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Abstract

This paper provides a general framework for the analysis of self-con�rming policies.
We �rst study self-con�rming equilibria in recurrent decision problems with incomplete
information about the true stochastic model. Next we illustrate the theory with a char-
acterization of stationary monetary policies in a linear-quadratic setting.

Key words: Self-con�rming equilibrium, partial identi�cation, monetary policy.

1 Introduction

Perspective Policies often persist. Absent switching costs, the reason must be that the
goals and beliefs of the policy maker also persist, which is possible only if long-run data
coincide with what the policy maker expected. This belief-con�rmation property does not
imply that a persistent policy is justi�ed by correct beliefs: a policy maker�s expectations
about the consequences of alternative policies might be incorrect. This paper provides a
framework for the analysis of such self-con�rming policies. We �rst develop a general analysis
of self-con�rming equilibria in recurrent decision problems with incomplete information about
the true stochastic model. Next we illustrate the theory with a characterization of stationary
monetary policies in a linear-quadratic setting.

Consider an agent who makes recurrent decisions under uncertainty. In each period he
takes an action a that, via a feedback function f , delivers an observable outcomem = f (a; s)
depending upon an unobservable state of nature s. A �xed, unknown stochastic model
�� (that is, a probability measure over the states) determines state realizations. The agent
knows the feedback function f , but not the stochastic model ��. There are no structural links
between periods, but the agent observes the realized outcome in each period t and therefore
updates his subjective belief �t about the �xed unknown model �

�. Over time, given a
true model �� and a prior belief, the intertemporal subjective expected utility maximizing
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and the participants to conferences and seminars at Bocconi University, CISEI-2015 (Capri), D-TEA 2015
(HEC, Paris), LUISS (Rome), New York University, Scuola Normale Superiore (Pisa), and the University of
Vienna for useful comments. Pierpaolo Battigalli and Massimo Marinacci gratefully acknowledge �nancial
support from ERC grants 324219 and 670337.
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strategy yields a convergent active learning process, i.e., a stochastic process of actions and
updated beliefs (at; �t) that converges almost surely.

1 The realized stochastic limit (a�; ��)
almost surely satis�es two properties:

� (con�rmed beliefs) �� assigns probability 1 to the set of models � that are observation-
ally equivalent to the true model �� given action a�;2

� (subjective best reply) action a� maximizes the agent�s one-period subjective expected
utility given belief ��.

We take �con�rmed beliefs�and �subjective best reply�to be the characterizing proper-
ties of stationary actions and beliefs. We call self-con�rming equilibrium an action-belief pair
(a�; ��) with these properties. The key observation is that the con�rmed belief �� need not
assign probability one to the true stochastic model �� and, therefore, action a� may di¤er
from the objective best reply to ��. In other words, although equilibrium beliefs are disci-
plined by long-run empirical frequencies of observations, they do not necessarily concentrate
on the true model ��, so the long-run action a� may be objectively sub-optimal.

In a self-con�rming equilibrium, decision makers might well be best replying to empiri-
cally con�rmed, but wrong views about the actual data generating model. They may thus
get trapped in self-con�rming behavior that di¤ers substantially from the objectively optimal
behavior postulated by rational expectations models.3 This trap and the resulting welfare
loss is, at the same time, especially relevant and disturbing for policy making. It is relevant
when policy makers cannot experiment thoroughly but instead have to rely on evidence that
is a by-product of their actual policies; it is disturbing because welfare in self-con�rming
equilibria can be lower than in rational expectations equilibria. The main contribution of
the present paper is to provide a formal steady-state framework in which this important
policy issue can be rigorously studied. We then illustrate the macroeconomic relevance of
our analysis in the context of a 70�s U.S. policy debate about whether there is a trade-o¤
between in�ation and unemployment that can be systematically exploited by a benevolent
policy maker.4

Illustrative Application We consider a stylized model economy in which a policy maker
chooses average in�ation a and observes an unemployment/in�ation outcome (u; �) = f (a; s)
that depends on the unobservable state s of the economy. This model economy can be
interpreted as re�ecting an aggregate response function of a continuum of market agents.
Assuming a standard quadratic loss function, we completely characterize the self-con�rming
equilibrium map that associates each conceivable model economy with a corresponding set of

1See, e.g., Easley and Kiefer (1988) and the references therein. Battigalli et al. (2016) describe the exact
relationship between our framework and the stochastic control framework of Easley and Kiefer, showing that
they are essentially equivalent.

2That is, to models that induce the same distribution of outcomes as �� when a� is chosen.
3 In order to remove pervasive inconsistencies of pre-rational-expectations models, rational-expectations

models often assume that decision makers know the true data generating process, thus making decisions
objectively optimal. Hence, rational-expectations models feature a Nash-type notion of equilibrium, where
equilibrium choices are best replies to correct beliefs.

4But the scope of our analysis goes well beyond that. For example, similar considerations of the im-
possibility of thorough experimentation and of its consequences in terms of welfare naturally also apply to
environmental policies.
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self-con�rming beliefs and monetary policies. Given a �xed policy, the monetary authority
infers from long-run data the moments of the joint distribution of u and �, and hence the
slope of the Phillips curve; but it cannot infer the true policy multiplier. We show that
observing the moments of the distribution of (u; �) leaves the monetary authority with a
residual one-dimensional uncertainty about the model economy, parameterized by the direct
impact of policy on unemployment (i.e., neglecting the impact on u through �).

For example, even if the true model is a rational expectations augmented Phillips curve,
in equilibrium the monetary authority may believe that its policy does not shift the Phillips
curve and hence that there is an exploitable trade-o¤ given by the slope of the Phillips regres-
sion; the (Keynesian) monetary policy is optimal given a (falsely) conjectured trade-o¤, the
subjectively expected unemployment rate coincides with natural rate, and average in�ation
is (objectively) excessive. But we do not take a stand on what the true model is and we also
consider self-con�rming equilibria where the monetary authority pushes average in�ation to
zero falsely believing that there is no exploitable trade-o¤. Whatever the case, our analy-
sis shows how partial identi�cation may trap policy makers in inferior, yet self-con�rming,
policies that result in signi�cant welfare losses compared to the objectively optimal policies.

Manifesto Partial identi�cation pervades economic policy debates: despite the use of
sophisticated econometric techniques, economists disagree about how the economy works.
Therefore, at least some economists must be wrong, but all of them should hold beliefs
consistent with the data, which indeed only partially identify the relevant unknowns. The
agents that inhabit our models � in particular, policy makers � are in a similar position,
but their partial identi�cation problem is exacerbated because what they can infer about
the relevant unknowns depends on their own behavior, so it is endogenous. Thus, di¤er-
ent policies justi�ed by di¤erent beliefs � so, ultimately, by di¤erent (possibly con�icting)
economic views �may be self-con�rming. Such beliefs may even be dogmatic, for example
because they assign probability one to a parameter vector resulting from observed long-run
frequencies and untested, possibly false, identifying hypothesis.

To escape the partial identi�cation trap more experimentation may be advisable. But
we do not see an easy way out: large-scale social experiments may have huge costs, while
small-scale ones may have little external validity.

Be that as it may, this paper provides an analysis of these situations that is at the same
time general enough to be portable to many policy decisions problems and su¢ ciently speci�c
to yield useful characterizations and welfare-relevant implications.

Roadmap As anticipated, the �rst part of this paper (Sections 2-4) develops an abstract
analysis of self-con�rming choices. The general contribution of this part is to provide a
theoretical framework that is:

� broad enough to include the �nite setting in which self-con�rming analysis was origi-
nally developed within game theory as well as the in�nite setup relevant for macroeco-
nomic policy analysis;

� speci�c enough to provide welfare implications for relevant policy questions with the
backdrop of a neat learning foundation.
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The main questions that we address at this abstract level concern the scope of partial
identi�cation (Section 3), equilibrium values, and the resulting e¤ects on welfare (Sections
4.2 and 4.3).

The second part of this paper (Section 5) builds on the abstract analysis to gain a bet-
ter perspective and novel results on the classical debate on the possibility of systematically
exploiting unemployment/in�ation trade-o¤s. In particular, the scope of partial identi�ca-
tion is characterized in Section 5.2, while equilibria, their values, and the welfare e¤ects of
model uncertainty are analyzed in Section 5.3. Sections 5.4 and 5.5 illustrate the analysis
by considering two important special cases.

The Appendix collects some more technical material and all the formal proofs.5

Related literature Our analysis provides a bridge between two strands of literature, one
in game theory and the other in macroeconomics, that are concerned with related issues, but
have so far proceeded with limited cross fertilization and very di¤erent languages.

In the game-theoretic literature, a strategy pro�le that satis�es the properties of con-
�rmed beliefs and subjective best reply has been called �conjectural equilibrium�(Battigalli,
1987, Battigalli and Guaitoli, 1988), �self-con�rming equilibrium�(Fudenberg and Levine,
1993a) and �subjective equilibrium�(Kalai and Lehrer, 1993, 1995). Here we adopt the more
self-explanatory terminology of Fudenberg and Levine. We refer the reader to Battigalli et
al. (2015) for an up to date discussion of this literature. The latter paper is focused on the
interaction between ambiguity aversion and self-con�rming equilibria in games. Here instead
we consider a decision maker who maximizes his subjective expected utility (i.e., he is ambi-
guity neutral). This simpli�es the general analysis analysis without a¤ecting the illustrative
application.

The macroeconomic literature focuses on policy making and learning dynamics. Sargent
(1999) explains the rise and fall of US in�ation assuming that the monetary authority se-
quentially estimates a Phillips curve, ignoring its impact on expectations, and best replies
to updated beliefs. Standard OLS estimation leads to a Keynesian self-con�rming equilib-
rium, but if instead recent observations are given more weight, because the monetary policy
maker�s decisions make the Phillips curve slowly shift and rotate over time, the process �rst
approach a neighborhood of this equilibrium, but then abandons it, as the Phillips curve
looks �more vertical�and after some time in�ation is lowered.6 Cho et al. (2002) and Sar-
gent and Williams (2005) sharpen the theoretical analysis of such learning dynamics.7 Cho
and Kasa (2015) notice that the low in�ation outcome at the end of Sargent�s (1999) nar-
rative �according to the postulated learning model �cannot persist either; therefore, they
consider an alternative stochastic learning dynamic in which the policy maker best responds
to the current estimate of an aggregate supply model, out of a set of conceivable functional
forms, as long as the model passes a statistical test; when the model is rejected, a new model
is selected at random and the process is restarted. Also, in their model the Keynesian self-

5Some further topics are analyzed in the working paper version.
6See also, Cogley and Sargent (2005), Sargent et al. (2006), and Cogley et al. (2007).
7The phrase �escaping Nash in�ation�in the title of Cho et al. (2002) deserves an explanation. When the

decision model is interpreted as a game between the monetary authority and a representative agent, a self-
con�rming equilibrium outcome is also a (possibly subgame imperfect) Nash equilibrium outcome. Battigalli
(1987) and Fudenberg and Levine (1993) provide su¢ cient conditions for the realization-equivalence between
Nash and self-con�rming equilibrium. Such conditions are satis�ed in the model of Cho et al.
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con�rming equilibrium cannot persist, because, in the very long-run, the monetary authority
adopts a vertical Phillips curve model.8 In our paper, we focus only on the set of possible
limit points of learning dynamics. Furthermore, in our monetary policy application, we fol-
low Sargent (2008) and assume that the monetary authority allows for the possibility of a
direct impact of target in�ation on unemployment. Unlike the cited papers, we do not take
a stand on the true model economy, i.e., we characterize the self-con�rming equilibrium set
for every conceivable model, instead of necessarily assuming that the true model economy
features a rational expectations augmented Phillips curve.

Other papers in the literature focus, like ours, mainly on self-con�rming equilibrium
policies rather than learning dynamics. In particular, Battigalli and Guaitoli (1988) ana-
lyze the rationalizable self-con�rming equilibria of a stylized policy game with incomplete
information, showing that there are equilibria with Keynesian features and equilibria with
new-classical features. Fudenberg and Levine (2009) discuss the Lucas critique through the
analysis of re�ned self-con�rming equilibria in some insightful illustrative examples; they
emphasize the role of rationalizable beliefs and of robustness to experimentation. In a series
of papers, Saint Paul (e.g., 2012, 2013) considers an expert who knows the true model and
advises the policy maker while pursuing his own policy agenda; the policy maker and the
market agents fully trust the expert as long as the data are consistent with his advice. With
this, the expert manipulates the policy maker and market agents under a self-con�rmation
constraint. Finally, Gaballo and Marimon (2015) analyze a directed search model of the
credit market where lenders post excessively high interest rates because of con�rmed pes-
simistic beliefs about returns on investments, but the monetary authority can break the spell
by easing credit.9

2 Preliminaries

2.1 Mathematics

Finite setup To �x ideas, the reader can assume that the spaces considered in the paper
are �nite. In particular, if X is a �nite set with n elements, the collection �(X) of all
probability measures on X can be identi�ed with the simplex

�
� 2 Rn+ :

Pn
i=1 �i = 1

	
of

Rn. Moreover, integrals reduce to sums, that is,
R
X f (x) d� (x) =

P
x2X f (x) � (x) for all

� 2 �(X) and f : X ! R.

General setup In general, however, we need to consider both �nite and in�nite spaces.10

A pair (X;X ) is a (standard) Borel space if there exists a metric that makes the space X
8 In his work on rational belief equilibria, Kurz (1994a,b) analyzes stochastic dynamics where agents�

beliefs may be incorrect, but are eventually consistent with the long-run frequencies of observables. The most
important di¤erence with the self-con�rming equilibrium literature is that, although Kurz analyzes multi-
agent systems, he does not use a game theoretic framework. This makes it di¢ cult to compare rational-belief
equilibrium with self-con�rming equilibrium.

9The model is not explicitly represented as a game. Therefore the connection to the traditional self-
con�rming equilibrium concept is not immediate. Furthermore, the self-con�rming policy analyzed in this
paper is the one of creditors (banks), not of the monetary authority.
10For instance, action spaces are often assumed to be in�nite in order to solve optimization problems

through di¤erential methods. The Phillips curve exploitation example studied later in the paper features,
indeed, an in�nite action space.
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complete and separable (that is, a Polish space), and X is its Borel sigma algebra. The
elements B of X are called Borel sets; they are Borel spaces themselves, with the relative
sigma algebra. When X is �nite, X is its power set 2X .11

We denote by �(X) the collection of all (Borel) probability measures on X. We endow
�(X) with the natural sigma algebra,12 which in turn makes it a Borel space. It is then
natural to endow any Borel subset � of �(X) with the relative sigma algebra; we denote by
�(�) the collection of all probability measures on �. Finally, we denote by �x 2 �(X) the
Dirac measure concentrated on x 2 X, that is, �x (B) = 1 if x 2 B and �x (B) = 0 if x 62 B.

Given any two Borel spaces X and Y , their product X � Y is a Borel space with respect
to the product sigma algebra.

Each measurable function ' : X ! Y induces a measurable distribution map '̂ : �(X)!
�(Y ) de�ned by '̂(�) = � � '�1 for each probability measure � 2 �(X); that is, '̂(�) (B) =
�('�1(B)) for all sets B in the Borel sigma algebra Y of Y .

The following routine lemma describes a key feature of '̂.

Lemma 1 If X and Y are Borel spaces and ' : X ! Y is measurable, then '̂ is one-to-one
if and only if ' is one-to-one.

Unless otherwise stated, throughout the paper spaces are assumed to be Borel spaces, as
usual in stochastic optimization (see, e.g., Puterman, 2014).

2.2 Classical subjective expected utility

Let S be a space of states of nature, A a space of actions available to the decision maker, C a
space of consequences, and � : A�S ! C a measurable consequence function that associates
a consequence � (a; s) 2 C to each pair (a; s) 2 A � S of action and state; in particular, C
becomes a subset of the real line when consequences are monetary.

The quartet (A;S;C; �) is the basic structure of the decision problem.

The inherent randomness that characterizes states� realizations � often called physical
uncertainty �is described by probability models � 2 �(S) that can be regarded as possible
generative mechanisms. For each probability model �, each action a is evaluated through
its expected utility

R
S v (� (a; s)) d� (s), where v : C ! R is a von Neumann-Morgenstern

(measurable and bounded above) utility function. It is often convenient to write the criterion
in the expected payo¤ form

R (a; �) =

Z
S
r (a; s) d� (s)

where r : A � S ! R is the payo¤ (or reward) function r = v � �. The payo¤ function is
measurable and bounded above since the utility function has these properties; so, all our
integrals are well de�ned. For every action a 2 A, the section R (a; �) : � (S)! [�1;1) is
measurable and bounded above too.
11The power set 2X , which is the collection of all subsets of X, is the Borel sigma algebra of X under the

discrete metric.
12That is, the sigma algebra generated by the functions �B : � (X) ! R de�ned by �B (�) = � (B) for all

B 2 X (cf. Theorem 2.3 of Gaudard and Hadwin, 1989).
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We assume, a la Neyman-Pearson-Wald, that decision makers do not know the true
probability model, but that they know a (measurable) collection � � �(S) of probability
models that contains the true one (we thus abstract from misspeci�cation issues). We call
structural the kind of information that allows decision makers to posit the collection �. When
� is not a singleton, decision makers face model uncertainty. They rank actions according
to the classical subjective expected utility (SEU) criterion:

V (a; �) =

Z
�
R (a; �) d� (�) (1)

where � 2 �(�) is a subjective prior probability over models in � that re�ects personal
beliefs about models that decision makers may have, in addition to the structural information
behind �.13

Representation (1) admits the reduced form
R
�R (a; �) d� (�) =

R
S r (a; s) d�� = R (a; ��),

where �� 2 �(S) is the subjective predictive probability, de�ned by �� (E) =
R
� � (E) d� (�)

for each E 2 S. This reduced form is the original representation of Savage (1954), who
elicited �� from betting behavior.

The decision problem can be summarized by the sextet

D = (A;S;C; �;�; v)

that combines the basic structure (A;S;C; �) with the information and taste traits � and v.
A few special cases are noteworthy.

(i) When the support of � is a singleton f�g, that is, � = ��, the decision maker believes
(maybe wrongly) that � is the true model. The predictive probability trivially coincides
with � and criterion (1) reduces to the Savage expected payo¤ criterion R (a; �). Being
a predictive probability, � here is a subjective probability measure, albeit one derived
from a dogmatic belief.

(ii) When � is a singleton f�g, the decision maker has maximal structural information and,
as result, knows that � is the true model. In this case, there is only physical uncertainty,
quanti�ed by �, without any model uncertainty. Criterion (1) again reduces to the
expected payo¤ criterion R (a; �), now interpreted as a von Neumann-Morgenstern
criterion. For instance, if the decision maker either observed in�nitely many drawings
from a given urn, or if he just were able to count the balls of each color, he would
learn/know the urn composition, so � would be a singleton.

(iii) When � � f�s : s 2 Sg, there is no physical uncertainty; there is only model uncer-
tainty, quanti�ed by �. We can identify prior and predictive probabilities: with a slight
abuse of notation, we can write � 2 �(S) and so (1) takes the form R (a; �).14

13See Marinacci (2015) for a discussion of this setup; classical SEU is proposed by Cerreia-Vioglio et al.
(2013).
14See Corollary 4 in Appendix A.1.
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3 Partial identi�cation

3.1 Feedback

We assume that the decision maker faces problem D recurrently in a stationary environment
with an i.i.d. process of states determined by an unknown probability model ��. To deter-
mine what actions and beliefs can be stable given ��, we have to specify the information
obtained ex post by the decision maker for each action a and state s. We model such infor-
mation through a (measurable) feedback function f : A � S ! M , where M is a space of
messages. By selecting action a 2 A the decision maker receives a message

m = fa (s)

when s occurs.15 The decision maker�s information about the state is thus endogenous: if
M is �nite, the information is represented by the partition

�
f�1a (m) : m 2M

	
of the state

space S that the messages induce, which depends on the choice of action a; if M is in�nite,
this partition is replaced by the sigma algebra

Fa =
�
f�1a (B) : B 2M

	
� S

When information does not depend on a, we say that there is own-action independence of
feedback about the state; formally, Fa = Fa0 for all a; a0 2 A. The most important instance
of own-action independence is perfect feedback, which occurs when each section fa of the
feedback function f is one-to-one. In this case, messages reveal to the decision maker which
state obtained, regardless of the chosen action. When this is not the case, feedback about
the state is imperfect (maximally imperfect when each section fa is constant).

An action a is fully revealing if fa is one-to-one, that is, if it allows the decision maker
to learn which state obtained. Under perfect feedback, all actions are fully revealing. The
existence of fully revealing actions is thus a weak form of �endogenous�perfect feedback.

We assume throughout that consequences are observable. Formally, we require that for
each action a 2 A, there exists a measurable function ga :M ! C such that

�a (s) = ga (fa (s)) 8s 2 S

In words, messages encode consequences. In particular, when the consequences of the actions
are the only observed messages, we have

C =M and f = �

This is the most common and important case, and it will be the case in our macroeconomic
application.

Example 1 Consider a decision maker who is asked to bet on the color of a ball that will
be drawn from an urn that contains 90 black, green, or yellow balls. After the draw, he is

15Here fa : S !M denotes the section f (a; �) of f at a.
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told whether he won (in which case he receives 1 euro) or not (in which case he receives 0
euros). We have S = fB;G; Y g, A = fb; g; yg, and C =M = f0; 1g. Moreover,

� (b; B) = � (y; Y ) = � (g;G) = 1

and
� (b; Y ) = � (b;G) = � (y;B) = � (y;G) = � (g;B) = � (g; Y ) = 0

The feedback function coincides with the consequence function, that is, f = �. Thus, the
decision maker observes the realized color if he wins, but not if he loses. In particular, if he
chooses action b, then

f�1b (1) = fBg ; f�1b (0) = fY;Gg

that is, betting on b yields the algebra

Fb = f;; S; fBg ; fY;Ggg

of S. Similarly,
Fy = f;; S; fY g ; fB;Ggg

and
Fg = f;; S; fGg ; fB; Y gg

Therefore, own-action independence of feedback about the state (color) does not hold. N

3.2 Partial identi�cation correspondence

In our steady state setting a message distribution � 2 �(M) can be interpreted as a long-run
empirical frequency of messages received by the decision maker. If M is �nite, � (m) is the
empirical frequency of message m. Given an action a 2 A, consider the distribution map
f̂a : �! �(M) given, for each � 2 �, by

f̂a (�) = � � f�1a

that is, f̂a (�) (B) = � (s 2 S : fa (s) 2 B) for each B 2 M.16 If M is �nite, f̂a (�) (m) is
the empirical frequency with which the decision maker receives message m when he chooses
action a and � is the true model.17 The inverse correspondence f̂�1a partitions � into classes

f̂�1a (�) =
n
� 2 � : f̂a (�) = �

o
of models that are observationally equivalent given that action a is chosen and that the
frequency distribution of messages � is observed in the long-run. In other words, f̂�1a (�) is
the collection of all probability models that may have generated � given a.

If action a is fully revealing, then f̂a is one-to-one (Lemma 1), and so f̂�1a (�) is either a
singleton or empty for every �. In this case the decision problem is identi�ed under a since
di¤erent models generate di¤erent message distributions, which thus uniquely pin down

16 In the literature f̂a (�) (B) is sometimes denoted by f̂a (B j �), interpreted as the frequency of B given
�. Also note that here the distribution map f̂a is restricted from �(S) to �.
17 In the working paper version we make rigorous the long-run interpretation which we rely upon.
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models. Otherwise, f̂�1a (�) is nonsingleton for some �, so we have partial identi�cation
under action a. In the extreme case when f̂a is constant �that is, all models generate the
same message distribution �the decision problem is completely unidenti�ed under action a.

For each action a 2 A, consider the correspondence

�̂a = f̂
�1
a � f̂a : �! 2�

For any �xed � 2 �, its image

�̂a (�) =
n
�0 2 � : f̂a

�
�0
�
= f̂a (�)

o
(2)

is the collection of models that are observationally equivalent given the long-run frequency
distribution � = f̂a (�) of messages that action a generates along with model �. In other
words, �̂a (�) is the partially identi�ed set of models given action a.18

Remark 1 The partially identi�ed set can be written as �̂a (�) = f�0 2 � : �0jFa = �jFag,
that is, partial identi�cation is determined by the information sigma algebra Fa. Therefore,
own-action independence of feedback also implies that the partial identi�cation correspon-
dence is action independent: �̂a (�) = �̂a0 (�) for all (a; a0; �) 2 A�A� �.

We can regard �̂a as the partial identi�cation correspondence determined by action a. It
is easy to see that �̂a has convex values if the collection � is convex. Moreover, if f̂a is one-to-
one, then �̂a is the identity: �̂a (�) = f�g for all � 2 �. In this case, message distributions
identify the true model. In contrast, when �̂a (�) is nonsingleton there is genuine partial
identi�cation.

Summing up: the collection f�̂a(�)g�2� of images is a measurable partition of � and each
element of this partition consists of probability models that are observationally equivalent
under action a.

Example 2 Consider the decision problem with feedback of Example 1. If the decision
maker bets on Blue, his action prevents him from obtaining any evidence on the frequency
of G and Y . In particular,

f̂b (�) (1) = � (B) and f̂b (�) (0) = 1� �(B) 8� 2 �

where � � �(fB;G; Y g) is the (�nite) set of possible urn compositions that he posits.
Hence, the evidence gathered through bet b only partially identi�es the true model:

�̂b (�) =
n
�0 2 � : f̂b

�
�0
�
= f̂b (�)

o
=
�
�0 2 � : �0 (B) = � (B)

	
For instance, if the true model � is uniform, then

�̂b (�) =

�
�0 2 � : �0 (B) = 1

3

�
18We show in the next section that coarser feedback implies a coarser partition of �, that is, a lower degree

of identi�cation.
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that is, all probability models �0 that assign probability 1=3 to B are observationally equiv-
alent. More generally, if we denote by �n any model that assigns probability n=90 to B,
then the partition f�̂b (�)g�2� = f�̂b (�n)gn=0;:::;90 has 91 elements, each consisting of the
probability models that assign probability n=90 to B. All models in the same cell �̂b (�n)
are observationally equivalent. N

Example 3 Suppose now that the decision maker observes ex post the color of the ball:

f (b; s) = f (g; s) = f (y; s) = s 8s 2 fB;G; Y g

Then there is perfect feedback and �̂b (�) = �̂g (�) = �̂y (�) = f�g for each � 2 �. Regard-
less of the chosen action, the true model is identi�ed. N

3.3 Comparative statics

We now show that the extent of model identi�cation naturally depends on the underlying
feedback function. To this end, given any two feedback functions f and f 0, say that f 0 is
coarser than f if, for each a 2 A, there exists a measurable function ha :M !M 0 such that

f 0a (s) = ha (fa (s)) 8s 2 S

Our assumption that consequences are observable implies that � is the coarsest possible
feedback, while perfect feedback is the least coarse (�nest).

Lemma 2 If f 0 is coarser than f , then, for each a 2 A, �̂a (�) � �̂0a (�) for all � 2 �.

Coarser feedback functions thus determine, for each action, coarser partial identi�cation
correspondences: worse information translates into a lower degree of identi�cation.

4 Self-con�rming actions and beliefs

4.1 De�nition

A decision problem with feedback can be described by the pair (D; f). The partial identi�-
cation issues discussed in the previous section motivate the following de�nition.

De�nition 1 A pair (a�; ��) 2 A��(�) of actions and beliefs is a self-con�rming equilib-
rium given �� 2 � if

V (a�; ��) � V (a; ��) 8a 2 A (3)

and
�� 2 �(�̂a� (��)) (4)

The de�nition relies on two pillars: the optimality condition (3) that ensures that action
a� is subjectively optimal under belief ��, and the belief con�rmation condition (4) that
guarantees that belief �� is consistent with the data that action a� reveals.19 Thus, the pair

19Here, since �̂a� (��) is a measurable subset of �, the set �(�̂a� (��)) is identi�ed with the family of
elements of �(�) that assign probability 1 to �̂a� (��).
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(a�; ��) of actions and beliefs determines the message distribution �� = f̂a� (��) that is the
evidence that disciplines the subjective belief ��.20

Example 4 In the urn setting of Example 1, suppose that � = f��; �1; �2g � �(fB;G; Y g),
where the three possible models are described in the table below:

B G Y

�� 1
3 0 2

3

�1
1
3

2
3 0

�2
1
3

1
3

1
3

Impose the normalization u (0) = 0 and u (1) = 1, so that

R (b; ��) = R (b; �2) = R (b; �1) = R (y; �2) = R (g; �2) =
1

3
(5)

R (y; ��) = R (g; �1) =
2

3
; R (y; �1) = R (g; �

�) = 0

(i) Consider a uniform belief �� on �: �� (��) = �� (�1) = �� (�2) = 1=3. The pair
(b; ��) is self-con�rming. Since V (b; ��) = V (g; ��) = V (y; ��) = 1=3, the opti-
mality condition (3) is satis�ed. It is easy to check (cf. Example 1) that �̂b (��) =
f� 2 � : � (B) = 1=3g = �. Hence �� 2 �(�̂b (�

�)), and so the data con�rmation
condition (4) is also satis�ed. The self-con�rming equilibrium (b; ��) generates the
message distribution �� 2 �(f0; 1g) with �� (1) = 1=3, that is, a one-third frequency
of wins.

(ii) Consider the belief �� = ��� concentrated on the true model. The action and belief
pair (y; ��) is self-con�rming. The optimality condition (3) is easily seen to be satis�ed,
while the data con�rmation condition (4) holds since �̂y (��) = f� 2 � : � (Y ) = 2=3g =
f��g. The self-con�rming equilibrium (y; ��) generates the message distribution �� 2
�(f0; 1g) with �� (1) = 2=3, that is, a two-thirds frequency of wins.

(iii) Since �̂g (��) = f� 2 � : � (G) = 0g = f��g, action g is not part of any self-con�rming
equilibrium.

Actions b and y can be thus part of self-con�rming equilibria. Since �̂b (��) 6= �̂y (��),
they di¤er in their identi�cation properties. In particular, �̂b (��)\�̂y (��) = �̂y (��) = f��g.
They also have di¤erent values: R (b; ��) = 1=3 6= 2=3 = R (y; ��). N

The next simple variation on the previous example shows the importance of structural
information.

Example 5 If, in the previous example, we suppose that only actions b and g are available,
i.e., A = fb; gg, then action g is still not part of any self-con�rming equilibrium. But
if we further suppose that the all-yellow urn belongs to the posited set of models, i.e.,
�Y 2 � (as, for example, when there is no information about the urn), then this is no

20As mentioned in the Introduction, our steady-state interpretation of self-con�rming equilibrium is justi�ed
by convergence results a la Easley and Kiefer (1988). See the working paper version of this paper for details.
Battigalli el al. (2016) analyze the case of an ambiguity averse decision maker.
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longer the case: the pair (g; ��Y ) is self-con�rming. In fact, V (b; ��Y ) = V (g; ��Y ) = 0 and
�Y 2 �̂g (��) = f� 2 �(fB;G; Y g) : � (G) = 0g. In words, the decision maker believes that
he cannot win with either b or g, and he happens to choose the bet that truly gives him no
chance. N

Under own-action independence of feedback (that is, actions do not a¤ect information
gathering), the data con�rmation condition (4) becomes �� 2 �(�̂ (��)), where �̂ (��) is
exogenously posited. We thus return to a traditional optimization notion with a purely
exogenous data con�rmation condition. In particular, under perfect feedback �and so full
identi�cation �the optimality condition (3) becomes

R (a�; ��) � R (a; ��) 8a 2 A (6)

since condition (4) requires �� = ��� . In this case, common in the rational expectations
literature, the decision maker has a correct belief about the true model and confronts only
physical uncertainty (that is, risk).21

Action a� is objectively optimal if it satis�es condition (6). Objectively optimal actions
are the ones that the decision maker would select if he knew the true model, that is, under full
identi�cation. As such, they provide an important benchmark to assess alternative courses
of action, as the next section will show.

Remark 2 In Example 4, bet y is the objectively optimal action.

Of course, each �rational expectations� pair (a�; ���), where action a� is objectively
optimal and belief ��� is concentrated on the true model, is a self-con�rming equilibrium.

The optimality condition (3) can be written in predictive form as R (a�; ���) � R (a; ���)
for each a 2 A. Relatedly, the data con�rmation condition (4) implies that the predictive
probability ��� belongs to �̂a� (��) if it belongs to �.22 In this case, (a�; ���� ) is a self-
con�rming equilibrium too. Hence we have the following certainty equivalence principle:

Proposition 1 Given a true model �� 2 �, if (a�; ��) is a self-con�rming equilibrium
and ��� 2 �, then (a�; ���� ) is a self-con�rming equilibrium as well, with V (a�; ��) =
V (a�; ���� ).

4.2 Value

Given a true model ��, the values of all self-con�rming equilibria (a�; ��) sharing the same
equilibrium action a� coincide with the expected payo¤ of a� with respect to ��.23 Formally:

Proposition 2 If (a�; ��) 2 A ��(�) is a self-con�rming equilibrium given �� 2 �, then
V (a�; ��) = R (a�; ��).

21For condition (3) to reduce to (6) it is actually enough that the equilibrium action a� be fully revealing,
a weaker property than perfect feedback (see Corollary 5 below).
22The conjectural equilibrium conditions, stated for games by Battigalli (1987), are written in predictive

form.
23 Irrespective of the supporting belief.
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The result is based on the following lemma of independent interest, in turn based on
Battigalli et al. (2015), which shows that observationally equivalent models share the same
expected utility.

Lemma 3 Let a 2 A and � 2 �. We have R (a; �0) = R (a; �) for every �0 2 �̂a(�).

In turn, the last two results easily imply the following characterization of self-con�rming
equilibria.

Corollary 1 A pair (a�; ��) 2 A � �(�) is a self-con�rming equilibrium given �� 2 � if
and only if R (a�; ��) � V (a; ��) for every a 2 A and the belief con�rmation condition (4)
holds.

Given the data con�rmation condition, the optimality condition (3) amounts to assuming
that the �true value�of the self-con�rming (equilibrium) action is higher than the subjective
value, under the equilibrium belief, of all alternative actions. This interplay of objective and
subjective features shows the substantial bite of the data con�rmation condition. In Appen-
dix A.4, we show that self-con�rming equilibria with sharper basic subjective assessments
(smaller supports) have higher values.

4.3 Welfare

We say that an action a� is a self-con�rming (equilibrium) action given �� 2 �, if there
exists a belief �� 2 �(�) such that (a�; ��) is a self-con�rming equilibrium given ��. Since
in this case V (a�; ��) = R (a�; ��) � maxa2AR (a; ��), the decision maker incurs a welfare
loss

` (a�; ��) = max
a2A

R (a; ��)�R (a�; ��) � 0

when he selects the self-con�rming action a�. In particular, ` (a�; ��) = 0 if and only if a� is
objectively optimal.

The loss is indeed caused by the decision maker�s ignorance.

Proposition 3 If a� and b� in A are self-con�rming actions given �� 2 � and �̂a�(��) �
�̂b�(�

�), then ` (a�; ��) � ` (b�; ��).

That is, self-con�rming actions with better identi�cation properties exhibit lower losses.
In this regard, the next result shows that for an action a with the best identi�cation properties
�thus, optimal from a purely statistical viewpoint �to be self-con�rming amounts to being
objectively optimal. Truth is ancillary to the decision maker�s pursuit of his goals (and so
of his happiness).

Proposition 4 Given a true model �� 2 �, suppose there is an action a such that �̂a(��) �
�̂a0(�

�) for each a0 2 A. Then action a is self-con�rming if and only if it is objectively
optimal.

In sum, the decision maker is not purely a statistician: he is not interested per se in
discovering the true model unless the action that allows the discovery is subjectively optimal.
In this sense, there is no separation between statistical estimation and decision in the present
setup.
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Example 6 Consider the decision problem

AnS s1 s2
a1 1 1

a2 0 2

(7)

where r = � = f and � = �(S). Here the decision maker is risk neutral, has no structural
information, and (monetary) consequences are the messages that he receives. Given any
� 2 �, for the constant-payo¤ action a1 we have �̂a1(�) = �, while for the risky action a2
we have �̂a2(�) = f�g. Action a1 has no information value, and so no statistical interest,
but it is not a¤ected by state uncertainty. The opposite is true for action a2, which is fully
revealing but subject to uncertainty.

It holds that R (a1; �) = 1 and R (a2; �) = 2� (s2) for all � 2 �. Hence, a2 is a self-
con�rming equilibrium action when � is the true model, i.e., a2 2  (�), if and only if
� (s2) � 1=2, that is, if and only if a2 is objectively optimal (in accordance with the previous
result). On the other hand, a1 2  (�) for all � 2 �. In fact, a1 is a best reply to every
belief � such that � (� (s2) � 1=2), e.g., the belief �s1 2 � is concentrated on state s1.

In sum, the constant-payo¤ action is always self-con�rming, independently of the true
model, while the risky one is self-con�rming only when the true model makes it objectively
optimal. N

5 Phillips curve exploitation example

We now illustrate our machinery in the context of a 1970�s U.S. policy debate about whether
a trade-o¤ between in�ation and unemployment can be systematically exploited by a benev-
olent policy maker. We extend a formulation of Sargent (1999, 2008), who presents a self-
con�rming equilibrium in which a policy maker believes a model asserting an exploitable
trade-o¤ between unemployment and in�ation while the truth is that the trade-o¤ is not
exploitable.24

5.1 Steady state model economies

We study a class � of model economies � at a (stochastic) steady state. We assume that
unemployment u and in�ation �, beyond depending on the unknown �, are a¤ected by
random shocks w and " and by a monetary policy variable a. Speci�cally, unemployment
and in�ation outcomes (u; �) are connected to the state of the economy (w; "; �) and the
government action a according to

u = �0 + �1�� + �1aa+ �2w (8)

� = a+ �3" (9)

The vector parameter � = (�0; �1�; �1a; �2; �3) 2 R5, that is, the last component of the state
vector, speci�es the structural coe¢ cients of an aggregate supply equation (8) and an in�ation
determination equation (9). Coe¢ cients �1� and �1a are slope responses of unemployment

24The working paper version contains a more general analysis of self-con�rming economic policies.
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to actual and planned in�ation,25 while the coe¢ cients �2 and �3 quantify shock volatilities
(see Sargent, 2008, p. 18). Finally, the intercept �0 is the baseline rate of unemployment
that would (systematically) prevail at a zero in�ation policy a = 0.

Throughout the section we maintain the following assumption about structural coe¢ -
cients.

Assumption 1 �0 > 0, �1� < 0, �2 > 0 and �3 > 0.

In words, we posit a strictly positive intercept, as well as strictly positive shock coe¢ cients
(nontrivial, possibly asymmetric, shocks thus a¤ect both the in�ation and the unemployment
equations, their unknown values form the �rst component (w; ") of the state vector). Finally,
we assume that in�ation and unemployment are inversely related.

The reduced form of each model economy is

u = �0 + (�1� + �1a) a+ �1��3"+ �2w (10)

� = a+ �3" (11)

The coe¢ cients of the reduced form are � = (�0; �1� + �1a; �1��3; �2; �3) 2 R5. Since �3 6=
0 (Assumption 1), it is easy to check that di¤erent structural parameter vectors � 2 �
correspond to di¤erent reduced form parameter vectors �, that is, � 6= �0 implies � 6= �0.

Since momentarily we will assume that only realized unemployment and in�ation are
observable by the monetary authority, the reduced form above, will give us the feedback
function (u; �) = f (a; s) of the previous sections. Speci�cally, rewriting (10) and (11) as

u (a;w; "; �) = �0 + (�1� + �1a) a+ �1��3"+ �2w

� (a;w; "; �) = a+ �3"

will make the dependence of observables (u; �) from chosen actions a and (unobservable)
realized states (w; "; �) explicit and it will allow us to study the present policy problem within
our framework. Formally, the message spaceM = R2 now consists of unenployment/in�ation
pairs, and the feedback function is f = (u;�) : A�

�
R2 ��

�
! R2.

The policy multiplier �2 = �1� + �1a = �1a � j�1�j quanti�es the impact of planned
in�ation on unemployment. It is the sum of the direct and indirect impact of planned
in�ation on unemployment quanti�ed, respectively, by �1a and �1�. There is a systematic
trade-o¤ between unemployment and in�ation when the multiplier is strictly negative, that
is, �2 < 0. If so, the model economy is Keynesian; otherwise, it is new-classical. In the rest
of the section we make the following hypothesis on the multiplier.

Assumption 2 �2 � 0.

Thus, we assume that an increase in planned in�ation never increases unemployment.

To sum up, the set of parameters is

� =
�
� 2 R5 : �0 > 0, �1a � ��1�, �1� < 0, �2 > 0, �3 > 0

	
Our analysis will pay special attention to the following two competing model economies.
25The economic interpretation is that planned in�ation a a¤ects agents�expectations to an extent parame-

trized by �1a.
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5.1.1 The Lucas-Sargent model

The �rst model, based on Lucas (1972) and Sargent (1973), is

u = �0 + � (� � a) + �2w = �0 + ��3"+ �2w
� = a+ �3"

where � � �1� = ��1a, and so � = (�0; �;��; �2; �3) and � = (�0; 0; ��3; �2; �3). In this
new-classical model the policy multiplier �2 is zero, and so the systematic part of in�ation a
has no e¤ect on unemployment; only the unsystematic part �3" does.

5.1.2 The Samuelson-Solow model

A second model economy, based on Samuelson and Solow (1960), is

u = �0 + �1�� + �2w = �0 + �1�a+ �1��3"+ �2w

� = a+ �3"

where �1a = 0 and so � = (�0; �1�; 0; �2; �3) and � = (�0; �1�; �1��3; �2; �3). In this Keynesian
model, the policy multiplier �2 = �1� is strictly negative: monetary policies a¤ect, at steady
state, unemployment rates.

5.2 The policy problem: setup and identi�cation

5.2.1 Setup

The monetary authority chooses policy a. As anticipated, the state space is the Cartesian
product S = W � E � �, which expresses that the monetary authority is uncertain about
both shocks and models. The consequence space C consists of unemployment and in�ation
pairs (u; �), so we set C = U ��. The consequence function � : A� (W � E ��)! C is

� (a;w; "; �) = (u (a;w; "; �) ;� (a;w; "; �))

which is the unemployment/in�ation pair (u; �) determined by policy a and state (w; "; �),
with matrix representation

� (a;w; "; �) =

�
�0
0

�
+ a

�
�1� + �1a

1

�
+

�
�2 �1��3
0 �3

� �
w
"

�
(12)

5.2.2 Factorization

As anticipated, we assume that the messages received by the monetary authority are their
policies�outcomes. Hence, a message m = (u; �) consists of an unemployment and in�ation
pair, and the feedback function

f = � = (u;�)

corresponds to the reduced form of the model economy. When the monetary authority
chooses policy a and in the long run observes a distribution over (u; �) pairs, it can partially
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infer the underlying stochastic model �. For example, if � has �nite support, the induced
probability of outcome (u; �) is26

f̂a (�) (u; �) = � (f(w; "; �) : (u (a;w; "; �) ;� (a;w; "; �)) = (u; �)g) (13)

The partially identi�ed set �̂a (�) of stochastic models indistinguishable from � is the set of
�0 that induce the same joint distribution on unemployment/in�ation outcomes.

At this point, it is convenient to enrich this setup to provide a sharp characterization
of the partially identi�ed set corresponding to each policy a and model �. Within a state
s = (w; "; �), the pair (w; ") represents random shocks and � parametrizes a model economy.
This suggests factorizing the probability models � 2 � � �(W � E ��) as

� = q � �� (14)

where the marginal distribution of shocks q 2 �(W � E) is known and �� 2 �(�) is a Dirac
probability measure concentrated on a given economic model � 2 �, a permanent feature of
the environment. We thus parametrize probability models with � and write ��.

The simplifying assumption that, at a steady state, the distribution q of shocks is known
is common in the rational expectations literature since Lucas and Prescott (1971) and Lucas
(1972). The resulting factorization (14) has two modelling consequences: (i) it establishes a
one-to-one correspondence between model economies and probability models (in particular,
a true economic model �� corresponds to a true probability model ���); (ii) since q is known,
it allows us to identify � with � via the relation

� = fq � �� 2 �(S) : � 2 �g

and so to de�ne the prior � on �.27

A �rst dividend of the factorization is that the objective function (1) takes the simpler
form

V (a; �) =

Z
�

�Z
W�E

r (a;w; "; �) dq (w; ")

�
d� (�) (15)

where r (a;w; "; �) = v (� (a;w; "; �)) is the utility of outcome/message (u; �) = � (a;w; "; �).
In the rest of the section we maintain the following assumption on the known shock

distributions.28

Assumption 3 Eq (") = Eq (w) = Eq ("w) = 0 and Eq
�
"2
�
= Eq

�
w2
�
= 1.

In words, shocks are uncorrelated and normalized.

26 In the general case, for any measurable set of outcomes O � U ��,

f̂a (�) (O) =
�
� � f�1a

�
(O) = � (f(w; "; �) : (u (a;w; "; �) ;� (a;w; "; �)) 2 Og) .

27The map � 7! q � �� is bijective and measurable. See Corollary 3 in the appendix.
28Whenever convenient, in what follows we will use the shorthand notation E for integrals, for example

Eq (") =
R
W�E "dq (w; ").
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5.2.3 Identi�cation

In this �factorized�setup, we can shift our focus from observationally equivalent probabil-
ity models � to observationally equivalent model economies �. The partially identi�ed set
becomes:

�̂a (�) =
n
�0 2 � : f̂a (��0) = f̂a (��)

o
8� 2 �

With this, a sharp identi�cation result holds.

Proposition 5 The partial identi�cation correspondence �̂a : �! 2� is

�̂a (�) =
�
�0 2 � : �00 + �01aa = �0 + �1aa; �01� = �1�; �02 = �2; �03 = �3

	
(16)

Given the true model �, the shock coe¢ cients �2 and �3 are thus identi�ed, along with
the slope �1� of the Phillips curve, independently of the chosen policy a. As we discuss
below, the intercept of the curve is also identi�ed, but it depends on the maintained policy a
through the unidenti�ed parameter �1a. This important identi�cation result is made possible
by some moment conditions, formally spelled out in the proof. We can, however, heuristically
describe them via the bivariate random variable (ua;�a) : W � E � � ! U � � that, for
a given policy a, represents the unemployment and in�ation rates determined by the state
(w; "; �).29 The monetary authority observes in the long-run the following moments:

� E� (ua) = �0 + (�1� + �1a) a,

� E� (�a) = a,

� Var� (ua) = �21��23 + �22,

� Var� (�a) = �23,

� Cov� (ua;�a) = �1��23.

Therefore,

�1� =
Cov� (ua;�a)

Var� (�a)
(17)

is the beta coe¢ cient of the Phillips regression of unemployment on in�ation,30

�22 =
�
1� Corr2� (ua;�a)

�
Var� (ua)

is the residual variance of ua (unexplained by the regression), and �3 is the standard deviation
of in�ation.

Finally, though the two structural coe¢ cients �0 and �1a remain unidenti�ed even in the
long-run, they satisfy

�0 + �1aa = E� (ua)�
Cov� (ua;�a)

Var� (�a)
E� (�a) (18)

where the right side is the alpha coe¢ cient of the Phillips regression. In the long-run, the
alpha coe¢ cient is observed by the monetary authority, but what is observed depends on
the policy a that the authority chose. What the authority learns depends on what it does
in ways that it does not appreciate.
29Formally, ua and �a are the sections u (a; �) and � (a; �) at policy a of the random variables u and �,

respectively.
30The Phillips regression u = �+ �� is run by the monetary authority using long run data.
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5.2.4 Estimated model economy

The moments that identify the three coe¢ cients �1�, �2, and �3 do not depend on the chosen
policy a, but only on the true model �. To emphasize this key feature, we denote by �̂ the
beta regression coe¢ cient that identi�es �1�,31 by �̂uj� the residual standard deviation that
identi�es �2, and by �̂� the standard deviation of in�ation that identi�es �3. In contrast, the
alpha regression coe¢ cient that identi�es the sum �0 + �1aa depends on policy a; we denote
it by �̂ (a).

With this, we can write

�̂a (�) =
n
�0 2 � : �00 + �01aa = �̂ (a) ; �01� = �̂; �02 = �̂uj�; �03 = �̂u

o
As a result, the long-run estimated version of the model economy (8)-(9) that the monetary
authority considers is

u = �̂ (a) + �̂� + �̂uj�w (19)

� = a+ �̂�" (20)

�̂ (a) = �0 + �1aa (21)

In particular, (19) is the estimated aggregate supply equation and (20) is the estimated
in�ation equation. The intercept of the former equation depends on the policy a via the
equality (21), which only partly identi�es the two coe¢ cients �0 and �1a. In turn, this makes
the policy multiplier �2 = �̂+ �1a unidenti�ed. We will momentarily address this key partial
identi�cation issue.

5.2.5 Partial identi�cation line

The monetary authority cannot identify � even in the long-run � the two structural co-
e¢ cients �0 and �1a. The former is the average unemployment at zero planned in�ation,
�0 = E� (u0); the latter is the �direct�impact of policy on unemployment.

The parameter space of the estimated model economy (19)-(21) reduces to � = ~� �
f(�̂; �̂uj�; �̂u)g, where ~� = R++ � (�1;��̂] is the collection of all possible values (�0; �1a)
of the two remaining unidenti�ed coe¢ cients and f(�̂; �̂uj�; �̂u)g is the singleton containing
the identi�ed vector (�1�; �2; �3). To ease notation, in what follows we will consider directly
~� as the parameter space. As a result, the parameter space is now a subset of the plane. By
(16), the partial identi�cation correspondence �̂a : ~�! 2

~� becomes

�̂a (�) =
n�
�00; �

0
1a

�
2 ~� : �00 = ��01aa+ �0 + �1aa

o
(22)

In words, �̂a (�) is a straight line in the plane, with slope �a and intercept �0 + �1aa
(determined by the policy a and by the true economic model �). We thus have a partial
identi�cation line that de�nes a linear relationship between the two unidenti�ed coe¢ cients,
given a true model. In other words, partial identi�cation is unidimensional.

31By Assumption 2, the beta coe¢ cient of the Phillips regression is negative, that is, �̂ < 0. This negative
sign will be tacitly assumed when interpreting our �ndings.
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Given a true model � = (�0; �1a), the collection f�̂a (�) : a 2 Ag of partial identi�cation
lines is the family of all straight lines in the plane that pass through the true model (�0; �1a)
and have slope �1=a. In each such line there is a unique Lucas-Sargent model, characterized
by �01a = ��̂, as well as a unique Samuelson-Solow model, characterized by �01a = 0. In other
words, partial identi�cation lines feature a unique specimen of each class of models.

The �gure illustrates the previous analysis. In particular, LS stands for Lucas-Sargent model
and SS for Samuelson-Solow model, while the red (resp., blue) line is the partial identi�cation
line that correspond to policy a = 0 (resp., a > 0).

5.3 The policy problem: value, equilibria and welfare

5.3.1 Value and equilibrium

As much of the literature, we assume a quadratic von Neumann-Morgenstern utility function
v : C ! R given by v (u; �) = �u2��2, so that the reward function r : A�S ! R becomes:

r (a;w; "; �) = �u2 (a;w; "; �)� �2 (a;w; "; �)

The linear model economy and quadratic utility together form a classic linear quadratic
policy framework.

Lemma 4 For every (�; a) 2 ~��A, we have R (a; �) = v (E� (ua) ;E� (�a)) + const.

The linear quadratic framework thus allows us to express the expected reward as the
utility of expectations. As a result, the objective function (15) becomes

V (a; �) =

Z
~�
v (E� (ua));E� (�a)) d� (�) + const: (23)

As for self-con�rming equilibria, we begin with a piece of notation: throughout the rest
of this section we �x a true model economy �� (rather than �) in ~�, while � (rather than �0)
denotes a generic element of ~�. With this notation, the partial identi�cation line is

�̂a (�
�) =

n
(�0; �1a) 2 ~� : �0 = ��0 + (��1a � �1a) a

o
Hence, a policy and belief pair (a�; ��) 2 A��(~�) is self-con�rming if and only if

a� 2 argmax
a2A

V (a; ��)
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and
��
�
�̂a� (�

�)
�
= 1

Next we characterize self-con�rming equilibria of the estimated model economy (19)-(21).
In both equilibrium conditions, the true multiplier ��2 = �̂

�
+ ��1a and its conjectured value

E��(�2) = �̂
�
+ E�� (�1a) play a key role.32

Proposition 6 A policy and belief pair (a�; ��) 2 A��(~�) is a self-con�rming equilibrium
given �� if and only if

a� = �
��0

�
�̂
�
+ E�� (�1a)

�
1 +

�
�̂
�
+ ��1a

��
�̂
�
+ E�� (�1a)

� (24)

and

��

0@8<:(�0; �1a) 2 ~� : �0 = ��0 � ��0

�
�̂
�
+ E�� (�1a)

�
1 +

�
�̂
�
+ ��1a

��
�̂
�
+ E�� (�1a)

� (��1a � �1a)
9=;
1A = 1 (25)

The result can be heuristically derived in the special case of dogmatic beliefs, when �� is
concentrated on a single parameter vector �� =

�
��0; ��1a

�
2 ~�, that is, �� = ���. By (23), up

to a constant the monetary authority�s value function is

V (a; ��) = �E2�� (ua)� E
2
�� (�a)

The conjectured multiplier is ��2 = �̂
�
+ ��1a. For instance, a new-classical authority that

believes that there is no systematically exploitable trade-o¤ between in�ation and unem-
ployment assumes ��1a = ��̂� (and so the conjectured multiplier is zero). In contrast, a
Keynesian authority that believes in a trade-o¤ may assume, for instance, ��1a = 0 (the
conjectured multiplier is then �̂

�
, and so strictly negative).

Based on the estimated model economy (19)-(21), a dogmatic authority conjectures that,
according to the chosen policy a, the expected values of in�ation and unemployment are
constrained by the equation

E�� (ua) = ��0 +
�
��1a + �̂

��
E�� (�a)

This conjectured constraint is the version of the estimated aggregate supply equation (19)
that the authority expects to face systematically given its dogmatic belief. So the authority�s
decision problem is

min
a2A

E2�� (ua) + E
2
�� (�a)

sub E�� (ua) = ��0 +
�
��1a + �̂

��
E�� (�a)

With this, the Lagrangian is

E2�� (ua) + E
2
�� (�a) + �

�
E�� (ua)�

�
��0 +

�
��1a + �̂

��
E�� (�a)

��
32Recall that �̂

�
is the beta regression coe¢ cient of unemployment over in�ation (given the true model ��).
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and the �rst-order conditions are

2E�� (ua) = �� 2E�� (�a) = �
�
��1a + �̂

��
E�� (ua) = ��0 +

�
��1a + �̂

��
E�� (�a)

By solving them we get

E�� (�a) = B
�
��
�
� �

��0

�
�̂
�
+ ��1a

�
1 +

�
�̂
�
+ ��1a

�2
Since E�� (�a) = a, the monetary authority�s best reply is thus the policy a = B

�
��
�
. As a

result, a policy and belief pair (a�; ���) is a self-con�rming equilibrium if and only if

a� = B
�
��
�

(subjective best reply) (26)

and
��0 = �

�
0 +

�
��1a � ��1a

�
a� (con�rmed beliefs) (27)

Simple algebra shows that this is the case if and only if

a� = �
��0

�
�̂
�
+ ��1a

�
1 +

�
�̂
�
+ ��1a

��
�̂
�
+ ��1a

� (28)

and

��0 = �
�
0 �

��0

�
�̂
�
+ ��1a

�
1 +

�
�̂
�
+ ��1a

��
�̂
�
+ ��1a

� ���1a � ��1a� (29)

which are the equilibrium relations (24) and (25) in the case of dogmatic beliefs.33

The following �gure illustrates the previous heuristic argument when the Lucas-Sargent
model is true, so that ��0 is the natural rate of unemployment and �

�
1a = ��̂� (and so

the true policy multiplier ��2 is zero). Under this true model, policy a induces average
unemployment E�� (ua) = ��0 and average in�ation E�� (�a) = a. But a monetary authority
with dogmatic belief ��� expects to observe the pair of long-run averages (E�� (ua) ; a). This
dogmatic belief is con�rmed, and so condition (27) is satis�ed, if E�� (ua) = �

�
0, that is, if the

pair of average unemployment and average in�ation lies on the vertical partial identi�cation
line with abscissa ��0. The subjective best reply condition (26) is represented by the tangency
between the (red) indi¤erence curve and the (green) conjectured constraint, according to
which an increase �a in average in�ation yields a ���2�a decrease in average unemployment,
33Note that, with the dogmatic value ��1a of �1a in place of its expectation E�� (�1a), the dogmatic equilib-

rium relations are identical with the general ones. This is a consequence of the certainty equivalence principle
stated in Proposition 1.
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where ��2 = �̂
�
+ ��1a is the conjectured multiplier.

When the dogmatic belief is such that ��1a = 0 so that ��2 = �̂
�
becomes the conjectured

multiplier, the monetary authority is �orthodox�Keynesian and the �gure becomes:

The conjectured constraint is E�� (ua) = ��0 + �̂
�
E�� (�a). Its slope is the beta coe¢ cient of

the Phillips regression, which represents the trade-o¤ between in�ation and unemployment
that the Keynesian authority believes to be systematically exploitable.

5.3.2 Policy activism and welfare

To complete our equilibrium analysis we need to compare the self-con�rming equilibrium
action with the objectively optimal one and to compute the resulting welfare loss.

To this end we need to consider the estimated policy multiplier �2 = �̂ + �1a. The
authority underestimates the multiplier when E��(�2) > ��2 and overestimates it when
E��(�2) < ��2.34 In structural terms, E��(�2) ? ��2 if and only if E�� (�1a) ? ��1a. For instance,
when ��1a and E�� (�1a) are positive this means that the multiplier is under/overestimated if
and only if the direct impact of planned in�ation on unemployment is over/underestimated.

34Both ��2 and E��(�2) are negative (Assumption 2), and so E��(�2) ? ��2 if and only jE��(�2)j 7 j��2j.
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The objectively optimal policy is

ao = �
��0

�
�̂
�
+ ��1a

�
1 +

�
�̂
�
+ ��1a

�2 (30)

It is immediate to see that a� = ao if and only if E�� (�1a) = ��1a, (and so E��(�2) = ��2).
The equilibrium action is objectively optimal when the monetary authority has a correct
expected value of the estimated policy multiplier �2. More generally, next we show that
policy hyperactivism characterizes authorities that overestimate the policy multiplier, while
hypoactivism characterizes authorities that underestimate it.35

Proposition 7 Given a true model ��, for every self-con�rming equilibrium (a�; ��),

(i) E�� (�1a) < ��1a if and only if policy a� is hyperactive, i.e., a� > ao > 0;

(ii) E�� (�1a) = ��1a if and only if policy a� is objectively optimal, i.e., a� = ao;

(iii) ��1a < E�� (�1a) < ��̂
�
if and only if policy a� is hypoactive, i.e., 0 < a� < ao;

(iv) E�� (�1a) = ��̂
�
if and only if policy a� is zero-target-in�ation, i.e., a� = 0.

For the monetary authority, both kinds of deviations from objective optimality, hyper-
activism and hypoactivism, cause the same welfare loss. Indeed:

Proposition 8 The welfare loss is ` (a�; ��) = (1 + (�̂
�
+ ��1a)

2) (a� � ao)2.

In the next section we will illustrate this result with a few examples.

5.4 Policy dogmatism and its welfare consequences

5.4.1 Equilibria

Assume that the monetary authority has dogmatic equilibrium beliefs �� = ���. A pair
(a�; ���) 2 A��(~�) is self-con�rming if and only if it satis�es relations (28) and (29). Two
special cases are noteworthy.

New-classical authority Suppose the monetary authority believes that the policy multi-
plier is zero, i.e., ��1a = ���1�. Since in equilibrium �1� is identi�ed by the slope of the Phillips
regression, we have ��1a = ��̂�. Here the conjectured constraint is vertical at the natural
rate ��0: the new-classical authority does not believe in any systematically exploitable trade-
o¤ between in�ation and unemployment. A zero-target-in�ation equilibrium policy results
(Proposition 7-(iv)).

35Since ��2 � 0 (Assumption 2), the four cases considered exhaust all possibilities. Also note that, since
E�� (�1a) � ��̂

�
, in (iv) it holds E�� (�1a) = ��̂

�
if and only if ��(�1a = ��̂

�
) = 1.
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Keynesian authority Suppose the monetary authority believes that there is a fully ex-
ploitable trade-o¤ between in�ation and unemployment, i.e., ��1a = 0. Then, in equilibrium,
the conjectured policy multiplier ���2 = �̂

�
is strictly negative. A positive-target-in�ation

equilibrium policy results:

a� = � ��0�̂
�

1 + �̂
� �
�̂
�
+ ��1a

� and �� =

0@��0
0@ 1 + �̂

�2

1 + �̂
� �
�̂
�
+ ��1a

�
1A ; 0

1A (31)

By Proposition 7, such a policy is hyperactive if ��1a > 0, hypoactive if �
�
1a < 0, and objec-

tively optimal if ��1a = 0.

To sum up, the two equilibria feature new-classical nonintervention a la Friedman-Hayek
and Keynesian activism, respectively. Regardless of the true model economy, such policy
prescriptions emerge through suitable dogmatic beliefs.

5.4.2 A new-classical world

So far we did not �x a speci�c economic model. Now, by way of example, assume that a
Lucas-Sargent model economy �� = (��0;��̂

�
) 2 ~� is the true model, with no systematically

exploitable trade-o¤ between in�ation and unemployment. Then, the pair (a�; ���) is a self-
con�rming equilibrium if and only if a� = ���0(�̂

�
+��1a) and ��0 = ��0(1�(�̂

�
+��1a)

2). Hence,
the policy and belief pair�

���0
�
�̂
�
+ ��1a

�
; ��

��0

�
1�(�̂

�
+��1a)

2
�
;��1a

��
is the dogmatic self-con�rming equilibrium in a Lucas-Sargent model economy. By Propo-
sition 7, policy a� is hyperactive when ��1a < ��1a and objectively optimal when ��1a = ��1a.
The welfare loss is ` (a�; ��) = ��20 (�̂

�
+ ��1a)

2.

Next we consider two di¤erent equilibria in this new-classical world according to the
monetary authority�s dogmatic beliefs.

New-classical authority Suppose the monetary authority correctly believes that there
is no exploitable trade-o¤ between in�ation and unemployment, that is, �� = �(��0;��̂

�
). The

pair (a�; �(��0;��̂
�
)) is a self-con�rming equilibrium if and only if a� = 0 and ��0 = ��0. As a

result, the policy and belief pair �
0; �(��0;��̂

�
)

�
(32)

is the new-classical self-con�rming equilibrium. It features a zero-target-in�ation policy,
which is the objectively optimal policy (so, there is no welfare loss) as well as the fully
revealing one that allows the authority to learn, in the long-run, the true coe¢ cient ��0.
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Keynesian authority Suppose the monetary authority wrongly believes that there is
a fully exploitable trade-o¤ between in�ation and unemployment, with say �� = �(��0;0).

The pair (a�; �(��0;0)) is a self-con�rming equilibrium if and only if a� = ���0�̂
�
and ��0 =

��0(1� �̂
�2
). The policy and belief pair�

���0�̂
�
; ��

��0

�
1��̂�2

�
;0
�� (33)

is thus a Keynesian self-con�rming equilibrium. It features an hyperactive positive-target-
in�ation policy. Since it is not the objectively optimal policy, the monetary authority su¤ers
a welfare loss ` (a�; ��) = (��0�̂

�
)2.

5.4.3 Welfare consequences

What are the welfare implications of incorrect beliefs under dogmatism? By way of exam-
ple, we consider a new-classical authority in a Keynesian economy, as well as a Keynesian
authority in a new-classical economy. The loss of a new-classical zero in�ation policy in a
Keynesian economy, with ��1a = 0, is (��0�̂

�
)2. It is the same loss of a Keynesian nonzero

in�ation policy (33) in a new-classical economy: a mistaken new-classical authority has the
same lower welfare as a mistaken Keynesian one.

5.5 Policy secularism and a curious interplay

5.5.1 Equilibria

Suppose that the monetary authority is not dogmatic, but has instead a two-models belief.36

Speci�cally, it is uncertain whether the true model is Lucas-Sargent or Samuelson-Solow,
so that the belief support consists of two points: a Lucas-Sargent model (�ls0 ;��̂

�
) and a

Samuelson-Solow model (�ss0 ; 0). If �
�
k 2 [0; 1] is the belief in the latter model, we can write

belief �� as
�� = (1� ��k) �(�ls0 ;��̂�) + �

�
k�(�ss0 ;0) (34)

Since E�� (�1a) = � (1� ��k) �̂
�
, the conjectured multiplier is E��(�2) = ��k�̂

�
and the pair

(a�; ��) is a self-con�rming equilibrium if and only if

a� = � ��0�̂
�
��k

1 + �̂
�
��k

�
�̂
�
+ ��1a

� (35)

and

�ls0 =
��0

1 + �̂
� �
�̂
�
+ ��1a

�
��k

�ss0 =
��0

�
1 + �̂

�2
��k

�
1 + �̂

� �
�̂
�
+ ��1a

�
��k

(36)

36Cogley and Sargent (2005) and Cogley et al. (2007) study dynamic Bayesian policy problems where
beliefs assign positive probability to three model economies (dynamic speci�cations of the two models we
consider here and a third related model).
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As a result, in this case the pair0B@� ��0�̂
�
��k

1 + �̂
�
��k

�
�̂
�
+ ��1a

� ; (1� ��k) � ��0
1+�̂

�(�̂�+��1a)��k
;��̂�

! + ��k� ��0(1+�̂
�2
��
k)

1+�̂
�(�̂�+��1a)��k

;0

!
1CA

is a self-con�rming equilibrium for every ��k 2 [0; 1]. We thus have a continuum of equilibria
parametrized by the belief ��k in the Samuelson-Solow model (and so by the conjectured
multiplier ��k�̂

�
). In particular, the equilibrium policy a� is increasing in ��k: the higher the

belief in a Keynesian model, the higher the planned in�ation. If ��k = 0 we get back to the
dogmatic new-classical equilibrium, while if ��k = 1 we get back to the dogmatic Keynesian
equilibrium (Section 5.4.1).

In equilibrium, the coe¢ cients (36) of the Lucas-Sargent and Samuelson-Solow models de-
pend on the authority�s belief ��k: di¤erent such beliefs correspond to di¤erent Lucas-Sargent
and Samuelson-Solow equilibrium speci�cations. Though the support of the equilibrium be-
lief (34) always contains a specimen of both classes of model economies, that specimen
changes as the belief ��k changes. This curious interplay between self-con�rming equilibrium
models and beliefs is our main �nding for the two-models belief case.

Finally, the welfare loss is

` (a�; ��) =
��20

�
�̂
�
��k + �̂

�
+ ��1a

�2
�
1 + �̂

�
��k

�
�̂
�
+ ��1a

��2�
1 +

�
�̂
�
+ ��1a

�2� (37)

5.5.2 A new-classical world

To study two-models beliefs further, let us posit a true model. As we did in our study
of dogmatism, assume that a Lucas-Sargent model economy �� = (��0;��̂

�
) is the true

model. If so, by (35) and (36) the pair (a�; ��) is a self-con�rming equilibrium if and only if

a� = ���0�̂
�
��k, �

ls
0 = �

�
0 and �

ss
0 = �

�
0(1 + �̂

�2
��k). Hence, in this case, the pair�

���0�̂
�
��k; (1� ��k) �(��0;��̂�) + �

�
k�(��0(1+��2��k);0)

�
is a self-con�rming equilibrium for every ��k 2 [0; 1]. The welfare loss is ` (a�; �

�) = (��0�̂
�
��k)

2.

As implied by the analysis of Section 5.5.1, we have a continuum of equilibria parame-
trized by the belief ��k in the Samuelson-Solow model: if �

�
k > 0 the equilibrium policy is

hyperactive, if ��k = 0 we get the dogmatic new-classical equilibrium (32). Moreover, if
��k = 1 we get back to the dogmatic Keynesian equilibrium (33). Now, however, the equilib-
rium coe¢ cient �ls0 is pinned down by the true natural rate of unemployment �

�
0. In contrast,

the equilibrium coe¢ cient �ss0 = �
�
0(1� �̂

�2
��k) still depends on belief �

�
k: such di¤erent be-

liefs correspond to di¤erent Samuelson-Solow equilibrium speci�cations. In other words, the
support of the equilibrium belief always contains a specimen of the Samuelson-Solow model;
it, however, changes as belief ��k changes.
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The following �gures illustrate. The monetary authority is uncertain about the true
economic constraint (the vertical line at the natural rate of unemployment) or the Phillips
regression line. At a self-con�rming equilibrium, the average unemployment expected by
the monetary authority must be the natural rate ��0; the subjective best reply condition is
expressed by the tangency between the (red) indi¤erence curve and a (green) line describing
the conjectured constraint, the slope of which is intermediate between the vertical line at
the natural rate ��0 and the Phillips regression line (which, in turn, depends on the belief �

�
k

via the equilibrium relation �0 = ��0(1� �̂
�2
��k)).

The second �gure gives an alternative geometrical representation. Every policy a induces
a pair of (objectively) expected rewards, the reward under model ��, R(a; ��), and the reward
under model �, R(a; �). By changing a one obtains the locus of possible pairs of rewards.
If R(a; ��) 6= R(a; �), the monetary authority can infer which of the two models is true
by looking at its long-run average payo¤. Therefore, the partial identi�cation condition is
that R(a; ��) = R(a; �). At a self-con�rming equilibrium (a�; ��) with supp�� = f��; �g, this
belief-con�rmation condition must hold; therefore, the equilibrium point (R(a�; ��); R(a�; �))
is at the intersection of the main diagonal in the (R(�; ��); R(�; �))-space, the �partial identi-
�cation line,�with the locus of pairs f(R(a�; ��); R(a�; �)) : a 2 Ag, the constraint. At this
intersection point, the constraint curve must be tangent to the indi¤erence, constant-SEU
line with slope (1� ��k)=��k.

Note that R (B (��) ; ��) = V (B (��) ; ���) > V (B (��) ; ��). Indeed, V (B (��) ; ���) >
V (B (��) ; ���) = R (B (��) ; ��) because B (��) is not a best reply to ��. On the other
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hand, R (B (��) ; ��) = V (B (��) ; ��) because R (B (��) ; �) is constant on the support of
self-con�rming belief �� (see Lemma 3). This is an instance of a more general result relating
the values of equilibria with sharper or coarser self-con�rming beliefs (see Proposition 9 in
Appendix A.4).

A Appendix

A.1 Additional mathematical preliminaries

Since several sigma algebras may be involved in the proofs, given a Borel space (S;S),
we sometimes write BS instead of S to denote its Borel sigma algebra. For every Borel
set B 2 BS , we let BS \ B = fB0 2 BS : B0 � Bg denote the relative sigma algebra on B
determined by BS . Berberian (1997) reviews the properties of Borel spaces.37

The next result completes Lemma 1.

Lemma 5 Let X and Y be Borel spaces and ' : X ! Y be measurable. Then:

(i) '̂ : �(X)! �(Y ) is measurable;

(ii) '̂ is one-to-one if and only if ' is one-to-one; in this case:

� ' (X) 2 Y, hence (' (X) ;Y \ ' (X)) is a Borel space;
� ' : X ! ' (X) is a measurable isomorphism;

� X = '�1 (Y), that is, ' generates X ;
� '̂ : �(X) ! �(' (X)) is a measurable isomorphism (under the identi�cation of
'̂(�) on Y with its restriction to Y \ ' (X)).

Proof The Borel sigma algebra B�(Y ) of�(Y ) is generated by the sets of the form f� 2 �(Y ) : � (C) � cg
for all C 2 BY and c 2 R. Now, for all such sets

'̂�1 (f� 2 �(Y ) : � (C) � cg) = f� 2 �(X) : '̂(�) 2 f� 2 �(Y ) : � (C) � cgg
=

�
� 2 �(X) :

�
� � '�1

�
(C) � c

	
=

�
� 2 �(X) : �

�
'�1 (C)

�
� c
	

which belongs to B�(X) because '�1 (C) 2 BX and B�(X) is generated by the sets of the
form f� 2 �(X) : � (B) � bg for all B 2 BX and b 2 R, that is, '̂ is measurable.38

If ' is one-to-one, then ' (X) 2 BY and ' is a measurable isomorphism between (X;BX)
and (' (X) ;BY \ ' (X)) (Mackey, 1957, Theorem 3.2, see also Berberian, 1997, Theorem
3.2.7). Denote by '0 : ' (X) ! X the inverse isomorphism. For every B 2 BX , ' (B) 2
BY \' (X) � BY and so B = '0 (' (B)) = '�1 (' (B)) 2 '�1 (BY ), then BX � '�1 (BY ) and
the converse inclusion follows from the measurability of '. Now '̂ (�) = '̂

�
�0
�
if and only if

37A terminological caveat: Berberian (1997) and other authors use Borel space as synonymous with mea-
surable space; they always specify the adjective standard when they assume Polish metrizability (as we do
here).
38Notice that this part of the statement does not rely on the fact that the measurable spaces (X;BX) or

(Y;BY ) are Borel, but rather on the choice of the natural sigma algebras on �(X) and �(Y ).
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�
�
'�1 (C)

�
= �0

�
'�1 (C)

�
for all C 2 BY , which implies � (B) = �0 (B) for all B 2 BX , thus

'̂ is one-to-one. Conversely, for each x 2 X, we have '̂(�x)(C) = �x
�
'�1 (C)

�
= �'(x) (C)

for all C 2 BY . Therefore, if ' is not one-to-one, '̂ is not one-to-one.
Finally, if '̂ is one-to-one, since it is measurable, then '̂ (� (X)) is a Borel subset of�(Y )

and '̂ is a measurable isomorphism between
�
�(X) ;B�(X)

�
and

�
'̂ (� (X)) ;B�(Y ) \ '̂ (� (X))

�
.

Now every element � = � � '�1 of '̂ (� (X)) is a probability measure on BY , ' (X) 2 BY ,
and � (' (X)) = �

�
'�1 (' (X))

�
= � (X) = 1. Thus, when the standard Borel space

(' (X) ;BY \ ' (X)) is considered, the restriction of � to BY \' (X) is an element of�(' (X))
denoted �'(X), that is,

� : '̂ (� (X)) ! �(' (X))
� 7! �'(X)

is a well de�ned map (which coincides with the inclusion when ' is onto). We want to show
that, indeed, � is a measurable isomorphism between

�
'̂ (� (X)) ;B�(Y ) \ '̂ (� (X))

�
and�

�(' (X));B�('(X))
�
. It is su¢ cient to prove that it is bijective and measurable (since both

spaces are Borel).
First notice that B�('(X)) is generated by the sets of the form f� 2 �(' (X)) : � (D) � dg

for all D 2 BY \ ' (X) (� BY ) and d 2 R. Now, for all such sets

��1 (f� 2 �(' (X)) : � (D) � dg) = f� 2 '̂ (� (X)) : � (D) � dg
= f� 2 �(Y ) : � (D) � dg \ '̂ (� (X)) 2 B�(Y ) \ '̂ (� (X))

that is, � is measurable.
Now assume that �; � 0 2 '̂ (� (X)) and �'(X) = � 0'(X), then for all C 2 BY

� (C \ ' (X)) � � (C) = � (C \ ' (X))+� (C \ ' (X)c) � � (C \ ' (X))+� (' (X)c) = � (C \ ' (X))

that is, � (C) = � (C \ ' (X)) and C \ ' (X) 2 BY \ ' (X) = B'(X). It follows that

� (C) = � (C \ ' (X)) = �'(X) (C \ ' (X)) = � 0'(X) (C \ ' (X)) = �
0 (C \ ' (X)) = � 0 (C)

and so � is one-to-one.
In order to prove surjectivity of �, next we show that, for every � 2 �(' (X)), the set

function de�ned by � (B) = � (' (B)) for all B 2 BX belongs to �(X) and � ('̂ (�)) = �.
First observe that � : BX ! [0; 1] is well de�ned because ' : (X;BX)! (' (X) ;BY \ ' (X))
is a measurable isomorphism. Moreover, for every B 2 BX , ' (B) = ('0)0 (B) = ('0)�1 (B),
thus � (B) = � (' (B)) = �

�
('0)�1 (B)

�
is a probability measure on X. Finally, for every

D 2 BY \ ' (X),

� ('̂ (�)) (D) = '̂ (�)'(X) (D) = '̂ (�) (D) = �
�
'�1 (D)

�
= �

�
'
�
'�1 (D)

��
= �

�
'
�
'0 (D)

��
= � (D)

as wanted. �

Corollary 2 Let (�;B�) and (S;BS) be Borel spaces and �x p : � ! �(S). Then p is
measurable if and only if

f� 2 � : p� (B) � bg 2 B� 8B 2 BS ;8b 2 R

that is, � 7! p (B j �) is measurable for all B 2 BS. If, moreover, p is one-to-one, then:
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� fp�g�2� = p (�) 2 B�(S);

� p : �! fp�g�2� is a measurable isomorphism;

� ~p : � (�)! �
�
fp�g�2�

�
de�ned by ~p (�) =

�
� � p�1

�
p(�)

is a measurable isomorphism

and, for every � 2 �
�
fp�g�2�

�
, the inverse image of � through ~p is � � p.

Proof Since B�(S) is the sigma algebra generated by the functions �B : � (S)! R de�ned
by �B (�) = � (B) for all B 2 BS , a map p : � ! �(S) is measurable if and only if �B � p
is measurable for all B 2 BS (see, e.g., Berberian, 1997, Proposition 1.3.8). But, given any
B 2 BS , p (B j �) = p� (B) = (�B � p) (�) for all � 2 �, thus p (B j �) = �B � p, proving
the �rst part of the statement.39 The rest follows from the statement of Lemma 5 setting
X = �, Y = �(S), and ' = p, with the exception of the explicit expression ~p�1 (�) = � � p,
for which the last paragraph of the proof of Lemma 5 has to be inspected. �

Corollary 3 Let (�;B�) and (T;BT ) be Borel spaces and �x q 2 �(T ). Then

p : � ! �(T ��)
� 7! q � �� = p�

is measurable and one-to-one.

Proof Injectivity is obvious, so we have only to show that

f� 2 � : p� (B) � bg 2 B� 8B 2 BT��;8b 2 R

that is, � 7! q � �� (B) is measurable for all B 2 BT � B�. Now for each � 2 �,

q � �� (B) =
Z
�
q (B�) d�� (�) = q

�
B�
�

where B� = ft 2 T : (t; �) 2 Bg, and a crucial step in the proof of the Fubini-Tonelli Theorem
(see, e.g., Billingsley, 2012, p. 246) consists precisely in showing that the map � 7! q

�
B�
�
is

measurable for all B 2 BT � B�. �

Corollary 4 Let (S;BS) be a Borel space and � : S ! �(S) the embedding s 7! �s. Then:
f�sgs2S 2 B�(S), � : S ! f�sgs2S is a measurable isomorphism, and � 7! ��� is a measurable
isomorphism between �

�
f�sgs2S

�
and �(S).

Proof In order to apply the previous Corollary 2 with � = S and p = �, we have only to
verify that fs 2 S : �s (B) � bg 2 BS for all B 2 BS and b 2 R; but this follows from the
fact that fs 2 S : �s (B) � bg = fs 2 S : 1B (s) � bg and indicators of measurable sets are
measurable functions. �
39Notice that this part does not rely on the fact that the measurable spaces (�;B�) or (S;BS) are Borel,

but rather on the choice of the natural sigma algebra on �(S).
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A.2 Feedback and identi�cation

First recall that, for each a 2 A, fa : S ! M is measurable and so is f̂a : � (S) ! �(M).
Since � 2 B�(S), and points are measurable in standard Borel spaces, then for every � 2
�(M) the setn

�0 2 � : f̂a
�
�0
�
= �

o
=
n
�0 2 �(S) : f̂a

�
�0
�
= �

o
\ � 2 B�(S) \ � = B�

and so �̂a (�) =
n
�0 2 � : f̂a (�0) = f̂a (�)

o
is a measurable subset of both � and �(S) for

all � 2 �.

Lemma 6 Let f and f 0 be feedback functions for a decision problem D. Then:

(i) � is coarser than f ;

(ii) if fa is one-to-one for every a 2 A, then f 0 is coarser than f ;

(iii) if f 0 is coarser than f , then �̂a (�) � �̂0a (�) for all (a; �) 2 A� �.

Proof (i) Recall that we assume that consequences are observable, thus for each action
a 2 A, there exists a measurable function ga : M ! C such that �a (s) = ga (fa (s)) for all
s 2 S. (ii) For each a 2 A, fa : S ! M is Borel measurable and one-to-one, by Lemma 5,
fa (S) is a Borel subset of M and fa : S ! fa (S) is a Borel isomorphism. Then the inverse
function f�1a : fa (S)! S is Borel measurable.40 Arbitrarily choose �s 2 S and set

ka (m) �
�
f�1a (m) m 2 fa (S)
�s m =2 fa (S)

it is easy to see that ka de�nes a Borel measurable map from M to S such that for every
s 2 S

f 0a (s) = f
0
a

�
f�1a (fa (s))

�
= f 0a (ka (fa (s))) =

�
f 0a � ka

�
(fa (s))

Setting ha = f 0a � ka : M ! M 0 yields the desired result. (iii) Let (a; �) 2 A� �. For every
�0 2 �̂a (�), �0

�
f�1a (BM )

�
= �

�
f�1a (BM )

�
for all BM 2 BM . But h�1a (BM 0) 2 BM for all

BM 0 2 BM 0 , then

�0
��
f 0a
��1

(BM 0)
�
= �0

�
(ha � fa)�1 (BM 0)

�
= �0

�
f�1a

�
h�1a (BM 0)

��
= �

�
f�1a

�
h�1a (BM 0)

��
= �

�
(ha � fa)�1 (BM 0)

�
= �

��
f 0a
��1

(BM 0)
�

and �0 2 �̂0a (�). �
40Caveat: In the proof of Lemma 5, the inverse isomorphism f�1a : fa (S) ! S is denoted f 0a, but here f

0
a

is a section of the feedback function f 0 that is not an inverse of f .
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A.3 Additional de�nitions

The self-con�rming (equilibrium) correspondence

� : �! 2A��(�)

associates to each possible true model �� the collection � (��) of its self-con�rming equilibria
(a�; ��). It is also convenient to consider the (equilibrium) action correspondence

 : �! 2A

that associates each possible true model �� with the collection  (��) of its self-con�rming
(equilibrium) actions, that is, actions a� such that (a�; ��) 2 � (��) for some belief ��.

A.4 Model uncertainty

We show that self-con�rming equilibria with sharper basic subjective assessments have higher
values. Formally, �� is absolutely continuous with respect to ��, denoted �� � ��, if and only
if, for every Borel set B � �, �� (B) > 0 implies �� (B) > 0. This means that �� rules out
more models than ��. In particular, if � is �nite, �� � �� is equivalent to supp�� � supp��.

Proposition 9 If (a�; ��) ; (b�; ��) 2 � (��) and �� � ��, then V (a�; ��) � V (b�; ��).

Proof Since ��
�
�̂a� (�

�)
�
= 1 and ��

�
�̂b� (�

�)
�
= 1, then �� � �� implies ��

�
�̂b� (�

�)
�
=

1 and so ��
�
�̂b� (�

�) \ �̂a� (��)
�
= 1. The optimality condition (3) for a� and Proposition

2 deliver

R (a�; ��) = V (a�; ��) �
Z
�̂a� (��)

R (b�; �) d�� (�) =

Z
�̂a� (��)\�̂b� (��)

R (b�; �) d�� (�)

but, by Lemma 3, R (b�; �) = R (b�; ��) for all � 2 �̂b� (��), it follows that V (a�; ��) �
R (b�; ��) = V (b�; ��), where the last equality follows from Proposition 2. �

Priors �� and �� that are mutually absolutely continuous are called equivalent, denoted
�� � ��; they share the same possible and impossible models. By the previous result, if �� �
�� then V (a�; ��) = V (b�; ��) for all pairs of self-con�rming equilibria (a�; ��) ; (b�; ��) 2
� (��). The value of self-con�rming equilibria is thus pinned down by what the decision
maker deems possible, whereas the speci�c shape of the prior is value-irrelevant. But more
is actually true: actions can be exchanged across such self-con�rming equilibria.

Proposition 10 If (a�; ��) ; (b�; ��) 2 � (��) and �� � ��, then (a�; ��) ; (b�; ��) 2 � (��).

Proof As observed, R (a�; ��) = V (a�; ��) = V (b�; ��) = R (b�; ��), but then

� R (b�; ��) = V (a�; ��) � V (a; ��) for all a 2 A and ��
�
�̂b� (�

�)
�
= 1 since ��

�
�̂b� (�

�)
�
=

1;

� R (a�; ��) = V (b�; ��) � V (b; ��) for all b 2 A and ��
�
�̂a� (�

�)
�
= 1 since ��

�
�̂a� (�

�)
�
=

1.
�
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The prior captures the decision maker�s subjective model uncertainty, which in a self-
con�rming equilibrium must be consistent with the objective model uncertainty �̂a�(��)
via the relation ��(�̂a�(��)) = 1.41 The results on the value that we just established for
subjective model uncertainty extend to objective model uncertainty. In particular, self-
con�rming (equilibrium) actions with better identi�cation properties have higher values,
regardless of which con�rmed beliefs support them.

Proposition 11 If (a�; ��) ; (b�; ��) 2 � (��) and �̂a�(��) � �̂b�(�
�), then V (a�; ��) �

V (b�; ��).

Proof The optimality condition (3) for a� and Proposition 2 deliver

R (a�; ��) = V (a�; ��) �
Z
�̂a� (��)

R (b�; �) d�� (�) =

Z
�̂b� (��)

R (b�; �) d�� (�)

but, by Lemma 3, R (b�; �) = R (b�; ��) for all � 2 �̂b� (��), it follows that

V (a�; ��) � R (b�; ��) = V (b�; ��)

where the last equality follows from Proposition 2. �

Also observe that, if �̂a� (��) = �̂b� (�
�), then R (a�; ��) = V (a�; ��) = V (b�; ��) =

R (b�; ��), but then

� R (b�; ��) = V (a�; ��) � V (a; ��) for all a 2 A and ��
�
�̂b� (�

�)
�
= 1 since ��

�
�̂a� (�

�)
�
=

1;

� R (a�; ��) = V (b�; ��) � V (b; ��) for all b 2 A and ��
�
�̂a� (�

�)
�
= 1 since ��

�
�̂b� (�

�)
�
=

1.

In words, this result implies that V (a�; ��) = V (b�; ��) whenever �̂a�(��) = �̂b�(�
�);

that is, two self-con�rming actions have the same value when they determine the same
collection of probability models that are observationally equivalent with the true model. In
this case, di¤erences between the con�rmed beliefs justifying the two actions are immaterial;
the reason is that in each equilibrium the decision maker correctly predicts the distribution
of consequences of both actions, which implies that they must yield the same objective
expected reward, hence the same value (Proposition 2), otherwise at least one of them would
not be a subjective best reply. In particular, the �exchangeability� thesis of Proposition
10 continues to hold even under the belief-free hypothesis �̂a�(��) = �̂b�(��): if a� and b�

are self-con�rming equilibrium actions that identify the same set of models, then the sets of
con�rmed beliefs supporting a� and b� coincide.

Finally, the following results relate self-con�rming equilibrium actions to objectively op-
timal actions:

Corollary 5 A fully revealing action is self-con�rming if and only if it is objectively optimal.

41Which implies that all possible sets of models are essentially contained in �̂a�(��).
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Under own-action independence of feedback about the state, we have a stronger result.
Remark 1 and Lemma 3 imply:

Corollary 6 Under own-action independence of feedback, an action is self-con�rming if and
only if it is objectively optimal.

Self-con�rming actions are thus always objectively optimal when information does not
depend on choice. The reason is that, given our structural assumption of observability
of consequences, in equilibrium the decision maker correctly predicts the distribution of
consequences implied be each action, even if the true model is not identi�ed. In this case
partial identi�cation becomes welfare irrelevant and so the analysis of feedback, the main
topic of the paper, loses much of its interest. From a decision perspective, own action
independence amounts to perfect feedback.

A.5 Other proofs

Proof of Lemma 1 See Lemma 5. �

Proof of Lemma 2 See Lemma 6. �

Proof of Lemma 3 Fix a 2 A. Observability of consequences implies that �a (s) =
ga (fa (s)) for each s 2 S, where ga : M ! C is BM � BC-measurable; as fa : S ! M
is Fa � BM -measurable, then �a : S ! C is Fa � BC-measurable. Moreover, v : C ! R is
BC �BR-measurable and bounded above, and so ra = v � �a : S ! R is Fa �BR-measurable
and bounded above. Thus

Ra (�) =

Z
S
rad� =

Z
S
rad�jFa 8� 2 �(S) (38)

In particular, if � 2 � and �0 2 �̂a(�), then Ra (�) =
R
S rad�jFa =

R
S rad�

0
jFa = Ra (�

0). �

Proof of Proposition 2 If (a�; ��) 2 A��(�) and ��
�
�̂a�(�

�)
�
= 1, then

V (a�; ��) =

Z
�
R (a�; �) d�� (�) =

Z
�̂a� (��)

R (a�; �) d�� (�) = R (a�; ��)

because, by Lemma 3, R (a�; �) = R (a�; ��) for all � 2 �̂a�(��). �

Proof of Proposition 3 It follows immediately from Proposition 2 and Proposition 11. �

Proof of Proposition 4We already observed that if a is objectively optimal, then (a; ���) 2
� (��) and a 2  (��). As for the converse, let �� 2 �(�) be such that (a; ��) 2 � (��). Since
�̂a(�

�) � �̂b(��) for each b 2 A and, by Lemma 3, for each b it is true that R (b; �) = R (b; ��)
when � 2 �̂b(��), then R (a; ��) �

R
�̂a(��)

R (b; �) d�� (�) = R (b; ��), as wanted. �

Proof of Corollary 5 Given a true model �� 2 �, the result follows from Proposition 4
since if a is fully revealing, then �̂a(��) = f��g � �̂a0(��) for every a0 2 A. �
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Proof of Corollary 6 Given a true model �� 2 �, the result follows from Proposition 4
since own-action independence of feedback implies �̂a(��) = �̂a0(�

�) for every a; a0 2 A.
Hence,  (��) = argmaxa2AR (a; ��). �

Proof of Proposition 5 Recall that a is �xed. We �rst prove the inclusion �. If �0 2 �̂a (�),
then �̂a (q � ��0) = �̂a (q � ��). In particular,Z

S
h (�a) d (q � ��0) =

Z
S
h (�a) d (q � ��) (39)

for all h : R� R! R for which the integral is de�ned. Next observe that

1. For h (u; �) = � and �00 2 �, we have that
R
S �d (q � ��00) = a.

2. For h (u; �) = �2 and �00 2 �, we have that
R
S �

2d (q � ��00) = a2 +
�
�003
�2.

3. For h (u; �) = u and �00 2 �, we have that
R
S ud (q � ��00) = �

00
0 +

�
�001� + �

00
1a

�
a.

4. For h (u; �) = u2 and �00 2 �, we have that
R
S u

2d (q � ��00) =
�
�000 +

�
�001� + �

00
1a

�
a
�2
+�

�001�
�2 �

�003
�2
+
�
�002
�2.

5. For h (u; �) = u� and �00 2 �, we have that
R
S u�d (q � ��00) = a

�
�000 +

�
�001� + �

00
1a

�
a
�
+

�001�
�
�003
�2.

Given (39), note that point 2 gives �03 = �3, then points 3 and 5 give �
0
1� = �1�. With

this, point 3 again yields �00 + �
0
1aa = �0 + �1aa. Then point 4 gives�

�00 +
�
�01� + �

0
1a

�
a
�2
+
�
�01�
�2 �

�03
�2
+
�
�02
�2
= (�0 + (�1� + �1a) a)

2 + (�1�)
2 (�3)

2 + (�2)
2

point 3 says that the �rst summands on both sides coincide, and we already established�
�01�
�2 �

�03
�2
= (�1�)

2 (�3)
2, therefore, �02 = �2. This concludes the proof of the �rst set

inclusion and formalizes the moments heuristics described in the main text.
In order to obtain the opposite inclusion, note that some simple algebra delivers, for each

�00 2 � and each (u; �) 2 R2,

�̂a (q � ��00) ((�1; u]� (�1; �]) = q (Q�00)

where Q�00 =
�
(w; ") 2W � E : w�

00
2 + "�

00
1��

00
3 � u�

�
�000 + a�

00
1a

�
� a�001�

�003" � � � a

�
.

Now, consider �0 2 � such that �00 + �
0
1aa = �0 + �1aa, �01� = �1�, �02 = �2, �03 = �3,

then Q�0 = Q�, hence �̂a (q � ��0) ((�1; u]� (�1; �]) = �̂a (q � ��) ((�1; u]� (�1; �])
implying that �̂a (q � ��0) = �̂a (q � ��) and �0 2 �̂a (�). �

Proof of Lemma 4 Some simple algebra shows that

R (a; �) = �
Z
W�E

u2 (a;w; "; �) dq (w; ")�
Z
W�E

�2 (a;w; "; �) dq (w; ")

= � (�0 + (�1� + �1a) a)2 � a2 � �22 � �23�21� � �23
= �E2� (ua)� E2� (�a)� �22 � �23�21� � �23
= v (E� (ua) ;E� (�a)) + �
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where, being ~� = f(�0; �1a)g = R2, we set � = ��22 � �23�21� � �23 since this polynomial can
be regarded as a constant term. �

Proof of Proposition 6 It holds

R (a; �) = �
�
(�1� + �1a)

2 + 1
�
a2 � 2�0 (�1� + �1a) a+ �

Thus, V (a; ��) is �up to a constant �equal to

�
Z
�̂a� (�

�)

���
�̂
�
+ �1a

�2
+ 1

�
a2 + 2�0

�
�̂
�
+ �1a

�
a

�
d�� (�)

= �
Z
R

���
�̂
�
+ �1a

�2
+ 1

�
a2 + 2 (��0 + (�

�
1a � �1a) a�)

�
�̂
�
+ �1a

�
a

�
d�� (�1a)

= �
Z
R

��
�̂
�2
+ �21a + 2�̂

�
�1a + 1

�
a2 + 2��0

�
�̂
�
+ �1a

�
a+ 2a� (��1a � �1a)

�
�̂
�
+ �1a

�
a
�
d�� (�1a)

= �
Z
R

��
�̂
�2
+ �21a + 2�̂

�
�1a + 1

�
a2 + 2��0

�
�̂
�
+ �1a

�
a+ 2a�

�
��1a�̂

�
+ ��1a�1a � �1a�̂

� � �21a
�
a
�
d�� (�1a)

= �
�
�̂
�2
+ E��

�
�21a
�
+ 2�̂

�
E�� (�1a) + 1

�
a2 � 2��0

�
�̂
�
+ E�� (�1a)

�
a

� 2a�
�
��1a�̂

�
+ ��1aE�� (�1a)� E�� (�1a) �̂

� � E��
�
�21a
��
a

The �rst order condition @V (a; ��) =@a = 0 thus implies

a
�
�̂
�2
+ E��

�
�21a
�
+ 2�̂

�
E�� (�1a) + 1

�
+ a�

�
��1a�̂

�
+ ��1aE�� (�1a)� E�� (�1a) �̂

� � E��
�
�21a
��

= ���0
�
�̂
�
+ E�� (�1a)

�
Putting a = a� we get

a�
�
�̂
�2
+ �̂

�
E�� (�1a) + 1 + ��1a�̂

�
+ ��1aE�� (�1a)

�
= ���0

�
�̂
�
+ E�� (�1a)

�
and so

a� =
���0

�
�̂
�
+ E�� (�1a)

�
�̂
�2
+ �̂

�
E�� (�1a) + 1 + ��1a�̂

�
+ ��1aE�� (�1a)

= �
��0

�
�̂
�
+ E�� (�1a)

�
1 +

�
�̂
�
+ ��1a

��
�̂
�
+ E�� (�1a)

�
As a result, �̂a� (��) is equal to8<:(�0; �1a) 2 R2 : �0 = ��0 � ��0

�
�̂
�
+ E�� (�1a)

�
1 +

�
�̂
�
+ ��1a

��
�̂
�
+ E�� (�1a)

� (��1a � �1a)
9=;

as desired. �
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Proof of Proposition 7 It holds

a� � ao =
��0

�
�̂
�
+ ��1a

�
1 +

�
�̂
�
+ ��1a

�2 � ��0

�
�̂
�
+ E�� (�1a)

�
1 +

�
�̂
�
+ ��1a

��
�̂
�
+ E�� (�1a)

�

=

��0

��
�̂
�
+ ��1a

��
1 +

�
�̂
�
+ ��1a

��
�̂
�
+ E�� (�1a)

��
�
�
�̂
�
+ E�� (�1a)

��
1 +

�
�̂
�
+ ��1a

�2��
�
1 +

�
�̂
�
+ ��1a

�2��
1 +

�
�̂
�
+ ��1a

��
�̂
�
+ E�� (�1a)

��

=

��0

�
��1a +

�
�̂
�
+ ��1a

�2 �
�̂
�
+ E�� (�1a)

�
� E�� (�1a)�

�
�̂
�
+ E�� (�1a)

��
�̂
�
+ ��1a

�2�
�
1 +

�
�̂
�
+ ��1a

�2��
1 +

�
�̂
�
+ ��1a

��
�̂
�
+ E�� (�1a)

��
=

��0 (�
�
1a � E�� (�1a))�

1 +
�
�̂
�
+ ��1a

�2��
1 +

�
�̂
�
+ ��1a

��
�̂
�
+ E�� (�1a)

��
Hence, if a� 6= 0 it holds

a� � ao = � a�

1 +
�
�̂
�
+ ��1a

�2 ��1a � E�� (�1a)
�̂
�
+ E�� (�1a)

and so

a� ? ao () a�
��1a � E�� (�1a)
�̂
�
+ E�� (�1a)

7 0 (40)

Having established this relation, we can now prove points (i) and (iii) (points (ii) and
(iv) being obvious).

(i) Suppose a� > ao > 0. By (24) E�� (�1a) 6= ��̂� and so E�� (�1a) < ��̂�. By (40),
(��1a � E�� (�1a)) =(�̂

�
+ E�� (�1a)) < 0, which in turn implies E�� (�1a) < ��1a. Conversely,

suppose E�� (�1a) < ��1a. Since E�� (�1a) � ��̂
�
, by (24) it follows a� > 0. Moreover, being

(��1a � E�� (�1a)) =(�̂
�
+ E�� (�1a)) < 0, by (40) it holds a� > ao. (iii) Suppose 0 < a� < ao.

By (40), (��1a � E�� (�1a)) =(�̂
�
+ E�� (�1a)) > 0, that is, E�� (�1a) 2 (��1a;��̂

�
). Conversely,

suppose E�� (�1a) 2 (��1a;��̂
�
). By (24), a� > 0. Moreover, being (��1a � E�� (�1a)) =(�̂

�
+

E�� (�1a)) > 0, by (40) it holds a� < ao. �

In nice problems the loss function can be de�ned in terms of beliefs by setting ` (�; �) =
` (B (�) ; �). For instance, next we show that for the Phillips curve example it holds

` (��; ��) =
��20 (�

�
1a � E�� (�1a))

2�
1 +

�
�̂
�
+ ��1a

�2��
1 +

�
�̂
�
+ ��1a

��
�̂
�
+ E�� (�1a)

��2 (41)

There is a zero welfare loss if and only if E�� (�1a) = ��1a, that is, if and only if the monetary
authority�s expected value of the coe¢ cient �1a is correct. Otherwise, the loss is nonzero, as
(41) shows.
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Proof of Proposition 8 and eq. (41) First note that

R (ao; ��) = ���20 �
�
�̂
�
+ ��1a

�2
ao2 �

�
�̂
�
��3

�2
� ��22 � 2��0

�
�̂
�
+ ��1a

�
ao � ao2 � ��23

and

R (a�; ��) = ���20 �
�
�̂
�
+ ��1a

�2
(a�)2 �

�
�̂
�
��3

�2
� ��22 � 2��0

�
�̂
�
+ ��1a

�
a� � (a�)2 � ��23

Hence,

` (a�; ��) = max
a2A

R (a; ��)�R (a�; ��) = R (ao; ��)�R (a�; ��)

= �
�
�̂
�
+ ��1a

�2 �
ao2 � a�2

�
� 2��0

�
�̂
�
+ ��1a

�
(ao � a�)�

�
ao2 � a�2

�
Suppose ao = 0, that is, ��0

�
�̂
�
+ ��1a

�
= 0. Then

` (a�; ��) =

�
1 +

�
�̂
�
+ ��1a

�2�
a�2 = �

�
1 +

�
�̂
�
+ ��1a

�2� ��20

�
�̂
�
+ E�� (�1a)

�2
�
1 +

�
�̂
�
+ ��1a
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�̂
�
+ E�� (�1a)

��2
If ��0 6= 0, then �̂

�
+ ��1a = 0 and so

` (a�; ��) = ��20

�
�̂
�
+ E�� (�1a)

�2
= ��20 (E�� (�1a)� ��1a)

2 (42)

If �̂
�
+ ��1a 6= 0, then ��0 = 0 and so

` (a�; ��) = 0 (43)

Next suppose ao 6= 0. It holds �2ao
�
1 +

�
�̂
�
+ ��1a

�2�
= 2��0

�
�̂
�
+ ��1a

�
, and so

1 +
�
�̂
�
+ ��1a

�2
= ���0

�
�̂
�
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�
=ao. Hence
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�
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�
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�
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�
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�2
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�
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�
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�
+ ��1a

�2
+ 1

�
= (a� � ao)2

��
�̂
�
+ ��1a

�2
+ 1

�
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In the previous proof we showed that

a� � ao = ��0 (�
�
1a � E�� (�1a))�

1 +
�
�̂
�
+ ��1a

�2��
1 +

�
�̂
�
+ ��1a

��
�̂
�
+ E�� (�1a)

��
Hence,

` (��; ��) = ���0
�
�̂
�
+ ��1a

� (a� � ao)2
ao

= ��0

�
�̂
�
+ ��1a

� ��20 (�
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�
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It is easy to check that, along with (42) and (43), this completes the proof. �

Proof of eq. (37) It holds
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as desired. �
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