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Abstract

For linear quadratic Gaussian problems, this paper uses two risk-sensitivity opera-
tors defined by Hansen and Sargent (2007c) to construct decision rules that are robust
to misspecifications of (1) transition dynamics for possibly hidden state variables, and
(2) a probability density over hidden states induced by Bayes’ law. Duality of risk-
sensitivity to the multiplier min-max expected utility theory of Hansen and Sargent
(2001) allows us to compute risk-sensitivity operators by solving two-player zero-sum
games. That the approximating model is a Gaussian joint probability density over se-
quences of signals and states gives important computational simplifications. We exploit
a modified certainty equivalence principle to solve four games that differ in continua-
tion value functions and discounting of time t increments to entropy. In Games I, II,
and III, the minimizing players’ worst-case densities over hidden states are time incon-
sistent, while Game IV is an LQG version of a game of Hansen and Sargent (2005) that
builds in time consistency. We describe how detection error probabilities can be used
to calibrate the risk-sensitivity parameters that govern fear of model misspecification
in hidden Markov models.
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1 Introduction

To construct robust decisions for linear-quadratic-Gaussian (LQG) Markov discounted dy-
namic programming problems with hidden state variables, this paper solves four two-player
zero-sum games that differ in their continuation valuation functions. The minimizing player
helps a maximizing player design decision rules that satisfy bounds on the value of an objec-
tive function over a set of stochastic models that surround a baseline approximating model.
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Because they differ in their value functions and whether the minimizing player has an infor-
mation advantage, the four games yield decision rules that are robust to misspecifications of
different features of the decision maker’s approximating model. The four games are linear-
quadratic versions of games with more general functional forms described by Hansen and
Sargent (2005, 2007c), with Game IV bringing discounting into a game analyzed by Whittle
(1990) and Başar and Bernhard (1995). The LQG setting facilitates rapid computation.

To set the stage, section 2 describes the relationship between two classic problems without
fear of model misspecification, namely, (a) a linear-quadratic-Gaussian discounted dynamic
programming problem with fully observed state, and (b) a linear-quadratic-Gaussian dis-
counted dynamic programming problem with partially unobserved state. Without fear of
model misspecification, a certainty equivalence principle allows one to separate the problem
of estimating the hidden state from the problem of making decisions conditioned on the dis-
tribution of the state. Certainty equivalence asserts that the optimal decision is a function
of the conditional mean of the hidden state and that this function is independent of the con-
ditional volatilities in the transition equation for the hidden states as well as of the variance
of the hidden state about its conditional mean. This statement of certainty equivalence does
not hold when we introduce fear of model misspecification, but another version of certainty
equivalence does. Section 3 sets out LQG problems with partially hidden states in which
the decision maker fears misspecification of either the distribution of stochastic shocks w∗ to
signals and the state transition dynamics conditioned on the entire state, or the distribution
of the hidden state z conditional on a history of observed signals under his approximating
model, or both. Sections 4, 5, and 6 describe three games in which a minimizing player
helps a maximizing player design a decision rule that is robust to perturbations to the dis-
tributions of w∗ and z under the assumption that the minimizing player can disregard past
perturbations of the distribution of z. Game I solves an LQG version of recursions (20)
and (21) of Hansen and Sargent (2007c), while Game II solves an LQG version of recursion
(23) of Hansen and Sargent (2007c) and Game III solves an LQG version of the recursion
in section 5.3 of Hansen and Sargent (2007c). Section 7 measures the time inconsistency of
the worst-case distribution over hidden states (but not over observed signals) that emerges
in Games I and II. In section 8, we analyze a Game IV that, like one analyzed by Whittle
(1990) and Başar and Bernhard (1995), commits the decision maker to honor past distortions
to distributions of hidden states. Key to attaining time consistency is that Game IV does
not discount time t contributions to entropy, while Games I, II, and III do. By extending
the detection error probabilities used by Anderson et al. (2003) and Hansen and Sargent
(2007d, ch. 9) to calibrate models with fully observed state vectors, section 9 describes how
to calibrate the parameters θ1 and θ2 that govern the decision maker’s concerns about model
misspecification. Section 10 describes examples and section 11 offers concluding remarks.
Appendix appendix A describes a useful certainty equivalence result. B gives an alternative
formulation of a robust filter under commitment. Appendix C describes a suite of Matlab
programs that solve the four Games.1

1The reader who prefers to write his or her own programs and who is familiar with the deterministic
discounted optimal linear regulator problem presented, for example, in Hansen and Sargent (2007d, ch. 4),
will recognize how the optimal linear regulator can readily be tricked into solving games II and III.
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2 Two benchmark problems

We state two classic optimization problems under full trust in a dynamic stochastic model.
In the first, the decision maker observes the complete state. In the second, part of the state
is hidden, impelling the decision maker to estimate it.

2.1 State fully observed, model trusted

Problem 2.1. The state vector is xt =

[

yt

zt

]

and

[

Q P

P ′ R

]

is a positive semi-definite matrix.

Both yt and zt are observed at t. A decision maker chooses a state-contingent sequence of
actions {at}∞t=0 to maximize

−
1

2
E0

∞
∑

t=0

βt

[

at

xt

]′ [
Q P

P ′ R

] [

at

xt

]

(1)

subject to the law of motion

yt+1 = A11yt + A12zt + B1at + C1wt+1

zt+1 = A21yt + A22zt + B2at + C2wt+1 (2)

where wt+1 is an iid random vector distributed as N (0, I), at is a vector of actions, and E0

is a mathematical expectation conditioned on known initial conditions (y0, z0).

Guess a quadratic optimal value function

V (y, z) = −
1

2

[

y

z

]′

Ω

[

y

z

]

− ω. (3)

Let ∗’s denote next period values for variables and matrices. The Bellman equation for
problem 2.1 is

−
1

2

[

y

z

]′

Ω

[

y

z

]

−ω = max
a

{

−
1

2





a

y

z





′ 



Q P1 P2

P ′
1 R11 R12

P ′
2 R21 R22









a

y

z



−Eβ
1

2

[

y∗

z∗

]′

Ω∗

[

y∗

z∗

]

−βω∗

}

(4)

where the maximization is subject to

y∗ = A11y + A12z + B1a + C1w
∗

z∗ = A21y + A22z + B2a + C2w
∗ (5)

and the mathematical expectation E is evaluated with respect to w∗ ∼ N (0, I).

Proposition 2.2. The Bellman equation (4) induces mappings from Ω∗ to Ω and from
(ω∗, Ω∗) to ω. The mapping from Ω∗ to Ω is a matrix Riccati difference equation that con-
verges to a unique positive semi-definite matrix Ω starting from any initial matrix Ω0. The
fixed point Ω is a matrix that is a function of β, A, B, Q, P, R but is independent of the volatil-
ity matrix C that governs the ‘noise statistics’, i.e., the conditional variance of x∗ conditional
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on x. Problem (4)-(5) is an ordinary stochastic discounted optimal linear regulator problem

with solution a = −F

[

y

z

]

, where F is independent of the volatility matrix C. The constant

ω depends on C as well as on the other parameters of the problem. That Ω and F are in-
dependent of the volatility matrix C is a manifestation of a certainty equivalence principle
(see Hansen and Sargent (2007d, p. 29)).

2.2 State partially unobserved, model trusted

The next problem enables us to state a classic certainty equivalence result about how esti-
mation and decision separate, estimation of the hidden components of the state being done
recursively with a Kalman filter that depends on C but is independent of the objective func-
tion parameters β, Q, R, P , the choice of a being a deterministic linear regulator that yields
a linear decision rule with coefficients F that do not depend on the volatility matrix C.

Problem 2.3. A decision maker observes yt, does not observe zt, has a prior distribution
z0 ∼ N (ž0, ∆0), and observes a sequence of signals {st+1} whose time t + 1 component is

st+1 = D1yt + D2zt + Hat + Gwt+1. (6)

This and the following two equations constitute LQG specializations of equations (1), (2),
and (3) of Hansen and Sargent (2007c):

yt+1 = Πsst+1 + Πyyt + Πaat

zt+1 = A21yt + A22zt + B2at + C2wt+1

where wt+1 ∼ N (0, I) is an i.i.d. Gaussian vector process. Substituting the signal (6) into
the above equation for yt+1, we obtain:

yt+1 = (ΠsD1 + Πy)yt + ΠsD2zt + (ΠsH + Πa)at + ΠsGwt+1,

which gives the y-rows in the following state-space system:

yt+1 = A11yt + A12zt + B1at + C1wt+1

zt+1 = A21yt + A22zt + B2at + C2wt+1

st+1 = D1yt + D2zt + Hat + Gwt+1, (7)

where
A11

.
= ΠsD1 + Πy, A12

.
= ΠsD2, B1

.
= ΠsH + Πa, C1

.
= ΠsG. (8)

By applying Bayes’ law, the decision maker constructs a sequence of posterior distribu-
tions zt ∼ N (žt, ∆t), t ≥ 1, where žt = E[zt|yt, . . . , y1] for t ≥ 1, ∆t = E(zt − žt)(zt − žt)

′,
and qt = (žt, ∆t) is a list of sufficient statistics for the history of signals that can be expressed
recursively in terms of the (ž, ∆) components of the following linear system

yt+1 = A11yt + A12žt + B1at + C1wt+1 + A12(zt − žt)
žt+1 = A21yt + A22žt + B2at + K2(∆t)Gwt+1 + K2(∆t)D2(zt − žt)

∆t+1 = C(∆t) (9)

4



and K2(∆) and ∆ can be computed recursively using the Kalman filtering equations

K2(∆) = (A22∆D′
2 + C2G

′)(D2∆D′
2 + GG′)−1 (10)

C(∆) ≡ A22∆A′
22 + C2C

′
2 − K2(∆)(A22∆D′

2 + C2G
′)′. (11)

The decision maker’s objective is the same as in problem 2.1, except that his information
set is now reduced to (yt, žt, ∆t) at t. The current period contribution to the decision maker’s
objective

U(y, z, a) = −
(1

2

)





a

y

z





′ 



Q P1 P2

P ′
1 R11 R12

P ′
2 R21 R22









a

y

z





can be expressed as

Ũ(y, ž, z−ž, a) = −
(1

2

)

{





a

y

ž





′ 



Q P1 P2

P ′
1 R11 R12

P ′
2 R21 R22









a

y

ž



+(z−ž)′R22(z−ž)+2(z−ž)′(P2a+R21y+R22ž)

}

whose expectation conditioned on current information (y, ž, ∆) equals

−
(1

2

)

{





a

y

ž





′ 



Q P1 P2

P ′
1 R11 R12

P ′
2 R21 R22









a

y

ž



 + trace
(

R22∆
)

}

. (12)

Guess that the value function is

V (y, ž, ∆) = −
1

2

[

y

ž

]′

Ω

[

y

ž

]

− ω (13)

and choose Ω and ω to verify the Bellman equation

−
1

2

[

y

ž

]′

Ω

[

y

ž

]

− ω = max
a

E

{

−
1

2





a

y

ž





′ 



Q P1 P2

P ′
1 R11 R12

P ′
2 R21 R22









a

y

ž





−
1

2
trace

(

R22∆
)

− Eβ
1

2

[

y∗

ž∗

]′

Ω∗

[

y∗

ž∗

]

− βω∗

}

(14)

where the maximization is subject to the innovation representation

y∗ = A11y + A12ž + B1a +

{

C1w
∗ + A12(z − ž)

}

ž∗ = A21y + A22ž + B2a +

{

K2(∆)Gw∗ + K2(∆)D2(z − ž)

}

∆∗ = C(∆) (15)

with given initial conditions (y0, ž0) and where the mathematical expectation E is evaluated
with respect to w∗ ∼ N (0, I) and z − ž ∼ N (0, ∆). Notice that the systematic parts of the
laws of motion (5) and (15), i.e., the parts other than the linear combinations of the shocks
w∗, (z − ž), are identical. In light of the objective functions in the two problems, this fact
implies
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Proposition 2.4. Associated with Bellman equation (14) is the same matrix Riccati differ-
ence equation mapping Ω∗ into Ω that characterized problem 2.1. It converges to a unique
positive semi-definite solution Ω starting from any initial value Ω0. The fixed point Ω is
a function of β, A, B, Q, P, R but is independent of the matrices C1, C2, K2, D2, ∆ that de-
termine the volatilities of y∗, ž∗ conditional on y, ž. Because the Riccati equation for Ω is
identical with the one associated with problem 2.1, the fixed point Ω and the matrix F in the

decision rule a = −F

[

y

ž

]

are identical with their counterparts in problem 2.2. These out-

comes justify a separation of optimization and estimation that embody a certainty-equivalence
principle. The sequence of constants {ωt} depends on the sequences {∆t}, trace

(

R22∆t

)

and
differs from its counterpart in problem (2.1).

Remark 2.5. The matrix Ω in the quadratic form in the optimal value function and the
matrix F in the decision rule for problems 2.1 and 2.3 can be computed by solving the same
deterministic optimal linear regulator problem (see Hansen and Sargent (2007d, ch. 4)) that
we can construct by setting to zero the volatility matrices multiplying shocks in the respective
problems. After that, the constants ω can be computed by solving appropriate versions of the
usual recursion mapping ω∗ and other objects into ω.

3 State partially unobserved, model distrusted

We modify problem 2.3 by positing a decision maker who distrusts the joint distribution for
{yt, zt}∞t=0 that is implied by system (9), (10), and (11) and therefore wants a robust decision
rule, i.e., one that attains a value that is guaranteed to exceed a bound over a set of other
distributions. To formulate the problem recursively, we express his distrust in terms of two
types of conditional distributions that are components of his approximating model (15):

1. The distribution of w∗ conditional either on a complete information set (y, z, ž, ∆) or
on the incomplete information set (y, ž, ∆).

2. The distribution of (z − ž) conditional on the history of signals that emerges from the
Kalman filter.

Following Hansen and Sargent (2005, 2007c), we compute robust decision rules by re-
placing the expectation operator in Bellman equation (14) with compositions of two risk-
sensitivity operators, one of which adjusts continuation values for possible misspecification
of the conditional densities of w∗, the other of which adjusts for possible misspecfication
of z − ž. We exploit the insight that the two risk-sensitivity operators can be viewed as
indirect utility functions of malevolent players who choose distributions of w∗ and z − ž,
respectively, to minimize the objective of the maximizing player.2 By responding to the
minimizing choices of probabilities, the maximizing player constructs a decision rule that is
robust to perturbations to the distributions of w∗ and z − ž.

2This is the insight that connects robust control theory to risk-sensitivity. See Hansen and Sargent
(2007d). See Cerreia et al. (2008) for a general representation of uncertainty averse preferences in terms of
indirect utility functions for a minimizing player who chooses probabilities.
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3.1 Robustness is context specific

A robust decision rule is context specific in the sense that it depends on the preference
parameters in (β, U(y, z, a)) and also on details of the stochastic perturbations to the ap-
proximating model (15) that concern the decision maker.

We create alternative two-player zero-sum games that differ in either the one-period ob-
jective function U(y, z, a) or the stochastic perturbations to the approximating model, in
particular, the conditioning sets for the densities of w∗ and z − ž. Each game expresses
concerns about robustness in terms of two penalty parameters, a θ1 that measures the deci-
sion maker’s distrust of the distribution of w∗, and a θ2 that measures the decision maker’s
distrust of the distribution of z− ž that emerges from applying Bayes’ law using the approx-
imating model. The different games allow the decision maker to focus distrust on different
aspects of the baseline stochastic model (15). Hansen and Sargent (2007c) used Games I,
II, and III to generate Bellman equations that closely resemble (14). These games acquire
convenient recursive structures by accepting time inconsistency in equilibrium worst-case
distributions for the hidden state, as we emphasize in section 7. A linear-quadratic version
of a game proposed by Hansen and Sargent (2005), called Game IV, is different and builds
in time consistency of those distributions by not discounting time t contributions to entropy
and by making the minimizing player choose once and for all at time 0.

The four Games differ in timing protocols and the information ascribed to the minimizing
player who, by distorting probability distributions, helps the maximizing player achieve
robustness. In Games I, II, and III, there are sequences of minimizing players.

• Game I (an LQG version of recursions (20) and (21) of Hansen and Sargent (2007c))
starts with a date t+1 value function that depends on yt+1, zt+1, žt+1. The minimizing
player at t ≥ 0 distorts the distribution of wt+1 conditional on yt, zt, žt, as restrained
by a penalty parameter θ1. A date t value function conditions on yt, zt, žt and also the
distribution of zt − žt conditional on yt, žt, as restrained by a penalty parameter θ2.

• Game II (an LQG version of recursions (23) of Hansen and Sargent (2007c)) starts with
a date t + 1 value function that depends on yt+1, žt+1. The minimizing agent distorts
the distribution of wt+1 conditioned on yt, zt, žt, as restrained by a penalty parameter
θ1. Then the minimizing player distorts the distribution of zt − žt conditional on yt, žt,
as restrained by a penalty parameter θ2. A date t value function conditions on yt and
žt.

• Game III (an LQG version of the recursion in section 5.3 of Hansen and Sargent
(2007c)) is a special case of Game II in which the decision maker’s one-period objective
function does not depend on zt and in which θ1 = θ2.

The arguments of their value functions distinguish Games I and II.

Game IV (an LQG version of the game with undiscounted entropy in Hansen and Sargent
(2005)) has a single minimizing player who chooses once-and-for-all at time 0.

• In Game IV, a time 0 decision maker observes yt, žt at time t and chooses distortions
of the distribution of wt+1 conditional on the history of ys, zs for s = 0, . . . , t, as well
as a time 0 distortion to the distribution of z0 − ž0.
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Each of the four games implies worst-case distortions to the mean vector and covariance
matrix of the shocks wt+1 in (9) and to the mean and covariance (žt, ∆t) that emerge from the
Kalman filter. The worst-case means feed back on the state in ways that help the decision
maker design robust decisions.

In these games, the ordinary version of certainty equivalence does not prevail: decision
rules now depend vitally on matrices governing conditional volatilities. However, a modified
version of certainty equivalence described by Hansen and Sargent (2007d, p. 33) and appendix
A does apply. It allows us to compute robust decisions by solving deterministic two-player
zero-sum games while keeping track only of the distorted means of perturbed distributions
together with conditional volatility matrices associated with the approximating model.

4 Game I: continuation value a function of (y, z, ž, ∆)

This game corresponds to an LQG version of recursions (20) and (21) of Hansen and Sargent
(2007c) and lets the minimizing player but not maximizing player observe z. That informa-
tion advantage induces the decision maker to explore the fragility of his decision rule with
respect to misspecifications of the dynamics conditional on the entire state. Because the
maximizing and minimizing players have different information sets, we solve this game in
two steps. The first step conditions on information available to the maximizing player. The
second step conditions on the larger information set available to the minimizing player.

Step 1: Conditioning decisions on (y, ž, ∆) This step corresponds to solving problem (21)

of Hansen and Sargent (2007c). Let W (y∗, ž∗, ∆∗, z∗) be a quadratic function of next period’s
state variables. In terms of the state variables (y, ž, ∆), the law of motion for (y, z, ž, ∆) can
be written as

y∗ = A11y + A12ž + B1a + C1w
∗ + A12(z − ž)

z∗ = A21y + A22ž + B2a + C2w
∗ + A22(z − ž)

ž∗ = A21y + A22ž + B2a + K2(∆)Gw∗ + K2(∆)D2(z − ž)
∆∗ = C(∆) (16)

where w∗ ∼ N (0, I) and z − ž ∼ N (0, ∆). We replace these distributions with the distorted
distributions w∗ ∼ N (ṽ, Σ) and z − ž ∼ N (u, Γ). By feeding back on prior states, ṽ and
u can represent possibly misspecified dynamics in the approximating model. At this point,
we use a modified certainty equivalence result to form a law of motion for a deterministic
two-player zero-sum game that will yield a decision rule that solves the stochastic two-player
zero-sum game (21) of Hansen and Sargent (2007c) that interests us. We replace w∗ with the
distorted mean vector ṽ and z− ž with the distorted mean vector u. The modified certainty
equivalence principle in Hansen and Sargent (2007d, p. 33) and appendix A asserts that we
can solve (21) of Hansen and Sargent (2007c) by replacing it with a deterministic two-player
zero-sum game that treats the distorted means ṽ and u as variables under the control of
a minimizing player. Omitted stochastic terms affect constants in value functions, but not
decision rules. Replacing shocks with distorted means gives us

y∗ = A11y + A12ž + B1a + C1ṽ + A12u
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z∗ = A21y + A22ž + B2a + C2ṽ + A22u

ž∗ = A21y + A22ž + B2a + K2(∆)Gṽ + K2(∆)D2u

∆∗ = C(∆). (17)

Problem 4.1. Let θ1 and θ2 be positive scalars. For a quadratic value function W (y, ž, ∆, z),
to be computed in step 2, choose an action a and accompanying distorted mean vectors u, ṽ

by solving Bellman equation

max
a

min
u

[

Ũ(y, ž, z − ž, a) + θ2

u′∆−1u

2
+ min

ṽ

(

βW (y∗, ž∗, ∆∗, z∗) + θ1

ṽ′ṽ

2

)]

(18)

where the optimization is subject to the law of motion (17). Minimization over ṽ implements
risk-sensitivity operator T

1 and minimization over u implements T
2 in the stochastic problem

(21) of Hansen and Sargent (2007c). A robust decision rule attains the right side of (18)

and takes the form a = −F (∆)

[

y

ž

]

. To make the extremization on the right side of Bellman

equation (18) well posed, (θ1, θ2) must be large enough that

[

θ2∆
−1 − R22 0

0 θ1I

]

− β





A12 C1

A22 C2

K2(∆)D2 K2(∆)G





′

Ω∗(∆∗)





A12 C1

A22 C2

K2(∆)D2 K2(∆)G





is positive definite.

Remark 4.2. The matrices C1, C2, A12, A22, K2(∆)D2 that determine conditional volatilities
in the approximating model (15) influence the maximizing player’s choice of a because they
determine the minimizing player’s decisions ṽ, u and therefore the future state.

Step 2. Conditioning continuation values on (y, ž, ∆, z) This step constructs a contin-

uation value function W (y, ž, ∆, z) by allowing the minimizing player to condition on z as
well as on (y, ž, ∆). This corresponds to solving (20) of Hansen and Sargent (2007c). To
facilitate conditioning on z, rewrite the law of motion as





y∗

z∗

ž∗



 =





A11 A12 0
A21 A22 0
A21 K2(∆)D2 A22 − K2(∆)D2









y

z

ž



 −





B1

B2

B2



F (∆)

[

y

ž

]

+





C1

C2

K2(∆)G



 v (19)

together with
∆∗ = C(∆). (20)

Here v is the distorted mean of w∗ conditioned on (y, z, ž, ∆), while ṽ in step 1 is the distorted
mean of w∗ conditional on (y, ž, ∆).

Problem 4.3. Posit a quadratic value function

W (y, ž, ∆, z) = −
1

2





y

z

ž





′

Ω(∆)





y

z

ž



 − ω

9



and update it via

W (y, ž, ∆, z) = U(y, z, a) + min
v

{

βW ∗(y∗, ž∗, ∆∗, z∗) + θ1

v′v

2

}

(21)

where the minimization is subject to the law of motion (19),(20). For the minimization
problem on the right side of Bellman equation (21) to be well posed, we require that θ1 be large

enough that θ1I − βC̄(∆)′[Ω∗ ◦ C(∆)]C̄(∆) is positive definite, where C̄(∆) =





C1

C2

K2(∆)G



.

Remark 4.4. We use the modified certainty-equivalence principle described by Hansen and
Sargent (2007d, ch. 2) and appendix A. After we compute the worst-case conditional means,
v, u, it is easy to compute the corresponding worst-case conditional variances Σ(∆), Γ(∆) as

Σ(∆)
.
=

(

I −
β

θ1

C̄(∆)
′
[Ω∗ ◦ C(∆)]C̄(∆)

)−1

(22)

and

Γ(∆)
.
=



∆−1 −
1

θ 2

R22 −
1

θ2

[

0 I 0
]

Ω(∆)





0
I

0









−1

, (23)

provided that this matrix is positive definite.

Remark 4.5. The decision rule a = −F (∆)

[

y

ž

]

that solves the infinite horizon problem also

solves a stochastic counterpart that is formulated in terms of the T1 and T2 risk-sensitivity
operators (equation (21) of Hansen and Sargent (2007c)).

5 Game II: value function depends on (y, ž, ∆)

This game withdraws the Game I information advantage from the minimizing player and
works with a transition law for only (y, ž). The game solves an LQG version of recursion
(23) of Hansen and Sargent (2007c). To exploit the modified certainty equivalence principle
of appendix A, we replace w∗ with ṽ and (z − ž) with u in the stochastic law of motion (15)
to obtain

[

y∗

ž∗

]

=

[

A11 A12

A21 A22

] [

y

ž

]

+

[

B1

B2

]

a +

[

C1

K2(∆)G

]

ṽ +

[

A12

K2(∆)D2

]

u. (24)

Problem 5.1. Guess a quadratic value function

V (y, ž) = −
1

2

[

y

ž

]′

Ω(∆)

[

y

ž

]

− ω

and form the Bellman equation

V (y, ž) = max
a

min
u,ṽ

[

Ũ(y, ž, z − ž, a) + θ2

u′∆−1u

2
+ βV (y∗, ž∗) + θ1

ṽ′ṽ

2

]

(25)
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where the optimization is subject to the law of motion (24). This can be formulated as a
deterministic optimal linear regulator problem. For the extremization problem on the right
side of the Bellman equation to be well posed, we require that (θ1, θ2) be large enough that

[

θ2∆
−1 − R22 0

0 θ1I

]

− β

[

A12
′ D2

′K2(∆)′

C1
′ G′K2(∆)′

]

Ω(∆∗)

[

A12 C1

K2(∆)D2 K2(∆)G

]

is positive definite. After Bellman equation (25) has been solved, worst-case variances Σ(∆)
and Γ(∆) of w∗ and z − ž, respectively, can be computed using standard formulas.

6 Game III: θ1 = θ2 and no hidden states in objective

Game III solves an LQG version of the recursion described in section 5.3 of Hansen and
Sargent (2007c). Game III is a special case of Game II that features situations in which3

1. The current period objective function depends on (y, a) but not on z.

2. As in Game II, the decision maker and the minimizing player both have access to the
reduced information set (y, ž, ∆).

3. The multipliers θ1 = θ2 = θ.

The one period objective is

Û(y, a) = −
1

2

[

a

y

]′ [
Q P

P ′ R

] [

a

y

]

.

The law of motion for the stochastic system is

[

y∗

ž∗

]

=

[

A11 A12

A21 A22

] [

y

ž

]

+

[

B1

B2

]

a +

{

[

C1

K2(∆)G

]

w∗ +

[

A12

K2(∆)D2

]

(z − ž)

}

.

Using a Cholesky decomposition of the covariance matrix of the composite shock in braces,
we represent it in terms of a new normalized composite shock w̃ as

[

y∗

ž∗

]

=

[

A11 A12

A21 A22

] [

y

ž

]

+

[

B1

B2

]

a + C̃w̃∗

where w̃∗ ∼ N (0, I) and C̃w̃∗ =

{

[

C1

K2(∆)G

]

w∗ +

[

A12

K2(∆)D2

]

(z − ž)

}

. To form an

appropriate deterministic optimal linear regulator problem, we replace w̃∗ with the distorted
mean ṽ to form the law of motion

[

y∗

ž∗

]

=

[

A11 A12

A21 A22

] [

y

ž

]

+

[

B1

B2

]

a + C̃ṽ. (26)

3Hansen et al. (2002, eqns. (45)-(46)) used a version of Game III to study the effects of robust filtering
on asset pricing.
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Problem 6.1. For a quadratic value function

W (y, ž) = −
1

2

[

y

ž

]′

Ω

[

y

ž

]

− ω,

solve the Bellman equation

W (y, ž) = max
a

min
ṽ

{

Û(y, a) + βW ∗(y∗, ž∗) + θ
ṽ′ṽ

2

}

(27)

where the optimization is subject to (26) and ∆∗ = C(∆). A robust decision rule is a =

−F (∆)

[

y

ž

]

and the worst-case mean of w̃∗ is ṽ = H(∆)

[

y

ž

]

; the worst-case variance of

w̃∗ can be found in the usual way indicated in Hansen and Sargent (2007d, ch. 3). For the
minimization part of the problem on the right side of Bellman equation (27) to be well posed,
we require that θ be large enough that

θI − βC̃(∆)′[Ω∗ ◦ C(∆)]C̃(∆)

is positive definite.

Remark 6.2. Problem 6.1 is an ordinary robust control problem with an observed state (see
Hansen and Sargent (2007d, ch. 2)) that does not separately consider perturbations to the
distributions of the random shocks w∗ and z − ž that contribute to ṽ.

7 Time inconsistency of worst-case z distributions

While Game III focuses on possible misspecification of a composite shock and so does not
distinguish between errors coming from misspecifications of the separate distributions w∗

and z − ž, Games I and II do explicitly separate misspecification of the w∗ shock from the
z − ž shock. They allow the minimizing player at time t to distort the distribution of z − ž

anew each period and to disregard the distortions to the distribution of z− ž that are implied
by prior distortions to the distributions of past w’s and z − ž’s.4 This feature of Games I
and II makes the worst-case distributions for z time inconsistent.

We illustrate the time inconsistency of worst-case beliefs about z in the context of Game
I. For Game I, the worst-case distribution of w∗ conditioned on (y, ž, ∆) is N (v, Σ(∆)) where
v is a linear function of y, ž that can be expressed as

v = β
[

θ1I − βC̄(∆)′ [Ω∗ ◦ C(∆)] C̄(∆)
]−1

C̄(∆)′ [Ω∗ ◦ C(∆)] Ā





y

z

ž



 , (28)

and Σ(∆) is given by (22). The worst-case mean of z is ž + u where u is given by an
expression of the form u = −F̃21(∆)y − F̃23(∆)ž and the worst-case covariance of z is given

4For more about this feature, see Hansen and Sargent (2007d, ch. 17).
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by (23). Using these in z∗ = A21y + A22z + B2a + C2w
∗ shows that the mean of z∗ implied

by the current worst-case conditional distribution is

z̃∗ = A21y + A22(ž + u) + B2a + K2

(

Γ(∆)
)

(s∗ − D1y − D2(ž + u) − Ha) (29)

and that the implied covariance of z∗ is

∆̃∗ =
(

A22 − K2(Γ(∆))D2

)

Γ(∆)
(

A22 − K2(Γ(∆))D2

)′

+ C2Σ(∆)C ′
2. (30)

Equations (29) and (30) give the mean and covariance of z∗ conditioned on s∗ and the
history of s implied by the current worst-case model. Without commitment, these do not
equal the mean and covariance, respectively, of the worst-case distribution that our decision
maker synthesizes next period by adjusting the sufficient statistics (ž∗, ∆∗) for the conditional
distribution of z∗ that emerges from the ordinary Kalman filter. Thus,

z̃∗ 6= (ž∗ + u∗)
∆̃∗ 6= C[Γ(∆)]. (31)

Gaps between the left and right sides indicate time inconsistency in the worst-case distribu-
tions of zt.

5

As stressed in Hansen and Sargent (2005), time-inconsistency of the worst-case distribu-
tions of z is a consequence of our decision to set up Games I and II by following Hansen and
Sargent (2007c) in discounting time t contributions both to entropy and to utility.6 In the
next section, we follow Hansen and Sargent (2005) by not discounting entropy and positing
a single minimizing player who chooses distortions once-and-for-all at time 0.

8 Game IV: commitment

Games I, II, and III adopt sequential timing protocols that give a time t decision maker the
freedom to distort afresh the distribution N (žt, ∆t) that emerges from Bayes’ law as applied
to the approximating model and to disregard distortions to the distribution of zt that are
implied by the approximating model’s transition law for z together with distortions to the
distribution of earlier z’s. We now solve a Game IV that implements a linear-quadratic ver-
sion of a game of Hansen and Sargent (2005) that imposes commitment to prior distortions.

5Time inconsistency does not appear in the worst-case distribution for signals given the signal history and
manifests itself only when we unbundle the distorted signal distribution into separate components coming
from distortions to the w∗ and z − ž distributions.

6Epstein and Schneider (2003, 2007) also tolerate such inconsistencies in their recursive formulation of
multiple priors. As in our Game II, they work with continuation values that depend on signal histories; and
they distort the distribution of the future signal conditional on the hidden states, not just the distribution
conditional on the signal history.
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8.1 The problem

The limited information problem under commitment is7

max
{at}

min
h0∈H0

min
{mt+1∈Mt+1}

E

∞
∑

t=0

Mt

(

−βt
(1

2

)

[

at

xt

]′ [
Q P

P ′ R

] [

at

xt

]

+ θmt+1 log mt+1|S0

)

+ θE(h0 log h0|S0) (32)

subject to

xt+1 = Axt + Bat + Cwt+1

st+1 = Dxt + Hat + Gwt+1

Mt+1 = mt+1Mt

M0 = h0, (33)

where h0 is a nonnegative random variable that is measurable with respect to y0, z0 and
whose mean is 1; and mt+1 a nonnegative random variable that is measurable with respect
to the history of ys, zs, s = t + 1, t, t − 1, . . . , 0 and whose expectation conditioned on the
history up to t is 1. The decision maker’s choice of h0 at time 0 distorts the prior distribution
of z0, while his distortions of the distribution of zt for future t’s are implied by his time 0
choice of the sequence {mt+1}∞t=0. This captures how this game builds in commitment to
prior distortions. Hansen and Sargent (2005) show that this problem can be solved in the
following two steps.

8.2 Step 1: solve a problem with observed states and without

random shocks

We first solve the following two-player zero-sum game with no uncertainty. The problem is

max
{at}

min
{vt}

(1

2

)

∞
∑

t=0

(

−βt

[

at

xt

]′ [
Q P

P ′ R

] [

at

xt

]

+ θ|vt|
2

)

(34)

subject to
xt+1 = Axt + Bat + Cvt. (35)

Notice that one-period utilities are discounted, but increments |vt|2 to entropy are not.

7The distortion mt+1 is a likelihood ratio that changes the distribution of wt+1 from a normal distribution
with mean zero and covariance matrix I to a normal distribution with a mean vt that is given by the second
equation of (36) and a covariance matrix Υt, where Υ−1

t = I − 1

θ
C′Ωt+1Cβt+1. The distortion mt+1 equals

mt+1 = exp

[

−
1

2
(wt+1 − vt)

′ (Υt)
−1 (wt+1 − vt) +

1

2
wt+1 · wt+1 −

1

2
log detΥt

]

,

A simple calculation shows that

E (mt+1 log mt+1|Xt) =
1

2

[

|vt|
2 + trace(Υt − I) − log detΥt

]

where the component terms 1

2
|vt|2 and trace(Υt − I) − log detΥt are both nonnegative.
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For sufficiently large values of θ, the Markov perfect equilibrium gives rise to a date t

value function that is quadratic. Inclusive of discounting,8 we denote it

−
βt

2
(xt)

′Ωtxt.

Define

Q̃t
.
=

[

Q 0
0 −β−tθI

]

P̃
.
=

[

P

0

]

R̃
.
= R − P̃ ′(Q̃t)

−1P̃ = R − P ′Q−1P

B̃
.
=

[

B C
]

Ã
.
= A − B̃(Q̃t)

−1P̃ = A − BQ−1P.

The robust at and the worst-case vt are

[

at

vt

]

= −

[

Q + B′βΩt+1B βB′Ωt+1C

βC ′Ωt+1B βC ′Ωt+1C − β−tθI

]−1 [

βB′Ωt+1A + P

βC ′Ωt+1A

]

xt

= −
(

β
[

Q̃t + βB̃′Ωt+1B̃
]−1

B̃′Ωt+1Ã + (Q̃t)
−1P̃

)

xt, (36)

where the matrix Ωt in the value function satisfies the Riccati equation

Ωt = R̃ + βÃ′Ωt+1Ã − βÃ′Ωt+1B̃
[

Q̃t + βB̃′Ωt+1B̃
]−1

B̃′Ωt+1Ã. (37)

(Also see Başar and Bernhard (1995, p. 272).)
When β < 1, as t → +∞, the solution for Ωt converges to one that would be obtained

under a no-robustness (θ = ∞) specification, vt converges to zero, and the limiting control
law converges to that associated with θ = ∞ (i.e., the one associated with no fear of model
misspecification). When θ < +∞, the decision maker is concerned about robustness, but
that concern diminishes over time. The dissipation of concerns about robustness with the
passage of time is a direct consequence of the different discounting of one-period returns
(they are discounted) and one-period entropies (they are not discounted).

8.3 Step 2: given {Ωt}, compute the filter

Hansen and Sargent (2005) derive the following recursions for the robust estimates. Starting
from the sufficient statistics (ž0, ∆̌0) that describe the decision maker’s prior z0 ∼ N (ž0, ∆̌0),

8This problem is well posed only for sufficiently large values of θ. See Lemma 3.1 of Başar and Bernhard
(1995).
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for t ≥ 0 iterate on9

ẑt = žt +

[

(∆̌t)
−1 −

βt

θ

[

0 I
]

Ωt

[

0
I

]

]−1

βt

θ

[

0 I
]

Ωt

[

yt

žt

]

(38)

at = −
[

I 0
]

[

β
(

Q̃t + βB̃′Ωt+1B̃
)−1

B̃′Ωt+1Ã + (Q̃t)
−1P̃

] [

yt

ẑt

]

(39)

(∆̃t)
−1 = (∆̌t)

−1 −
βt

θ
R22 (40)

z̃t = žt +
βt

θ
∆̃t [P2

′at + R12
′yt + R22žt] (41)

žt+1 = M(yt, z̃t, at, st+1, ∆̃t) (42)

∆̌t+1 = C(∆̃t) (43)

where

M(y, ž, a, s∗, ∆)
.
= A21y + A22ž + B2a + K2(∆)(s∗ − D1y − D2ž − Ha). (44)

Here ž∗ = M(y, ž, a, s∗, ∆)
.
= A21y + A22ž + B2a + K2(∆)(s∗ − D1y − D2ž − Ha) would be

the update of ž associated with the usual Kalman filter. When hidden states appear in the
one-period utility function, the commitment feature of the problem induces adjustment (40)
to the estimates coming from the Kalman filter. This adjustment vanishes when the utility
function contains no hidden states.10

Following the robust control literature (e.g., Başar and Bernhard (1995) and Whittle
(1990)), Hansen and Sargent (2005) interpret this recursive implementation of the commit-
ment problem as one in which as time unfolds the decision maker’s benchmark model changes
in ways that depend on actions that affected past values of the one-period objective function.
That reflects the feature that the Kalman filtering equations (10)-(11) are backward-looking.

The wish to acquire robust estimators leads one to explore the utility consequences of
distorting the evolution of hidden states. Under commitment, the date zero utility function
is the relevant one for inducing robustness via exponential twisting of probabilities of hidden
states. The change in benchmark models represented in steps (38) and (41) captures this.

As Whittle (1990) emphasized, the decision rule (39) has forward-looking components
that come from ‘control’ and backward-looking components that come from ‘filtering under
commitment’. The sufficient statistic žt used as a benchmark in state estimation is backward-
looking. When hidden state variables enter the one-period utility function, žt can deviate
from the state estimate obtained by direct application of the Kalman filter. The forward-
looking component comes from the control component of the problem through the matrices
Ωt+1 and Ωt in (37). We combine both components to express a robust action partly as a
function of a distorted estimate of the hidden state ẑt.

9In Hansen and Sargent (2005) there are typos in equations (50) (∆̃k−1 should be included as an argument
of the function on the right) and in the expression for ẑt (∆t should be ∆̌t) that correspond to equations
(40) and (38), respectively. Appendix B describes an alternative formulation of these recursions.

10The distortion associated with m̌j implies a step in updating beliefs that is in addition to the updating
associated with the ordinary Kalman filter defined in (9), (10), and (11) to update the hidden state conditional
mean of the hidden state. Since m̌j is an exponential of a quadratic function of zj, these distortions are
computed using the normal density and a complete the square argument.
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Example 8.1. (Hidden state not in objective)
Suppose that P2 = 0, R12 = 0, and R22 = 0, so that the one-period objective does not

depend on the hidden state. In this case, there is an alternative way to solve the robust control
problem that first solves the filtering problem and then computes an ordinary robust control
for the reduced information configuration associated with the innovations representation (9),
(10), and (11).11

Write the solution to the ordinary (non-robust) filtering problem as:

z̄t+1 = A21yt + A22z̄t + B2at + K2(∆t)w̄t+1

where the innovation
w̄t+1 = D2(zt − z̄t) + Gwt+1

is normal with mean zero and covariance matrix

DΣtD
′ + GG′

conditioned on St. Instead of distorting the joint distribution (wt+1, xt), we can distort the
distribution of the innovation w̄t+1 conditioned on St. It suffices to add a distortion v̄t to the
mean of w̄t+1 with entropy penalty

θv̄′
t(DΣtD

′ + GG′)−1v̄t,

and where v̄t is restricted to be a function of the signal history. While the conditional co-
variance is also distorted, certainty equivalence allows us to compute the mean distortion by
solving a deterministic zero-sum two-player game. As in the robustness problem with full
information, discounting causes concerns about robustness to wear off over time.

Remark 8.2. Under the example 8.1 assumptions, the only difference between Games III
and IV is that Game III discounts time t contributions to entropy while Game IV does
not. When the objective function satisfies the special conditions of example 8.1 and β = 1,
outcomes of Games III and IV coincide.

Remark 8.3. Example 10.1 is a special case of example 8.1.

Example 8.4. (Pure estimation)
The state is exogenous and unaffected by the control. The objective is to estimate −Pxt.

The control is an estimate of −Pxt. To implement this specification, we set B = 0, Q = I,
and R = P ′P . For this problem, the solution of (37) for Game IV is Ωt = 0 for all t ≥ 0
because a = −Px sets the full information objective to zero. The solution to the estimation

problem is at = −P x̌t where x̌t =

[

yt

žt

]

and z̃t = žt = ẑt. In this case, the Game IV recursions

(38)–(43) collapse to

žt = M

(

yt−1, žt−1, at−1, st, D(∆̌t−1)
)

(45)

∆̌t = C ◦ D(∆̌t−1) (46)

where D(∆̌t) =
[

(∆̌t)
−1 − βk

θ
R22

]−1

is the operator affiliated with (40). For β = 1, it can be

verified that these are the recursions described by Hansen and Sargent (2007d, ch. 17).

11This approach is used in the asset pricing applications in Hansen and Sargent (2007a).
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9 Calibrating (θ1, θ2) with detection error probabilities

In this section, we describe how to calibrate (θ1, θ2) using the detection error probabilities
advocated earlier by Hansen et al. (2002), Anderson et al. (2003), and Hansen and Sargent
(2007d, ch. 9).

An equilibrium of one of our two-player zero-sum games can be represented in terms of
the following law of motion for (y, ž, s):

y∗ = A11y + A12ž + B1a + C1w
∗ + A12(z − ž)

ž∗ = A21y + A22ž + B2a + K2(∆)Gw∗ + K2(∆)D2(z − ž)
s∗ = D1y + D2ž + Ha + Gw∗ + D2(z − ž)

∆∗ = C(∆) (47)

where under the approximating model

w∗ ∼ N (0, I) and z − ž ∼ N (0, ∆) (48)

and under the worst-case model associated with a (θ1, θ2) pair

w∗ ∼ N (ṽ, Σ(∆)) and z − ž ∼ N (u, Γ(∆)). (49)

We have shown how to compute decision rules for a, ṽ, u, Σ(∆), Γ(∆) for each our zero-sum
two-player games; a, ṽ, u are linear functions of y, ž. Evidently, under the approximating
model

s∗ ∼ N (D̄1y + D̄2ž, Ωa) (50)

where Ωa(∆) = GG′ + D2∆D′
2 and the (̄·) over a matrix indicates that the feedback rule for

a has been absorbed into that matrix; while under the worst-case model

s∗ ∼ N (D̂1y + D̂2ž, Ωw) (51)

where Ωw(∆) = GΣG′ + D2Γ(∆)D′
2 and the (̂·) over a matrix indicates the feedback rules

for a and the conditional means ṽ, u have been absorbed into that matrix.
Where N is the number of variables in st+1, conditional on y0, ž0, the log likelihood of

{st+1}
T−1

t=0 under the approximating model is

log La = −
1

T

T
∑

t=0

[

N

2
log(2π)+

1

2
log |Ωa(∆t)|+

1

2

(

st+1−D̄1yt−D̄2žt

)′

Ωa(∆t)
−1

(

st+1−D̄1yt−D̄2žt

)

]

(52)
and the log likelihood under the worst-case model is

log Lw = −
1

T

T
∑

t=0

[

N

2
log(2π)+

1

2
log |Ωw(∆t)|+

1

2

(

st+1−D̂1yt−D̂2žt

)′

Ωw(∆t)
−1

(

st+1−D̂1yt−D̂2žt

)

]

(53)
By applying procedures like those described in Hansen et al. (2002) and Anderson et al.

(2003), we can use simulations in the following ways to approximate a detection error prob-
ability:
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• Repeatedly simulate {yt+1, žt+1, st+1}
T−1

t=0 under the approximating model. Use (52)
and (53) to evaluate the log likelihood functions of the approximating model and
worst case model for a given (θ1, θ2). Compute the fraction of simulations for which
log Lw > log La and call it ra. This approximates the probability that the likelihood
ratio says that the worst-case model generated the data when the approximating model
actually generated the data.

• Repeatedly simulate {yt+1, žt+1, st+1}
T−1

t=0 under the worst-case model affiliated with a
given (θ1, θ2) pair. Use (52) and (53) to evaluate the log likelihood functions of the
approximating and worst case models. Compute the fraction of simulations for which
log La > log Lw and call it rw. This approximates the probability that the likelihood
ratio says that the approximating model generated the data when the worst-case model
generated the data.

• As in Hansen et al. (2002) and Anderson et al. (2003), define the overall detection
error probability to be

p(θ1, θ2) =
1

2
(ra + rw). (54)

9.1 Practical details

The detection error probability p(θ1, θ2) in (54) can be used to calibrate the pair (θ1, θ2)
jointly. This seems to be the appropriate procedure for Game II, especially when z does
not appear in the objective function. However, for Game I, we think that the the following
sequential procedure makes sense.

1. First pretend that y, z are both observable. Calibrate θ1 by calculating detection error
probabilities for a system with an observed state vector using the approach of Hansen
et al. (2002) and Hansen and Sargent (2007d, ch. 9).

2. Then having pinned down θ1 in step 1, use the approach leading to formula (54) to
calibrate θ2.

This procedure takes the point of view that θ1 measures how difficult it would be to
distinguish one model of the partially hidden state from another if we were able to observe
the hidden state, while θ2 measures how difficult it is to distinguish alternative models of
the hidden state. The probability p(θ1, θ2) measures both sources of model uncertainty.

10 Examples

Example 10.1. (Permanent income model with hidden Markov labor earnings)
A consumer orders streams of consumption at by the mathematical expectation of

−
1

2

∞
∑

t=0

βt
[

(at − by1t)
2 + ηk2

t

]

(55)
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subject to

y1,t+1 = 1
kt+1 = (r + 1)kt + et − at

et+1 = z1t + z2t + cewt+1

z1t+1 = z1t + c1wt+1

z2t+1 = ρz2t + c2wt+1 (56)

where b is a ‘bliss’ rate of consumption, z1,0 ∼ N (ž1,0, σ
2
1) and z2,0 ∼ N (ž2,0, σ

2
2) are indepen-

dent priors, wt+1 is a 3×1 normalized Gaussian random vector, et is labor income, and kt is
the consumer’s financial wealth at the beginning of period t. We assume that the consumer
observes kt+1, et+1 at t + 1 and that β(r + 1) = 1, where r > 0. Here η > 0 is a very small
cost of caring for assets that we include to enforce a stable solution (see Hansen and Sargent
(2007b, ch. 4) for details).

Set yt =





1
kt

et



, zt =

[

z1t

z2t

]

. It is enough to take st+1 = et+1 (because kt+1 is an exact

function of time t information). To map this into our general problem, we set

A11 =





1 0 0
0 (r + 1) 1
0 0 0



 , A12 =





0 0
0 0
1 1



 , A21 =

[

0 0 0
0 0 0

]

, A22 =

[

1 0
0 ρ

]

B1 =





0
−1
0



 , B2 =

[

0
0

]

C1 =





0
0
ce



 , C2 =

[

c1

c2

]

,

D1 =
[

0 0 0
]

, D2 =
[

1 1
]

, H = 0, G = ce





Q P1 P2

P ′
1 R11 R12

P ′
2 R21 R22



 =

















1 −b 0 0 0 0
−b b2 0 0 0 0
0 0 η 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















and

∆0 =





0 0 0
0 σ2

1 0
0 0 σ2

2



 .
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Example 10.2. (Forecasting a geometrically discounted sum)12

Suppose that

pt = Et

∞
∑

j=0

βjdt+j (57)

where

Ddt+1 = z1t + z2t + σ3ǫ3,t+1 (58)

z1,t+1 = z1t + σ1ǫ1,t+1 (59)

z2,t+1 = ρz2t + σ2ǫ2,t+1, |ρ| < 1, (60)

yt = 1 (61)

where D is the first difference operator and z10 ∼ N (ẑ10, ∆11), z20 ∼ N (ẑ20, ∆22). Note that
(57) can be rewritten as

pt =
1

1 − β
dt +

1

1 − β
Et

∞
∑

j=1

βjDdt+j. (62)

The signal at t is Ddt and the observed history at t is dt,Ddt,Ddt−1, . . . ,Dd1. The

unobserved state is zt =

[

z1t

z2t

]

and the observed state is yt = 1. The objective function

(62) involves one-period returns that can be expressed as cross-products of yt and Ddt+1. To
implement this example, set

A =





1 0 0
0 1 0
0 0 ρ



 , B =





0
0
0



 , C =





0 0 0
σ1 0 0
0 σ2 0



 ,

D1 = 0, D2 =
[

1 1
]

, G =
[

0 0 σ3

]

, H = 0,

Q = 0, R =





0 .5 .5
.5 0 0
.5 0 0



 , P ′ =





0
0
0



 .

Example 10.3. (Muth revisited)
In this special case of example 8.4, a scalar hidden state evolves as

zt+1 = ρzt + σ1ǫ1,t+1

and a signal is related to zt by
st+1 = zt + σ2ǫ2,t+1

where ǫ1,t+1 and ǫ2,t+1 are orthogonal i.i.d. random sequences distributed N (0, I) and z0 ∼
N (ž0, ∆0). The decision maker wants to estimate the hidden state zt. Muth (1960) studied
a non-robust version of this problem for ρ = 1. We proceed as for example 8.4 and set
at = −Pxt, P = −1, R = 1, Q = 1, A = ρ, B = 0, C =

[

σ1 0
]

, D = 1, H = 0, G =
[

0 σ2

]

.

12See the model of stock prices created by Lewis and Whiteman (2008) for an example with a related
structure.
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Example 10.4. (A monopolist estimates demand)
A monopolist faces the inverse demand function pt = z1t + z2t −αyt where pt is the price

of the product, yt is the quantity sold by the monopolist, α > 0 is minus the slope of the
inverse demand curve, and

z1t+1 = z1t + σ1ǫt+1

z2t+1 = ρz2t + σ2ǫt+1

here σ1, σ2, and σy are each 1×3 vectors and ǫt+1 is an i.i.d. 3×1 vector distributed N (0, I).
Time t + 1 output yt+1 is controlled via

yt+1 = yt + at + σyǫt+1

where σy is a 1 × 3 vector.
A monopolist has prior zt ∼ N (ž0, ∆0) over the hidden states zt. The monopolist knows

α and observes pt and yt, and therefore z1t + z2t, but not z1t and z2t separately. The signal
equation is

pt+1 = z1t + ρz2t − αyt − αat + (σ1 + σ2 − ασy)ǫt+1

where st+1 ≡ pt+1. The monopolist faces period t adjustment costs da2
t and chooses a strategy

for a to maximize the expectation of

∞
∑

t=0

βt
{

(z1t + z2t − αyt)yt − da2

t

}

.

To implement this example, set

Q = −d, P ′ =





0
0
0



 , R =





−α .5 .5
.5 0 0
.5 0 0



 ,

A =





1 0 0
0 1 0
0 0 ρ



 , B =





1
0
0



 , C =





σy

σ1

σ2



 ,

D =
[

−α 1 ρ
]

, H = −α, G =
[

−ασy + σ1 + σ2

]

.

11 Concluding remarks

We can step slightly outside the LQG structure of this paper to consider more general set-
tings in which an additional hidden Markov state indexes a finite set of LQG submodels,
for example, as in the models without fear of model misspecification analyzed by Svensson
and Williams (2008).13 It would be possible to use the ideas and computations in this pa-
per to adapt the Svensson and Williams structure to incorporate fears of misspecification
of the submodels and of the distribution over submodels. That would involve calculations

13The periodic models of Hansen and Sargent (2007b, ch. 17) are closely related to the structures of
Svensson and Williams (2008).
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closely related to ones that Hansen and Sargent (2007a) use to model countercyclical uncer-
tainty premia and that Cogley et al. (2008) use to design a robust monetary policy when
part of the problem is to affect the evolution of submodel probabilities through purposeful
experimentation.

A Modified certainty equivalence

Connections between the outcomes of the following two problems allow us to compute the
T1 operator easily.

Problem A.1. Let V (x) = −1

2
x′Ωx − ω, where Ω is a positive definite symmetric matrix.

Consider the control problem

min
v

V (x∗) +
θ

2
|v|2

subject to a linear transition function x∗ = Ax + Cv. If θ is large enough that I − θ−1C ′ΩC

is positive definite, the problem is well posed and has solution

v = Kx (63)

K = [θI − C ′ΩC]−1C ′ΩA. (64)

The following problem uses (63) and (64) to compute the T
1 operator:

Problem A.2. For the same value function V (x) = −1

2
x′Ωx − ω that appears in problem

A.1, let the transition law be
x∗ = Ax + Cw∗

where w∗ ∼ N (0, I). The T1 operator gives the indirect utility function of the following
minimization problem:

min
m∗

E[m∗V (x∗) + θm∗ log m∗].

The minimizer is

m∗ ∝ exp

(

−V (x∗)

θ

)

= exp

[

−
1

2
(w∗ − v)′Σ−1(w∗ − v) +

1

2
w∗ · w∗ −

1

2
log det Σ

]

where v is given by (63)-(64) from problem A.1, the worst-case variance Σ = (I−θ−1C ′ΩC)−1,
and the entropy of m∗ is

Em∗ log m∗ =
1

2

[

|v|2 + trace(Σ − I) − log det Σ
]

.

Therefore, we can compute the objects (v, Σ) needed to form T
1 by solving the deter-

ministic problem A.1.
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B Alternative formulation

When ∆t is nonsingular, recursions (40)–(43) can be implemented with the following recur-
sions that are equivalent to the formulation of Başar and Bernhard (1995). Let

Ǎ
.
= A22 − C2G

′(GG′)−1D2

Ň
.
= C2C

′
2 − C2G

′(GG′)−1GC2
′

Then we can attain žt directly via the recursions:

∆̌t+1 = Ǎ

[

(∆̌t)
−1 −

βt

θ
R22 + D2

′(GG′)−1D2

]

Ǎ′ + Ň (65)

and

žt+1 = A21yt + Ǎžt + B2at

+Ǎ

[

(∆̌t)
−1 −

βt

θ
R22 + D2

′(GG′)−1D2

]−1

D′
2(GG′)−1(st+1 − D1yt − D2žt)

+
βt

θ
Ǎ

[

(∆̌t)
−1 −

βt

θ
R22 + D2

′(GG′)−1D2

]−1

(P2
′at + R12

′yt + R22žt) . (66)

C Matlab programs

This appendix describes how to use Matlab programs that solve and simulate outcomes of
our four games.

Four object oriented programs named

PreData ComputeGameOne.m

PreData ComputeGameTwo.m

PreData ComputeGameThree.m

PreData ComputeGameFour.m

compute objects in the respective games that do not depend on data. After these objects
have been computed, the programs

ComputeGameOne dataparts.m

ComputeGameTwo dataparts.m

ComputeGameThree dataparts.m

ComputeGameFour dataparts.m

generate time series of decisions and filtered estimates.
A sample driver files illustrates two different ways of using these Game solving functions

to solve example 10.1. The program example permanent income.m simulates data from the
approximating model then solves Game I. Then, in order to show how to use an external
data set, it saves and loads the simulated data and proceeds to solve each of Games II , III
and IV . Of course it is also possible to simulate new data set each time you call a game
solving function. Examples of this last feature are included as comments in the driver file.
Once the functions mentioned above have computed the objects of interest, you can extract
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them for further analysis. Both the the accompanying readme file and the permanent income
driver file show you ways to extract these results. Finally, we have provided a couple of files
that plot subsets of these results in the hope it will facilitate your analysis.
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