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Abstract

A planner is compelled to raise a prescribed present value of revenues by levying a

distorting tax on the output of a representative firm that faces adjustment costs and

resides within a rational expectations equilibrium. We describe recursive representa-

tions both for a Ramsey plan and for a set of credible plans. Continuations of Ramsey

plans are not Ramsey plans. Continuations of credible plans are credible plans. As

they are sometimes constructed, continuations of optimal outcome target paths are not

optimal outcome target paths.
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1 Introduction

For the purpose of making some general points about history-dependent public policies and

their representations, we study a model in which a benevolent tax authority is forced to raise

a prescribed present value of revenues by imposing a distorting flat rate tax on the output

of a competitive representative firm that faces costs of adjusting its output. That the firm

lives within a competitive equilibrium imposes restrictions on the tax authority.1

We compare two timing protocols. In the first, an infinitely lived benevolent tax authority

solves a Ramsey problem. This means that the authority chooses a sequence of tax rates once-

and-for-all at time 0. In the second timing protocol, there is a sequence of tax authorities,

each choosing only a time t tax rate. Under both timing protocols, optimal tax policies are

history-dependent. But the history dependence reflects different economic forces across the

two timing protocols. In the first, history dependence expresses the time-inconsistency of

the Ramsey plan. In the second, it reflects the unfolding of constraints that assure that a

time t government wants to confirm the representative firm’s expectations about government

actions. We discuss recursive representations of history-dependent tax policies under both

timing protocols.

The first timing protocol models a policy maker who can be said to ‘commit’. To obtain

a recursive representation of a Ramsey policy, we compare two methods. We first apply a

method proposed by Kydland and Prescott (1980) that uses a promised marginal utility to

augment authentic state variables. We then apply a closely related method of Miller and

Salmon (1985), Pearlman et al. (1986), and Backus and Driffill (1986). This method uses

a ‘co-state on a co-state’ variable to augment the authentic state variables. After applying

both methods, we describe links between them and confirm that they recover the same

Ramsey plan.

Turning to the second timing protocol in which the tax rate is chosen sequentially, we

use the notion of a sustainable plan proposed by Chari and Kehoe (1990), also referred to as

a credible public policy by Stokey (1989). A key idea here is that history-dependent policies

can be arranged so that, when regarded as a representative firm’s forecasting functions,

they confront policy makers with incentives to confirm them. We follow Chang (1998) in

expressing such history-dependent plans recursively. Credibility considerations contribute an

additional auxiliary state variable (above and beyond the auxiliary state variable appearing

in the first timing protocol). This new state variable is a promised value to the planner. It

expresses how decisions must unfold to give the government the incentive to confirm private

sector expectations when the government chooses sequentially.

1We could also call a competitive equilibrium a rational expectations equilibrium.
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We write this paper partly because we occasionally hear confusions about the conse-

quences of our two timing protocols and about recursive representations of government poli-

cies under them. It is erroneous to regard a recursive representation of the Ramsey plan

as in any way ‘solving’ a time-inconsistency problem. On the contrary, the evolution of the

auxiliary state variable that augments the authentic ones under our first timing protocol

ought to be viewed as expressing the time-inconsistency of a Ramsey plan. Despite that, in

literatures about practical monetary policy one sometimes hears interpretations that ‘sell’

Ramsey plans in settings where our sequential timing protocol more accurately character-

izes decision making. One of our purposes is to issue a warning to beware of discussions of

credibility if you don’t see recursive representations of policies with the complete list of state

variables appearing in the Chang (1998)-like analysis of section 9 below.

2 Competitive equilibrium

A representative competitive firm sells output qt for price pt, where market-wide output is

Qt. The market as a whole faces a downward sloping inverse demand function

pt = A0 − A1Qt, A0 > 0, A1 > 0. (1)

The representative firm has given initial condition q0, endures quadratic adjustment costs
d
2
(qt+1 − qt)

2, and pays a flat rate tax τt per unit of output. The firm faces what it regards

as exogenous sequences {pt, τt}
∞
t=0 and chooses {qt+1}

∞
t=0 to maximize

∞
∑

t=0

βt
{

ptqt −
d

2
(qt+1 − qt)

2 − τtqt

}

. (2)

Let ut = qt+1 − qt be the firm’s ‘control’ variable at time t. First-order conditions for the

firm’s problem are

ut =
β

d
pt+1 + βut+1 −

β

d
τt+1 (3)

for t ≥ 0.

Notation: For any scalar xt, let ~x = {xt}
∞
t=0.

To compute a competitive equilibrium, it is appropriate to take (3), eliminate pt in

favor of Qt by using (1), and then set qt = Qt, thereby making the representative firm
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representative.2 We arrive at

ut =
β

d
[A0 − A1Qt+1] + βut+1 −

β

d
τt+1. (4)

We also have

Qt+1 = Qt + ut. (5)

Equations (1), (4), and (5) summarize competitive equilibrium sequences for (~p, ~Q, ~u) as

functions of the path {τt+1}
∞
t=0 for the flat rate distorting tax τ .

Definition 2.1. Given a tax sequence {τt+1}
∞
t=0, a competitive equilibrium is a price sequence

{pt}
∞
t=0 and an output sequence {Qt}

∞
t=0 that satisfy (1), (4), and (5).

Definition 2.2. For any sequence ~x = {xt}
∞
t=0, ~x1 ≡ {xt}

∞
t=1 is called a continuation se-

quence or simply a continuation.

Remark 2.3. A competitive equilibrium consists of a first period value u0 = Q1 −Q0 and a

continuation competitive equilibrium with initial condition Q1. A continuation of a compet-

itive equilibrium is a competitive equilibrium.

Following the lead of Chang (1998), we shall make extensive use of the following property:

Remark 2.4. A continuation ~τ1 = {τt+1}
∞
t=1 of a tax policy ~τ influences u0 via (4) entirely

through its impact on u1. A continuation competitive equilibrium can be indexed by a u1 that

satisfies (4).

Definition 2.5. With some abuse of language, in the spirit of Kydland and Prescott (1980)

and Chang (1998), we shall use ut+1 to describe what we shall call a ‘promised marginal

value’ that a competitive equilibrium offers to a representative firm.

Remark 2.6. We could instead, perhaps with more accuracy, define a promised marginal

value as β(A0−A1Qt+1)−βτt+1 + ut+1

β
, since this is the object to which the firm’s first order

condition instructs it to equate to the marginal cost dut of ut = qt+1−qt.
3 But given (ut, Qt),

the representative firm knows (Qt+1, τt+1), so it is adequate to take ut+1 as the intermediate

variable that summarizes how ~τt+1 affects the firm’s choice of ut.

Definition 2.7. Define a history Qt = [Q0, . . . , Qt]. A history-dependent tax policy is a

sequence of functions {σt}
∞
t=0 with time t component σt mapping Qt into a choice of τt+1.

2It is important not to set qt = Qt prematurely. To make the firm a price taker, this equality should be
imposed after and not before solving the firm’s optimization problem.

3This choice would align better with how Chang (1998) chose to express his competitive equilibrium
recursively.
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Below we shall study history-dependent tax policies that either (a) solve a Ramsey plan,

or (b) are credible. We shall describe recursive representations of both types of history-

dependent policies.

3 Ramsey problem

The planner’s objective is cast in terms of consumer surplus net of the firm’s adjustment

costs. Consumer surplus is:

∫ Q

0

[A0 − A1x]dx = A0Q −
A1

2
Q2,

so the planner’s one-period return function is

A0Qt −
A1

2
Q2

t −
d

2
u2

t . (6)

At time 0, a Ramsey planner faces the intertemporal budget constraint

∞
∑

t=1

βtτtQt = G0. (7)

Note that (7) precludes taxation of initial output Q0.

Definition 3.1. The Ramsey problem is to choose a tax sequence ~τ and a competitive equi-

librium outcome ( ~Q, ~u) that maximize

∞
∑

t=0

βt

[

A0Qt −
A1

2
Q2

t −
d

2
u2

t

]

(8)

subject to (7).

Definition 3.2. Ramsey timing protocol.

1. At time 0, knowing (Q0, G0), the Ramsey planner chooses {τt+1}
∞
t=0.

2. Given
(

Q0, {τt+1}
∞
t=0

)

, a competitive equilibrium outcome {ut, Qt+1}
∞
t=0 emerges (see

definition 2.1).

Remark 3.3. In bringing out the timing protocol associated with a Ramsey plan, we run

head on to a set of issues analyzed by Bassetto (2005). This is because in definition 3.2

of the Ramsey timing protocol, we have not completely described conceivable actions by the
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government and firms as time unfolds. For example, we are silent about how the govern-

ment would respond if firms, for some unspecified reason, were to choose to deviate from

the competitive equilibrium associated with the Ramsey plan, thereby possibly violating bud-

get balance (7). Our definition of a Ramsey plan says nothing about how the government

would respond. This is an example of the issues raised by Bassetto (2005), who identifies a

class of government policy problems whose proper formulation requires supplying a complete

and coherent description of all actors’ behavior across all possible histories. Implicitly, we

are assuming that a more complete description of a government strategy than we have in-

cluded could be specified that (a) agrees with ours along the Ramsey outcome, and (b) suffices

uniquely to implement the Ramsey plan by deterring firms from taking actions that deviate

from the Ramsey outcome path.

3.1 Computing a Ramsey plan

The planner chooses {ut}
∞
t=0, {τt}

∞
t=1 to maximize (8) subject to (4), (5), and (7). To formu-

late this problem as a Lagrangian, attach a Lagrange multiplier µ to the budget constraint

(7). Then the planner chooses {ut}
∞
t=0, {τt}

∞
t=1 to maximize and the Lagrange multiplier µ

to minimize

∞
∑

t=0

βt

[

A0Qt −
A1

2
Q2

t −
d

2
u2

t

]

+ µ

[

∞
∑

t=0

βtτtQt − G0 − τ0Q0

]

(9)

subject to (4) and (5).

4 Implementability multiplier approach

The Ramsey problem is a special case of the linear quadratic dynamic Stackelberg problem

analyzed in Ljungqvist and Sargent (2004, ch. 18). The idea is to construct a recursive

representation of a Ramsey plan by taking as state variables Lagrange multipliers on im-

plementability constraints that require the Ramsey planner to choose among competitive

equilibrium allocations. The motion through time of these Lagrange multipliers become

components of a recursive representation of a history-dependent plan for taxes. For us, the

key implementability conditions are (4) for t ≥ 0.

Holding fixed µ and G0, the Lagrangian (9) for the planning problem can be abbreviated

as

max
{ut},{τt+1}

∞
∑

t=0

βt

[

A0Qt −
A1

2
Q2

t −
d

2
u2

t + µτtQt

]
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Define

yt =

(

zt

ut

)

=













1

Qt

τt

ut













,

where zt =







1

Qt

τt






are genuine state variables and ut is a jump variable. We include τt as a

state variable for bookkeeping purposes: it helps to map the problem into a linear regulator

problem with no cross products between states and controls. However, it will be a redundant

state variable in the sense that the optimal tax τt+1 will not depend on τt. The government

chooses τt+1 at time t as a function of the time t state. Thus, we can rewrite the Ramsey

problem as

max
{yt},{τt+1}

−

∞
∑

t=0

βty′
tRyt (10)

subject to z0 given and the law of motion

(

zt+1

ut+1

)

= A

(

zt

ut

)

+ Bτt+1 (11)

where

R =













0 −A0

2
0 0

−A0

2

A1

2

−µ

2
0

0 −µ

2
0 0

0 0 0 d
2













, A =













1 0 0 0

0 1 0 1

0 0 0 0

−A0

d
A1

d
0 A1

d
+ 1

β













, and B =













0

0

1
1

d













Because this problem falls within the Ljungqvist and Sargent (2004, ch. 18) framework, we

can proceed as follows. Letting λt be a vector of Lagrangian multipliers on the transition

laws summarized in equation (11), it follows that λt = Pyt, where P solves the Riccati

equation

P = R + βA′PA − β2A′PB(βB′PB)−1B′PA

and τt+1 = −Fyt, where

F = β(βB′PB)−1B′PA.

This we can rewrite as
(

λzt

λut

)

=

(

P11 P12

P21 P22

)(

zt

ut

)

.
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Solve for ut to get

ut = −P−1

22 P21zt + P−1

22 λut,

where now the multiplier λut becomes our authentic state variable, one that measures the

costs of confirming the public’s prior expectations about time t government actions. Then

the complete state at time t becomes

(

zt

λut

)

. Thus,

yt =

(

zt

ut

)

=

(

I 0

−P−1

22 P21 P−1

22

)(

zt

λut

)

so

τt+1 = −F

(

I 0

−P−1

22 P21 P−1

22

)(

zt

λut

)

.

The evolution of the state is

(

zt+1

λut+1

)

=

(

I 0

P21 P22

)

(A − BF )

(

I 0

−P−1

22 P21 P−1

22

)(

zt

λut

)

with initial state

(

z0

λu0

)

=













1

Q0

τ0

0













. (12)

Equation (12) incorporates the Ljungqvist and Sargent (2004, ch. 18) finding that the Ram-

sey planner finds it optimal to set λu0 to zero.

5 Kydland-Prescott (1980) approach

Kydland and Prescott (1980) or Chang (1998) would formulate our Ramsey problem in terms

of the following Bellman equation:

v(Qt, τt, ut) = max
τt+1

{

A0Qt −
A1

2
Q2

t −
d

2
u2

t + µτtQt + βv(Qt+1, τt+1, ut+1)

}

where the maximization is subject to the constraints

Qt+1 = Qt + ut
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and

ut+1 = −
A0

d
+

A1

d
Qt +

(

A1

d
+

1

β

)

ut +
1

d
τt+1.

We now regard ut as a state. It plays the role of a promised marginal utility in the Kydland

and Prescott (1980) framework. Define the state vector to be

yt =













1

Qt

τt

ut













=

(

zt

ut

)

,

where zt =







1

Qt

τt






are authentic state variables and ut is a variable whose time 0 value is

a ‘jump’ variable but whose values for dates t ≥ 1 will become state variables that encode

history dependence in the Ramsey plan. Write a dynamic programming problem in the style

of Kydland and Prescott (1980) as

v(yt) = max
τt+1

{−y′
tRyt + βv(yt+1)} , (13)

where the maximization is subject to the constraint

yt+1 = Ayt + Bτt+1,

and where

R =













0 −A0

2
0 0

−A0

2

A1

2

−µ

2
0

0 −µ

2
0 0

0 0 0 d
2













, A =













1 0 0 0

0 1 0 1

0 0 0 0

−A0

d
A1

d
0 A1

d
+ 1

β













, and B =













0

0

1
1

d













.

Functional equation (13) has solution

v(yt) = −y′
tPyt

where P solves the algebraic matrix Riccati equation

P = R + A′PA − A′PB(B′PB)−1B′PA
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and the optimal policy function is given by

τt+1 = −Fyt, (14)

where

F = β(βB′PB)−1B′PA = (B′PB)−1B′PA. (15)

Note that since as the formulas for A,B, and R are identical, it follows that F and P are

the same as in the Lagrangian multiplier approach of section 4. The optimal choice of u0

satisfies
∂v

∂u0

= 0.

If we partition P as

P =

(

P11 P12

P21 P22

)

,

then we have

0 =
∂

∂u0

(z′0P11z0 + z′0P12u0 + u′
0P21z0 + u′

0P22u0) = P ′
12z0 + P21u0 + 2P22u0,

which implies

u0 = −P−1

22 P21z0. (16)

Thus, the Ramsey plan is

τt+1 = −F

(

zt

ut

)

and

(

zt+1

ut+1

)

= (A − BF )

(

zt

ut

)

,

with initial state

(

z0

−P−1

22 P21z0

)

.

5.1 Comparison of the two approaches

We can compare the outcome from the Kydland-Prescott approach to the outcome of the

Lagrangian multiplier on the implementability constraint approach of section 4. Using the

formula
(

zt

ut

)

=

(

I 0

−P−1

22 P21 P−1

22

)(

zt

λut

)
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and applying it to the evolution of the state

(

zt+1

λut+1

)

=

(

I 0

P21 P22

)

(A − BF )

(

I 0

−P−1

22 P21 P−1

22

)(

zt

λut

)

,

we get
(

zt+1

ut+1

)

= (A − BF )

(

zt

ut

)

(17)

or

yt+1 = AF yt, (18)

where AF ≡ A − BF . Then using the initial state value λu,0 = 0, we obtain

(

z0

u0

)

=

(

z0

−P−1

22 P21z0

)

. (19)

This is identical to the initial state delivered by the Kydland-Prescott approach. Therefore,

as expected, the two approaches provide identical Ramsey plans.

6 Recursive representation

An outcome of the preceding results is that the Ramsey plan can be represented recursively

as the choice of an initial marginal utility (or rate of growth of output) according to a

function

u0 = υ(Q0|µ) (20)

that obeys (19) and the following updating equations for t ≥ 0:

τt+1 = τ(Qt, ut|µ) (21)

Qt+1 = Qt + ut (22)

ut+1 = u(Qt, ut|µ). (23)

We have conditioned the functions υ, τ , and u by µ to emphasize how the dependence of F

on G0 appears indirectly through the Lagrange multiplier µ. We’ll discuss how to compute

µ in section 7, but first want to consider the following numerical example.
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Figure 1: Ramsey plan and Ramsey outcome. From upper left to right, first panel: Qt; second
panel, τt, third panel ut = Qt+1 − Qt.

6.1 Example

We computed the Ramsey plan for the following parameter values: [A0, A1, d, β, Q0] =

[100, .05, .2, .95, 100]. Figure 1 reports the Ramsey plan for τ and the Ramsey outcome

for (Qt, ut) for t = 0, . . . , 20.4 The optimal decision rule is5

τt+1 = −248.0624 − 0.1242Qt − 0.3347ut. (24)

Notice how the Ramsey plan calls for a high tax at t = 1 followed by a perpetual stream

of lower taxes. Taxing heavily at first, less later sets up a time-inconsistency problem that

we’ll characterize formally after first discussing how to compute µ.

4The computations are executed in Matlab programs Evans Sargent Main.m and ComputeG.m.
ComputeG.m solves the Ramsey problem for a given µ and returns the associated tax revenues (see sec-
tion 7) and the matrices F and P . Evans Sargent Main.m is the main driving file and with ComputeG.m

computes the time series plotted in Figure 1.
5As promised, τt does not appear in the Ramsey planner’s decision rule for τt+1.
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7 Computing µ

Define the selector vectors eτ =
[

0 0 1 0
]′

and eQ =
[

0 1 0 0
]′

. Then express τt =

e′τyt and Qt = e′Qyt. Evidently, tax revenues Qtτt = y′
teQe′τyt = y′

tSyt where S ≡ eQe′τ . We

want to compute

T0 =
∞
∑

t=1

βtτtQt = τ1Q1 + βT1,

where T1 =
∑∞

t=2
βt−1Qtτt. The present values T0 and T1 are connected by

T0 = βy′
0A

′
F SAFy0 + βT1.

Guess a solution that takes the form Tt = y′
tΩyt then find an Ω that satisfies

Ω = βA′
FSAF + βA′

FΩAF . (25)

Equation (25) is a discrete Lyapunov equation that can be solved for Ω using the Matlab

program dlyap or doublej2.

The matrix F and therefore the matrix AF = A − BF depend on µ. To find a µ that

guarantees that

T0 = G0, (26)

we proceed as follows:

1. Guess an initial µ, compute a tentative Ramsey plan and the implied T0 = y′
0Ω(µ)y0.

2. If T0 > G0, lower µ; if T0 < µ, raise µ.

3. Continue iterating on step 3 until T0 = G0.

8 Time inconsistency

Recall that the Ramsey planner chooses {ut}
∞
t=0, {τt}

∞
t=1 to maximize

∞
∑

t=0

βt

[

A0Qt −
A1

2
Q2

t −
d

2
u2

t

]

subject to (4), (5), and (7). In this section, we note that a Ramsey plan is time-inconsistent,

which we express as follows:

Proposition 8.1. A continuation of a Ramsey plan is not a Ramsey plan.
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Let

w(Q0, u0|µ0) =

∞
∑

t=0

βt

[

A0Qt −
A1

2
Q2

t −
d

2
u2

t

]

, (27)

where {Qt, ut}
∞
t=0 are evaluated under the Ramsey plan whose recursive representation is

given by (21), (22), (23) and where µ0 is the value of the Lagrange multiplier that assures

budget balance, computed as described in section 7. Evidently, these continuation values

satisfy the recursion

w(Qt, ut|µ0) = A0Qt −
A1

2
Q2

t −
d

2
u2

t + βw(Qt+1, ut+1|µ0) (28)

for all t ≥ 0, where Qt+1 = Qt + ut. Under the timing protocol affiliated with the Ramsey

plan, the planner is committed to the outcome of iterations on (21), (22), (23). In particular,

when time t comes, he is committed to the value of ut implied by the Ramsey plan and

receives continuation value w(Qt, ut|µ0).

That the Ramsey plan is time-inconsistent can be seen by subjecting it to the following

‘revolutionary’ test. First, define continuation revenues Gt that the government raises along

the original Ramsey outcome by

Gt = β−t(G0 −

t
∑

s=1

βsτsQs), (29)

where {τt, Qt}
∞
t=0 is the original Ramsey outcome.6 Then at time t ≥ 1, take (Qt, Gt)

inherited from the original Ramsey plan as initial conditions, and invite a brand new Ramsey

planner to resolve to compute a new Ramsey plan, solving for a new ut, to be called ǔt, and

for a new µ, to be called µ̌t. The revised Lagrange multiplier µ̌t is chosen so that, under the

new Ramsey Plan, the government is able to raise enough continuation revenues Gt given

by (29). Would this new Ramsey plan be a continuation of the original plan? The answer is

no because along a Ramsey plan, for t ≥ 1, in general it is true that

w
(

Qt, υ(Qt|µ̌t)|µ̌t

)

> w(Qt, ut|µ0), (30)

which expresses a continuation Ramsey planner’s incentive to deviate from a time 0 Ramsey

plan by resetting ut according to (20) and adjusting the Lagrange multiplier on the continu-

ation appropriately to account for tax revenues already collected.7 Inequality (30) expresses

6The continuation revenues Gt are the time t present value of revenues that must be raised to satisfy the
original time 0 government intertemporal budget constraint, taking into account the revenues already raised
from s = 1, . . . , t under the original Ramsey plan.

7For example, let the Ramsey plan yield time 1 revenues Q1τ1. Then at time 1, a continuation Ramsey
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the time-inconsistency of a Ramsey plan.

To bring out the time inconsistency of the Ramsey plan, in figure 2 we compare the

time t values of τt+1 under the original Ramsey plan with the value τ̌t+1 associated with a

new Ramsey plan begun at time t with initial conditions (Qt, Gt) generated by following the

original Ramsey plan, where again Gt = β−t(G0 −
∑t

s=1
βsτsQs). Associated with the new

Ramsey plan at t is a value µ̌t of the Lagrange multiplier on the continuation government

budget constraint. In figure 3, we compare the time t outcome for ut under the original

Ramsey plan with the time t value of this new Ramsey problem starting from (Qt, Gt). To

compute ut under the new Ramsey plan, we use the following version of formula (16):

ǔt = −P−1

22 (µ̌t)P21(µ̌t)zt, (31)

for zt evaluated along the Ramsey outcome path, where we have included µ̌t to emphasize

the dependence of P on the Lagrange multiplier µ0.
8 To compute ut along the Ramsey path,

we just iterate the recursion (17) starting from the initial Q0 with u0 being given by formula

(16). Figure 2 plots the associated τ̌t+1 − τt+1. Figure 3, which plots ǔt − ut, indicates how

far the reinitiated value ǔt value departs from the time t outcome along the Ramsey plan.

Note that the restarted plan raises the time t + 1 tax and consequently lowers the time t

value of ut. Figure 4 plots the value of µ̌t associated with the Ramsey plan that restarts at

t together with the required continuation revenues Gt implied by the original Ramsey plan.

These figures help us understand the time inconsistency of the Ramsey Plan. One feature

to note is the large difference between τ̌t+1 and τt+1 in Figure 2. If the government is able to

reset to a new Ramsey Plan at time t, it chooses a significantly higher tax rate than if it were

required to maintain the original Ramsey Plan. The intuition here is that the government

is required to finance a given present value of expenditures with distorting taxes τ . The

quadratic adjustment costs prevent firms from reacting strongly to variations in the tax rate

for next period, which tilts a time t Ramsey planner toward using time t + 1 taxes. As was

noted before, this is evident in Figure 1, where the government taxes the next period heavily

and then falls back to a constant tax from then on. This can also been seen in Figure 4,

where the government pays off a significant portion of the debt using the first period tax rate.

The similarities between two graphs in Figure 4 reveals that there is a one-to-one mapping

between G and µ. The Ramsey Plan can then only be time consistent if Gt remains constant

over time, which will not be true in general.

planner would want to raise continuation revenues, expressed in units of time 1 goods, of G̃1 ≡ G−βQ1τ1

β
.

To finance the remainder revenues, the continuation Ramsey planner would find a continuation Lagrange
multiplier µ by applying the three-step procedure from the previous section to revenue requirements G̃1.

8It can be verified that this formula puts non-zero weight only on the components 1 and Qt of zt.
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Figure 2: Difference τ̌t+1 − τt+1 where τt+1 is along Ramsey plan and τ̌t+1 is for Ramsey plan
restarted at t when Lagrange multiplier is frozen at µ0.
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Figure 3: Difference ǔt − ut where ut is outcome along Ramsey plan and ǔt is for Ramsey plan
restarted at t when Lagrange multiplier is frozen at µ0.
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Figure 4: Value of Lagrange multiplier µ̌t associated with Ramsey plan restarted at t on the left,
and the continuation Gt inherited from the original time 0 Ramsey plan Gt on the right.

9 Credible policy

The theme of this section is conveyed in the following:

Remark 9.1. We have seen that in general, a continuation of a Ramsey plan is not a

Ramsey plan. This is sometimes summarized by saying that a Ramsey plan is not credible.

A continuation of a credible plan is a credible plan.

The literature on a credible public policy or credible plan introduced by Chari and Kehoe

(1990) and Stokey (1989) describes history-dependent policies that arrange incentives so that

public policies can be implemented by a sequence of government decision makers. In this

section, we sketch how recursive methods that Chang (1998) used to characterize credible

policies would apply to our model.

A credibility problem arises because we assume that the timing of decisions differs from

the definition 3.2 Ramsey timing. Throughout this section, we now assume the following:

Definition 9.2. Sequential timing protocol:

1. At each t ≥ 0, given Qt and expectations about a continuation tax policy {τs+1}
∞
s=t and

a continuation price sequence {ps+1}
∞
s=t, the representative firm chooses ut.

2. At each t, given (Qt, ut), a government chooses τt+1.

Item (2) captures that taxes are now set sequentially, the time t + 1 tax being set after

the government has observed ut.

17



Of course, the representative firm sets ut in light of its expectations of how the government

will ultimately choose to set future taxes. A credible tax plan {τs+1}
∞
s=t is one that is

anticipated by the representative firm and also one that the government chooses to confirm.

We use the following recursion, closely related to but different from (28), to define the

continuation value function for Ramsey planner:

Jt = A0Qt −
A1

2
Q2

t −
d

2
u2

t + βJt+1(τt+1, Gt+1) (32)

This differs from (28) because continuation values are now allowed to depend explicitly on

values of the choice τt+1 and continuation government revenue to be raised Gt+1 that need

not be ones called for by the prevailing government policy. Thus, deviations from that policy

are allowed, an alteration that recognizes that τt is chosen sequentially.

Express the government budget constraint as requiring that G0 solves the difference

equation

Gt = βτt+1Qt+1 + βGt+1, t ≥ 0, (33)

subject to the terminal condition limt→+∞ βtGt = 0. Because the government is choosing

sequentially, it is convenient to take Gt as a state variable at t and to regard the time t

government as choosing (τt+1, Gt+1) subject to constraint (33).

To express the notion of a credible government plan concisely, we expand the strategy

space by also adding Jt itself as a state variable and allow policies to take the following

recursive forms.9 Regard J0 as an a discounted present value promised to the Ramsey

planner and take it as an initial condition. Then after choosing u0 according to

u0 = υ(Q0, G0, J0), (34)

choose subsequent taxes, outputs, and continuation values according to recursions that can

be represented as

τ̂t+1 = τ(Qt, ut, Gt, Jt) (35)

ut+1 = ξ(Qt, ut, Gt, Jt, τt+1) (36)

Gt+1 = β−1Gt − τt+1Qt+1 (37)

Jt+1(τt+1, Gt+1) = ν(Qt, ut, Gt+1, Jt, τt+1). (38)

Here τ̂t+1 is the time t+1 government action called for by the plan, while τt+1 is possibly some

one-time deviation that the time t + 1 government contemplates and Gt+1 is the associated

9This choice is the key to what Ljungqvist and Sargent (2004) call ‘dynamic programming squared’.
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continuation tax collections. The plan is said to be credible if, for each t and each state

(Qt, ut, Gt, Jt), the plan satisfies the incentive constraint

Jt = A0Qt −
A1

2
Q2

t −
d

2
u2

t + βJt+1(τ̂t+1, Ĝt+1)

≥ A0Qt −
A1

2
Q2

t −
d

2
u2

t + βJt+1(τt+1, Gt+1) (39)

for all tax rates τt+1 ∈ R available to the government. Here Ĝt+1 = Gt−τ̂t+1Qt+1

β
. Inequality

(39) expresses that continuation values adjust to deviations in ways that discourage the

government from deviating from the prescribed τ̂t+1.

Inequality (39) indicates that two continuation values Jt+1 contribute to sustaining time

t promised value Jt; Jt+1(τ̂t+1, Ĝt+1) is the continuation value when the government chooses

to confirm the private sector’s expectation, formed according to the decision rule (35);10

Jt+1(τt+1, Gt+1) tells the continuation consequences should the government disappoint the

private sector’s expectations. The internal structure of the plan deters deviations from

it. That (39) maps two continuation values Jt+1(τt+1, Gt+1) and Jt+1(τ̂t+1, Ĝt+1) into one

promised value Jt reflects how a credible plan arranges a system of private sector expecta-

tions that induces the government to choose to confirm them. Chang (1998) builds on how

inequality (39) maps two continuation values into one.

Remark 9.3. Let J be the set of values associated with credible plans. Every value J ∈ J can

be attained by a credible plan that has a recursive representation of form (35), (36), (37).

The set of values can be computed as the largest fixed point of an operator that maps sets of

candidate values into sets of values. Given a value within this set, it is possible to construct

a government strategy of the recursive form (35), (36), (37) that attains that value. In many

cases, there is a set of values and associated credible plans. In those cases where the Ramsey

outcome is credible, a multiplicity of credible plans must be a key part of the story because,

as we have seen earlier, a continuation of a Ramsey plan is not a Ramsey plan. For it to be

credible, a Ramsey outcome must be supported by a worse outcome associated with another

plan, the prospect of reversion to which sustains the Ramsey outcome.

10 Concluding remarks

The term ‘optimal policy’, which pervades an important applied monetary economics liter-

ature, means different things under different timing protocols. Under the ‘static’ Ramsey

10Note the double role played by (35): as decision rule for the government and as the private sector’s rule
for forecasting government actions.
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timing protocol (i.e., choose a sequence once-and-for-all), we obtain a unique plan. Here the

phrase ‘optimal policy’ seems to fit well, since the Ramsey planner optimally reaps early

benefits from influencing the private sector’s beliefs about the government’s later actions.

But if we adopt the sequential timing protocol associated with credible public policies, ‘opti-

mal policy’ is a more ambiguous description. There is a multiplicity of credible plans. True,

the theory explains how it is optimal for the government to confirm the private sector’s

expectations about its actions along a credible plan; but some credible plans have very bad

outcomes. And these bad outcomes are central to the theory because it is the presence of

bad credible plans that makes possible better ones by sustaining the low continuation values

that appear in the second line of incentive constraint (39).

Recently, many have taken for granted that ‘optimal policy’ means ‘follow the Ramsey

plan’.11 In pursuit of more attractive ways to describe a Ramsey plan when policy making is

in practice done sequentially, some writers have repackaged a Ramsey plan in the following

way. Take a Ramsey outcome – a sequence of endogenous variables under a Ramsey plan –

and reinterpret it (or perhaps only a subset of its variables) as a target path of relationships

among outcome variables to be assigned to a sequence of policy makers.12 If appropriate

(infinite dimensional) invertibility conditions are satisfied, it can happen that following the

Ramsey plan is the only way to hit the target path.13 The spirit of this work is to say, “in

a democracy we are obliged to live with the sequential timing protocol, so let’s constrain

policy makers’ objectives in ways that will force them to follow a Ramsey plan in spite of

their benevolence”.14 By this slight of hand, we acquire a theory of an optimal outcome

target path.

This ‘invertibility’ argument leaves open two important loose ends: (1) implementation,

and (2) time consistency. As for (1), repackaging a Ramsey plan (or the tail of a Ramsey

plan) as a target outcome sequence does not confront the delicate issue of how that target

path is to be implemented.15 As for (2), it is an interesting question whether the ‘invertibility’

logic can repackage and conceal a Ramsey plan well enough to make policy makers forget or

ignore the benevolent intentions that give rise to the time inconsistency of a Ramsey plan

in the first place. To attain such an optimal output path, policy makers must forget their

benevolent intentions because there will inevitably occur temptations to deviate from that

11It is possible to read Woodford (2003) and Giannoni and Woodford (2010) as making some carefully
qualified statements of this type. Some of the qualifications can be interpreted as advice ‘eventually’ to
follow a tail of Ramsey plan.

12In our model, the Ramsey outcome would be a path (~p, ~Q).
13See Giannoni and Woodford (2010).
14Sometimes the analysis is framed in terms of following the Ramsey plan only from some future date T

onwards.
15See Bassetto (2005) and Atkeson et al. (2010).
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target path, and the implied relationship among variables like inflation, output, and interest

rates along it. The continuation of such an optimal target path is not an optimal target

path.
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