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Speed of Convergence of
Recursive Least Squares:
Learning with Autoregressive
Moving-Average Perceptions

Albert Marcet and Thomas J. Sargent

Introduction

This chapter studies the convergence to a limited information rational expectations
equilibrium of a self-referential system in which agents are learning by recursively
updating their estimates of an autoregressive moving-average (ARMA) model
for endogenous variables. In the existing literature on least squares learning, e.g.
Bray (1982, 1983), Bray and Savin (1986), Fourgeaud et al. (1986), and Marcet
and Sargent (1989, b), agents are assumed to learn by recursively fitting finite
order pure autoregressions. In models with private information and/or hidden state
variables, the restriction to a finite order autoregressive scheme is limiting because
the stochastic structure of the rational expectations equilibrium gives agents an
incentive to condition on the infinite past of the variables that they observe (see
Marcet and Sargent (1989b) and Sargent (1991) for elaborations of this point).
It is natural to seek what in earlier work (Sargent, 1991) we called a full order
equilibrium, namely, an equilibrium in which agents’ forecasting rules achieve
the minimum possible one-step-ahead forecasting error variance given the infinite
record of past observations. In Sargent (1991), we described how in the context of
Townsend’s (1983) model' such an equilibrium can be supported with finite-order
parameterizations by specifying that agents forecast by using ARMA schemes.
Sargent (1991) studied how to formulate and compute such an equilibrium, but
did not analyze convergence to it via least squares.
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To study least squares learning in a simple version of such a setting, this chapter
analyzes a modification of the hyperinfiation model studied by Fourgeaud et al.
(1986). We alter their model in just one significant way: we assume that agents do
not observe the money supply, and that the only information on which they can base
forecasts of future prices is current and past prices.” For this setup, there may exist
a limited information rational expectations equilibrium in which the price level is
a first-order ARMA process. We study whether we can expect convergence to this
equilibrium by a system in which agents forecast by fitting a first-order ARMA
process to prices each period, updating their estimates of the ARMA parameters
recursively. We study the convergence of the resulting system under two distinct
recursive algorithms forestimating ARMA processes: (1) pseudo-linear regression,
and (ii) the recursive prediction error method.? .

We study convergence by adapting arguments described by Marcet and Sargent
(1989a), which in turn are based on arguments of Ljung (1977) and Ljung and
Soderstrom (1983).4 The ordinary differential equations governing pseudo linear
regression and the recursive prediction error method are shown to differ, but to share
a common rest point (the limited information rational expectations equilibrium).

The eigenvalues of the associated ordinary differential equations at the fixed
point shed some light on the speeds of convergence of our two algorithms.® In
particular, we use recent theoretical results of Benveniste et al. (1990) to get some
results on rates of convergence and how they depend on those eigenvalues. We use
a method for estimating the rate of convergence via simulation for situations in
which we are without analytical results.

Systems in which agents form perceptions in the form of ARMA processes
arise naturally in a variety of contexts. In addition to the models with private
information and hidden state variables described by Marcet and Sargent (1989b)
and Sargent (1991),% they arise in linear models with sunspots and multiple
equilibria. Evans and Honkapohja (1990) describe a setup in which there are
multiple equilibria differing among one another in the number of parameters in
their ARMA representations. Evans and Honkapohja study the stability of these
alternative equilibria in the face of some version of least squares learning. For
technical reasons, Evans and Honkapohja have yet to complete their analysis of
stability for the case in which the equilibria are of ARMA, as opposed to just AR,
form. The results in the present chapter will be useful in contexts like theirs.

1 The Model

We adapt the inflation mode! of Fourgeaud et al. (1986) as follows.” Let y, be the
log of the price level and x, be the log of the money supply al r. The variables
(yr, x;) are determined by

i vam*C<+~_vaL+3+5 6.1)

o
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X; = pxi +up +duy (6.2)

where A, p, and d are all less than unity in absolute value, and (u,, vy} is a pair of
mutually orthogonal white noises with variances o} and Qm respectively. Equation
(6.1) is a version of a demand function for money, while equation (6.2) is the
assumed stochastic process for the money supply, which is an exogenous first-order
ARMA process. In (6.1), E* (yr+11y1, w,) is agents’ forecast of y, 4 attime 7. Let
this be given by

EX(yipetlye wr) = Ef(yev1) = ayr + cwy {(6.3)

where |a| < 1, |¢| < 1. The parameters a, ¢ and the variate w, are determined by
agents’ perceptions of an ARMAC(I ,1) model

Vgl = Ay + Wipl +Cwy (6.4)

where w, is believed to be the innovation in vy, relative to the information set
y' = (y, yi=1,...)- Agents assume the time-invariant model (6.4) for y, and
estimate it via a procedure to be described below. The force of (6.3) and (6.4)
is that agents do not observe x;, v;, or u; in (6.1) and (6.2), but do observe the
record y' = (y, yi—1, ...). From the perspective of agents, there are “‘hidden state
variables.” . .

We shall now describe how to formulate and compute an appropriate notion
of a rational expectations equilibrium for this model. We do so by describing the
mapping from a perceived to an actual law of motion for prices, the same sort of
mapping that was utilized extensively by Marcet and Sargent (1989a) and Sargent
(1991). The method is first to define the state of the system and to find its law
of motion. Then we deduce the univariate law of motion for the log price level
by “conditioning down,” i.e. finding the projection of prices on past prices and
the innovation in prices implied by the law of motion for the state of the system.
This procedure generates a mapping from a perceived ARMA process for prices
to an actual process. A limited information rational expectations equilibrium is
a fixed point of this mapping. We now fill in some technical details involved in
constructing the mapping.

Define the srate of the system, z;, and the system noise &; as

Yi
wy . u;
iy = =
! Xt Uy

u,

Notice that both w, and 1, are included in the state, where w, is the innovation in
the perceived law of motion. When the perceived law of motion for y, 1s given by
(6.3) and (6.4), then the acrual law of motion for z; can be computed to be
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2 =T(Bz—1 + V(B)e (6.5)
where 8 = [a ],
—AAca —AAc? pA da
—AAca—a —LAt —c¢ pA da
T(B)=
0 0 0 d
0 0 0 0
(6.6)
A A
A A
Vi{p) =
I 0
1 0

where A = (1 — xa — h¢)~ L.

Representation (6.5)—(6.6) gives the mapping from the parameters of the
perceived law of motion in (6.3) for y to the actual law of motion for the entire
state vector z;. When (6.5) is the actual law of motion for z,, for fixed B we can
compute the covariance matrix of z; associated with the stationary distribution of
z;. In particular, let

1, u, 7’
=K
Uy Yy
Let M.(B8) be the covariance matrix Ez,z; associated with the stationary
distribution implied by (6.5) for fixed 8. Then M.(B) satisfies the discrete
Lyapunov equation

M (B) = T(BYM (BT (BY + V(B)L2V(B) (6.7)

The Lyapunov equation (6.7) can be solved for M_(B) using any of several
algorithms.
Consider the subset of z,
i
Zar =

Wy
D,m:oa the second moment matrix of z,, by M_,(B). Evidently, M-, (B) consists
of the 2 x 2 submatrix in the upper left corner of M. (8). The covariance matrix

M., (B) = Ez,z, is the 4 x 2 submatrix consisting of the two leftmost columns
of M, ().
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Notice that z,, is linked to z; by

Zat = €aly
where
1 0 0 O
ey =
01 0 0

We are interested in computing the projection of 74,41 on z,, when the law of
motion for z, is (6.5). Direct calculations establish that

Ezgrvilzar = MAEVNE (6.8)

where

S(B) = e, T(BYMy, (BYM, (B) ™ (6.9)

The first row of S§(B) gives the coefficients in the projection of y,| on y, and
wy, while the second row gives the coefficients in the projection of w, 4 on y,
and w,. Thus, when the perceived projection of y,4+( on y; and w; is determined
by parameters 8, the actual projection of y, 41 on y, and w, is determined by the
parameters S (B8), where S|(f) is the first row of S(8).

2 Existence and Uniqueness of Stationary Equilibria

In this section’ we describe the relationship between the fixed points of S
and limited information rational expectations equilibria. We state conditions for
existence and uniqueness of a stationary limited information rational expectations
equilibrium. We will show that stationary equilibria do not exist for some parameter
values.

Previous papers analyzing convergence of least squares learning mechanisms
using the ordinary differential equation approach have used two facts — (i) fixed
points of the mapping S are the only possible limit points of a least squares
learning mechanism and (ii) all fixed points of S correspond to rational expectations
equilibria — both to establish that only rational expectations equilibria can be the
limit points of the learning mechanism and to find conditions for convergence.'°
But in the mode! of this chapter, it can happen that fixed points of S| are not rational
expectations equilibria.

Definition A stationary limited information rational expectations equilibrium
(LIREE) is a fixed point of the mapping S, namely a pair of parameter values
that satisfies (ar, cf) = Si(ay, cy) satisfying the following two conditions:

(a) the processes (y,, w;) generated by these parameters are measurable with
respect to (x;, Uy, Xi—1, Ur—1,...);
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(b)  w, is measurable with respect to (y;, y,_y,...).

What is different from previous papers is the measurability requirements. These
conditions are used because, as we will see in proposition 1, there exist fixed points
of St with a non-invertible w,. The definition of S1 above does not impose the
natural requirement in rational expectations models that the prediction implied by
the parameters («, ¢) should be measurable with respect to past information and
past exogenous variables.

Let us see in more detail the evolution of y, and w, at the fixed point. First of
all, from equation (6.5) we have

1 I +dL
V= g «_;l[bh:n: (T?m..ti + v, ) A0~Ov
and
1
=pLyy, = T Toa (A+dL)u, + (1 — pL)hcw, + (1 — pL)v, ]  (6.11)

Notice that if we can find a white noise with finite variance w, and a parameter ¢
that satisfy

1
(I+clw, = T (M +dL)u, + (1 = pL)rcw, + (1 — pLYy, ] (6.12)

then combining (6.11) and (6.12) we know that y, has an ARMA(I, 1) represen-
tation with white noise w;.

Lemma 1 Let¢ be such that w, satisfying (6.12) is a white noise with constant
variance. Then (a, ¢) = (p, ¢) is a fixed point of Sy.

Proof  From equation (6.8), it is enough to check that the processes for y; and
w; generated by the parameters (p, ¢) satisfy E(y,41 | y;, w;) = Py + cwy.
Now, if w, satisfies (6.12), we can write

E TTI lyr, EL =pytecw + E _HSTI_S, SL

and it is enough to check that £ [w;]y;, w; | = 0. Since by the assumptions
of the lemma w;, is a white noise, we have

cov(wrar, yi) = cov(Wegt, pYi—) + cwpy + wy)
= p cov{W, 1, yr—1)

= p' cov(wpy, yr—i)

Letting i go to infinity we have that cov(w, 41, y,) = 0.
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Now it 1s clear that all we have to do to find fixed points of Sy is to find values
¢ that satisfy (6.12); the following proposition tells us what those are.
Proposition 1 There exist two fixed points of the mappiong S| given by

(1—2p)[8 — (8% = D2
A A Sy 7 Pl

(6.13)
_ (I =xp)[8+ (8% = D]
A A Ty P
where
« 5 (14 dHo? + (1 + p*)o?
B 2(do? — po?)
Proof Equation (6.12) implies
H—Xx(p+c)+cLllw, =1 +dL)u;, + (1 — pL)v] (6.14)

This is the equation generating the w;s in terms of the fundamentals. We want
to find values of ¢ that are consistent with w, in (6.14) being a white noise.
Taking the variance and the first autocovariance of both sides of (6.14) and
using cov(w;, w, 1) = 0, we have

o2 11 |»€+%N+%“ = (1+d*)o? + (1 + pHo? (6.15)

and

o2 (1 = e+ p)lc=do} — po? (6.16)

Ifdo} — po? = 0 we see from equation (6.16) that the two solutions are given
by 1 — A(c + p) = 0 and ¢ = 0. Otherwise, using (6.16), we can eliminate Qw.o_

from (6.15) and get

2
< DY S +1=0 (6.17)
HI»AE.TQ _I>Ab+nv

where 8 has been defined in the statement of the theorem. This is a polynomial
inc/[1 — A(p + ¢)] with solutions given by

S N LI (6.18)
1l —A(p+c)
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“ M,Mva formulas in the statement of the proposition follow immediately from

To ormow that we have real solutions it is enough to check that |§] > 1. For
convenience, let « be the right-hand side of (6.15) and B be the right-hand side
of (6.16), so that § = «/28; then we have to check thater > 2|B]. if B > Othen

a=21B|=(-d)ol+(1+p%?>0 (6.19a)
and if 8 < O then

@ =2IBl =1 +d)’0 + (1 - p)262 > 0 (6.19b)
$0 the solutions are real.

Tﬂocwm:mo: I gives the values of ¢ that are consistent with (6.12). The value of
w; consistent with each ¢y is found by performing forward or backward recursjon

w: (6.12) depending on whether —¢/[1—=Xp+c)is larger or smaller than unity
in absolute value. So, using (6.14), we can set

o0 i
— —¢ (I +dLyu—i + (1 - pLyv,_;
wr = _— 7 FEIE
2l eral i Seg 20

if —¢/[1 — A(p 4 ¢)] is less than unity in absolute value and

S\HW = TTT&C: + (1 L
Ll —Ap+o0 1+ -0 VS+L (6.21)

otherwise.

This m_..<om us the value of ¢ and the corresponding innovation of y,. To prove
:,.ﬁ w, given by (6.20) or (6.21) is a white noise, simply observe that these
satisfy (6.15) by construction, which holds if and only if cov{w,, w,—) = 0:
that covariances with longer lags are zero follows immediately ?oE_ (6.14). u

2@5 the issue is which of these fixed points is a rational expectations
equilibrium. First of all, it is clear that if w, has to be written in terms of current and
b.mmgm then we will need that |¢| < 1, but this may not be enough; the w.@:m:.o: that
gives us the evolution of the ws in terms of the fundamentals is (6.14). Clearly, if
—¢/[1 = A(p + ¢)] is larger than unity in absolute value w, will not be Eommﬁm?m

with Tespect to past exogenous variables. These requirements are formalized in the
following.
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Proposition 2 Each fixed point of proposition 1 is an LIREE if and only if
|cl<1and

I
1—=A(p+c)
Proof  We can write w, in terms of past ys by setting w, = Mwmom_. A—=pL)y i,
but this sum is convergent if and only if | ¢ |< 1. Similarly, if —¢/[1 =X (0 +¢)]
1s larger than unity in absolute value equation (6.21) tells us that w, will depend

on future values of the exogenous variables.

Finally, we come to the characterization of the LIREEs in terms of these fixed
points of 1. The next proposition says that (p, ¢y) (i.e. the first fixed point in
proposition 1) is the only candidate for being an LIREE because the fixed point
we have labeled (p, ¢s) does not satisfy the conditions of proposition 2. Also, this
proposition says that if (o, ¢¢) does not satisfy the conditions of proposition 2 then
there is no equilibrium.

Proposition 3

(@) If 8 > 0 an LIREE exists if and only if ¢ satisfies the conditions of
proposition 2 (¢y if § < 0).

(b) Whenan LIREE exists, the processes y,, w, generated by (a, ¢) = (0, ¢y)
are the unique rational expectations equilibrium with limited information.

Proof  We first prove part (a) for § > 0. The statement that if ¢/ satisfies the
conditions of proposition 2 then an LIREE exists follows immediately from

proposition 2.

Now we observe that

—C 2 /2
L~ x(p+cp) | |

where the last inequality has been proved in proposition 1. Therefore, ¢y cannot
be an LIREE, and the only fixed point that can satisfy all the conditions for
an LIREE is ¢y. If ¢ does not satisfy the inequalities in proposition 2, then
no stationary equilibrium exists. A stationary equlibrium would have to satisfy
equations (6.12) and (6.14), and only (o, ¢) and (p, ¢/) satisfy these equations,
but we have just ruled out ¢; as an equilibrium. This argument also proves part
(b), because if ¢ satisfies the inequalities of proposition 2 the argument in the
previous paragraph proves that there exists no other equilibrium.

It is possible to find parameter values for which no stationary equilibrium exists.
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This is not surprising in view of the work of Futia (1981), who studied a version
of our model in which QCN = (. For some parameter values Futia found that no
stationary equilibrium exists. For our ARMA process for x,, and if Qm = 0, the
value for ¢ at equilibrium is

d(l — xp)

14 Ad

For some values of the parameters this can be larger than unity (e.g.ifd = 0.5, % =
—0.9,p = 0.8), and it is easy to show that for Qw small the value of ¢y gets

arbitrarily close to that given by (6.22).

Nevertheless, particular conditions on the parameters of the model can be
imposed to guarantee that there exists a unique stationary equilibrium. Some of
these conditions are the following.

(6.22)

Proposition 4 Each of the following set of conditions is sufficient for existence
of a unique stationary LIREE:

a A>0

by d=0

(¢) o2 arbitrarily large
2

(d)

o, arbitrarily small and the expression in (6.22) is less than unity in
absolute value.

Proof  The proofs involve simple algebra and most of the detatls will be omitted.
We only give details for the case 6 > 0.

(a) We first need to show that § — (82 — 1)/? is less than unity in absolute
vatue. This follows from the fact that this is an increasing function of §,
the factthat | § | > 1 (which has been shown in the proof of proposition 1)
and the factthat —1 < —§+ (82 -1)1/2 < 0.Now,since X > 0, |p]| <1
and § — (6 — )/2 > 0, we have
1—Ap

0 — <1
<c¢f < T <

and both conditions of proposition 2 are satisfied.

(c) Take p < 0.Aso? goes to infinite § goes to —(1+ p?)/p, 8 — (87 — 1)!/?
goes to —p and ¢ goes to —p, which is less than unity in absolute value.

This characterizes in some detail the stationary equilibria, the fixed points of
Sy and their relationship. There could be more fixed points of S; but they could
not be LIREE because they do not satisfy the requirements in proposition 2. Also,
there might be rational expectations equilibria involving more error terms. Finally,
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we note that, when one exists, the LIREE studied in this section is of full order, in
the sense used by Sargent (1991).

3 Learning

We now turn to a learning version of the model. We continue to define T(B) and
V(p) as in (6.6). The law of motion of z, is now given by

2 =TB-D)z-1 + V(Bi_1)e (6.23)

where 8 = (a;, ¢;). The parameters (a;, ¢;) are estimators of (a, ¢) in (6.4).
Agents behave as though they live in a time-invariant system, though (6.23) belies
that belief. The parameters are estimated via one of the recursive algorithms
described by Ljung and Séderstrom (1983). We consider two possible estimators:
(1) pseudo-linear regression, and (ii) the recursive prediction error method.

Pseudo-linear regression

Under pseudo-linear regression, the system evolves according to

Vo = Qo Yo+ o Wiy (6.24a)
| Y-t

Y, = B (6.24b)

E\S =Yr — v>$ AOMA\OV

ve =1/t (6.24d)

Ri= Ry + v [¥nd] — R (6.24¢)
a | a1 1, -

o0 |~ i + v x\ Yo w, (6.241)

Yr = €1z, (6.24g)

Bi—1 = (a~1 ¢1—1) (6.24h)

a2 =TB-Dz-1+V(Bi-1e (6.241)
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Recursive prediction error method

The system 1s identical to that under the pseudo-linear regression except that the
second equation in the system, (6.24), is altered to

Ye—1 ,
Y= —C—1¥i-1 + (6.24b")

~

We—1

For esumating the parameters of an exogenous ARMA(L, 1) process, the
recursive prediction error method has an interpretation as a recursive optimal
instrumental variable estimator. Both pseudo-linear regression and the recursive
prediction error method are devices for recursively estimating parameters via
stochastic approximation on the orthogonality condition Ew,y, = 0. Pseudo-
linear regression chooses ¥, to impose that w, be orthogonal only to

Yi—1

W1

while the recursive prediction error method forms the instrument iy, as the
geometric distributed lag of

Yi-1

Wr—1t

- given by (6.24b"). It can be shown that v, given by (6.24b’) is an optimal form of
instrument for an ARMA(1, 1) model.!!

The associated ordinary differential equations

Application of the apparatus of Marcet and Sargent (1989a, b) can be used to
find systems of ordinary differential equations whose limiting behavior governs
the limiting behavior of the systems of stochastic difference equations (6.24). For
each algorithm, there is a “large” ordinary differential equation that governs the
global convergence of a version of the algorithm which has been altered by the
addition of a “projection facility” that instructs the algorithm to ignore observations
that threaten to drive f;, R, outside of a prescribed set. There is also a “small”
ordinary differential equation whose behavior governs the limiting behavior of
B: 1n the locality of a fixed point. We provide a formal statement of convergence
theorems in the appendix. These theorems are simple adaptations of propositions
in Marcet and Sargent (1989a, b) to the current environment. In the remainder of
this chapter, we shall describe these associated ordinary differential equations.
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Pseudo-linear regression
For pseudo-linear regression, the ordinary differential equation system s
d - .
—p'= R Eyiy
dt

(6.25)

Mx =M, (B)—R
ds

where M., (B) = Ezarzp,- Foryy = zai—1, as under pseudo-linear regression, the
first equation of (6.25) can be rewritten as

d
o8 = RV Ezg—1 [ T(B)zi—1 + €1V (B)e, — zf ]
= R Ezu—t [5,_ T(B) er — 25,1 B']

— RMy, (B) [ Mo, (B My (BT (B, — ]

or
%m\ = R™'M_, (BIS(B) u| — B] (6.26)
I

where
S(B) = eaT(BYM, ., (BYM, (B)" (6.27)

In (6.26), u; selects the first row of S(B).
In summary, under pseudo-linear regression, we have the ordinary differential

equation

wm\ — ROM, (B [SBYu, — £
(6.28)
d

R =M. _R
%w M, (B)




Recursive prediction error method

Under the recursive prediction error method, the ordinary differential equation is

d , _ N
Hm =R ymﬁ\bgﬁ

d
—R
dt

It

Ey¥;(B) ~ R

The first equation can be represented as

i

d | _
MMm RTEV, (yr ~ Bzar-1)

=R Eyi [eaT(B)zj_) + 1 V(B)er — Brar—1]

It

R Evy [\ T(B) e, — 2, (8]

i

R™! MW§NNMI~\NA\&V\QM - W@SNM:ITQQ

= %I_NQNNMZI_ —HAMJFNM:IC\_AMJFNM:IENAEV\NV B .m@
or
d , o1 ’ ro /
alxm =R Eviz,,_ [P(B)u| — F]
where

P(B) = eaT(BYM; 3 (BYM., y (B~ (6.29)
In summary, under the recursive prediction error method, the ordinary differ-

ential equation is'?

d
de

it

"= R'My ., (B [P(B) i, - B]
(6.30)

d
—R
dr

I

Myip) — R

The ordinary differential equations (6.28) and (6.30) play the roles of the “large
ordinary differential equations” in the analysis of Marcet and Sargent (1989a, b).
If we can find a set in the space in which (8;, R,) lives such that the large ordinary
differential equation has a unique fixed point and is globally stable within that
set, then we can find a modified version of our recursive algorithms (6.24) that

opeed O corverdgerice ol reCursive least squares 1go

converges strongly to that fixed point. The modification of the algorithm involves
imposing a “projection facility” that instructs the algorithm to ignore observations
that threaten to drive the parameters outside the set just described. The appendix
contains formal statements of the convergence results that can be attained for our
systems.

The operators P and S share a fixed point

The operators P and S associated with the recursive prediction error method and
pseudo-linear regression, respectively, share a fixed point. We formulate this fact
in terms of the following proposition.

Proposition 5 Suppose that B satisfies 8y = S1(8y). Then 8 = P ().
Proof We have noted that 8 = §;(8y) implies that w,(8y) is an innovation

for y, relative to zT_. This implies that Evy,_{B7)w, = 0 which implies that
Br = P1{By).

Interpretation of S;(8) and P, (8)

Consider the regressions

4
Lt = Via T NNEJ =0

2t =g + 1 M$~m~\no

The normal equations for these two regressions are

I

y =M, (BYM,,(8)”"

¢

(6.31)

i

M,y (BYM, 4 (B

Here y is the “ordinary least squares” estimator of the regression equation, while
¢ is an “instrumental variables’ estimator.
Notice that we can represent S1(8) and Py (8) as follows:

Si(B) =m TPy
(6.32)

PiB)y=u1T(Be
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Formulas for moment matrices

To compute Py (B), we need formulas for M, 4 (8) = Ez,— 1y and M., ,(B) =
Ezqi—11;. To obtain these, we first use (6.5) to compute

Ezjzy, = T(B) M. (B)e, (6.33)

Next, we have from the definition of ¥, in the pseudo-linear regression (henceforth
denoted RPEM) (equation (6.24b')) that

x
Ezi ¥ =) (=Y Eza2_;,

j=0
= WTEE;» (B)e, (6.34)
j=0
) ,
Ez1y) = [I+cT(B)1™ M (B)e, (6.35)
We also have
Eza ¥, = eall + cT(B)]™' M. (B)e,, (6.36)

Formulas for S, (8) and P, (8)

Using the above formulas for the moment matrices, we have the following formulas
for P1(B) and S, (B):

Pi(B) = ex T (B + cT(B)) ™' M (B)e,}

x {ea[] + cT(B) ' M. (e}~ (6.37)

S1(B) = er T (B M- (B)e, [eaM (B)ey]™ (6.38)
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Local analysis of the ordinary differential equations

Recursive prediction error method

Consider the “large” ordinary differential equation for the RPEM:

d
3 F = R™'"My . (B)P(BY e, — B

d

—R

dr
In the vicinity of a fixed point B¢ of P1{By), this system has dynamics that are
governed by a version of proposition 3 of Marcet and Sargent (1989a). In particular,

we have to study the matrix

My(B) — R

a col
in!_m(:: 2l \|\:
P = Seolp vz (B [P1(BY = B'] o=t
Computing the indicated derivative and evaluating at 8 = By gives
Mp =R 2y [Pucsyy - ]
P dcol B/ Voo ves S
_ 0 col ~u~ Amv\
R™'My, N —= 1
* vz (Bf) 9 col B/ 8
f
or
_ , T8 col P(BY
Mp =R My (B) | -y
dcol B B=p;

because Pi{(fs) = B;.
To check the local stability of the RPEM, we have to compute M p and check

whether its eigenvalues are all strictly negative in real part.

Pseudo-linear regression

Consider the “large” ordinary differential equations (6.28) for pseudo-linear
regression:

d
B = RTM B [58); - 8]

d
M%”gmbﬁﬁwvlk
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The dynamics of the algorithm in the vicinity of By are governed by

a col
Ms=——{R'"M_ (B [S1(B) — F
= Feold LB [ =Y,
We can compute
d col 1 (B)
Ms = col Sy(B) .
a col g/ B=p;

because, at B = By, R™'M,, = I. To determine the local stability of the
system under pseudo-linear regression, we can compute Mg and check whether
its eigenvalues are all strictly negative in real part.

Simulations

In this section, we describe solutions of the large ordinary differential equation
(6.30) for the RPEM for two sets of parameter values. We also report a simulation
of the system operating under the RPEM. For our first parameter set, we choose
A =075 p=08, d=-095 02=02=1,0, = 0. For these parameter
values, the equilibrium values are a = 0.8, ¢ = —0.9559, and for the recursive
prediction error method

4.5530  6.9665

R=My =
6.9665 19.0026

For these parameter values, we calculated that the eigenvalues of M p at the fixed
point are (—0.3924, —0.1035) and that the eigenvalues of M are (—0.4002 £
0.4517i). For starting values of a(0) = 0.1,¢(0) = 0, R(1, 1) = 20, R(2, 2) = 30,
R(1,2) = 20, we solved the large ordinary differential equation (6.30) for the
RPEM by using a Runge—Kutta algorithm. 13 Figures 6.1 and 6.2 plot the solution.
Evidently, (8, R) is converging to equilibrium values.

Figures 6.3—6.5 describe the solutions of (6.30) for a second parameter set which
is equal to the first except that now we set d = 0. Here the equilibrium values are
a=0.8,¢c=—0.1808, and for the RPEM

22.9489 9.6586

R=M, =
V71 96586 8.5408
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Figure 6.1 Parameter d = —0.95. Plot of a versus ¢ determined by the big ordinary

differential equation for the recursive prediction error method
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Figure 6.2 Parameter d = —0.95. Plot of a, ¢, amd My as determined by the big

ordinary differential equation for the recursive prediction error method
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For these parameters, we calculated that the eigenvalues of My are (—1.1017 &
0.20844), while those for M p are (—1.0922 & 0.48351). Figures 6.3-6.5 give the
solutions of (6.30) for the same initial conditions used above. The convergence to
equilibrium is more rapid now, which is consistent with the smaller eigenvalues of
M p for the second set of parameter values.

Figures 6.6 and 6.7 report the results of simulating the recursive prediction ertor
method for the above parameter settings using a pseudo random number generator
to produce Gaussian ¢s. For this simulation, we set initial conditions of a(() = 0.1,
c(0) =0,

5 4
NN =
4 5
We set the initial value of ¢ in the simulation at + = 100, and simulated
the system out to r = 5000.1* The simulated paths for a and ¢ (and also

those for R, which are not shown) seem to be converging to their equilibrium
values. Notice how qualitatively figures 6.6 and 6.7 resemble figures 6.3 and 6.4,
respectively.

We have computed solutions of the differential equation for many other
parameter values and initial conditions. For all the values that we have checked,
the eigenvalues of the Ms were always negative in real part, and the solutions
of the big ordinary differential equation always converged to the equilibrium for

0 T
-0.05 -
0.1 T
c -0.15 N
-0.2 | N
025 1

-0.3 L | 1 | I { |

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09
a

Figure 6.3 Parameterd = 0.Plotof a versus ¢ determined by the big ordinary differential
equation for the recursive prediction error method
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Figure 6.4 Parameter d = 0. Plot of a, ¢, and My, as determined by the big ordinary
differential equation for the recursive prediction error method
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Figure 6.5 Parameter d = 0. Plot of 2 and ¢ determined by the big ordinary differential
equation for the recursive prediction error method
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Figure 6.6 Parameter d = O. Plot of a versus ¢ for a simulation of the system with the
recursive prediction error method
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Figure 6.7 Parameter d = 0. Plot of @ and ¢ for a simulation of the system with the
récursive prediction error method
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alternative starting values that satisfied @ < 1, ¢ < 1. We also computed solutions
for the system governed by pseudo-linear regression, with qualitatively similar
results. As with the above two settings of parameter values, the real parts of the
eigenvalues of the relevant Ms indicated slightly slower rates of convergence for
pseudo-linear regression.

The propositions stated in the appendix and in Marcet and Sargent (1989a,
b) provide more details about the senses in which the limiting properties of
our learning systems can be discovered by studying their associated ordinary
differential equations. These propositions support the following conclusions about
the model of this paper.

(1) A version of Margaret Bray’s (1982) result holds, stating that the only possible
limit point of one of our learning algorithms is an LIREE.

(11) Global convergence of the algorithms to a rational expectations equilibrium
depends on the behavior of the “big” ordinary differential equation at
the boundary of the set Dy defining the “projection facility.”” Almost sure
convergence depénds on the trajectories of the ordinary differential equation
pointing toward the intertor of the set Dj. Even for models as simple as ours,
the big ordinary differential equation has a five-dimensional state vector,
causing us to resort to numerical methods to check the behavior of the
trajectories.

(iii) Local stability is governed by the eigenvalues associated with a smaller
ordinary differential equation.

4 Speed of Convergence

In this section we describe some results on the rate of convergence that we attain by
applying a new theorem by Benveniste, Métivier and Priouret. We also describe a
numerical procedure for estimating the rate of convergence by simulations. We first
apply this procedure to the model of section 1 maintaining the hidden inforrmation
assurnption. Then we consider a full information case.

Analytic results

During the last decade our understanding of what determines convergence of
least squares learning schemes in a self-referential dynamic econonic model] has
increased considerably. Our knowledge about the speed of convergence, however,
is very limited.!?

A relatively new result in Benveniste et al. (1990) (theorem 3, page 110) seems
to be the most powerful result up to date. Consider an on-line algorithm that obeys
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1
Bi=B-1+ M@AENITNL

Let h(B) = E[Q(B, z,)], where z; in this expectation represents the process that
obeys equation (6.5) for 8 given, and let 8 be such that #(8) = 0. The theorem of
Benveniste et al. concludes that if the derivative of h(8) has all eigenvalues less
than —1/2 in real part then

058, — By) —2> N(O, P)

where the matrix P satisfies
i I \ \
M:mﬁ\v P+P M:mo&v + EQ(Br,2)Q(B,2:) =0

Thus, if the above conditions are met, we have root-f convergence as in the
classical statistics case, although the formula for the variance of the estimators g
is modified due to the presence of the terms depending on /g. Notice that in the
classcial case A g is equal to the identity and P is the classical variance—covariance
matrix. Also, we see that, for higher eigenvalues of hg(fy), convergence is
slower in the sense that the asymptotic variance—covariance matrix of the limiting
distribution is higher.

Applying these results to Jeast squares learning, we know that hg(fs) =
8S1(Br)/3p ~— I (see Marcet and Sargent, 1989b, proposition 1, statement iv),
so that the condition to apply the theorem by Benveniste et al. translates into all
etgenvatues of 351(B)/9pB being less than 1/2 in real part, which delivers root-¢

convergence. 16

When this condition on the eigenvalues of the derivative of S is not met we
know of no analytic results on asymptotic distributions that we can apply here.
The reasor the proof of the Benveniste et al. theorem does not apply 1s that the
importance of initial conditions fails to die out at an exponential rate as is needed for
root-f convergence. Intuitively, root-t convergence obtains if the autocovariance of
a process is summable, which means that the effect of initial conditions evaporates
at an exponential rate, and this only happens if hg is low. All of this suggests that,
if hg(By) is too large, B; — By may go 1o zero at a rate slower than root ¢, unlike
the usual case with classical estimation in stationary time series processes.!’ In
other words, if the derivative of S) is too large, we expect r8 (B: — By) to go to zero
only ford <& < 1/2.

Rates of convergence by simulation

In this section we describe a numerical procedure for exploring the rate of conver-
gence by simulation. The Monte Carlo calculations of the rate of convergence are
based on the assumption that there is a § for which
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2B~ Br) > F (6.39)

for some nondegenerate well-defined distribution F with mean zero. Then ch@ -
Br) — 0for§ < 8, and we will call § the rate of convergence of {8;}.

Letting Qm denote the variance under the distribution F, (6.39) implies that
mtuaﬁ — m\ZN — Qm as t — 0. Therefore,

E[° (B — B
E[(kt)* (B — B1))?

which, in turm, implies that

— 1

MAQN - h\vm 28
— " 5>k as 1 —
EBis — £ =
This justifies using
1/2
1 E(B — Br)?
5= log | £~ A7) (6.40)

log k E(Bu — Br)*

for large ¢ as an approximation to the rate of convergence. Given 7 and k, the
expectations involved can be approximated by Monte Carlo integration, i.e. by
simulating a large number N of independent realizations of length ¢ and ¢k and
calculating the mean square error across realizations.

Rates of convergence with hidden and full information

We now analyze numerically the rate of convergence in the model of the previous
sections with and without hidden information. We start analyzing the version of
the model with hidden information and agents using ARMA learning schemes, as
in section 1. It will turn out that, with this informational structure, this model is not
sufficient to study the most interesting issue, because root-f convergence always
seems to hold because the relevant eigenvalues are always less than —1/2 for this
model. This prompts us to look at a version of the model with full information,
where agents see the shocks i, and v,.

In all the simulations we calculated the rates of convergence with 1000
independent realizations. We used three different seeds of the random number
generator, and the rates of convergence were within about 0.03 of each other. For
both versions of the model the initial conditions for the parameters were set equal
to the limiting point, so that B = B; for the matrix Ry we used the second moment
matrix at the fixed point multiplied by a hundred, so this is the true proportions of
the elements of this matrix with as much weight as if we had had 100 observations
at this point; therefore Ry = M, (Br) x 100. We have also performed simulations
with initial conditions away from the fixed point of S; the results on the rare of
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convergence are not affected by the choice of initial conditions, although they slow
down convergence considerably, particularly in the cases with a large derivative
of §, as in the mode! with full information. For the case of hidden information we
used a projection facility that ignored observations that led the beliefs about a, to
be larger than (ay + 1)/2.

Table 6.1 reports the rates of convergence for the model of section 1 with hidden
information and the least squares learning scheme (pseudo linear regression).

Table 6.1 Hidden information and ARMA leaming with pseudo-linear regression: p =
090y =0,=01;d =0 !

) é Eigenvalues of
A ¢ =500 to 2000 t =2000 to 10,000 Sg in real part
0.1 0.476 0.475 -0.051,-0.342
0.145 0473 0.474 -0.082, -0.337
0.19 0471 0.473 —0.158,-0.249
0.235 0.467 0.473 -0.195
0.28 0.464 0.473 -0.190
0.325 0.461 0.473 -0.185
0.37 0.457 0.473 -0.182
0.415 0.454 0.472 -0.176
0.46 0450 0.472 -0.177
0.505 0.446 0.471 -0.177
0.55 0.443 0471 ~0.185
0.595 0.438 0.471 -0.192
0.64 0.435 0.470 -0.204
0.685 0.430 0.470 -0.227
0.73 0.426 0.470 ~0.253
0.775 0.421 0.470 -0.291
0.82 0.417 0.470 —0.348
0.865 0410 0.470 —0.440
0.91 0.403 0.470 -0.567
0.955 0.053 0.442 -0.314,-1.24
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These rates are calculated with the Monte Carlo method described above. Each
table uses parameter values p = 0.9, 0, = o, = 0.1, d = 0, but A varies in small
increments. We report the eigenvalues in real part of the derivative of S for each
value of 1; they are all negative, so that the theorem of Benveniste et al. applies.'®
Our calculations show that the numerical rate of convergence is very close to 1/2
when the length of the observations goes from 2000 to 10,000, but the rate can
be much smaller below 2000; in fact, the rate is smaller the larger is A. So the
assertion of the theorem of root-¢ convergence seems to be nearly true in samples
of about 10,000. It is remarkable, though, that in samples of smaller size the rate
of convergence can be very low; in particular, for the highest X there is almost
no improvement in mean square error when going from a length of 500 to 2000
observations.

Table 6.2 takes the same model and the same informational structure as the
previous table, but it uses the learning scheme based on the recursive prediction
error method. We see that the eigenvalues are even more negative than in the
previous table, so that the Benvenite et al. theorem applies, and we have root-1
convergence.

Since the eigenvalues of the derivative of S and P are always negative in
tables 6.1 and 6.2, the rates of convergence there can be used to illustrate the
short sample properties of the model, and to see if the asymptotic distribution is a
good approximation. We calculated the eigenvalues of S and P for many different
parameter settings of the model and we always found that the eigenvalues of the
derivatives had negative real parts. This means that if we use the model of section
1, with hidden information and ARMA learning schemes, we cannot explore our
conjecture of the previous section that, the larger the derivative at 8y, the slower
is the rate of convergence when the theorem by Benvenite et al. does not apply.
For this purpose we modify the model slightly and assume that agents observe all
shocks dated ¢ or earlier (including us and vs), so that they form expectations using
the only relevant information, namely x,, and their expectations about the future
are given by WQ?:V = B, x,;, where B, is the ordinary least squares estimate of a
regression coefficient of y,41 on x,.}? Then this becomes a minor complication in
example d in section 4 of Marcet and Sargent (1989a), and it is easy to check that
the mapping S (identical to the mapping T in this example) and the fixed point 8y
are given by

S(B)=pO+18)  Br=p/(0—=io)

sothat 35(Br)/0f = pX.

Table 6.3 reports calculations for the same parameter values as tables 6.1 and
6.2. We can see how the rate of convergence is very slow for high values of X and
therefore for higher values of the derivative of S. These simulation results confirm
our conjecture stated in the last section that the rate of convergence can be slower
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Table 6.2 Hidden information. and ARMA learning with recursive prediction error p =

090, =0,=0.1d =90

8 ) Eigenvalues of
A 1 =500 to 2000 1 =2000 10 10,000 Pg in real part
0.1 0.389 0.486 -0.241,-0.342
0.145 0.389 0.487 -0.27
0.19 0.388 0.489 ~-0.269
0.235 0.387 0.490 /Io.mm
0.28 0.386 0.491 —0.259
0.325 0.385 0.492 -0.252
0.37 0.384 0.493 —0.246
0.415 0.383 0.495 -0.241
0.46 0.381 0.497 -0.235
0.505 0.380 0.499 -0.237
0.55 0.379 0.500 -0.242
0.64 0.377 0.504 -0.261
0.685 0.376 0.506 —0.280
0.73 0.375 0.508 -0.305
0.775 0.373 0.510 —0.343
0.82 0.371 0.513 -0.399
0.865 0.368 0.515 —0.486
0.91 0.365 0.516 —0.405,-0.818
0.955 0.368 0.481 —0.287,-1.37

than 1/2 in least squares learning models when the Benveniste et al. theorem does
not apply, and that the higher the derivative of S the lower the rate of convergence.
It also confirms that the upper bounds in Mohr (1990) can be reached for p close
to 1.

Notice that, in table 6.3, the Benveniste et al. theorem applies for A < 0.595,
but the rates of convergence are much smaller than 1/2 even for sample sizes of
10,000. This shows that the larger the derivative of S the longer it takes for the
asymptotic distribution to take over; in other words, for A = 0.1 the rate is nearly
1/2, but for larger A we need a much longer sample size.
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Table 6.3 Full information: p = 0.9; 0, = o, =0.1;d =0

8 ) Eigenvalues of
A t =500 to 2000 = 2000 to 10,000 Sg inreal part
0.1 0.363 0.493 0.09
0.145 0.354 0.488 0.13
0.19 0.345 0.482 0.17
0.235 0.334 0.476 0.21
0.28 0.323 0.468 0.25
0.325 0.310 0.459 0.29
0.37 0.297 0.449 0.33
0415 0.282 0.435 0.37
0.46 0.268 0.42]1 041
0.505 0.251 0.404 0.45
0.55 0.234 0.386 0.49
0.595 0.216 0.367 0.54
0.64 0.197 0.343 0.58
0.685 0.176 0.319 0.62
0.73 0.156 0.292 0.66
0.775 0.134 0.264 0.70
0.82 0.112 0.234 0.74
0.865 0.089 0.202 0.78
0.91 0.065 0.169 0.82
0.955 0.040 0.136 0.86

The intuition for the slower speed of convergence when the derivative of S is
close to unity is straightforward. The least squares learning algorithm adjusts each
parameter towards the truth when new information is received (see Marcet and
Sargent, 1989a); more precisely, the new belief B4 will be an average of the
previous beliefs 8; and the truth S(B,) plus an error; now, as figure 6.8 shows, if
the derivative of S is low S(8,) is very close to By utself, while if the derivative is
close to unity (as in figure 6.9) S(B) is close to B, instead of being close to Br.so
the average can stay far from the fixed point for a long time.
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Comparing the results in table 6.1 with those in table 6.3 is of independent
sip) 58_..02 Uonmmwm they w:.os E.mr in .a:m Boa.or the rate of oo.=<onmo:no. 1s slower with
full information than with private information. More precisely, for high values of A
and p we have root-f convergence with private information but we have very slow
S(8) H convergence with full information. In this sense, the mode] with hidden information
is more stable than with full information. In the model with full information, even
for very large samples, the beliefs have not converged. This means that agents pay
a lot of attention to new information that is being received, and that the economy
may be moving towards the limit for still quite a while in the full information case,
while with hidden information the economy takes fewer periods to converge to its
limit.

5 Conclusions

45° ,,

> This chapter has described two main extensions to our earlier work on convergence
b SUB) B f of least squares learning schemes to rational expectations equilibria. First, we
5 showed by example how economic models in which agents are estimating ARMA

models can be analyzed using the ordinary differential equations approach. Second,
we have obtained some results on the rate of convergence.

Using analytic results from Benveniste et al. and some numerical results from
Monte Carlo simulations, we have argued that the speed of convergence to the
S(B) 4 ‘ limiting rational expectations equilibrium is slowed down by higher eigenvalues

W of the derivative of § at the fixed point. This affects even the rate of convergence;
S(8) ; in particular, if the eigenvalues of the derivative of S at the fixed point are larger
than 1/2, the speed of convergence is lower than 193 50 that we do not obtain the
usual asymptotic distribution in classical econometrics with stationary stochastic
processes. Convergence to rational expectations can thus be quite slow, depending
mainly on the derivative of the mapping from perceived to actual expectations 5.
In the model of this chapter, this leads to the surprising conclusion that it takes a
longer time to converge to the rational expectations equilibrium when agents have
full information than when agents have hidden information. This happeus because
the mapping S from believed to actual expectations is much more informative
about the fixed point with hidden information.
Also, this low speed of convergence opens up the possibility of having the
457 wrong asymptotic distribution for test statistics when the null hypothesis is rational
expectations but the observations are generated by least squares learning. More
; precisely, any parameter estimate that is a function of B, may converge to its
limiting value at a rate slower than 195 so that the confidence intervals from
classical econometrics will not be correct; in fact, their size will be arbitrarily
smaller than the size of the correct intervals as the number of observations goes
to infinity. Then assuming rational expectations will lead us to reject the null

Figure 17 A flat S(8) mapping

Figure 6.9 A steep S(8) mapping




210 A. Marcet and T.J. Sargent

hypothesis too often, even if the structure of the model economy (leaving aside
expectations) is correct. A similar point s made by Bossaerts (1992).

Appendix

In this appendix, we state convergence propositions for the recursive prediction
error method and for pseudo-linear regression.
We define the following sets:

D; = {B | the operators T'(8) and V (B8) are well defined, and the eigenvalues of
T (B) are less than unity in modulus }
Das is the domain of attraction of a fixed point By of the ordinary differential
equation (6.28)
Dap is the domain of attraction of a fixed point B of the ordinary differential
equation (6.30)

For the purpose of defining “projection facility” in terms of which a convergence
theorem can be stated, we introduce the following additional notation.

Ri=R 1+ Q\ZF\ - \N“I_v
\mh Br-1 +3Nﬂ|;5e?

where we recall that 8, = {a, ¢]. Define two sets D) and D; that satisfy
Dy € Dy C R%. The set Dy will play the role of a set within which we force
the algorithms to stay. In particular, we consider the following modified version
of our algorithms:

(A1)

fl

Bi. R if (B;, R} € Dy
(B, R) = . . (A2)
some value in D7 otherwise

The two propositions stated below pertain to versions of the algorithms (6.24)
described in the text that have been modified according to (A.2).

We are free to choose D; to be a set that is contained within but is arbitrarily
close to Dy. As a practical matter, then, the modified algorithm is defined by the
choice of the set D;.

We make the following assumptions.

Assumption 1 The operator S has a unique fixed point 8y = S(8y) that satisfies
B € D;.

Assumption 2 For € D,, T is twice differentiable and V has one derivative.

Assumption 3a The covariance matrix M, () Is nonsingular.
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or
Assumption 3b The covariance matrix My (B7) is nonsingular.

Assumption 4 The process ¢, is serially independent; E|g|? < oo for all
p>1

Assumption 5 There exists a subset §2g of the sample space with P(£20) = 1,
two random variables Cy(w) and C7 (), and a subsequence {1, (w)} for which

| Zy,(w)| < Cr(w)

| Ry, (w)| < Ca(w)

forallw € 2pandh =1,2, ... .

Assumption 6 Assume that D, is closed, that Dy is open and bounded, and
that B € D; for all (8, R) € D). Assume that the trajectories of the ordinary
differential equation (6.28) or (6.30) with initial conditions (8(0), R(0)) € D,
never leave a closed subset of Dy.

We now state proposition Al.

Proposition Al  Assume that (8;, R,, z;) are determined via (6.24) as modified
by (6.24b') and (A.2). Suppose that assumptions 1, 2, 3b, and 4 are satisfied.
(1)  Assume also that assumptions 5 and 6 are satisfied and that D; C Dap.

Then P(8; — Br) = 1.

() Let m # B:, and assume that My, (By) is positive definite. Then P (8, —

By =0.
(i) If Mp has one or more eigenvalues with strictly positive real part then
P — B)=0.

For pseudo-linear regression, we have proposition A2.

Propesition A2  Assume that (8, R,, z;) are determined via (6.24) as modified
by (A.2). Suppose that assumptions 1, 2, 3a, and 4 are satisfied.
(1) Assume also that assumptions 5 and 6 are satisfied and that D; C Das.

Then P(8;, — \w\v =1.

(i1) ho:m # Py and assume that M, () is positive definite. Then P (8, —
B)=0.
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(iii) If M has one or more eigenvalues with positive real part, then P (8, —
\W\.v = o.

These two propositions can be proved simply by retracing the steps of
propositions 1, 2, and 3 of Marcet and Sargent (1989a).

Notes

The research on the general subject of this paper has been supported by grants from the
National Science Foundation to Carnegie-Mellon University and to the National Bureau of
Economic Research. We would like to thank Seppo Honkapohja for telling as about the
book by Benveniste, Métivier, and Priouret; Anna Espinal for her research assistance; and
Peter Bossaerts for his comments.

1 See also the model of Singleton (1987).

2 For hyperinflation models, this seems a useful assumption. At least during some of the
hyperinflations, it is difficult to believe that agents had access to an information set
including the history of money supplies.

3 When applied in a “standard” (by which we mean non-self-referential) setting, the
recursive prediction error method is known to be statistically consistent and asymptoti-
cally efficient. Pseudo-linear regression may or may not be consistent, depending on the
parameter values of the ARMA process, but is generally not asymptotically efficient.
See Ljung and Soderstrom (1983, chs 3 and 4) for descriptions of the conditions under
which pseudo-linear regressions fail to converge as sample size grows without bound.

4 Also see Kuan (1989). Kuan and White (1991) 15 a useful treatment of issues related to
those studied in this chapter.

5 The arguments of this chapter will extend to higher order systems (i.e. systems with
more state variables).

6 The models of Townsend (1983) and Lucas (1975) are examples.

7 Atitsrational expectations equilibrium, the model of Fourgeaud, Gouriéroux, and Pradel
is a version of Sargent and Wallace’s (1973) adaptation of Cagan’s (1956) model.

8 For example, by a “doubling algorithm” described by Hansen and Sargent (1990).

9 This section is focused on some technicalities which can probably be skipped on a first
reading of the chapter. In the computations described in subsequent sections, we always
assume that the existence conditions described in this section are satisfied.

10 See, for example, Marcet and Sargent (1989b).

11 See Stoica et al. (1985) for a discussion of a recursive optimal instrumental variable
estimator. See Hansen and Sargent (1982) for a treatment of non recursive optimal
instrumental variables estimators for a class of linear rational expectations models.

12 Tosolve the large ordinary differential equation for the recursive prediction error method
requires a formula for £/, {/; evaluated at a fixed 8. Here is such a formula. Form the
stacked state space system
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et | _|TB)Y 0O % V(B) «
Yyt - €q —cl Yy + 0 frtl )
or
X = IAEVXNLTQA\QXIL (r)
where
X, = M

In(x), T(B)isd x4,e,1s2 x4, and —c/ is 2 x 2. The discrete Lyapunov equation
for (1) 1s

M. (8) = HBYM(BYH(BY + G(BIRLG(B) ()

where 2 = E¢,¢,. We solve (1) and pick off the 2 x 2 matrix on the lower right

of this equation to get Ev, /.

13 We used the MATLAB program ode45.m.

14 We did not employ a projection facility in this simulation.

15 Ljung and Soderstrom (1983) point out that asymptotic distribution results for off-line
estimators are only available if they mimic Gauss—Newton algorithms. In the case of
maximum likelihood, the asymptotic distribution for the off-line algorithm coincides
with the usual distribution of maximum likelthood estimators. For pseudo-linear
regressions of exogenous ARMA models, where the direction of the estimator is not
updated in the steepest direction to maximize the likelthood function, even though they
are consistent, “No explicit expression for the asymptotic covariance matrix for the
estimates . . . is known in general” (page 142).

16 Notice that the results for the Gauss—Newton algorithm in Ljung and Soderstrom (1983)
that we mention in the previous note are a special case of this theorem, since the
derivative of 4 in Gauss—Newton algorithms is zero at the true parameters.

17 Some recent results in the learning literature in economics point to similar conclusions.
Vives (1993) obtains slower than root-f convergence rates in a model with Bayesian
leaming, and Mohr (1990) gives a lower bound for the speed of convergence in a
simple model, and this bound can be lower than 1/2. Theorem 2.2 in Mohr (1990) is not
explicitly presented as a lower bound, but application of the Benveniste et al. theorem
that we have described confirms that Mohr only provides upper bounds. since his lower
bound is given by A in our full information model but the derivative of £(-) is L. Our -
simulation results in the next section indicate that those upper bounds are tight when A
15 close to 1.

12 In tables 6.1 and 6.2, sometimes one number is recorded in the column labeled
eigenvalues, and sometimes two numbers are recorded. When only one number is
recorded, it means that the relevant eigenvalues occur as a complex conjugate paic
and that we are reporting the pair’s common real part.

19 We analyzed leaming within a version of this model in Marcet and Sargent (1992).
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