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I Introduction

This paper describes links between the max-min expected utility theory of Gilboa and

Schmeidler (1989) and the applications of robust control theory proposed by Anderson,

Hansen and Sargent (2000) and Dupuis, James and Petersen (1998).1 The max-min expected

utility theory represents uncertainty aversion with preference orderings over decisions c and

states x, for example, of the form

inf
Q2Q

EQ

�Z 1

0

exp(�Æt)U(ct; xt)d t

�
(1)

where Q is a set of measures over c; x, and Æ a discount rate. Gilboa and Schmeidler's theory

leaves open how to specify the set Q in particular applications.2

Criteria like (1) also appear as objective functions in robust control theory. Robust control

theory speci�es Q by taking a single `approximating model' and statistically perturbing it;
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Q is typically parameterized only implicitly, through a positive penalty variable �. This

paper describes how to transform that `penalty problem' into a closely related `constraint

problem' like (1). These two formulations di�er in subtle ways but are connected via the

Lagrange multiplier theorem. The implicit preference orderings di�er but imply the same

decisions. Both preferences are recursive, and therefore both are time consistent. However,

time consistency for the constraint speci�cation requires that we introduce a new endogenous

state variable to restrict how probability distortions are reconsidered at future dates. To

facilitate comparisons to Anderson et al. (2000) and Chen and Epstein (2000), we cast our

discussion within continuous-time di�usion models.

II A Benchmark Resource Allocation Problem

We �rst pose a discounted, in�nite time optimal resource allocation problem without regard

to robustness. Let fBt : t � 0g denote a d-dimensional, standard Brownian motion on an

underlying probability space (
;F ; P ). Let fFt : t � 0g denote the completion of the �ltra-

tion generated by this Brownian motion. The actions of the decision-maker form a stochastic

process fct : t � 0g that is progressively measurable. Let U denote an instantaneous utility

function, and write the discounted objective as supc2C E
�R1

0
exp(�Æt)U(ct; xt)d t

�
subject

to:

dxt = �(ct; xt)dt+ �(ct; xt)dBt (2)
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where x0 is a given initial condition and C is a set of admissible control processes. We

use P to denote the stochastic process for xt generated by (2). Equation (2) will be the

`approximating model' of later sections, to which all other models in Q are perturbations.

We restrict � and � so that any progressively measurable control c in C implies a pro-

gressively measurable state vector process x. We assume throughout that the objective for

the control problem without reference to robustness has a �nite upper bound.

III Model Misspeci�cation

The decision maker treats (2) as an approximation by taking into account a class of alterna-

tive models that are statistically diÆcult to distinguish from (2). To construct a perturbed

model we replace Bt in (2) by B̂t+
R t

0
hsds where h is progressively measurable and fB̂tg is a

Brownian motion. Then we can write the distorted stochastic evolution in continuous time as

dxt = �(ct; xt)dt+�(ct; xt)(htdt+dB̂t) under the Brownian motion probability speci�cation.

A Changes in Measure

The process h is used as device to transform the probability distribution P on (
;F) into a

new distributionQ that is absolutely continuous with respect to P . An absolutely continuous

change in measure for a stochastic process can be represented in terms of a nonnegative

martingale. LetQ denote a probability distribution that is absolutely continuous with respect

to P . Associated with Q is a family of expectation operators applied to random variables

that are Ft measurable for each t. Thus we can write EQgt = EPgtqt for any bounded gt
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that is Ft measurable and some nonnegative random variable qt that is Ft measurable. The

random variable qt is called a Radon-Nikodym derivative. In our setting, we use the Girsanov

Theorem to depict qt as qt = exp
hR t

0
h� � dB̂� �

R t

0
jh� j2

2
dt
i
: We use this representation to

justify our use of h to parameterize absolutely continuous changes of measure.3 When h is

zero we revert to the benchmark control problem.

B Relative Entropy of a Stochastic Process

Consider a scalar stochastic process fgtg that is progressively measurable. This process is

a random variable on a product space. Form 
� = 
 � R
+ where R+ is the nonnegative

real line; form the corresponding sigma algebra F� as the smallest sigma algebra containing

Ft
Bt for any t where Bt is the collection of Borel sets in [0; t]; and form P � as the product

measure P �M where M is exponentially distributed with density Æ exp(�Æt). We let E�

denote the expectation operator on the product space. The E� expectation of the stochastic

process fgtg is by construction E�(g) = Æ
R1
0

exp(�Æt)E(gt)dt:

We extend this construction by using the probability measure Q. Form Q� = Q �

M . The process fqtg is a Radon-Nikodym derivative for Q� with respect to P �: E�
Q(g) =

Æ
R1
0

exp(�Æt)E(qtgt)dt: The Q
� can be used to evaluate discounted expected utility under

an absolutely continuous change in measure.

We measure the discrepancy between the distributions of P and Q as the relative entropy

between Q� and P �: R(Q) = Æ
R1
0

exp(�Æt)EQ (log qt) dt =
R1
0

exp(�Æ�)EQ

�
jh� j2

2

�
d�: Rel-

ative entropy is convex in the measure Q� (e.g. see Dupuis and Ellis (1997)). Relative
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entropy is nonnegative and zero only when the probability distributions P � and Q� agree.

This is true only when the process h is zero.

IV Two Robust Control Problems

We study the relationship between two robust control problems. Let EQ denote the math-

ematical expectation taken with respect to the stochastic process fBt : t � 0g where

dBt = dB̂t + htdt and fB̂t : t � 0g is a Brownian motion under both P and Q. Thus

we parameterize Q by the choice of drift distortion fhtg, and use the state evolution equa-

tion:

dxt = �(ct; xt)dt+ �(ct; xt)dBt: (3)

We de�ne two control problems. A multiplier robust control problem is

supc2C infQEQ

�R1
0

exp(�Æt)U(ct; xt)d t
�
+ �R(Q) subject to (3). A constraint robust con-

trol problem is supc2C infQEQ

�R1
0

exp(�Æt)U(ct; xt)d t
�
subject to (3) and R(Q) � �. Note

that R(Q) � � is a single intertemporal constraint on the entire path of distortions h.

These two problems are closely related. We can interpret the robustness parameter �

in the �rst problem as an implied Lagrange multiplier on the speci�cation-error constraint

R(Q) � �.4 Use � to index a family of multiplier robust control problems and � to index a

family of constraint robust control problems. Because not all values of � are admissible, we

consider only nonnegative values of � for which it is feasible to make the objective function

greater than �1. Call the closure of this set �. In Hansen, Sargent, Turmuhambetova and
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Williams (2001) we provide assumptions and a proof for:

Claim IV.1. Suppose that for � = ��, c� and Q� solve the constraint robust control problem.

There exists a �� 2 � such that the multiplier and constraint robust control problem have the

same solution.

To construct the multiplier, let J(c; �) satisfyJ(c; �) = infQEQ

�R1
0

exp(�Æt)U(ct; xt)d t
�
;

subject to R(Q) � � and J�(�) = supc2C J(c; �): As argued by Luenberger (1969), J(c; �)

is decreasing and convex in �. These same properties carry over to the optimized (over c)

function J�. Given ��, we let �� be the negative of the slope of the subgradient of J� at ��,

i.e., �� is the absolute value of the slope of a line tangent to J� at ��.

Hansen et al. (2001) also establish:

Claim IV.2. Suppose J� is strictly decreasing, �� is in the interior of �, and that there

exists a solution c� and Q� to the multiplier robust control problem. Then that c� also solves

the constraint robust control problem for � = �� = R(Q�).

Claims IV.1 and IV.2 are observational equivalence results because they describe how

the multiplier and constraint robust control problems give rise to the same decisions. By

adapting arguments in Hansen and Sargent (1995) and Anderson et al. (2000), it can be

shown that the multiplier robust control problem has the same solution as a recursive risk-

sensitive control problem, where ���1 is the risk-sensitivity parameter.5 Claims IV.1 and

IV.2 thus link a risk-sensitive control problem to the constraint robust control problem.
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V Recursivity of the Multiplier Formulation

The multiplier robust control problem can be represented as supc infh Ê
R1
0

exp(�Æt)

�
U(ct; xt) +

�
2
(ht � ht)

�
d t subject to dxt = �(ct; xt)dt+ �(ct; xt)(htd t+ dB̂t): We can view h

as a second control process in a two-player zero-sum game. Given h we can �x the distribu-

tion for B̂ as a multivariate standard Brownian motion. Then there is a single probability

distribution in play and we use the notation Ê to denote the associated expectation opera-

tor. Fleming and Souganidis (1989) tell how a Bellman-Isaacs condition justi�es a recursive

solution by relating a solution to a date zero commitment game to a Markov perfect game

in which the decision rules of both agents are functions of the state vector xt. The Bellman-

Isaacs condition is:

Assumption V.1. There exists a value function V such that:

ÆV = max
c

min
h

U(c; x) +
�

2
h � h+ [�(c; x) + �(c; x)h] �

@V (x)

@x

+trace

�
�(c; x)0

@2V (x)

@x@x0
�(c; x)

�

= min
h

max
c

U(c; x) +
�

2
h � h+ [�(c; x) + �(c; x)h] �

@V (x)

@x

+trace

�
�(c; x)0

@2V (x)

@x@x0
�(c; x)

�
:

The Bellman-Isaacs condition de�nes a Bellman equation for a two-player zero-sum game in

which both players decide at time 0 or recursively. The associated decision rules for c and h

also solve our two robust control problems.
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VI Two Preference Orderings

While the Lagrange multiplier theorem links the two robust control problems, the implied

preference orders di�er. But they are related at the common solution to both problems,

where their indi�erence curves are tangent.

A Preference Orderings

To construct two preference orderings, we assume an endogenous state vector st:

dst = �s(st; ct)dt: (4)

where this di�erential equation can be solved uniquely for st given s0 and process fcs : 0 �

s < tg. We assume that the solution is a progressively measurable process fst : t � 0g.

We think of st as an endogenous component of the state vector xt. We can use st to make

preferences nonseparable over time as in models with habit persistence. We use the felicity

function u(st; ct) to represent preferences that are additively separable in (st; ct).

We de�ne preference orders for times � � 0 in terms of two functions, D� (c; s� ), R� (Q).

First, de�ne D� (c; s� ) =
R1
�

exp(�Æt)u(st+� ; ct+� )dt where s� is the date � initial condition

for di�erential equation (4). The impact of consumption between dates 0 and � is captured

by the state variable s� .

Next, de�ne a time � model discrepancy measure

R� (Q) = Æ
R1
0

exp(�Æt)EQ (log qt+� � log q� jF� ) dt: The local evolution ofR(Q) is dRt(Q) =
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h
� jhtj2

2
+ ÆRt(Q)

i
dt with initial condition: R0(Q) = R(Q). We use D� (c; s� ) to represent

both preference speci�cations at � , and use R� (Q) to help us represent preferences under

the constraint speci�cation.

For �xed �, we represent the date � multiplier preferences using the valuation function

Ŵ� (c; �) = infQEQ [D� (c; s� )jF� ] + �R� (Q): For a nonnegative r� that is F� measurable, we

represent the time � constraint preferences in terms of the valuation function W� (c; r� ) =

infR� (Q)�r� EQ [D� (c; s�)jF� ] : For convenience, denote the time 0 versionW0(c; r0) =W (c; �)

and the time 0 version Ŵ0(c; �) = Ŵ (c; �).

We de�ne preference orderings as follows. For any two progressively measurable c and

c�, c� �� c if W (c�; �) � W (c; �): For any two progressively measurable c and c�, c��̂�c if

Ŵ (c�; �) � Ŵ (c; �): We would use analogous de�nitions for time � versions of the preference

orderings.

The multiplier preference ordering coincides with a recursive, risk sensitive preference

ordering provided that � > 0.6

B Relation between the Preference Orders

The two time 0 preference orderings di�er. Furthermore, given �, there exists no � that makes

the two preference orderings agree. However, the Lagrange Multiplier Theorem delivers a

weaker result that is very useful to us. While globally the preference orderings di�er, indif-

ference curves that pass through the solution c� to the optimal resource allocation problem

are tangent.
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Use the Lagrange Multiplier Theorem to writeW (c�; ��) = max� infQEQD(c�)+� [R(Q)� ��] ;

and let �� denote the maximizing value of �, which we assume to be strictly positive. Sup-

pose that c� ��� c. Then Ŵ (c; ��)� ���� � W (c; ��) � W (c�; ��) = Ŵ (c�; ��)� ����: Thus

c��̂��c.

The observational equivalence results from claims IV.1 and IV.2 apply to consumption

pro�le c�. At this point, the indi�erence curves are tangent, implying that they are supported

by the same prices. Observational equivalence claims made by econometricians typically refer

to equilibrium trajectories and not to o�-equilibrium aspects of the preference orders.

VII Recursivity of the Preference Orderings

To study time consistency, we describe the relation between the time zero and time � > 0

valuation functions that de�ne preference orders. At date � , some information has been

realized and some consumption has taken place. Our preference orderings focus the attention

of the decision-maker on subsequent consumption in states that can be realized given current

information. These considerations underlie our use of D� and R� to depict W� (c; �) and

Ŵ� (c; r� ). The function D� reects a change in vantage point as time passes. Except

through s� , the function D� depends only on the consumption process from date � forward.

In addition, at date � the decision maker focuses on states that can be realized from date �

forward. Expectations used to average over states are conditioned on date � information. In

this context, while conditioning on time � information, it would be inappropriate to constrain

probabilities using only date zero relative entropy. Imposing a date zero relative entropy
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constraint at date � would introduce a temporal inconsistency by letting the minimizing

agent put no probability distortions at dates that have already occurred and in states that

at date � cannot be realized. Instead, we make the date � decision-maker explore only

probability distortions that alter his preferences from date � forward. This leads us to use

R� as a conditional counterpart to our relative entropy measure.

Our entropy measure has a recursive structure. Date zero relative entropy is easily

constructed from the conditional relative entropies in future time periods. We can write:

R(Q) = EQ

�Z �

0

exp(�Æt)
jhtj

2

2
dt+ exp(�Æ�)R� (Q)

�
(5)

The recursive structure of the multiplier preferences follows from this representation. In

e�ect the date zero valuation function Ŵ can be separated by disjoint date � events and

depicted as Ŵ (c; �) = inffht:0�t<�g Ê
�R �

0
exp(�Æt)

h
U(ct; st) + �

jhtj2

2

i
dt+ Ŵ� (c; �)

�
subject

to

dBt = dB̂t + htdt (6)

dst = �s(st; ct)dt: (7)

The constraint preferences at time � make the decision-maker explore changes in proba-

bility distributions from date � forward. We also want to exclude the possibility of changing

the probabilities of events known in previous dates and of events known not to occur. For the

date zero constraint preferences, given c we can �nd an ~h process used to construct W (c; �).
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Associated with this ~h process, we can compute the time � conditional relative entropy

R� ( ~Q). Thus, implicit in the construction of the valuation function W (c; �) is a partition of

relative entropy over time and across states as in (5). At date � we ask the decision-maker to

explore only changes in beliefs that e�ect outcomes that can be realized in the future. That

is, we impose the constraint R� (Q) � r� for r� = R� ( ~Q) along with �xing ~ht for 0 � t < � .

Notice that with this constraint imposed, R(Q) � R( ~Q) so that we continue to satisfy our

date zero relative entropy constraint. We tie the hands of the date � decision-maker to inherit

how conditional relative entropy is to be allocated across states that are realized at date � .

(Chen and Epstein (2000) avoid this extra hand-tying by imposing separate constraints on h

for every date and state.) We can write the valuation function for the constrained problem

recursively as W (c; �) = inffht:0�t<�g Ê
R �

0
exp(�Æt)U(ct; st)dt + ÊW� (c; r�) subject to (6),

(7) and r� � 0, where r� solves drt =
�
Ært �

jhtj2

2

�
dt for 0 � t < � with initial condition

r0 = �.

VIII Concluding Remarks

Empirical work in macroeconomics and �nance typically assumes a unique and explicitly

speci�ed dynamic statistical model. To use Gilboa and Schmeidler (1989)'s multiple-model

expected utility theory, we have turned to robust control theory for a parsimonious (one pa-

rameter) set of alternative models with rich alternative dynamics. Those alternative models

come from perturbing the decision maker's approximating model to allow its shocks to feed

back on state variables arbitrarily. This allows the approximating model to miss functional
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forms, the serial correlation of shocks and exogenous variables, and how those exogenous

variables impinge on endogenous state variables. Anderson et al. (2000) show how the mul-

tiplier parameter in the robust control problems indexes a set of perturbed models that

is diÆcult to distinguish statistically from the approximating model given a sample of T

time-series observations.
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Notes

1Lars Peter Hansen, Department of Economics, University of Chicago, 1126 E. 59th St.,

Chicago, Illinois 60637; Thomas J. Sargent, Hoover Institution and Department of Eco-

nomics, Stanford University, Stanford, California 94305.

2This paper summarizes detailed arguments in Hansen et al. (2001).

3Perturbations that are not absolutely continuous are easy to detect statistically, which

is the reason that Anderson et al. (2000) impose absolute continuity on the perturbations.

4 This connection has been explored in informally in Hansen, Sargent and Tallarini (1999)

and formally in Hansen and Sargent (2001) in the context of linear-quadratic control problem.

We mimic arguments in Peterson, James and Dupuis (2000) and Luenberger (1969).

5Risk-sensitive control theory makes decision rules more responsive to risk by making

an exponential adjustment to the objective of the decision-maker in the same way used by

Epstein and Zin (1989) and DuÆe and Epstein (1992). Hansen and Sargent (1995) and

Anderson et al. (2000) show how risk-sensitive control theory can be motivated through

recursive utility theory.

6Under the Brownian motion information structure, these multiplier preferences coincide

with a special case of stochastic di�erential utility studied by DuÆe and Epstein (1992)
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