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Abstract

This paper studies alternative ways of representing uncertainty about a law of mo-

tion in a version of a classic macroeconomic targetting problem of Milton Friedman

(1953). We study both “unstructured uncertainty” – ignorance of the conditional

distribution of the target next period as a function of states and controls – and more

“structured uncertainty” – ignorance of the probability distribution of a response co-

efficient in an otherwise fully trusted specification of the conditional distribution of

next period’s target. We study whether and how different uncertainties affect Fried-

man’s advice to be cautious in using a quantitative model to fine tune macroeconomic

outcomes.

1 Introduction

“As Josh Billings wrote many years ago, “The trouble with most folks isn’t so

much their ignorance, as knowing so many things that ain’t so.” Pertinent as

this remark is to economics in general, it is especially so in monetary economics.”

Milton Friedman (1965) 1

Josh Billings may never have said that. Some credit Mark Twain. Despite, or maybe

because of the ambiguity about who said them, those words convey the sense of calculations

∗We thank Harald Uhlig for thoughtful comments and David Evans and Paul Ho for excellent research
assistance.

1From the forward to Phillip Cagan’s Determinants and Effects of Changes in the Stock of Money,

1875-1960, Columbia University Press, New York and London, 1965. page xxiii.
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that Milton Friedman (1953) used to advise against using quantitative macroeconomic mod-

els to “fine tune” an economy. Ignorance about details of an economic structure prompted

Friedman to recommend caution.

We use a dynamic version of Friedman’s model as a laboratory within which we study

the consequences of four ways that a policy maker might confess ignorance. One of these

corresponds to Friedman’s, while the other three go beyond Friedman’s. Our model states

that a macroeconomic authority takes an observable state variable Xt as given and chooses

a control variable Ut that produces a random outcome for Xt+1:

Xt+1 = κXt + βUt + αWt+1. (1)

The shock processW is an iid sequence of standard normally distributed random variables.

We interpret the state variable Xt+1 as a deviation from a target, so ideally the policy

maker wants to set Xt+1 = 0, but the shock Wt+1 prevents this.

Friemdan framed the choice between “doing more” and “doing less” in terms of the

slope of the response of a policy maker’s decision Ut to its information Xt about the state

of the economy. Friedman’s purpose was to convince policy makers to lower the slope. He

did this by comparing optimal policies for situations in which the policy maker knows β

and in which it doesn’t know β.

For working purposes, it is useful tentatively to classify types of ignorance into not

knowing (i) response coefficients (β), and (ii) conditional probability distributions of ran-

dom shocks (Wt+1). Both categories of unknowns potentially reside in our model, and we’ll

study the consequences of both types of ignorance. As we’ll see, confining ignorance to

not knowing coefficients puts substantial structure on the source of ignorance by trusting

significant parts of a specification. Not knowing the shock distribution translates into not

knowing the conditional distribution of Xt+1 given time t information and so admits a

potentially large and less structured class of misspecifications.

After describing a baseline case in which a policy maker completely trusts specification

(1), we study the consequences of four ways of expressing how a policy maker might distrust

that model.2

I. A “Bayesian decision maker” doesn’t know the coefficient β but trusts a prior prob-

ability distribution over β. (This was Friedman’s way of proclaiming model uncer-

2Our preoccupation within enumerating types of ignorance and ambiguity here and in Hansen and
Sargent (2012) is inspired by Epson (1947).
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tainty.)

II. A “robust Bayesian decision maker” uses operators of Hansen and Sargent (2007) to

express distrust of a prior distribution for the response coefficient β. The operators tell

the decision maker how to make cautious decisions by twisting the prior distribution

in a direction that increases probabilities of β’s yielding lower values.

III. A “robust decision maker” uses either the multiplier or the constraint preferences of

Hansen and Sargent (2001) to express his doubts about the probability distribution

of Wt+1 conditional on Xt and a decision Ut implied by model (1). Here an operator

of Hansen and Sargent (2007) twists the conditional distribution of Xt+1 to increase

probabilities of Xt+1 values that yield low continutation utilities.

IV. A robust decision maker asserts ignorance about the same conditional distribution

mentioned in item (III) by adjusting an entropy penalty in a way that Petersen et al.

(2000) used to express a decision maker’s desire for a decision rule that is robust at

least to particular alternative probability models.

Approaches (I) and (II) are ways of ‘not knowing coefficients’ while approaches (III)

and (IV) are ways of ‘not knowing a shock distribution.’ We compare how these types

of ignorance affect Friedman’s conclusion that ignorance should induce caution in policy

making.3

2 Baseline model without uncertainty

Following Friedman, we begin with a decision maker who trusts model (1). The decision

maker’s objective function at date zero is

−1

2

∞∑

t=0

exp(−δt)E
[
(Xt)

2|X0 = x
]
=− 1

2

∞∑

t=0

exp[−δ(t + 1)]E
[
(κXt + βUt)

2|X0 = x
]

− 1

2
x2 − α2 exp(−δ)

2[1− exp(−δ)] , (2)

3Approaches (I), (II), and (III) have been applied in macroeconomics and finance, but with the exception
of Hansen and Sargent (2015), approach (IV) has not.
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where δ > 0 is a discount rate. The decision maker chooses Ut as a function of Xt to

maximize (2) subject to the sequence of constraints (1). The optimal decision rule

Ut = −κ
β
Xt (3)

attains the following value of the objective function (2):

−1

2
x2 − α2 exp(−δ)

2[1− exp(−δ)] .

Under decision rule (3) and model (1), Xt+1 = αWt+1.

In subsequent sections, we study how two types of ignorance change the decision rule

for Ut relative to (3):

• Ignorance about β.

• Ignorance about the probability distribution ofWt+1 conditional on information avail-

able at time t.

3 Friedman’s Bayesian expression of caution

This section sets Friedman’s analysis within a perturbation of model (1). We study how

the decision maker adjusts Ut to offset adverse effects of Xt on Xt+1 when he does not

know the response coefficient β. Does he do a lot or a little? Friedman’s purpose was to

advocate doing less relative to the benchmark rule (3) for setting Ut.

We replace (1) with

Xt+1 = κXt + βtUt + αWt+1, (4)

where the decision maker believes that {βt} is iid normal with mean µ and variance σ2,

which we write

βt ∼ N (µ, σ2). (5)

An iid prior asserts that information about βt is useless for making inferences about βt+j

for j > 0, thus ruling out the possibility of learning.4

4de Finetti (1937) introduced exchangeability of a stochastic process as a way to make rooom for
learning. Kreps (1988, ch. 11) described de Finetti’s work as a foundation of statistical learning. Kreps
offered a compelling explanation of why an iid prior excludes learning. Prescott (1972) departed from iid
risk to create a setting in which a decision maker designs experiments because he wants to learn. ? study
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Let x∗ denote a next period value.5 Model (4)–(5) implies that the conditional density

for x∗ is normal with mean κx+ µu and variance σ2u2 + α2. Conjecture a value function

V (x) = −1

2
ν1x

2 − 1

2
ν0

that satisfies the Bellman equation:

V (x) = max
u

−
{
exp(−δ)

2
ν1(κx+ µu)2 − exp(−δ)

2
ν1σ

2u2 − exp(−δ)

2
ν1α

2 − exp(−δ)

2
ν0 −

1

2
x2
}
.

(6)

First-order conditions with respect to u imply that

− exp ν1
[
µ(κx+ µu) + σ2u

]
= 0

so that the optimal decision rule is

u = −
(

µκ

µ2 + σ2

)
x, (7)

which has the same form as the rule that Friedman derived for his static model. Because

µκ

µ2 + σ2
<
κ

µ
,

caution shows up in decision rule (7) when σ2 > 0, indicating how Friedman’s Bayesian

decision rule recommends “doing less” than the known-β rule (3).6

4 Robust Bayesians

A robust Bayesian is unsure of his prior and therefore pursues a systematic analysis of the

sensitivity of expected utility to perturbations of his prior. Aversion to prior uncertainty

induces a robust Bayesian decision maker to calculate a lower bound on expected utility

over a set of priors, and to investigate how decisions affect that lower bound. We describe

two recursive implementations.

a setting with a robust decision maker who experiments and learns.
5From now on, upper case letters denote random vectors (subscripted by t) and lower case letters are

realized values.
6See Tetlow and von zur Muehlen (2001) and Barlevy (2009) for discussions of whether adjusting for

model uncertainty renders policy more or less aggressive.
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In this section, we modify the Bayesian model of section 3. The decision maker still

believes that βt is an iid scalar process. But now he doubts his prior distribution (5) for

βt. He expresses his doubts about (5) by using one of two operators of Hansen and Sargent

(2007) to replace the conditional expectation operator in Bellman equation (6). We assume

that the decision maker confronts ambiguity about the baseline normal distribution for {βt}
that is not diminished by looking at past history. The decision maker’s uncertainty about

the distribution of βt is not tied to his uncertainty about the distribution of βt+1 except

through the specification of the baseline normal distribution. In this paper, we deliberately

close down learning for simplicity. In other papers (e.g., see Hansen and Sargent (2007,

2010)), we have applied the methods used here to environments in which a decision maker

learns about hidden Markov states.

4.1 T
2 and C

2 operators as indirect utility functions

We define two operators, T2, expressing “multiplier preferences”, and C2, expressing a type

of “constraint preferences” in the language of Hansen and Sargent (2001). A common

parameter θ appears in both operators. But in T2, θ is a fixed penalty parameter, while in

C
2, θ is a Lagrange multipler, an endogenous object whose value varies with both the state

x and the decision u.

4.1.1 Relative entropy of a distortion to the density of βt

Let φ(β;µ, σ2) denote the Gaussian density for β assumed in Friedman’s model. The

relative entropy of an alternative density f(β; x, u) with respect to the benchmark density

φ(β;µ, σ2) is

ent(f, φ) =

∫
m(β; x, u) log(m(β; x, u))φ(β;µ, σ2)d β

where m(β; x, u) is the likelihood ratio

m(β; x, u) =

(
f(β; x, u)

φ(β;µ, σ2)

)
.

Relative entropy is thus an expected log-likelihood ratio evaluated with respect to the

distorted density f = mφ for β.
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4.1.2 The T2 operator

Let θ ∈ [θ,+∞] be a fixed penalty parameter where θ > 0. Where Ṽ (β; x, u) is a value

function, the operator [T2Ṽ ](x, u) is the indirect utility function for the following problem:

[T2Ṽ ](x, u) = minm≥0,
∫
β
mφ=1

[∫
exp(−δ)Ṽ (x, β, u)m(β; x, u)φ(β;µ, σ2)dβ + θ ent(mφ, φ)

]

= Eβ
(
m̌(β; x, u) exp(−δ)Ṽ (x, β, u)

)
+ θ ent(m̌φ, φ) (8)

where φ(β;µ, σ2) is a Gaussian density and the minimizer is m̌. The minimizing likelihood

ratio m̌ satisfies the exponential twisting formula

m̌(β; x, u) ∝ exp

[
−exp(−δ)

θ
Ṽ (x, β, u)

]
, (9)

with the factor of proportionality being the mathematical expectation of the object on

the right, so that m̌(β; x, u) integrates against φ to unity. The “worst-case” density for β

associated with [T2Ṽ ](x, u) is7

f̂(β; x, u) = m̌(β; x, u)φ(β;µ, σ2). (10)

Substituting the minimizing m into the right side of (8) and rearranging shows that the

T2 operator can be expressed as the indirect utility function

[T2Ṽ ](x, u) = −θ logE
(
exp

[
−exp(−δ)

θ
Ṽ (Xt, βt, Ut)

] ∣∣∣Xt = x, Ut = u

)
, (11)

where according to (5), βt ∼ N (µ, σ2). Equation (8) represents [T2Ṽ ](x, u) as the sum of

the expectation of Ṽ evaluated at the minimizing distorted density f̌ = m̌φ plus θ times

entropy of the distorted density f̌ . Associated with a fixed θ is an entropy

ent(m̌φ, φ)(x, u) =

∫
m̌(β; x, u) log(m̌(β; x, u))φ(β;µ, σ2)d β (12)

that for a fixed θ evidently varies with x and u.

Remark 4.1. (Relationship to smooth ambiguity models) The operator (11) is an indirect

7Notice that the minimizing density (10) depends on both the control law u and the endogenous state x.
In subsection 4.5, we describe how to construct another representation of the worst-case density in which
this dependence is replaced by dependence on an additional state variable that is exogenous to the decision
maker’s choice of control u.
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utility function that emerges from solving a penalized minimization problem over a contin-

uum of probability distortions. The smooth ambiguity models of Klibanoff et al. (2005, 2009)

posit a specification resembling and generalizing (11), but without any reference to such a

minimization problem. In the context of a random coefficient model like (4), Klibanoff

et al. would use one concave function to express aversion to the risk associated with ran-

domness in the shock Wt+1 but conditioned on βt, on the one hand, and another concave

function to express aversion to ambiguity about the distribution of βt, on the other hand.

The functional form (11) emerges from the formulation of Klibanoff et al. (2005) if we

use a quadratic function for aversion to risk and an exponential function for aversion to

ambiguity about the probability distribution of βt.

4.1.3 The C2 operator

For the T2 operator, θ is a fixed parameter that penalizes the m-choosing agent in problem

(8) for increasing entropy. The minimizing decision maker in problem (8) can change

entropy but at a marginal cost θ.

For the C2 operator, instead of a fixed θ, there is a fixed level η ≥ 0 of entropy that

the probability-distorting minimizer cannot exceed. The C2 operator is the indirect utility

function defined by the following problem:

[C2Ṽ ](x, u) = min
m(β;x,u)≥0

∫
exp(−δ)Ṽ (x, β, u)m(β; x, u)φ(β;µ, σ2)dβ (13)

where the minimization is subject to Eβm(β; x, u) = 1 and

ent(mφ, φ) ≤ η. (14)

The minimizing choice of m again obeys equation (10), except that θ is not a fixed penalty

parameter, but instead a Lagrange multiplier on constraint (13). Now the Lagrange mul-

tiplier θ varies with x and u, not entropy.

Next we shall use T2 or C2 to design a decision rule that is robust to a decision maker’s

doubts about the probability distribution of βt.
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4.2 Multiplier preference adjustment for doubts about distribu-

tion of βt

Here the decision maker’s (robust) value function V satisfies a functional equation (15) cast

in terms of intermediate objects that we construct in the following steps:

• Average over the probability distribution of the random shock Wt+1 to compute

Ṽ (x, β, u) = E
[
V (κXt + βtUt + αWt+1)

∣∣∣Xt = x, βt = β, Ut = u
]
,

where W ∼ N (0, 1).

• Next, use definition (11) to average Ṽ over the distribution of βt and thereby compute

the indirect utility function [T2Ṽ ](x, u).

• Choose u to attain the right side of

V (x) = max
u

−1

2
x2 + [T2]

(
Ṽ (x, u)

)
. (15)

• Iterate to convergence to construct a fixed point V (·).

4.3 Constraint preference adjustment for doubts about distribu-

tion of βt

Here we use the same iterative procedure described in subsection 4.2 except that we replace

the steps described in the second and third bullet points with

• Use definition (13) of C2 to average Ṽ over random βt and thereby compute [C2]
(
Ṽ (x, u)

)
.

• Choose u to attain the right side of

V (x) = max
u

−1

2
x2 + [C2]

(
Ṽ (x, u)

)
. (16)

Appendix B describes how we approximate V and Ṽ in Bellman equations (15) and (16).
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4.4 Examples

Figures 1–3 show robust decision rules that attain the right sides of (15) and (16) for an

infinite horizon model with parameters set at µ = 1, σ = 1, δ = .1, α = .6, κ = .8. We

analyze a two period version in appendix A. Figures 1, 2, and 4 show robust decision rules

that attain the right side of (15) while figure 3 describes decision rules that attain the right

side of (16).

Figure 1 shows decision rules for u as a function of x for θ values of .5 and 1, as well

as for the θ = +∞ value associated with Friedman’s Bayesian rule (7) with σ2 > 0 and

the benchmark no-ignorance rule (3) associated with σ2 = 0. With θ < +∞, the robust

decision rules are non-monotonic. They show caution relative to Friedman’s rule, and

increasing caution for larger values of |x|. For low values of |x|, the robust rules are close

to Friedman’s Bayesian rule, but for large values of |x|, the robust rules are much more

cautious. For the two-period model analyzed in appendix A, the worst-case distribution of

βt remains Gaussian. For the infinite horizon model, the worst-case distributions seem very

close to Gaussian. Figure 2 shows means and variances of worst-case probability densities

(in the top two panels) and relative entropies of the worst-case distributions with respect to

the density N (µ, σ2) under the approximating model, all as functions of x. As x increases

in absolute value, the mean of the worst-case distribution of β decreases, indicating that

the policy is less effective. As |x| increases, the worst-case variance increases at first, but

eventually it decreases. The shape of entropy as a function of x, shown in the bottom panel

of figure 2, sheds light on why the worst-case variance ultimately starts decreasing. As |x|
increases, at first entropy increases too, reaching a maximum and then slowly decreasing.

Notice how the “wings” in the two robust decision rules in figure 1 and the worst-case

variances in figure 2 mirror those in the graph of entropy as a function of x in the bottom

panel of figure 2. Figure 3 plots two robust decision rules and stationary distributions of

Xt under those decision rules and the baseline model (1). The graphs are for two levels of

σ: σ = .75 and σ = 1.5. The graphs reveal that the ‘wings’ in the decision rules do not

occur too far out in the tails of the stationary distribution.
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Figure 1: The β known and Friedman’s Baysian decision rules (the two linear rules), and

also robust decision rules that solve maxu−1
2
x2 + [T2]

(
Ṽ (x, u)

)
for two values of θ.
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Figure 2: Top two panels: worst-case means and variances associated with decision rules

that solve maxu−1
2
x2 + [T2]

(
Ṽ (x, u)

)
for various θ’s; lower panel: entropy as a function

of x.
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Figure 3: Robust decision rules and stationary distribution under approximating model under

those rules.

The robust decision rules that attain the right side of (16) are reported in the top panel

figure 4 for values of η of 0.1 and 0.4, as well as the non-robust η = 0 rule. The middle

and bottom panels show the associated worst-case means and variances, which for a given

entropy are constant functions of x. Here, with fixed entropy, the decision rules seem to

be linear.8 They are flatter (more cautious), the higher is entropy. The minimizing player

responds to an increase in entropy by increasing the variance and decreasing the mean of

βt, making policy both less effective and more uncertain. The robust (maximizing) decision

maker responds by making u less responsive to x. The constaint-preference robust Bayesian

decision rule looks like Friedman’s, except that it is even more cautious because of how the

robust Bayesian decision maker acts as if the mean of βt is lower and the variance of the

βt is larger than does Friedman’s Bayesian decision maker.9,10

Figure 5 shows that the Lagrange multiplier θ for the constraint preferences in (16)

increases apparently quadratically with |x|. For a given entropy η, the increase in the

“price of robustness” θ as |x| increases causes the “wings” that in the robust (15) decision

8In the two-period version of the model analyzed in appendix A we can prove that they are linear.
9This behavior is familiar from what we have seen in other robust decision problems that we have

studied: in the sense that variance (noise about β) gets translated into a mean distortion.
10Recall formula (7) for Friedman’s Bayesian decision rule and notice that

∂

∂µ

(
µκ

µ2 + σ2

)
=

κ(σ2 − µ2)

(µ2 + σ2)2
,

which says that depending on the sign of σ2−µ2, the absolute value of the response coefficient may increase
or decrease with an increase in µ. Notice that we have set µ = σ in our numerical, which makes this effect
vanish. When σ2 = 0, an increase in µ causes the absolute value of the slope to decrease – the policy maker
does less because the policy instrument is more effective.
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rules displayed in the top panel of figure 1 to disappear in the (16) decision rules displayed

in figure 4.

Remark 4.2. In applying the C
2 operator in recursion (16), we have imposed a fixed

entropy constraint period-by-period. That specification caused the “wings” associated with

recursion (15) to vanish. If instead we had imposed a single intertemporal constraint on

discounted entropy at time 0 and solved that entropy constraint for an associated Lagrange

multiplier θ, it would give rise to the fixed-θ decision rule associated with the T2 recursion

(15) having the “wings” discussed above. Our discussion of how entropy varies with x in

the fixed θ rule would then pertain to how a fixed discounted entropy would be allocated

across time and states conditioned on an initial realized state X0.

4.5 Another representation of worst-case densities

In subsection 4.1.2, we reported formula (10), which expresses a worst case m as a function

of the control u and the state x. This worst-case density emerges from a recursive version

of the max-min problem that fist maximizes over u, then minimizes over m.11,12 In this

section, we briefly describe some analytical dividends that accrue when it is possible to

form an alternative representation of a (sequence of) worst-case densities, an outcome that

requires that it be legitimate to replace max-min with min-max. We presume that current

and past values of {(Wt, βt−1)} along with an initial condition for X0 are observed when

the date t control Ut is decided.

The issue under consideration is whether it is possible to construct a Bayesian inter-

pretation of a robust decision rule. This requires a different representation of a worst-case

distribution than provided by formula (10), one that takes the form of a sequence of prob-

ability densities for βt, t ≥ 0. When enough additional assumptions are satisfied, this is

possible. Then it can be shown easily that the robust decision rule is an optimal deci-

sion rule for an ordinary Bayesian who takes this sequence of distributions as given.13 In

the applications described here, this sequence of worst-case distributions of βt has some

interesting features. In particular, although the baseline model asserts that the sequence

11The minimization is implicit when we use an indirect utility function expressed by applying a T2 or
C2 operator, as we do in recursions (15) and (16),respectively.

12The type of analysis sketched in this section is presented in more detail in the context of infinite horizon
linear-quadratic models in Hansen and Sargent (2008, ch. 7).

13Establishing that a robust decision rule can be interpreted as an optimal decision rule for a Bayesian
with some prior distribution is needed to establish that a robust decision rule is “admissible” in the sense
of Bayesian statistical decision theory.
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βt, t ≥ 0 is iid, they are in general not iid under a worst-case model. Instead the worst-case

distribution for βt+1 that depends on current and past information.

4.5.1 Replacing max-min with min-max

A key first step in constructing such a worst-case model that supports such a Bayesian inter-

pretation of a robust rule involves verifying that exchanging the order of the minimization

and maximization in problem (8) or (13) leaves the associated value function unaltered.

If this is true, a Bellman-Isaacs condition for the associated zero-sum, two-player game is

said to be satisfied. That makes it possible to construct a representation of the worst-case

m of the form

m∗(β, x) = m̌[β, ǔ(x), x], (17)

where ǔ(x) is the robust control law. Given m∗, the robust decision rule ǔ solves a dynamic

recursive version of Friedman’s Bayesian problem, except thatm∗(βt, x)φ(βt;µ, σ
2) replaces

the baseline model φ(βt;µ, σ
2).

4.5.2 Application of “Big K, little k”

For our purpose here, it is troublesome that the state variable Xt, which appears as x in

(17) is endogenous in the sense that its future values are partly under the control of the

maximizing decision maker. This can be avoided by using a version of the macroeconomist’s

“Big K, little k” trick to represent the worst-case density in a way that puts it beyond

influence of the maximizing player.14 The idea is to start by recalling that ordinary dynamic

programming is a recursive method for solving a date zero problem originally cast in terms

of choices of sequences. When the Bellman-Isaacs condition is satisfied, we can use an

analogous mapping between date 0 problems cast in terms of sequences and problems

expressed recursively a la dynamic programming applies to two-person zero sum games like

the ones we are studying. That reasoning lets us also exchange orders between maximization

minimization at date 0 for a robust control problem cast in terms of choices of sequences.

We accomplish by inventing a new exogenous state variable process {Zt} whose evolution

is the same as that of Xt+1 “along an equilibrium path”, meaning “when the robust control

law is imposed”. But now {Zt} is beyond the control of the maximizing agent. This lets

us construct a sequence of densities {m∗(β, Zt)} relative to the normal baseline for βt+1.

The associated sequence of densities ex post justifies the robust decision rule as solving a

14This approach is used in Hansen and Sargent (2008, chs. 7,10,12,13).
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version of Friedman’ Bayesian problem. Here ex post means “after the outer minimizing

agent has chosen its sequence {m∗} of worst-case probability distortions.”
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Figure 4: Top panel reports the known-β decision rule, Friedman’s Bayesian decision rule,

and robust decision rules that attain maxu−1
2
x2 + [C2]

(
Ṽ (x, u)

)
for different entropies

η; bottom two panels report worst-case means and variances of βt as functions of x. For

bigger η, decision rules are flatter, worst-case means lower, and worst-case variances larger.
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Figure 5: Lagrange multiplier θ as function of |x| associated with entropy constaint for

decision rules that solve maxu−1
2
x2 + [C2]

(
Ṽ (x, u)

)
for two values of entropy.

5 Uncertainty about the shock

In this section, we again apply a min-max approach in the spirit of Wald (1939), but now

we use it to describe a decision maker’s way of representing and coping with his doubts

about the specification of the shock distribution. The decision maker regards (1) as his

baseline model. But because he does not trust the implied conditional distribution for

Xt+1, the decision maker now takes the iid normal model for W only as a benchmark

model that is surrounded by other distributions that he suspects might prevail. Perturbed

shock distributions can represent many alternative conditional distributions for Xt+1. For

example, a shift in the mean of W that is a function of Ut and Xt effectively changes the

statistical model (1) in ways that can include nonlinearities and history dependencies.

5.1 Multiplier preferences

We suppose that the decision maker expresses his distrust of the model (1) by behaving as if

he has what Hansen and Sargent (2001) call multiplier preferences. Let mt+1 =
Mt+1

Mt
be the

ratio of another conditional probability density for Wt+1 to the density Wt+1 ∼ N (0, 1) in

the benchmark model (1). (We apologize for recycling the m(·) notation previously used in
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section 4 but trust that it won’t cause confusion.) Let entt ≡ E
[
Mt+1

Mt
(logMt+1 − logMt) |Ft

]

be the entropy of the distorted distribution relative to the benchmark distribution associ-

ated with model (1).

Let θ be a penalty parameter obeying θ > α2. Define

[T1V ](x, u) = min
m≥0,

∫
m(w)ψ(w)dw=1

∫
m(w)(κx+ βu+ αw) + θm(w) logm(w)ψ(w)dw

= −θ log
∫

exp

[
−1

θ
V (κx+ βu+ αw)

]
ψ(w)dw. (18)

where m depends explicitly on w and implicitly (x, u) and ψ is the standard normal density.

Think of m(Wt+1) as a candidate for Mt+1

Mt
. The minimizing distortion m∗ that attains the

right side of the first line of (18) exponentially tilts the Wt+1 distribution towards lower

continuation values by multiplying the normal density for Wt+1 by the likelihood ratio

m∗(w) =
exp

[
−1
θ
V (κx+ βu+ αw)

]

E
(
exp

[
−1
θ
V (κx+ βu+ αWt+1)

]
|x, u

) . (19)

A Bellman equation for constructing a robust decision rule for U is

V (x) = max
u

−1

2
x2 + exp(−δ)T1[V ](x, u). (20)

To solve this Bellman equation, guess a quadratic value function

V (x) = −1

2
ν2x

2 − 1

2
ν0.

Then

[T1V ](x, u) =− θ log

∫
exp

[ ν2
2θ

(κx+ βu+ αw)2
]
ψ(w)dw − 1

2
ν0

=− 1

2
ν2(κx+ βu)2 − 1

2
ν0

− θ log

∫
exp

[αν2
θ

(κx+ βu)w +
ν2

2θ
(αw)2

]
ψ(w)dw.

We can compute the worst-case m∗-distorted distribution for Wt+1 by completing the

17



square. The worst-case distribution is normal with precision:

1− ν2α
2

θ
=
θ − ν2α

2

θ

where we assume that θ > ν2α
2. Notice that the altered precision does not depend on u.

The mean of the worst-case distribution for Wt+1 is

(
θ

θ − ν2α2

)(αν2
θ

)
(κx+ βu) =

(
αν2

θ − ν2α2

)
(κx+ βu),

which depends on (x, u) via (κx+ βu). A simple calculation shows that

[T1V ](x, u) =− 1

2
ν2(κx+ βu)2 − 1

2
ν0

− 1

2

[
α2(ν2)

2

θ − ν2α2

]
(κx+ βu)2

+
θ

2

[
log
(
θ − ν2α

2
)
− log θ

]

=− 1

2

(
θν2

θ − ν2α2

)
(κx+ βu)2

+
θ

2

[
log
(
θ − ν2α

2
)
− log θ

]
− 1

2
ν0.

The objective function on the right side of (20) is quadratic in (κx + βu) and thus the

maximizing solution for u is

u = −κ
β
x, (21)

which is same control law (3) that prevails with β known and no model uncertainty. Notice

also that since the log function is concave

log
(
θ − ν2α

2
)
− log θ ≤ −ν2α

2

θ
,

and thus
θ

2

[
log
(
θ − ν2α

2
)
− log θ

]
≤ −1

2
ν2α

2.

Under control law (21), the implied worst-case mean of Wt+1 is zero, but its variance is

larger than its value 1 under the benchmark model (1). The value function satisfies:

−1

2
ν2x

2 − 1

2
ν0 = −1

2
x2 +

exp(−δ)θ
2

[
log
(
θ − ν2α

2
)
− log θ

]
− exp(−δ)

2
ν0.
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Thus, ν2 = 1 and

ν0 = −
(

exp(−δ)θ
[1− exp(−δ)]

)[
log
(
θ − ν2α

2
)
− log θ

]
≥
(

exp(−δ)
[1− exp(−δ)]

)
ν2α

2

for α2 < θ < ∞. The expression on the right side is the constant term in the value

function without a concern for robustness. Relative to the baseline model, the worst-case

model decreases the shock precision but does nothing to the mean. The contribution of

discounted entropy to ν0 is

−
(

exp(−δ)θ
1− exp(−δ)

)[
log
(
θ − α2

)
− log θ

]
−
[
exp(−δ)θα2

1− exp(−δ)

]
.

The remainder term [
exp(−δ)θα2

1− exp(−δ)

]

is the constant term for the discounted objective under the worst-case variance specification.

5.2 Explanation for no increase in caution

The outcome of the preceding analysis is that the section 2 decision rule (3) is robust to

concerns about misspecifications of the conditional distribution of Wt+1 as represented by

the T
1 operator. An important ingredient of this outcome is that the worst-case model

does not distort the conditional mean of W . Consider the extremization problem

max
u

min
v

−1

2
x2 − exp(−δ)ν2

2
(κx+ βu+ αv)2 − exp(−δ)ν0

2
+ exp(−δ)θv

2

2
, (22)

where v is a mean shift in the standard normal distribution for w. The minimizing choice

of v potentially feeds back on both u and x. Why is the minimizing mean shift zero? When

θ > α2, the minimizing v solves solves the first-order condition:

−α(κx+ βu+ αv) + θv = 0, (23)

while simultaneously u satisfies the first-order condition

−β(κx+ βu+ αv) = 0. (24)
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In writing the first-order conditions for u, we can legitimately ignore terms in dv
du

because v

itself satisfies first-order condition (23). Thus, under a policy that satisfies (24), a nonzero

choice of v would leave the following key term in the objective on the right side of (22)

unaffected

− exp(−δ)ν2
2
(κx+ βu+ αv)2 = 0,

but it would add an entropy penalty, so there is no gain to setting v to anything other than

zero.

In summary, our “type III” specification doubts about the conditional distribution of

Wt+1 do not promote caution in the sense of ‘doing less’ with u in response to x. The

minimizing agent gains nothing by distorting the mean of the conditional distribution of

the mean ofWt+1 and therefore chooses to distort the variance, which harms the maximizing

agent but does not affect his decision rule. In section 6, we alter the entropy penalty to

induce the minimizing agent to alter the worst-case mean of W in a way that makes the u-

setting agent be cautious. But first, it is helpful to study in greater depth how the decision

maker in the present setting best sets u to respond to possibly different mean distortions

v that might have been chosen by the minimizing agent, but that were not.

5.3 Prologenomenon to structured uncertainty

To prepare the way for the analysis in section 6, we study best responses of u to “off

equilibrium” choices of v in the the two-player zero-sum game (22). Thus, consider a v

that instead of satisfying the v first-order necessary condition (23) takes the arbitrary form:

v = ξxx+ ξuu+ ξ0, (25)

where the coefficients ξx, ξu, ξ0 need not equal those implied by (23). Such an arbitrary

choice of v implies the altered state evolution equation:

Xt+1 = αξ0 + (κ+ αξx)Xt + (β + αξu)Ut + αW̃t+1, (26)

where W̃t is normally distributed with mean zero under an altered distribution for Wt+1

having mean v instead of its value of 0 under the baseline model. It is possible for the

u-setting decision maker to offset the effects of both v and x on x∗ by setting u to satisfy

κx+ βu+ αv = 0, (27)
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provided that ξu 6= −β

α
. This response by the u-setting agent means that the v setting

agent achieves nothing by using the arbitrary choice (25), but that choice incurs a time t

contribution to an entropy penalty of the form

exp(−δ) 1
2θ

(ξxx+ ξuu+ ξ0)
2, (28)

harming the v-setting agent. This deters the minimizing agent from setting (25).15 The

term 1
θ
(ξxx + ξuu + ξ0)

2 contributing to the entropy penalty for the arbitrary choice of

v distortion (25) persuades the v-setting minimizing player to prefer not to choose that

arbitrary v and instead to set v = 0 in the zero-sum two-player game (22).

But what if the decision maker wants to perform a sensitivity analysis of perturbations

to his baseline model (1) that he insists include particular alternative models having the

form (26). He wants some way to tell the minimizing agent this, an ability that he lacks in

the framework of the present section. For that reason, in section 6, we consider situations

in which the u-setting decision maker wants his decision rule to be robust to perturbations

of the baseline model (1) that among others include ones that can be represented as mean

distortions having the form of (25). We achieve that goal by adjusting the entropy penalty

with a term involving 1
θ
(ξxx+ ξuu+ ξ0)

2.

6 Structured Uncertainty

In this section, we induce Friedman-like caution by making it cheaper for a minimizing

player to choose a conditional mean v ofWt+1 of the arbitrary form (25). Like Petersen et al.

(2000), we do this by deducting the discounted relative entropy of the model perturbation

v = ξxx + ξuu + ξ0 from the right side of the entropy constraint. We can then convert θ

into a Lagrange multiplier by setting it to satisfy the adjusted entropy constraint at some

initial state.

Although this adjustment to the entropy constraint makes it feasible for the minimizing

player to set the worst-case mean v according to (25), the minimizing player will usually

make some other choice. But making the choice (25) feasible ends up altering the robust

15Briefly consider the case ξu = − β
α
which implies that

κx+ βu+ αv = (κ+ αξx)x,

which means that now u shows up only in the penalty term (28). The best response for the u-setting player
is to set u to be arbitrarily large, making (25) a very unattractive choice for the v-setting player.

21



decision rule in a way that produces caution.

We now assume that the decision maker wants to explore, among other things, the

consequences of parameter changes that reside within a restricted class with the form:

(ξxx+ ξuu+ ξ0)
2 ≤

[
1 x u

]
H



1

x

u


 . (29)

Parameters that satisfy this restriction can be time varying in ways about which the decision

maker is unsure. To accommodate this type of specification concern, we adjust the entropy

penalty by using a new operator S1 defined as

[S1V ](x, u, θ) = [T1](x, u, θ)− θ

2

[
1 x u

]
H



1

x

u




where H is a positive semidefinite matrix and where we now denote the explicitly the

dependence on θ. To find a robust decision rule we now solve the Bellman equation

V (x, θ) = max
u

−1

2
x2 + exp(−δ)[S1V ](x, u, θ). (30)

We now guess a value function of the form:

V (x, θ) = −ν2(θ)
2

x2 − ν1(θ)x−
ν0(θ)

2

The first-order condition for u implies that

− exp(−δ)
[

βθν2

(θ − ν2α2)

]
(κx+ βu)− exp(−δ)θ

[
0 0 1

]
H



1

x

u


 = 0.

which implies a robust decision rule

u = F (x, θ) = −
[
ν2(θ)βκ+ [θ − ν2(θ)α

2] h32
ν2(θ)β2 + [θ − ν2(θ)α2] h33

]
x−

[
ν1(θ)β + [θ − ν2(θ)α

2] h31
ν2(θ)β2 + (θ − ν2(θ)α2)h33

]
, (31)
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where hij is entry (i, j) of the matrix H . The value function satisfies

V (x, θ) = −1

2
x2 + exp(−δ)[T1V ][x, F (x, θ), θ]− θ

2

[
1 x F (x, θ)

]
H




1

x

F (X, θ)


 .

6.1 Robustness expressed by value function bounds

To describe the sense in which decision rule (31) is robust, it is useful to construct two

value function bounds.

6.1.1 Two preliminary bounds

Given a decision rule u = F (x) and a positive probability distortion m(w|x, u) with∫
m(w|x, u)ψ(w)dw = 1, we construct fixed points of two recursions. The fixed point

[U1(m,F )](x) of a first recursion

[U1(m,F )](x) = −1

2
x2 + exp(−δ)

∫
m(w|x, F (x))U1[m,F ][κx+ βF (x) + αw]ψ(w)dw

equals discounted expected utility for a given decision rule F and under a given probability

distortion m. The fixed point [U2(m,F )](x) of a second recursion

[U2(m,F )](x) =

∫
m[w|x, F (x)] logm[w|x, F (x)]ψ(w)dw − 1

2

[
1 x u

]
H



1

x

u




+ exp(−δ)
∫
m[w|x, F (x)]U2[m,F ][κx+ βF (x) + αw]ψ(w)dw, (32)

equals discounted expected relative entropy net of the adjustment for concern about the

particular misspecifications m of the type (29). The probability distortion m implies an

altered state evolution: given a current state x and a control u, the density for Xt+1 = x∗

is
1

α
m

[
x∗ − κx− βu

α

]
ψ

[
x∗ − κx+ βu

α

]
.
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Thus, m alters how the control u influences next period’s state. As a particular example,

the density for Xt+1 could be normal with mean

(κ + αξx)x+ (β + αξu)u

and variance α2. Whenever inequality (29) is satisfied

U
2(m,F )](x) ≤ 0 (33)

for all x.

Of course, in general we allow for a much richer collection of m’s than the one in this

example. Inequality (29) holds for each (x, u), but there will other m’s that are statistically

close to these deviations for which inequality (33) is also satisfied. Inequality (33) makes

comparisons in terms of conditional expectations of discounted sums or relative entropies,

which are weaker than the term-by-term comparisons featured in inequality (29):

∫
m[w|x, F (x)] logm[w|x, F (x)]ψ(w)dw − 1

2

[
1 x u

]
H



1

x

u


 ≤ 0.

6.1.2 Value function bound

We now study the max-min problem used to construct V . Using the operators U1 and U2,

[U1(m,F θ)](x) ≥ V (x, θ)

for all m and x such that

[U2(m,F θ)](x) ≤ 0

where F θ(x) = F (x, θ) is a robust control law associated with θ. To make the lower bound

V (x, θ) as large as possible, we solve

V̄ (x) = max
θ
V (x, θ).

For a given initial condition x̄, we let F̄ denote the robust control law associated with the

maximizing θ. Then

[U1(m, F̄ )](x) ≥ V̄ (x)
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for all m and x such that

[U2(m, F̄ )](x) ≤ 0.

By the Lagrange multiplier theorem

[U1(m, F̄ )] (x̄) = V̄ (x̄) ,

which indicates that the bound is sharp at x = x̄. In this way, we have produced a

robustness bound for the decision rule F̄ .16

Our max-min construction means that decision rules other than F̄ cannot provide supe-

rior performance in terms of the robustness inequalities. For instance, consider some other

control law F̂ . Solve the fixed point problem:

V̂ (x, θ) = −1

2
x2 + exp(−δ)[S1V̂ ]

[
x, F̂ (x), θ

]
.

Let θ̂ solve

max
θ
V̂ (x̄, θ) .

Then by the Lagrange multiplier theorem, V̂
(
x̄, θ̂
)
is the greatest lower bound on

[
U1
(
m, F̂

)]
(x̄)

over m’s for which [
U
2
(
m, F̂

)]
(x̄) ≤ 0.

Since

V̂
(
x̄, θ̂
)
≤ V

(
x̄, θ̂
)
≤ V̄ (x̄) ,

the worst-case utility bound for F̂ is lower than that for the robust control law F̄ .

In constructing U2, we considered only time invariant choices of m. It is straightforward

16In this robustness analysis, we have chosen to feature one initial condition X0 = x̄. Alternatively, we
could use an average over an initial state or include an additional date zero term in the maximization over
θ. For instance we could compute

min
q≥0,

∫
q=1

∫
q((x)V (x, θ) + θ

∫
[log q(x)− log q̄(x)] dx

for a give baseline density q̄ and use
∫
[U1(m,F θ)](x)q(x)dx in place [U1(m,F θ)](x) and

∫
[U2(m,F θ)](x)q(x) +

∫
[log q(x) − log q̄(x)] dx

in place of [U2(m,F θ)](x) in the robustness inequalities.

25



to show that time varying parameter changes are also allowed provided that

∫
mt[w|x, F (x)] logmt[w|x, u]ψ(w)dw − 1

2

[
1 x u

]
H



1

x

u


 ≤ 0

for all nonnegative integers t and all pairs (x, u).

6.2 A caveat

By using a min-max theorem to verify that it is legitimate to exchange orders of maximiza-

tion and minimization, it is sometimes possible to provide an ex post Bayesian interpretation

of a robust decision rule.17 In our analysis of the “structured uncertainty” contained in this

section of our paper, we have not been able to proceed in this way: we have not shown that

a robust decision rule is a best response to one of the distorted models under consideration.

While a min-max theorem does apply to our analysis for a fixed θ, it does so in a way that

is difficult to interpret because of the direct impact through the term

1

2

[
1 x u

]
H



1

x

u




of u on the allowable relative entropy.

6.3 Capturing doubts expressed through ξu 6= 0

Consider the special case ξx = ξ0 = 0 that in the spirit of Friedman expresses uncertainty

about the coefficient β on the control U in the law of motion (1). With these settings of

ξx, ξ0 in (25), we focus on

(ξu)
2 ≤ η

for some η. The robust decision rule that attains the right side of Bellman equation (30) is

F (x, θ) = −
[

ν2βκ

ν2β2 + (θ − ν2α2)η

]
x, (34)

17For example, see Hansen and Sargent (2008, ch. 7).
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which has the same form as the Friedman rule (7), except that here

(θ − ν2α
2)η

ν2

plays the role that σ2 played in rule (7).

By way of comparison, suppose that η = 0. Then decision rule (34) becomes

F (x) = −
(
κ

β

)
x

which is the original rule (3) that emerges from model (1) without model uncertainty and

β a known constant.

6.4 A Numerical Example

Consider the following numerical example:

Xt+1 = .8Xt + Ut + .6Wt+1,

which implies that the stationary distribution of Xt is a standard normal. Let h33 = .09

and the other the entries of the H matrix equal to zee

As suggested in our robustness analysis, we can impose a constraint on adjusted entropy

by computing θ to solve

max
θ
V (x; θ),

subject to the appropriate discounted intertemporal version of our adjusted relative en-

tropy constraint. Figure 6 shows an example of V (x, θ). The maximizing value of θ is

approximately 2.36 when the initial value x = 1. There is in fact very little dependence on

x as is shown in Figure 7. Figure 8 compares three decision rules. Figure 9 plots stationary

distributions under three decision rules under the baseline model (1).
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Figure 6: Value V (x, θ) as a function of θ.
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Figure 8: Three decision rules. The robust rule presumes that θ = 2.36.

−1 −0.5 0 0.5 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

st
at

io
na

ry
 d

en
si

ty

 

 
non−robust
robust
Friedman rule

Figure 9: Stationary distribution of x under the baseline model under three decision rules.

7 Concluding remarks

We hope that readers will accept our analysis in the spirit we intend, namely, as hypothetical

examples, like Friedman (1953), in which the sensitivities of policy recommendations to
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details of a model’s stochastic structure can be examined.18 Friedman’s finding that caution

due to model specification doubts translates into “doing less” as measured by a response

coefficient in a decision rule linking an action u to a state x depends on the structure

of the baseline model that he assumed. Even within single-agent decision problems like

Friedman’s but ones with different structures than Friedman’s, we know other examples in

which “being cautious” translates into “doing more now and picking up the pieces later.”

(For example, see Sargent (1999), Tetlow and von zur Muehlen (2001), Cogley et al. (2008),

and Barlevy (2009)). So the “do-less” flavor of some of our results should be taken with

grains of salt.

In more modern macreconomic models than Friedman’s, it is essential that there are

multiple agents. Refining rational expectations by imputing specification doubts to agents

inside or outside a model opens interesting channels of caution beyond those appearing

in the present paper. A model builder faces choices about to whom to impute model

specification doubts (e.g., the model builder himself or people inside the model) and also

what those doubts are about. Early work in multi-agent settings appears in Hansen and

Sargent (2012, 2008, ch. 15) and Karantounias (2013).

18For example, the “no-increase in caution” finding of section 5 depends on our having set up the objective
function to make it a “targetting problem”.
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A Analysis of a two-period example (by David Evans

and Paul Ho)

This appendix analyses a two-period example designed to shed light on the shape of the

robust policy functions presented in the infinite horizon section 4 model of a Bayesian

decision maker who does not trust the prior distribution (5).

We take as given a continuation value function V (xt+1) = −1
2
x2. With α = 0, Ṽ in

section 4 becomes

Ṽ (x, β, u) = −1

2
(κx+ βu)2.

The T 2 operator from section 4 becomes

[T 2Ṽ ](x, u) = −θ log
[
E exp

(
−exp(−δ)

θ
Ṽ (x, β, u)|x, u

)]

= −θ log
{

1√
2πσ

∫ ∞

−∞

exp

(
e−δ

2θ
(κx+ βu)2

)
exp

(
−(β − µ)2

2σ2

)
dβ

}
. (35)

The integrand can be combined into

exp

[
−1

2

(
β2

(
1

σ2
− u2e−δ

θ

)
− 2β

(
uκxe−δ

θ
+

µ

σ2

)
+
µ2

σ2
− κ2x2e−δ

θ

)]
.

This integral exists only if
1

σ2
− u2e−δ

θ
> 0,

which immediately implies an upper bound on the control u:

|u| ≤
√

θ

σ2 exp−δ
.

After several lines of algebra (checked with python code), the integrand in (35) can be

written as the following product:

1√
2πσ

exp

(
−1

2

[
µ2

σ2
− κx2e−δ

θ
− (θµ+ uκxe−δσ2)2

σ2θ(θ − u2e−δσ2)

])
exp


−

(
β − θµ+uκxe−δσ2

θ−u2e−δσ2

)2

2 σ2θ
θ−u2e−δσ2
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The term on the left is independent of β and so can be pulled outside the integral, while

the infinite integral of the term on the right is easily computed to be
√
2πσ

√
θ

θ−u2e−δσ2
.

Plugging this into equation (35), we obtain

[T 2Ṽ ](x, u) =
1

2

[
µ2θ

σ2
− κx2e−δ − (θµ+ uκxe−δσ2)2

σ2(θ − u2e−δσ2)
− log

(
θ

θ − u2e−δσ2

)]
. (36)

We have verified this equation numerically using python code.

Remark A.1. The worst-case distribution of βt is

N
(
θµ+ uκxe−δσ2

θ − u2e−δσ2
,

σ2θ

θ − u2e−δσ2

)

The first-order condition for the maximization of the right side of equation (36) with

respect to u is

∂[T 2Ṽ ]

∂u
=

1

2

[
−2(θµ+ uκxe−δσ2)κxe−δσ2

σ2(θ − u2e−δσ2)
− 2(θµ+ uκxe−δσ2)2ue−δσ2

σ2(θ − u2e−δσ2)2
− θ

θ − u2e−δσ2

θ

2θue−δσ2

(θ − u2e−δσ2)2

=
−1

(θ − u2e−δσ2)2
[
(θµ+ uκxe−δσ2)κxe−δ(θ − u2e−δσ2)

+ (θµ+ uκxe−δσ2)2ue−δ + θue−δσ2(θ − u2e−δσ2)
]

(37)

Thus, the optimal policy |u| ≤
√

θ
σ2e−δ solves the following cubic equation

(θµ+uκxe−δσ2)κxe−δ(θ−u2e−δσ2)+(θµ+uκxe−δσ2)2ue−δ+θue−δσ2(θ−u2e−δσ2) = 0 (38)

Note that as x→ ±∞, equation (38) will be dominated by the term

uκ2x2e−δσ2(θ − u2e−δσ2) + (κe−δσ2)2u3e−δx2

= ux2
[
κ2e−δσ2(θ − u2e−δσ2) + (κe−δσ2)2u2e−δ

]
.

The term in the brackets is positive and bounded away from zero, implying that u → 0 as

x→ ±∞.

Remark A.2. Because it is always possible to set u = 0 and thereby remove the conse-

quences of risk and uncertainty about β, there is no lower bound on θ ∈ (0,∞).
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B Computations (by David Evans)

We approximating the value function V (x) in the Bellman equation (15) over an interval

[−x, x] with cubic splines. For realizations of x outside [−x, x] a quadratic function that best

fit the value function at the interpolation points was assumed. To apply the three mappings

underlying (15), we used Gauss-Hermite quadrature to integrate over the Gaussian random

variables. The program iterated over the bellman equations until a desired tolerance was

achieved. Robustness checks were performed over the number of integration nodes for the

quadrature operation.
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