0097 5.2e-6 3.1e-5 4.3e-5
γ = 1, σε = 0.75 0.0134 0.0105 0.0207 2.6e-5 1.6e-4 2.2e-4
γ = 1, σε = 1.0 0.0328 0.0249 0.0705 4.9e-4 6.9e-4 8.2e-4
γ = 3, σε = 0.5 0.0453 0.0280 0.1220 4.1e-4 2.4e-3 3.4e-3

TABLE 1: Percentage Errors in policy functions with no aggregate risk. The values reported are
the maximum errors across the state space (b, ε). The columns “Policy”, “Euler”, and “Dyn. Euler”
refer to the diagnostic measure Epolc,t (b, ε), EEEc,t (b, ε), and EdynEEc,t (b, ε), respectively.

the idiosyncratic risk. The Euler equation errors are comparable. We see a similar pattern in
the errors for the aggregate variables, though the errors for those are an order of magnitude
smaller.

Next we compare the errors in the policy functions in response to an one time one
standard deviation unanticipated shock to aggregate productivity. We report these errors
in table 2. For the individual consumption policy functions, the maximum errors (across
the state space (b, ε) and across time t) for our second-order approach are comparable to
the Reiter method. In fact, while the Euler equation errors EEEc,t (b, ε) for the Reiter method
are generally smaller than our second-order approximation, the errors relative to the exact
solution Epolc,t (b, ε) are an order of magnitude larger (0.0039% vs 0.0404%). The diagnostic
errors Epolc,t (b, ε) clearly captures errors coming from aggregate shocks that are not reflected
in the Euler equation errors. We also see that the dynamic Euler equation errors remain
small and comparable to those of the Reiter approach, which indicates that one should not
be too concerned with errors accumulating over time.

Tables 1 and 2 also report errors for the alternative calibrations where we increase risk
aversion, γ, to 3. Not surprisingly increasing risk aversion leads to the largest policy errors
for both our second-order approximation as well as the Retier methods, but the policy errors
remain small and are comparable to those from the Reiter approach. Figure 1 reproduces
the impulse responses in figure I of the main text for γ = 3. For larger values of risk
aversion, we see a visible deviation of the Reiter approach from both the exact solution and
our second-order approximations. The visible deviation reflects the errors in aggregates of
the Reiter approach documented in Table 2.

Long run errors In the PRANK economy, individual assets follow an approximate ran-
dom walk and, therefore, the distribution of individual savings drifts over time. Since our
method approximates with respect to the size of idiosyncratic risk, a diagnostic for whether
small errors at a point in time accumulate to large error over time, we check how well the
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Individual consumption

Maximum Errors (%) Policy Euler Dyn. Euler Agg. Output Inflation Interest Rate

2nd Order

γ = 1, σε = 0.50 0.0039 0.0031 0.0103 4.2e-6 3.1e-5 4.3e-5
γ = 1, σε = 0.75 0.0134 0.0105 0.0402 2.6e-5 1.5e-4 2.2e-4
γ = 1, σε = 1.00 0.0328 0.0249 0.0853 8.2e-5 4.9e-4 6.9e-4
γ = 3, σε = 0.5 0.0453 0.0280 0.1091 0.0011 0.0024 0.0034

Reiter-based

γ = 1, σε = 0.50 0.0374 0.0022 0.0153 0.0616 0.0337 0.0505
γ = 1, σε = 0.75 0.0466 0.0022 0.0208 0.0610 0.0335 0.0501
γ = 1, σε = 1.00 0.0492 0.0023 0.0364 0.0602 0.0329 0.0493
γ = 3, σε = 0.5 0.0896 0.0038 0.0462 0.2252 0.1327 0.1991

TABLE 2: Percentage errors in policy functions in response to an one standard deviation unantici-
pated shock to aggregate TFP. The values reported are the maximum errors across states (b, ε) and
time t. The columns “Policy”, “Euler”, and “Dyn. Euler” refer to the diagnostic measure Epolc,t (b, ε),
EEEc,t (b, ε), and EdynEEc,t (b, ε), respectively.

approximated distribution of assets tracks the true distribution with our method as well as
with the Reiter method.

In figure 2, we plot the distribution of assets obtained at t = 250 after a one-standard
deviation shock at t = 0. We see the second-order approximation lines up very closely with
the Reiter method and to the outcomes from the exact solution. This figure also explains
the finding in section 3.3, why our method captures the the response of inequality to an
unanticipated TFP shock t = 250 so well.

We next compare the distribution of assets after a sequence of TFP shocks in a stochastic
PRANK economy. The TFP shocks follow an AR(1) and for this exercise we do not have
the true solution in an analytic form. However, we can still compare our second-order
approximation and the Reiter approach. In addition, we include a “hybrid” method where
we take a second-order approximation with respect to idiosyncratic shocks and a first-order
approximation with respect to aggregate shocks.

In figure 3, we see that the hybrid and Reiter approaches produce nearly identical dis-
tributions after these shocks, but the second-order approach delivers a tighter distribution
over time. As the hybrid approach was obtained by dropping the second-order terms with
respect to aggregate shocks, we take this as evidence that, in this model, ignoring those
second-order terms can lead long run drift away from the true solution.

A Simplified Example To illustrate how our approach from section 3 is applied to the
PRANK economy, we present a version of the PRANK economy where we can explicitly
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Figure 1: Comparisons for impulse responses to a 1% TFP shock at t = 1 in the top panel and
t = 250 in the bottom panel
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Figure 2: Distribution of assets at t = 250 following a one time unanticipated TFP shock at t = 0.
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Figure 3: Distribution of assets t = 250 in the stochastic PRANK economy after a sequence of TFP
shocks.

show how to compute all the gradients that appear that section. We assume aggressive
enough monetary policy to ensure Πt = 0 for all t; that share of intermediate inputs, 1− α,
is 0 which ensures that output is linearly related to productivity; and finally that Φ → ∞
to ensure that there are no markups and dividends. The environment is similar to the well
known Huggett (1993) model and can be trivially solved with standard methods; we use it
to illustrate transparently how to construct all the objects that appear in Section 3.

The economy is populated with a continuum of infinitely lived consumers who receive
endowment shocks. Let ei,t be endowment of consumer i in period t. Endowments are
subject to aggregate shock Et and idiosyncratic shock εi,t and satisfy

ei,t = 1 + εi,t + Et.

Shocks Et and εi,t are mean zero and i.i.d. over time.
Competitive equilibrium in this economy is fully characterized by consumer budget con-

straint and the Euler equation

ci,t +Qtbi,t − 1− εi,t − Et − bi,t−1 = 0

Qt exp(−γci,t)− βEi,t exp(−γci,t) = 0
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as well as the feasibility ∫
ci,tdi− 1− Et = 0.

We now show how to use our approximation techniques in this simple example to find
competitive equilibrium. To make it similar to our notation in Section 3, let y = exp(−γc)
and re-write this problem as

ci,t +Qtbi,t − 1− εi,t − Et − bi,t−1 = 0

Qtyi,t − βEi,tyi,t+1 = 0

yi,t − exp(−γci,t) = 0

The first pair of equations correspond to (22) and define mapping F , the last equation
corresponds to (23) and define R. This problem is recursive in the distribution of agents’
assets. In our notation of Section 3 we have z = b and Ω is the distribution of b such
that

∫
bdΩ = 0. Vector x̃ of individual policy functions is given by three policy functions[

b̃ c̃ ỹ
]T

, and Q̃ is the only aggregate policy function in vector X. Selection matrix p

is simply
[

1 0 0
]
.

It is immediate to verify that without shocks consumption smoothing implies that b̄ (b) =

b for all b, so that Lemma 1 holds and equation (27) become

c̄ (b) + Q̄b̄ (b)− 1− b = 0

Q̄ȳ (b)− βȳ
(
b̄ (b)

)
= 0

ȳ (b)− exp (−γc̄ (b)) = 0

and ∫
c̄ (b) dΩ− 1 = 0,

which immediately gives Q̄ = β and c̄ (b) = 1 + (1− β) b, ȳ (b) = exp (−γc̄ (b)). From these
we construct mappings Rx =

[
1 0 0

]
, RX = 0, RE = −1, and Fx−(b) = 0,

Fx (b) =

 Q̄ 1 0

0 0 Q̄

0 −γ exp (−γc̄(b)) 1

 , Fx+ (b) =

 0 0 0

0 0 −β
0 0 0

 , FX (b) =

 b

ȳ (b)

0

 ,

Fε (b) =

 −1

0

0

 , FE (b) =

 −1

0

0

 , Fz(z) =

 −1

0

0

 .
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All elements of these matrices are know from the zeroth order expansion. Using them, we
construct first order approximations of policy functions as described in the text.

B Additional details for section 4

In this section we provide details of how we calibrate the initial distribution of nominal and
real claims using the Doepke and Schneider (2006) procedure. Then we show the dynamics
of the calibrated competitive equilibrium using simulations.

Initial distribution of nominal and real claims We combine the rich house-level data
on financial assets from the Survey of Consumer Finances (SCF) and the aggregated Flow
of Funds for intermediate investors to obtain nominal and real exposures. We start with
the 2007 Wave of the SCF and restrict our sample to married households who work at
least 100 hours. We drop observations where equity or bond holdings are more than 100
times the average yearly wage. These turned out to be about 0.5% of the total sample. We
extract household-level data on their financial holdings and categorize them into (i) deposits,
government bonds, liquid assets (net of unsecured credit), (ii) direct holdings of claims to
corporate equities and corporate bonds, and (iii) indirect holdings of (i) and (ii) through
mutual funds and retirement accounts.

We then use Flow of Funds data to obtain balance sheet information for private pensions
(Table L.118), for state and local pensions (Table L.119) and mutual funds (Table L.122).
Since pension funds have a nontrivial exposure to mutual funds and not vice versa, we
start with the aggregated mutual fund balance sheet and map it into broad categories that
represent deposits, corporate bonds, government bonds, corporate equities. In the year 2007,
mutual funds invested 84 percent of their assets in corporate equities and bonds, 16 percent
in government bonds, and other liquid claims.

We next turn pension funds and after aggregating private and public pension funds cate-
gorize the combined assets into deposits, government-issued debt, corporate debt, corporate
equities, and mutual funds. For the year 2007, the pension funds assets were invested 22
percent in mutual funds, 63 percent in corporate equities and bonds, and rest 15 percent in
government bonds and other liquid claims.

We define nominal claims as money-like assets plus government issued bonds and claims
to real profits as corporate bonds plus corporate equities. Using the information above, we
first consolidate the mutual funds into these two categories and then reassign the mutual
funds to pension funds, and finally the mutual funds and pensions funds to the individuals
in the SCF.

To fit initial states, we sample directly from the SCF log wages, nominal claims, and
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Figure 4: Simulated paths for aggregate variables using the calibrated competitive equilibrium

claims to real profits that we constructed. The SCF provides population weights for each
observation. Given these weights, we set the initial condition by drawing with replacement
a random sample of 100000 agents from a discrete distribution.

Properties of the competitive equilibrium In this section, we report several moments
from our calibrated competitive equilibrium along a transition path. We draw a sequence
of markup and TFP shocks of length 100 and simulate the competitive equilibrium policies
using 100000 agents. When we simulate the competitive equilibria, we keep the tax rates
Υt = Ῡ and use a Taylor rule with Q−1

t = 1
βΠ2.5

t .
In figure 4, we plot the time series for aggregate output and labor share. We see that

the aggregates are quite stationary and exhibit small fluctuations due to productivity and
markup shocks. In the table 3 we report cross-sectional moments at dates t ∈ {10, 25, 50, 75}.
Here we notice a small drift in the distribution of the risk-free assets. The more significant
drifts are in the correlations of of log wages and dividend shares as well as risk-free assets
and dividend shares which steadily declines over time and the correlation between bonds
and log wages that increase over time. These patterns are the outcomes of the features in
the baseline that claims to equity are not traded and households are subject to natural debt
limits.
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TABLE 3: DISTRIBUTIONAL MOMENTS ALONG THE PATH

Moments DATA MODEL
t = 10 t = 25 t = 50 t = 75

Std. share of equities 2.63 2.62 2.62 2.62 2.62
Std. bond 6.03 6.18 6.46 7.06 7.31
Std. ln wages 0.80 0.81 0.81 0.80 0.80
Std. ln hours 0.42 0.42 0.45 0.49 0.51
Corr(share of equities, ln wages) 0.40 0.37 0.33 0.27 0.22
Corr(share of equities, bond holdings) 0.62 0.59 0.50 0.33 0.22
Corr(bond, ln wages) 0.33 0.40 0.44 0.48 0.50

Notes: The data moments correspond to SCF 2007 wave with sample restrictions explained in the text and
after scaling wages, equity holdings, and debt holdings by the average yearly wage in our sample. The share
of equities refers to the ratio of individual equity holdings to the total in our sample such that the weighted
sum of shares equals one. The model columns correspond to simulated sample of 100000 agents using the
baseline calibration from section 4.

C Additional details for section 5

C.1 Cyclical properties of optimal policies

In this section, we present the counterpart of III in the main text for two intermediate
economies between our baseline HANK and RANK: (i) first, we turn off the idiosyncratic
shocks, and (ii) then, we additionally allow agents trade a full set of Arrow securities. In
the top panel of table 4, we see that the moments are very similar between the baseline
HANK and the HANK with no idiosyncratic risk. In the bottom panel of 4, we see that
HANK with complete markets is quite similar to RANK, and very different from either the
baseline HANK or the HANK with no idiosyncratic risk. From this, we can deduce that
optimal policies are driven mainly by how much of the aggregate shocks agents can hedge
using private markets.

C.2 Example with perfectly aligned distribution of equity shares

As noted in section 6.1, the quantitative driver of the need for insurance concerns against the
markup shocks is the misalignment of dividend income from labor income. To illustrate this
point, we construct a calibration with non trivial amount of inequality but in which these
shares are perfectly aligned. To achieve this, we take the distribution of labor productivities
from the benchmark calibration; assume Pareto weights such that optimal tax rates Ῡ equal
zero; and then assign dividend shares such that individuals initial share of labor income
εi,oni,0∫
i εi,0ni,0

equals their share of dividend income si. Figure 5 plots the optimal response and
its when the shares are aligned. We see that the alignment of shares nearly removes all need
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TABLE 4: MOMENTS

HANK HANK NO IDIOSYNCRATIC

Std. Correlations Std. Correlations

Dev(%) it Πt Wt lnYt Dev(%) it Πt Wt lnYt

Nominal Rate it 1.82 1 1.50 1
Inflation Πt 0.46 -0.94 1 0.41 -0.93 1
Labor Share Wt 2.13 -0.78 0.78 1 1.83 -0.69 0.73 1
Log Output lnYt 0.88 -0.31 0.10 0.12 1 0.82 -0.31 0.02 0.04 1

HANK COMPLETE MARKETS RANK

Std. Correlations Std. Correlations

Dev(%) it Πt Wt lnYt Dev(%) it Πt Wt lnYt

Nominal Rate it 0.87 1 0.87 1
Inflation Πt 0.03 0.01 1 0.03 -0.01 1
Labor Share Wt 1.20 -0.14 -0.25 1 1.18 -0.09 -0.32 1
Log Output lnYt 0.92 -0.98 -0.1 0.30 1 0.92 -0.98 -0.09 0.24 1

Notes: Moments are computed using allocations under HANK ( top left); HANK without idiosyncratic
shocks (top right); HANK with complete markets (bottom left); and RANK (bottom right) optimal monetary
policies.
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Figure 5: Optimal monetary response to a markup shock. The bold blue and red lines are the cali-
brated HANK and RANK responses respectively. The dashed black lines with circles are responses
under HANK when the shares of labor and dividend income are aligned.

for insurance bringing the policy responses in line with those of the representative agent.41

D Additional details for section 6

In the main body, we focused on the results under the baseline calibration and briefly discuss
sensitivity checks and special cases. In this section, we provide all the omitted details.

D.1 Sensitivity with respect to price adjustment costs

In this section, we present the impulse responses under alternative choices for the price
adjustment cost parameter ψ. As mentioned in section 6.1, we vary ψ from twice the baseline
calibration to one quarter of the baseline calibration, and also when ψ is approximately
zero. Figure 6 plots the responses to a markup shock while figure 7 plots responses to a
productivity shock.

As is readily apparent in both figures the effect on inflation is roughly linear for a large
range of ψ. Doubling ψ leads to a halving of inflation while halving ψ leads to a doubling
of inflation. The effect on the nominal rate is quite small. In the limit as ψ approaches
zero, the planner can no longer effect real variables through monetary policy and instead

41There is some difference in insurance needs arising from differential labor responses to the markup shock.
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Figure 6: Optimal monetary response to a markup shock. The bold blue lines are the responses for
the baseline calibration. The dashed black lines with squares, circles and triangles are responses un-
der a calibration in which we double the price adjustment costs parameter, half the price adjustment
cost parameter, and finally set it near zero, respectively.

relies more on unexpected inflation to provide insurance through the ex-post real return as
instead of distorting the allocation by varying the ex-ante real rate.
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Figure 7: Optimal monetary response to a TFP shock. The bold blue lines are the responses for the
baseline calibration. The dashed black lines with squares, circles and triangles are responses under
a calibration in which we double the price adjustment costs parameter, half the price adjustment
cost parameter, and finally set it near zero, respectively.
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Figure 8: Optimal monetary response to a markup shock. The bold blue lines are the responses
for the baseline calibration. The dashed black lines with squares and circles are responses under a
calibration with higher and lower labor taxes respectively.

D.2 Sensitivity with respect to choice of Pareto weights

Here we present sensitivity to the choice of Pareto weights. As mention in the main text,
we set Pareto weights using a thee parameter exponential specification, which loads on the
three dimensions of initial heterogeneity and maps to optimal levels of tax rates Ῡ, on labor
income, dividend income, and bond income. For the purpose of sensitivity, we vary these
implied tax rates in a large range: from 0% to 50%. In addition, we also study a Utilitarian
planner that weights all agents equally.

We start with the experiments that vary the labor income tax rate and the responses are
depicted in figures 8 and 9 to markup and productivity shocks, respectively. We see that the
responses to both the shocks are larger when labor tax rates are higher and lower when labor
taxes are lower. Raising the labor tax compresses labor shares pushing the economy further
away from full insurance, while decreasing the labor tax pushes the economy closer to full
insurance. In line with this, we see that the increasing the labor tax leads to a stronger
policy response while decreasing the labor tax diminishes the response.

Next we vary the tax on dividend income and report the results in figures 10 and 11.
Our baseline calibration exhibits are far more unequal distribution of dividend share than
labor shares. Increasing the dividend tax brings the economy closer to full insurance while
decreasing the dividend tax pushes the economy away from full insurance. As such, we
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Figure 9: Optimal monetary response to a TFP shock. The bold blue lines are the responses for
the baseline calibration. The dashed black lines with squares and circles are responses under a
calibration with higher and lower labor taxes respectively.

see that the response of inflation and other variables is stronger when the dividend tax is
low and weaker when it is high when we look at markup shocks. Since productivity shocks
affect wages and dividends symmetrically, we should expect that the responses are not very
different across cases that vary in the level of tax on dividend income. This prior is confirmed
in figure 11.

On the contrary, a bond tax directly controls the dispersion in after-tax bond income
which is key statistic for insurance against a productivity shock. In figures 12 and 13, we see
that a higher bond tax lowers the response to the productivity shock and leaves the response
to markup shock barely unchanged. To make our plots comparable with the baseline case
we report impulse responses to the after-tax nominal and real interest rates.

Finally, we study the utilitarian Planner who sets Pareto weights equal. In our setup a
utilitarian planner would set labor tax rate of 68%, a dividend tax rate of 116% and a bond
tax rate of 118%. These effects go in offsetting directions but overall we find little deviation
from the baseline responses. The results are summarized in figures 14 and 15.

D.3 Sensitivity with respect to the period of the shock

In this section, we compare optimal responses to a shock that occurs at t = 25 as well as
t = 50 with our baseline in which the shocks occur at t = 1. For brevity we only report the
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Figure 10: Optimal monetary response to a markup shock. The bold blue lines are the responses
for the baseline calibration. The dashed black lines with squares and circles are responses under a
calibration with higher and lower dividend taxes respectively.
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Figure 11: Optimal monetary response to a TFP shock. The bold blue lines are the responses
for the baseline calibration. The dashed black lines with squares and circles are responses under a
calibration with higher and lower dividend taxes respectively.
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Figure 12: Optimal monetary response to a markup shock. The bold blue lines are the responses
for the baseline calibration. The dashed black lines with squares are responses under a calibration
with higher bond taxes.
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Figure 13: Optimal monetary response to a TFP shock. The bold blue lines are the responses for
the baseline calibration. The dashed black lines with squares are responses under a calibration with
higher bond taxes.
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Figure 14: Optimal monetary response to a markup shock. The bold blue lines are the responses for
the baseline calibration. The dashed black lines with squares are responses under utilitarian Pareto
weights.
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Figure 15: Optimal monetary response to a TFP shock. The bold blue lines are the responses for
the baseline calibration. The dashed black lines with squares are responses under utilitarian Pareto
weights.
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Figure 16: Optimal monetary response to a markup shock. The bold blue lines are the responses
for the baseline calibration. The dashed lines are from the policies after initializing the the Ramsey
allocation with t = 1, 25, 50 years of the competitive equilibrium.

optimal monetary response. Figure 16 plots the response to a markup shock, and figure 17
plots a response to a TFP shock. We find the responses to be very similar. The response to
the TFP shock are slightly larger with time because the distribution of risk-free debt spreads
out with idiosyncratic shocks and therefore there is a larger role for providing insurance.

D.4 Sensitivity with respect to choice of initial conditions

In the main text, we set the initial distribution of productivities, risk-free nominal bonds
claims, and equity claims using the observed SCF distribution. Here we redo the optimal
policy starting at a joint distribution of wealth and productivities that arises after simulating
100 years in the calibrated competitive equilibrium with fixed policies. The results are
summarized in figures 18 and 19. The response to a markup shock is a balance of two
forces. On the one hand the passage of time diminishes the correlation between stock
holdings and labor earnings which renders inequality more misaligned according to our
distance measure. That increases the planner’s gains from providing insurance. On the other
hand the correlation of shares of equities and bond holdings diminishes which diminishes
the insurance gains from the unanticipated inflation. The increase in the spread of nominal
debt leads the planner to be more responsive to a TFP shock.
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Figure 17: Optimal monetary response to a TFP shock. The bold blue lines are the responses for
the baseline calibration. The dashed lines are from the policies after initializing the the Ramsey
allocation with t = 1, 25, 50 years of the competitive equilibrium.
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Figure 18: Optimal monetary response to a markup shock. The bold blue lines are the responses
for the baseline calibration. The dashed lines are from the policies after initializing the the Ramsey
allocation with t = 100 years of the competitive equilibrium.
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Figure 19: Optimal monetary response to a TFP shock. The bold blue lines are the responses for
the baseline calibration. The dashed lines are from the policies after initializing the the Ramsey
allocation with t = 100 years of the competitive equilibrium.

D.5 Example with poor hand-to-mouth agents

We can also consider an alternative calibration of the hand-to-mouth agents were we restrict
bottom 15% of the cash-in-hand distribution to be hand-to-mouth. This environment is
similar in spirit to what would arise in an standard Aiyagari model as the new hand to
mouth agents more homogeneous and are almost entirely reliant on labor income. We plot
the optimal policy response with only poor hand-to-mouth agents using the dashed red line
in figure 20. As opposed to the hand-to-mouth setting in the main text that is calibrated
to the evidence in Jappelli and Pistaferri (2014), the optimal policy with only poor hand
to mouth agents is almost identical to that of the baseline economy as the government can
construct a transfer scheme to smooth the consumption of the hand to mouth agents by
mirroring the path of wages.

D.6 Heterogeneous marginal propensity to consume from dividend in-
come and wage income

In this section, we study optimal monetary responses in a variant in which liquidity con-
strained agents can smooth dividend income. This results in a lower marginal propensity to
consume out of income from capital income relative to income from labor. To model this,
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Figure 20: Optimal monetary responses with hand-to-mouth agents. The top panel plots responses
to a markup shock and the bottom panel plots responses to a productivity shocks.
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we change the savings rule for agents with the hi = 1 from PtQtbi,t = P0Q0bi,0 to

PtQtbi,t = P0Q0bi,0 + siPtD̃t

D̃t = D̃t−1 + (1− divMPC)×
(
Dt −Dt

)
where D̄t is the long run dividend level. The state variable D̃t is similar to holdings of
mutual fund in which households save the fluctuations in their dividend income and are
paid at a risk-free on the balance in return. For the rest of the section, we set divMPC=0.
In figure 21 and 22, we plot optimal monetary responses to the markup and the productivity
shock, respectively.

As we describe in the main text in section 6.2, heterogeneity in marginal propensity to
consume across households makes the path of the optimal interest rate smoother. Manip-
ulating the timing of lump sum transfers is not sufficient to insure the consumption path
of the constrained agents who differ in their holdings on stocks and bonds. The planner
uses monetary policy to directly smooth real returns and wages. While implementing such
smoothing, there is a tension: smoothing the wage and dividend share that helps liquidity
constrained stockholders requires movements in natural rates that hurt liquidity constrained
bond holders. Allowing for the ability to additionally smooth dividends relaxes this tension
and the results in paths of nominal rates that are even more smooth. Quantitatively, this
effect is larger for markup shocks than for productivity shocks.

D.7 Optimal monetary-fiscal response with mutual fund

In this section, we present optimal monetary response to productivity shock, as well as the
optimal monetary-fiscal response to both under the mutual fund calibration. The optimal
monetary response to the productivity shock is in figure 23.

One aspect of the mutual fund calibration is that it enforces a perfect correlation between
bond and dividend wealth following any history of shocks. As a result, the optimal policy
the bond and dividend tax rates are indeterminate as the planner can achieve the same
effective returns with either instrument. To make the results comparable with our benchmark
calibration, we assume that the planner adjusts the dividend tax in response to a markup
shock and the bond rate in response to a markup shock. The results are plotted in figures
24 and 25. In both cases the optimal policy under the mutual fund is almost identical to
the benchmark calibration.
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Figure 21: Optimal monetary responses to the markup shock. The bold blue lines are responses
under the baseline and the dashed black lines with circles are responses with heterogeneous marginal
propensities to consume out of dividend and labor incomes.
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Figure 22: Optimal monetary responses to productivity shock. The bold blue lines are responses
under the baseline and the dashed black lines with circles are responses with heterogeneous marginal
propensities to consume out of dividend and labor incomes.
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Figure 23: Optimal monetary responses to productivity shock. The bold blue lines are responses
under the baseline and the dashed black lines with circles are responses under the mutual fund
setting.
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Figure 24: Optimal monetary-fiscal response to a markup shock. The bold red are the benchmark
response while the bold blue lines are the responses for the mutual fund calibration.
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Figure 25: Optimal monetary-fiscal response to a TFP shock. The bold blue lines are the response
under the baseline while the dashed black lines are the responses for the mutual fund calibration.

D.8 Optimal monetary and monetary-fiscal response to a TFP shock with
heterogeneous labor income exposures

As noted in section 6.4 we calibrate the coefficients of f(θ) = f0 + f1θ+ f2θ
2 by simulating

the competitive equilibrium for 30 periods and extracting “recessions” as consecutive periods
where the growth rate of output one standard deviation below zero. Following the empirical
procedure in Guvenen et al. (2014), we rank workers by percentiles of their average log labor
earnings 5 years prior to the shock and compute the percent earnings loss for each percentile
relative to the median. The parameters f1, f2 are set to match earnings losses of the 5th,
95th percentiles. The parameter f0 is set so that agent with the median productivity faces
a drop similar to the aggregate TFP. Figure 26 plots the earnings losses by percentile of the
income distribution relative to those found by Guvenen et al. (2014).

Figure 27 plots the responses of the monetary-fiscal policy. When the government has
access to fiscal policy, it no longer needs to rely solely on monetary policy. In figure 27 we
see that in response to an inequality shock the planner raises the labor tax rate by nearly
1% and then allows it to mean revert back as the TFP shock dissipates. This mean reversion
arises because the level of inequality loads on TFP and partly captures the forces laid out in
Werning (2007) where the planner responds to changes in relative labor productivity though
changes in the labor tax rate. Unlike in baseline, case when nearly all insurance can be
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Figure 26: Relative income losses after recessions in data (solid line) and model (dashed line).

provided through a surprise tax on bond income the planner must also rely on a surprise
increase in the dividend tax rate to partially provide insurance. This highlights a feature
of heterogeneous agent models. Unlike representative agent models where a single tax on
returns can complete markets, with heterogeneous agents one tax may not provide insurance
for all agents and the planner may exploit multiple different asset taxes.

In figure 28, we apply our decomposition to the monetary response with setting with
heterogeneous exposures. The small difference in the rate of inflation in the HANK complete
market relative to RANK case captures the redistribution. In figure 27, we saw that labor
income taxes are used to respond to inequality even with complete markets. When the
planner cannot adjust labor income tax, wages and thereby inflation is used to attain similar
objectives.
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Figure 27: Optimal monetary-fiscal response to a TFP shock. The bold blue lines are the response
under the baseline calibration while the dashed black lines are the responses calibration with het-
erogeneous exposures to TFP shocks
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Figure 28: Decomposition of the optimal monetary response to a TFP shock with heterogeneous
exposures.The bold blue and red lines are the calibrated HANK and RANK responses respectively.
The dashed black lines with squares and circles are responses under HANK with idiosyncratic shocks
shutdown and with complete markets, respectively.
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