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Abstract

What are “deep uncertainties” and how should their presence influence prudent decisions?

To address these questions, we bring ideas from robust control theory into statistical decision

theory. Decision theory has its origins in axiomatic formulations by von Neumann and Mor-

genstern, Wald, and Savage. After Savage, decision theorists constructed axioms that formalize

a notion of ambiguity aversion. Meanwhile, control theorists constructed decision rules that

are robust to some model misspecifications. We reinterpret axiomatic foundations of decision

theories to express ambiguity about a prior over a family of models along with concerns about

misspecifications of the corresponding likelihood functions.
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1 Introduction

Climate scientists confront “deep uncertainties.”1 Practicing econometricians also often struggle with uncer-

tainty about their statistical models, but usually with scant guidance from significant advances in decision

theory made after Wald (1947, 1949, 1950), Savage (1954), and Ellsberg (1961) because so much recent for-

mal theory of decision making under uncertainty in economics is not cast explicitly in terms of the likelihoods

and priors that are the foundations of statistics and econometrics.2 Likelihoods are probability distributions

conditioned on parameters while priors describe a decision maker’s subjective belief about parameters.3 By

distinguishing roles played by likelihood functions and subjective priors over parameters, this paper aims to

bring contributions to decision theory after Wald and Savage into closer contact with statistics and econo-

metrics in ways that can address practical econometric concerns about model misspecifications and selections

of prior probabilities.

Although they proceeded differently than we do, Chamberlain (2020), Cerreia-Vioglio et al. (2013), and

Denti and Pomatto (2022) studied related issues. Chamberlain (2020) emphasized that likelihoods and priors

are both vulnerable to uncertainties. His ultimate focus was on uncertainty about predictive distributions

that are constructed by integrating likelihoods with respect to priors. Our paper instead formulates a decision

theory with distinct uncertainties about priors and likelihoods. Cerreia-Vioglio et al. (2013) (section 4.2)

provide a rationalization of the smooth ambiguity preferences proposed by Klibanoff et al. (2005) that

includes likelihoods and priors as components. Denti and Pomatto (2022) extend this approach by using

an axiomatic revealed preference approach to deduce an implied parameterization of a likelihood function.

But neither of those papers sharply distinguishes prior uncertainty from concerns about possible model

misspecifications, something that we want to do. We formulate concerns about model misspecifications as

uncertainty about likelihoods.

We assemble concepts and practical ways of modeling risks and concerns about model misspecifications

from statistics, robust control theory, economics, and decision theory. We align definitions of statistical

models, uncertainty, and ambiguity with ideas from decision theories that build on Anscombe and Aumann

(1963)’s way of representing subjective and objective uncertainties. We connect our analysis to economet-

rics and robust control theory by using Anscombe and Aumann states as parameters that index alternative

statistical models of random variables that affect outcomes that a decision maker cares about. By mod-

ifying Gilboa et al. (2010), Cerreia-Vioglio et al. (2013), and Denti and Pomatto (2022), we show how

to use variational preferences to represent uncertainty about priors and concerns about statistical model

misspecifications.

Some “behavioral” models in economics and finance assume expected utility preferences in which an

agent’s subjective probability differs systematically from probabilities that govern the data.4 This literature

1Deep uncertainties are defined and discussed by Hallegatte et al. (2012), Maier et al. (2016), Marchau et al.
(2019), and Rising et al. (2022).

2Econometricians who explicitly confronted model uncertainty include Onatski and Stock (2002), Brock et al.
(2003), Stock and Watson (2006), Brock et al. (2007), Del Negro and Schorfheide (2009), Christensen (2018), Chris-
tensen and Connault (2019), Christensen et al. (2020), Andrews and Shapiro (2021), and Bonhomme and Weidner
(2021). Chamberlain (2000, 2001) and Ho (2023) used a post Wald-Savage decision theory of Gilboa and Schmeidler
(1989) to confront model uncertainty in his econometric work.

3The term likelihood can have multiple meanings. We shall use it to represent a probability density of prize-
relevant outcomes, which we refer to as repercussions, conditioned on parameters. Distinguishing likelihood functions
from subjective priors is fundamental to Bayesian formulations of statistical learning. See de Finetti (1937), who
recommended exchangeability as a more suitable assumption than iid (independent and identically distributed) to
model situations in which a decision maker wants to learn. Putting subjective probabilities over parameters that
index likelihood functions for iid sequences of random vectors generates exchangeable sequences of random variables.

4We put “behavioral” in quotes to emphasize that most economic models are about agents’ behaviors, including
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also contains discussions of differences among agents in their confidence in their view of the world. Lack

of confidence can take different forms under different notions of uncertainty. Preference structures that we

describe in this paper allow us to formalize different degrees of “confidence” both about details of specifi-

cations of particular statistical models and about subjective probabilities to attach to alternative statistical

models. Our representations of preferences provide ways to characterize degrees of confidence in terms of

perceived statistical plausibilities.5

Objects and Interpretations

Our decision maker knows a parameterized family of probability distributions τpw|θqdυpwq, where w P W

is a realization of a random vector or “repercussion” that he cares about, θ P Θ is a vector of parameters,

and dυpwq is a measure over W. A realization of w can play two possible roles. It can represent an outcome

over which the decision maker has preferences, and it can capture data available to help the decision maker

shape decisions. The decision maker has preferences over a set of prize rules, each of which we represent as

a function γ : W ˆ Θ Ñ X, where x P X is a “prize” that he cares about. In our featured examples, for

parameter vector θ P Θ, the prize rule γpw | θq determines the decision maker’s exposure to an uncertain

random vector that has a realization expressible in terms of w P W A set of γ’s describes prize rules under

consideration. In forecasting problems of a type common in time series statistics and econometrics, the

prize can depend directly on the error in forecasting a component of w and the forecast rule depends on

another component of w. While forecasting problems are interesting in their own right, in many applications,

forecasts are intermediate inputs into outcomes of ultimate interest to the decision maker. Examples that

appear in Section 2 illustrate a range of applications.6

The parameter space Θ can be finite or infinite dimensional; τpw|θq is a member of a family of densities

with respect to a measure dυ indexed by θ P Θ. When Θ is infinite dimensional, we say that τpw|θqdυpwq for

θ P Θ is a “nonparametric” family of probability distributions. A notion of “non-informativeness” of a set of

possible “prior” probability distributions over Θ plays an important role in justifying alternative approaches

to “robustness” that we describe in section 3. A decision determines a pair pγ, τq. In section 2, we offer a

more fully articulated decision process and provide some examples.

We use three components from decision theory, namely, i) states, ii) acts, and iii) prizes, in some new

ways. We follow Anscombe and Aumann (1963) by defining consequences as lotteries over prizes. An act

maps states into consequences. Preferences are defined over acts. In the static setup of this paper, we

take the state to be parameters of a statistical model. That distinguishes our formulation from many other

applications of Anscombe and Aumann (1963). For example, decision theorists who connect their work to

revealed preference theory typically want states that are “verifiable”. We are instead interested in a typical

econometric situation in which parameters of statistical models remain hidden forever. For us, parameter

uncertainty is central, so it is important that parameter vector θ be included as a component of the state.7

Gilboa et al. (2010) and Cerreia-Vioglio et al. (2013) introduced parameterized models as a family of

models that impose the rational expectations and common knowledge assumptions that “behavioral” economists want
to drop. “Behavioral” economics sometimes means work that is linked more or less informally to psychology.

5Although we provide no formal links to psychology here, we think that a promising research plan would explore
connections between so-called behavior distortions and the inferential challenges that economic decision makers
confront. As is often assumed in behavioral models, degrees of confidence could differ across economic agents.

6As a different example, that section illustrates the “parameter estimation problem” as a special case.
7Stephen Stigler showed us a short working paper by Savage (1952) entitled “An Axiomatic Theory of Reasonable

Behavior in the Face of Uncertainty,” a prolegomenon to the axiomatic structure presented in Savage (1954). Savage
(1952) wrote this: “The set S represents the conceivable states, or descriptions of the world, or milieu, with which
the person is concerned . . . ” We think of parameter values or model selection indicators as presenting a “description
of the world.”
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primitive probabilities that a decision maker cares about. Cerreia-Vioglio et al. (2013) in effect consider an

expanded state space pw, θq that includes both repercussions with realization w and parameters θ and then

take a model to be a conditional distribution over pW,Wq given θ.8 Consistent with the framework of Gilboa

et al. (2010), Cerreia-Vioglio et al. showed that a family of models induces a partial ordering according to

which an act is preferred to another act if it is preferred under all models in the family.

Relative to Cerreia-Vioglio et al. and many other applications of the Anscombe and Aumann (1963)

framework, we use lotteries in a more essential way. Anscombe and Aumann (1963) interpret lotteries as

“roulette wheels” with known (objective) probabilities, in contrast to “horse races” with unknown (subjec-

tive) probabilities. Many authors used an Anscombe and Aumann setup as a vehicle to extend Von Neumann

and Morgenstern (1944) preferences defined over lotteries to more general settings that can include subjec-

tive uncertainty. In our formulation, the random vector W induces a probability distribution that according

to a particular Anscombe and Aumann act implies a particular lottery that can depend on parameters of

a statistical model. We represent a family of models as a family of probability distributions indexed by

an unknown parameter vector. Parameter vectors can reside in a finite set, a manifold of possible values,

or even an infinite dimensional set. With correct statistical models (i.e., likelihoods), each model induces

a “roulette wheel” lottery. The possibility of misspecified likelihoods leads us to want a counterpart to

an Anscombe-Aumann lottery with unknown probabilities. Our extension of the Anscombe and Aumann

(1963) framework lets us distinguish robustness to misspecification of each member of a collection of sub-

stantively motivated “structured” statistical models from robustness to the choice of a prior distribution to

put over those statistical models. We formulate preferences that express distinct concerns about both types

of robustness.

To motivate their axioms, Maccheroni et al. (2006a) and Strzalecki (2011) used Hansen and Sargent’s

(2001) stochastic formulation of a robust control problem. We use our Anscombe and Aumann formulation

to show that the axioms of Maccheroni et al. and Strzalecki actually express prior uncertainty and not

the model misspecification concerns that had originally motivated Hansen and Sargent. We go on to show

how, by using an appropriate ambiguity index or “cost” function, we can use the variational preferences of

Maccheroni et al. (2006a) to express concerns about robustness both to statistical model misspecification

and to prior selection, including priors meant to represent “nonparametric Bayesian” methods.

Section 2 sets the stage by reviewing axioms that support Anscombe and Aumann’s subjective expected

utility representation. Subsection 2.4 discusses the extension to max-min utility justified by Gilboa and

Schmeidler (1989), while subsection 2.5 tells how Maccheroni et al. (2006a) relaxed the Gilboa and Schmeidler

axioms to arrive at variational preferences. Section 3 characterizes a class of variational preferences that use

statistical divergences as Maccheroni et al. cost functions. Section 4 describes and applies our formulations of

variational preferences, with subsections defining cost functions that distinguish concerns about robustness of

likelihoods from concerns about robustness of priors. A subsection 4.1 decision maker knows a parameterized

family of models but seeks robustness with respect to a set of alternative priors to put over those models,

while a subsection 4.2 decision maker has a unique prior but a likelihood function that he distrusts and

consequently wants robustness with respect to statistically nearby models. After comparing and contrasting

these two decision makers in subsection 4.3, subsection 4.4 provides two example of these alternative types

of robustness. Section 5 breaks new ground by describing cost functions to use for a variational preferences

8Cerreia-Vioglio et al. (2013) deploy a “Dynkin space” and an associated sigma algebra of events. Their con-
ditioning on those events is a counterpart to our conditioning on a model. As an alternative, Denti and Pomatto
(2022) used an axiomatic approach to define a parameterized set of models. While both approaches are interesting,
we suppose that models can have scientific or other sources from outside the specific decision problem. In this, we
follow Hansen and Sargent (2022) who refer to such models as “structured models.”
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representation of a decision maker who is concerned about both types of robustness. Section 6 sketches

dynamic extensions of our analysis that we want to study in subsequent papers. Section 7 briefly steps

outside our decision theory to discuss how someone might want to assess “cost” parameters that characterize

a decision maker’s variational preferences. Section 8 explores connections to an approach from statistical

learning called PAC (probably almost correct) Bayesian analysis. Section 9 concludes.

2 Preliminaries

Following Gilboa and Schmeidler (1989) and Maccheroni et al. (2006a), we adopt a version of the framework

of Anscombe and Aumann (1963) described by Fishburn (1970): pΘ,Gq is a measurable space of potential

states, pX,Xq is a measurable space of potential prizes, Π is a set of probability measures over states, and

Λ is a set of probability measures over prizes.9 For each π P Π, pΘ,G, πq is a probability space and for each

λ P Λ, pX,X, λq is a probability space. Let X denote an event in X and G denote an event in G.

Definition 2.1. An act is a G measurable function f : Θ Ñ Λ.

For a given θ, dfpx | θq denotes integration with respect to the probability measure fpθq P Λ, which is a

lottery over possible prizes x P X.10 For a given probability measure π P Π,
ş

Θ
dfpx | θqdπpθq is a two-stage

lottery over prizes, with a lottery over states θ being described by π and another lottery over prizes x P X

being described by dfpx | θq, which depends on the outcome θ from the other lottery. We shall introduce

uncertainty about probability measure π.

As mentioned in section 1, we interpret objects in the Anscombe and Aumann formulation in ways

that help us as statisticians/econometricians. We interpret a state θ as pinning down one among a set Θ of

probability models that a decision maker regards as possible. A decision maker make a decision (i.e., “chooses

an Anscombe and Aumann act”) that generates a probability distribution over outcomes that he/she cares

about, i.e., over Anscombe and Aumann prizes x P X.

We use Anscombe and Aumann acts to represent alternative conditional distributions of repercussions

and prize rules. An action or decision δ P ∆, which is distinct from an Anscombe and Aumann act, can be

a vector of real numbers or, more generally, a function that is defined on appropriate spaces. A choice of

δ can influence the distribution of repercussions conditioned on the parameter vector. It can also alter the

exposure of the prize to repercussions. We represent a decision maker’s exposure to repercussions with prize

rules γδ that are Borel measurable functions that map W into prizes in X. We represent the influence of δ

on the distribution of repercussions by a conditional probability measure represented as a density τδp¨ | θq

with respect to a Borel measure υ on pW,Wq. A θ P Θ implies a probability measure

τδpw | θqdυpwq.

This formulation is convenient for applied statisticians because for each δ, a parameterized family τδp¨ | θq

can define a manifold of likelihoods indexed by a vector of unknown parameters θ P Θ. For a given decision

δ, pγδ, τδq induces a lottery over X conditioned on θ, and hence an Anscombe and Aumann act that can be

represented with dfpx | θq. As we vary decisions δ P ∆, we trace out a collection of such acts. A particular

9For a discussion of the Anscombe-Aumann setup, see Kreps (1988), especially chapters 5 and 7.
10We borrow our basic setup from Marinacci and Cerreia-Vioglio (2021). Following the leads of de Finetti and

Savage, formulations of max-min expected utility and variational preferences initially worked within a tradition in
decision theory under uncertainty that restricted probabilities to be finitely additive. However, much of probability
theory routinely imposes countable additivity. It simplifies our presentation.
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decision problem defines both conditional distributions τδdυ and prize rules γδ for alternative decisions δ.

Together, they delineate a collection of Anscombe and Aumann acts.

Remark 2.2. We can expand the collection of acts by randomizing decisions. Given two decisions δ1 and

δ2, a randomized rule chooses decision δ1 with probability α and δ2 with probability 1´α. Since each decision

induces an Anscombe and Aumann act, the randomized decision is a convex combination of the two induced

acts.11

We consider several canonical examples.

Example 2.3. For some situations, it suffices to let ∆ be a Borel set of a finite-dimensional Euclidean space

and for the conditional distribution τ not to depend on δ. For example, δ could be a particular portfolio of

assets whose random return is exposed to a repercussion vector in a particular way. A choice of a portfolio

does not affect the joint distribution of returns on individual assets, but it does influence the return on a

portfolio of those component assets.

Example 2.4. In stochastic optimal control problems like those studied by Bertsekas (1976), a decision

maker chooses a “control” that affects the distribution of a repercussion, which in this example takes the

form of a next-period state vector. For instance, in linear-quadratic Gaussian optimal control problems,

often referred to as “linear regulator” problems, this effect shows up in a mean conditioned on a current

state. For example, a repercussion vector w obeys:

w “ A ` Bδ ` Cϵ,

where the probability distribution over ϵ’s is a standard, multivariate normal. The vector A and the matrices

B and C depend on parameters in Θ.12 Suppose that a controller who chooses δ knows parameters only up to

an uncertain subjective distribution.13 Think of decision δ as a current period control vector in the sense of

Bertsekas (1976). The conditional distribution τ depends on δ: w is distributed as multivariate normal with

conditional mean A ` Bδ and conditional variance CCJ. In typical optimal linear regulator control theory

problems, prize rules depend on the vector pwJ, δJq with a utility function that is the negative of the quadratic

form in this vector, for example, ´wJRw ´ δJQδ where R and Q are positive semidefinite matrices. The

linear regular problem is an example of a much larger class of stochastic control problems. For simplicity,

we formulate it as a static problem.14 The Example 2.3 portfolio choice problem is a special case of this

stochastic control problem in which repercussions are the returns and a control vector of portfolio weights

does not influence repercussions.

Example 2.5. To build bridges to mathematical statistics, we extend a setup that Ferguson (1967) used to

analyze learning from data. We again posit a family of densities τpw | θq for a repercussion vector whose

realizations are denoted by w’s, and where a parameter vector θ is a “true state of nature.” In this example,

the decision δ does not affect τ . We can represent the outcome of what Ferguson calls a statistical experiment

as a realization of a random vector y “ ζpwq that contains information about w. This information can be a

signal that is correlated with the “prize” of ultimate interest. Let a decision δ be a measurable function that

maps observations y from the statistical experiment into a set of what Ferguson calls actions.15 In this way

11In some special cases, the set of acts induced by decisions may itself be convex. In this case, the randomization
of decisions merely replicates the collection of induced acts.

12The vector A absorbs the current state. In a standard optimal linear regular problem, the controller knows
pA,B,Cq.

13This distribution might depend on past information.
14More generally, it would be input into a recursive formulation.
15For Ferguson (1967), δ viewed as a function of y is a decision rule distinct from our prize rule.
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Ferguson allows what he calls an “action” – our decision δ – to depend on an observation y. We constrain

a prize rule γδ to satisfy:16

γδpwq “ Ψrδ ˝ ζpwq, ws. (1)

Ferguson’s actions are not Anscombe and Aumann (1963) acts. To capture Ferguson’s setup, each prize

rule γδ implies a probability distribution for a prize conditioned on θ that is induced by τpw | θqdυpwq. This

probability distribution for a prize conditioned on θ is an Anscombe and Aumann (1963) act.

By allowing decisions to depend on data that is observed at an intermediate date, the Ferguson formula-

tion allows a richer collection of possible decisions and nests our Remark 2.3 formulation as a special case.

It can include problems that seek to construct robustly optimal forecasts from historical data. More generally,

we are interested in decision problems for which forecasting is an input but not the ultimate goal.

Although the problem posed in Example 2.5 is static, it can be reinterpreted as a three-stage or three-

period decision problem. A decision rule that is chosen at an initial period zero depends on information about

the repercussion that will be revealed in a first stage. The decision maker can condition on this information

when choosing his exposure to the repercussion with realization w. The repercussion itself is fully realized at

the end of stage two. In this formulation, potential likelihood misspecifications affect the decision maker’s

inferences about the prize distribution in stage one. As posed, this is an ex-ante decision problem in which a

decision rule, δ, is chosen at period 0. In contrast, we can view Examples 2.3 and 2.4 as ex post problems in

which the “prior” implicitly conditions on current and past data as does the “decision.” As often happens,

the timing protocol matters. When a decision maker chooses sequentially, the distinction between priors

and posteriors can become obscured when an end of period j ´ 1 posterior becomes a period j prior. In

a recursive formulation of a dynamic decision problem, concerns about robustness of priors-posteriors can

recur in stage-specific components within a multi-stage interpretation of a decision problem. By design, our

general formulation invites dynamic extensions.

Example 2.6. It is common in econometrics and statistics to pose a decision problem as a parameter

estimation problem that supposes that prizes are deviations between an estimator δpyq and a function χpθq

of the parameter vector. To capture this, we can let

w “

«

χpθq

y

ff

and add a degenerate equation to the τ dynamics that describes how we construct the first component of w.

This approach seems to be shorthand for something deeper. Typically, decisions of interest can be expressed

in terms of outcomes with probability distributions that depend on the unknown parameter as in the other

examples that we mention.

In what follows, a decision maker’s prior over possible statistical models indexed by θ is a probability

measure π P Π.

Remark 2.7. The collection of Anscombe and Aumann acts is typically much larger than the set of acts

that can be induced by an available pair, pγδ, τδq for δ P ∆ as implied by alternative decisions. We know that

the axioms invoked in this paper apply to preferences over the full collection of Anscombe and Aumann acts.

While the randomization of decisions described previously enlarges the set of Anscombe and Aumann acts by

16Ferguson’s formulation of the problem introduces a loss function that for us would be the negative of the
expectation of a utility function conditioned on pY, θq under the distribution implied by τpw | θqdυpwq and ζ.
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including the convex hull of the set of acts induced by prize rules, in general that device does not construct the

full set of Anscombe and Aumann acts. We recognize that judging the plausibility or “self-evident quality” of

the axioms that we impose would require extending the set of the acts to be studied beyond the set of induced

by the potential actions within a “substantive decision model” even if allow randomization of the decisions.

Let A be the set of all acts. Each act f P A implies lotteries fpθq for each θ P Θ. Two collections of

acts will interest us, a set Ao that lets us represent objective uncertainty and another set As that Anscombe

and Aumann (1963) used to express subjective uncertainty. Formally, let Ao Ă A denote the collection of

all constant acts where a constant act maps all θ P Θ into a unique lottery over prizes x P X. Constant

acts express objective uncertainty because they do not depend on the parameter θ. Absence of dependence

means that the probability distribution π P Π over states plays no role in shaping an ultimate probability

distribution over prizes. A constant act constructed from a prize rule γ could emerge as follows. Suppose

that some component of W has a known distribution independent of θ and that γ depends only on this

component. Such limited dependence implies an act that is independent of θ. The collection As consists of

acts, each of which delivers a unique prize for each θ. We let spθq P X denote an act in As.
17 We use a

probability distribution π P Π over states in conjunction with As to express subjective uncertainty.

Remark 2.8. Anscombe and Aumann (1963) distinguished “horse race lotteries,” represented by acts in

As, from “roulette lotteries,” represented by acts in Ao.
18

Remark 2.9. While Savage (1954) did not include “objective” lotteries when he rationalized subjective

expected utility, his framework allows flexibility in defining both a state and an act. Gilboa et al. (2020)

exhibit the flexibility of a Savage-style state space with a variety of applications and discuss benefits and

challenges that this flexibility brings.19 There is also flexibility in constructing an act. Cerreia-Vioglio et al.

(2012) take advantage of this flexibility to produce a preference representation for Anscombe and Aumann

acts under Savage (1954) axioms augmented with risk independence. This representation coincides with the

familiar Savage representation for acts in As with unique prizes for each state.20

We shall often construct a new act from initial acts f and g by using a probability α P p0, 1q to form a

mixture

rαf ` p1 ´ αqgs pθq “ αfpθq ` p1 ´ αqgpθq P Λ @θ P Θ.

We shall use instances of our Anscombe and Aumann framework to describe a) a Bayesian decision maker

with a unique prior over a set Θ of statistical models, b) a decision maker who knows a set Θ of statistical

models and who copes with ambiguity about those models by considering prospective outcomes under a set

of priors Π over those statistical models, c) a decision maker with concerns that a single known statistical

model θ is misspecified by using a statistical discrepancy measure to delineate unknown models surrounding

that known model, and d) a decision maker with ambiguity and concerns about model misspecifications.

2.1 Preferences

To represent a decision maker’s preferences over acts, we use „ to mean indifference, Á a weak preference,

and ą a strict preference. Throughout, we assume that preferences are non-degenerate (there is a strict

17Technically, an act in As is a degenerate Dirac lottery with a mass point at spθq that is assigned probability one.
18See Kreps (1988, ch. 5) for more about the distinction.
19They did not specifically discuss the statistical linkages that we explore here.
20More generally, their representation includes an additional curvature adjustment much like the smooth ambiguity

model. See Proposition 3 in their appendix.
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ranking between two acts), complete (we can compare any pair of acts), and transitive (f Á g and g Á h

imply f Á h). We also impose an Archimedean axiom that provides a form of continuity.21 A finite signed

measure on the measurable space pX,Xq is a finite linear combination of probability measures that resides

in a linear space pΛ that contains Λ.

2.2 Objective probability

By analyzing preferences over the constant acts Ao, we temporarily put aside attitudes about ambiguity

and model misspecification and focus on objective uncertainty (sometimes called “risk”). There is a unique

probability λ P Λ associated with every act f P Ao and a unique act in Ao associated with every λ P Λ. We

define a restriction ąΛ of the preference order ą to the space of constant acts f P Ao by

λ ąΛ κ ðñ f ą g

where λ is the probability generated by act f P Ao and κ is the probability distribution generated by act

g P Ao.

To represent preferences ąΛ, we follow Von Neumann and Morgenstern (1944) who imposed the following

restriction:22

Axiom 2.10. (Independence) If f, g, h P Ao and α P p0, 1q, then

f Á g ñ αf ` p1 ´ αqh Á αg ` p1 ´ αqh.

The Von Neumann and Morgenstern approach delivers an expected utility representation of preferences over

constant acts: there exists a utility function u : X Ñ R such that for f, g P Ao

f Á g ðñ Upfq ě Upgq (2)

where

Upfq “

ż

X

upxqdλpxq (3)

and λ P Λ is the probability distribution generated by constant act f . Representation (3) can be extended

to a space pΛ of finite signed measures to produce a linear functional on this space. The structure of

the space of finite signed measures brings interesting properties to representation (3). Thus, although

u is in general a nonlinear function of prizes, U is a linear functional of finite signed measures λ P pΛ.

Consequently, a representation theorem for linear functionals of finite signed measures justifies (3). According

to representation (2), for any real number r0 and strictly positive real number r1, utility functions r1u ` r0

and u provide identical preference orderings.

2.3 Subjective probability

To construct subjective expected utility preferences, we extend an expected utility representation of ąΛ on

the set of constant acts to a representation of preferences ą on the set A of all acts. We impose restrictions

21The Archimedean axiom states: let f, g, h be acts in A with f ą g ą h. Then there are 0 ă α1 ă 1 and
0 ă α2 ă 1 such that α1f ` p1 ´ α1qh ą g ą α2f ` p1 ´ α2qh. See Herstein and Milnor (1953, Axiom 2) for an
alternative formulation of a continuity axiom.

22Completeness, transitivity and the Archimedean axiom carry over directly from ą to ąΛ, but not necessarily
non-degeneracy. Our presentation below presumes non-degeneracy of ąΛ.
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on ą in the form of two axioms. The first extends the independence axiom to the set of all acts:

Axiom 2.11. (Independence) If f, g, h P A and α P p0, 1q, then:

f Á g ñ αf ` p1 ´ αqh Á αg ` p1 ´ αqh.

The second is:

Axiom 2.12. (Monotonicity) For any f, g P A such that fpθq ÁΛ gpθq for each θ P Θ, f Á g.

We first use a Von Neumann and Morgenstern expected utility representation to represent preferences

conditioned on each θ. From this conditional representation, we compute

ż

X

upxqdfpx | θq “ F pθq

for any act f. A set of acts implies an associated collection B of functions F . From monotonicity axiom 2.12

we know that if f and f̃ imply the same F , then f „ f̃ . Consequently, the preference relation ą induces a

unique preference relation ąΘ for which

F ąΘ G ðñ f ą g

for acts f and g that satisfy:

ż

X

upxqdfpx | θq “ F pθq

ż

X

upxqdgpx | θq “ Gpθq

A mixture of two acts f and g has expected utility:

ż

X

upxqrαdfpx | θq ` p1 ´ αqdgpx | θqs “ αF pθq ` p1 ´ αqGpθq.

If the set of acts A is convex, then so is the set B of functions of θ. Furthermore, if F „Θ G, the independence

axiom guarantees that for any α the associated convex combinations of F and G are also in the same

indifference set of acts. From one indifference set, we build other indifference sets by taking an act h and

forming convex combinations with members of the initial indifference set. These observations lead us to seek

a utility function that is a linear functional L on B.
Suppose that F ě G on Θ. The monotonicity axiom implies that LpF ´Gq ě 0, so L is a positive linear

functional. Under general conditions, a positive linear functional can be represented as an integral with

respect to a positive finite measure.23 Positive multiples of this linear functional imply the same preference

ordering. Since the preference ordering is not degenerate, the measure must not be degenerate. This means

that we can make it into a probability measure that we denote πpdθq. We thereby arrive at the following

representation of preferences over acts f P A

f Á g ðñ

ż

Θ

„
ż

X

upxqdfpx | θq

ȷ

dπpθq ě

ż

Θ

„
ż

X

upxqdgpx | θq

ȷ

dπpθq, (4)

23Riesz-type representation theorems provide such representations on the space of continuous functions with com-
pact support on a locally compact Hausdorff space. The decision theory literature typically uses a different space.
Our presentation here is informal and suggestive, but it is not intended to be a complete analysis.
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where the probability measure π describes subjective probabilities.

Representation (4) lets us interpret the expected utility of an act f with a two-stage lottery. First, draw

a θ̃ from π and then draw a prize x P X from probability distribution dfpx | θ̃q. By changing the order of

integration, we can write

ż

Θ

„
ż

X

upxqdfpx | θq

ȷ

dπpθq “

ż

X

upxq

„
ż

Θ

dfpx|θqdπpθq

ȷ

or equivalently
ż

Θ

„
ż

X

upxqdfpx | θq

ȷ

dπpθq “

ż

X

upxqdλpxq, (5)

where

dλpxq “

ż

Θ

dfpx | θqdπpθq. (6)

Equation (6) constructs a single lottery λ over x from the compound lottery generated by pdπpθq, dfpx | θqq.24

For a statistician, λ is a “predictive distribution” constructed by integrating over unknown parameter θ. Let

fc be the constant act with lottery λ defined by the left side of (6) for all θ P Θ. Equations (5) and (6)

assert that a person with expected utility preferences is indifferent between fc and f .25

2.4 Max-min Expected Utility

To construct a decision maker who has max-min expected utility preferences, Gilboa and Schmeidler (1989)

replaced Axiom 2.11 with the following two axioms:

Axiom 2.13. (Certainty Independence) If f, g P A, h P Ao, and α P p0, 1q, then:

f Á g ðñ αf ` p1 ´ αqh Á αg ` p1 ´ αqh.

Axiom 2.14. (Uncertainty Aversion) If f, g P A and α P p0, 1q, then:

f „ g ñ αf ` p1 ´ αqg Á f.

An essential ingredient of this axiom is that mixing weight α is known, an assumption that can be interpreted

as describing a form of objective uncertainty. Axiom 2.14 asserts a weak preference for mixing with known

weights α and 1 ´ α.

Example 2.15. Suppose that Θ “ tθ1, θ2u and consider lotteries λ1 and λ2. Let act f be lottery λ1 if θ “ θ1

and lottery λ2 if θ “ θ2. Let act g be lottery λ2 if θ “ θ1 and lottery λ1 if θ “ θ2. Suppose that f „ g. Axiom

2.14 allows a preference for mixing the two acts. If, for instance, α “ 1
2 , the mixture is a constant act with

a lottery 1
2λ1 ` 1

2λ2 that is independent of θ. We think of mixing as reducing the exposure to θ uncertainty.

In the extreme case, setting α “ 1
2 , for example, completely eliminates effects of exposure to θ uncertainty.

24Equation (6) thus expresses the “reduction of compound lotteries” described by Luce and Raiffa (1957, p. 26)
and analyzed further by Segal (1990).

25Under subjective expected utility, the Remark 2.5 statistical decision problem solves

max
a

ż

Θ

Ψpa,wqℓpw | θqdπ̄pθ | wq

where dπ̄pθ | yq is the posterior of θ given an observation y. Consequently, a depends implicitly on y, which implies
the decision rule δpyq.
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By replacing Axiom 2.11 with Axioms 2.13 and 2.14, Gilboa and Schmeidler obtained preferences de-

scribed by

f Á g ðñ min
πPΠc

ż

Θ

„
ż

X

upxqdfpx | θq

ȷ

dπpθq ě min
πPΠc

ż

Θ

„
ż

X

upxqdgpx | θq

ȷ

dπpθq (7)

for a convex set Πc Ă Π of probability measures. An act fpθq is still a lottery over prizes x P X and, as

in representation (2), for each θ,
ş

X
upxqdfpx | θq is an expected utility over prizes x. Evidently, expected

utility preferences (4) are a special case of max-min expected utility preferences (7) in which Πc is a set with

a single member.

2.5 Variational preferences

Maccheroni et al. (2006a) relaxed certainty independence Axiom 2.13 of Gilboa and Schmeidler (1989) to

obtain preferences with a yet more general representation that they called variational preferences. Maccheroni

et al. replaced Axiom 2.13 with the weaker

Axiom 2.16. (Weak Certainty Independence) If f, g P A, h, k P Ao, and α P p0, 1q, then

αf ` p1 ´ αqh Á αg ` p1 ´ αqh ñ αf ` p1 ´ αqk Á αg ` p1 ´ αqk

Axiom 2.16 considers only acts that are mixtures of constant acts that can be represented with a single

lottery. The axiom states that altering the constant act from h to k does not reverse the decision maker’s

preferences. The same α appears in all three acts being compared. This axiom imparts to preferences a

smooth tradeoff between separate contributions that come from an expected utility, on the one hand, and

from statistical uncertainty, on the other hand. Mixing with pure lotteries continues to support linearity in

evaluations of risks conditioned on states.

To place Axiom 2.16 within the Example 2.3 setting, use the pair pΨ, τq to represent the probabilistic

outcomes of alternative decisions. Recall that for a given Ψ, prize rule γpwq is described by (1) for some

decision δ and some parameterized repercussion distribution τpw | θqdυpwq. Let’s compare the uncertainty

consequences of decisions δ1 and δ2 that give rise to prize rules γδ1 and γδ2 via

γδ1pwq “ Ψrδ1 ˝ ζpwq, ws

γδ2pwq “ Ψrδ2 ˝ ζpwq, ws

for δ1, δ2 P ∆. Each of these prize rules specifies how a prize depends on a realization w of the repercussion.

Let γ1 induce act f and γ2 induce act g.

Now consider two other decisions δ3 and δ4 and use them to construct prize rules

γδ3 “ Ψrδ3 ˝ ζpwq, ws

γδ4 “ Ψrδ4 ˝ ζpwq, ws.

Suppose that the prize rules γδ3 and γδ4 both of which induce distributions of the prize x P X that do not

depend on θ; decisions δ3 and δ4 both serve to target risk components of x P X that are not exposed to

parameter uncertainty. In particular, the dependence on the signal y “ ζpxq could be degenerate for both

rules. Denote the constant acts induced by γδ3 and γδ4 , respectively, as h and k. For example, consider an

investment problem for which some of the available investments (indexed by a subset of the decisions δ P ∆)

11



yield returns that depend only on a component of the repercussion vector that has a known distribution.

Two such investments can be used to construct γδ3 and γδ4 . Axiom 2.16 requires that if randomizing δ1 with

respect to δ3 is preferred to randomizing δ2 with respect to δ3, the preference order will be preserved if δ3 is

replaced by δ4 holding fixed the randomization probabilities pα, 1 ´ αq.26

A specification of Ψ may exclude the possibility described in the previous paragraph. But the axioms

refer to hypothetical comparisons. So to explore Axiom 2.16, we extend the substantive model Ψ to rΨ where

the arguments of rΨ are a realization of an augmented repercussion vector pw, w̃q and the decision δ is in

a larger set r∆ that contains ∆. Suppose that the w̃ component of the augmented repercussion vector has

a known distribution that does not depend on θ. Prizes γ that depend only on this second component of

representation (1) induce constant acts. To confirm that the Ψ̃ substantive model is an extension of the

original Ψ model, we require that

rΨrδ ˝ ζpwq, w, w̃s “ Ψrδpwq ˝ ζ, ws for δ P ∆, w P W.

We then suppose that

γδ3pw̃q “ rΨrδ3 ˝ ζpwq, w, w̃s

γδ4pw̃q “ rΨrδ4 ˝ ζpwq, w, w̃s

where δ3, δ4 P r∆ but not necessarily in δ3, δ4 P ∆. Decisions δ3 and δ4 confine exposure of the resulting

prize to w̃ and not to w. As indicated in the previous paragraph, γ3 and γ4 induce constant acts. For

our Remark 2.3 investment example, construction of the extended substantive model rΨ might introduce new

opportunities that are not exposed to parameter uncertainty. This opens the door to comparisons entertained

by Axiom 2.16.

Maccheroni et al. (2006a) showed that preferences that satisfy the weaker Axiom 2.16 instead of Axiom

2.13 are described by

f Á g ðñ min
πPΠ

ż

Θ

„
ż

X

upxqdfpx | θq

ȷ

dπpθq ` cpπq ě min
πPΠ

ż

Θ

„
ż

X

upxqdgpx | θq

ȷ

dπpθq ` cpπq (8)

where, as in representation (2), u is uniquely determined up to a linear translation and c is a convex function

that satisfies infπPΠ cpπq “ 0. Smaller convex functions, c, express more aversion to uncertainty. The convex

function c in variational preferences representation (8) replaces the restricted set of probabilities Πc that

appears in the max-min expected utility representation (7). In the special case that the convex function c

takes on values 0 and `8 only, Maccheroni et al. show that variational preferences are max-min expected

utility preferences.

3 Scaled statistical divergences as c functions

Scaled statistical divergences give rise to convex c functions that especially interest us. We use such diver-

gences in two ways, one for distributions over pW,Wq, another for distributions over pΠ,Gq. We construct

statistical divergences for these two situations in similar ways.

We first consider repercussion distributions over pW,Wq. Consider a family of probabilities represented

26We thank Fabio Maccheroni and Massimo Marinacci for suggesting this formulation.
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as densities with respect to υ:

L :“

"

ℓ ě 0 :

ż

ℓpwqdυpwq “ 1

*

(9)

For a baseline density ℓo, a statistical divergence is a convex function Dpℓ | ℓoq of probability measures

ℓpwqdυpwq that satisfies

• Dpℓ | ℓoq ě 0

• Dpℓ | ℓoq “ 0 implies ℓ “ ℓo

Given ℓo, write:

ℓpwqdυpwq “ mpwqℓopwqdυpwq

for m “ ℓ
ℓo
, where we assume m is not infinite with positive υ measure so that the probability measure ℓ

is absolutely continuous with respect to ℓopwqdυpwq.27 The set of such densities is convex as is the set of

implied relative densities m. To define a scaled statistical divergence, we set

Dpℓ | ℓoq “ ξ

ż

W

ϕrmpwqsℓopwqdυpwq,

where ξ ą 0, and ϕ is a convex function defined over the nonnegative real numbers for which ϕp1q “ 0 and

impose ϕ2p1q “ 1 as a normalization. Examples of such ϕ functions and the divergences that they lead to

are

ϕpmq “ ´ logpmq Burg entropy

ϕpmq “ ´4
`?

m ´ 1
˘

Hellinger distance

ϕpmq “ m logpmq relative entropy

ϕpmq “
1

2

`

m2 ´ m
˘

quadratic.

When ξ “ 1, the divergence, D, is often called a ϕ or f -divergence. When ϕpmq “ m logpmq and ξ “ 1, we

obtain relative entropy

DKLpℓ|ℓoq “

ż

W

mpwq logrmpwqsdυpwq.

Relative entropy is commonly referred to as Kullback-Leibler divergence.

Remark 3.1. Other families of divergences can be used in conjunction with preference representations that

follow, for instance, from Bregman and Wasserstein divergences. The family ϕ or f divergences featured here

has very nice duality properties. as we will see, duality allows us to make formal connections to the extensive

literature on smooth ambiguity. Furthermore, these divergences are invariant to one-to-one transformations

of the space over which the probability distributions are defined. In addition, some members of this family

have useful links to statistical discrimination procedures. The link to likelihood-based statistical discrimination

enables statistical constructions that can help us calibrate concerns about robustness.

4 Basic formulation

We associate a probability measure τpw|θqdυpwq parametrized by θ P Θ with a random vector having possible

realizations w in the measurable space pW,Wq. Consider alternative real valued, Borel measurable functions

27For ℓ’s for which the implied m is infinite with positive υ measure, we define the divergence to be infinity.
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γ P Ψ that map w P W into an x P X. Think of γ as a prize rule and γpwq as an uncertain scalar

prize. For each prize rule γ, let dλpx | θq be the distribution of the prize x that is induced by distribution

τpw|θqdυpwq and the prize rule γ. The distribution of the prize thus depends both on the prize rule γpwq

and the distribution τpw | θqdυpwq. Within this setting, a decision δ gives rise to a specific pair pγδ, τδq. To

avoid cluttering our notation, we will drop the explicit dependence of γ and τ on δ in much of the following

discussion.

4.1 Not knowing a prior

Like the robust Bayesian decision maker of Berger (1984), Gilboa et al. (2010) and Cerreia-Vioglio et al.

(2013), our decision maker has multiple prior distributions because he does not trust the baseline prior.28

We label such distrust of a single prior “model ambiguity.” Here we describe a static version of what Hansen

and Sargent (2021, 2022) call structured uncertainty. “Structured” refers to a particular way that we reduce

the dimension of a set of alternative models relative to the much larger set considered when we explore

likelihood or model misspecification.

A baseline πo anchors a set of priors π over which a decision maker wishes to be robust. We describe

the set of priors by

πpdθq “ npθqπopdθq,

where n is in the set N defined by:

N .
“

"

n ě 0 : npθq ě 0,

ż

Θ

npθqdπopθq “ 1

*

. (10)

This specification includes a form of “structured” uncertainty in which all models have the same parametric

“structure” but in which each is associated with a different vector of parameter values.29 The decision maker

is certain about each of the specific models but is uncertain about a prior to put over them.

4.1.1 Not knowing a prior, I

To express a form of ambiguity aversion, the decision maker uses scaled statistical divergence

cpπq “ ξ

ż

Θ

ϕ rnpθqs dπopθq (11)

and has variational preferences ordered by30

min
nPN

ż

Θ

ˆ
ż

W

urγpwqsτpw | θqdυpwq

˙

npθqdπopθq ` ξ

ż

Θ

ϕrnpθqsdπopθq. (12)

Remark 4.1. It is convenient to solve the minimization problem (12) by using duality properties of convex

functions. Because the objective is separable in θ, we first compute

ϕ˚pu | ξq “ min
ně0

un ` ξϕpnq (13)

28See Berger (1984) for a robust Bayesian perspective. By applying a Gilboa and Schmeidler (1989) representation
of ambiguity aversion to a decision maker who has multiple predictive distributions, Cerreia-Vioglio et al. (2013) forge
a link between ambiguity aversion as studied in decision theory and the robust approach to statistics.

29See Hansen and Sargent (2022).
30See Theorem 4 of Cerreia-Vioglio et al. (2013) for their counterpart to this representation.
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where u “
ş

urγpwqsτpw|θqdυpwq`η, n is a nonnegative number, and η is a nonnegative real-valued Lagrange

multiplier attached to the constraint
ş

Θ
npθqdπopθq “ 1; ϕ˚pu | ξq is a concave function of u.31 The minimizing

value of n satisfies

n˚ “ ϕ1´1

ˆ

´
u

ξ

˙

.

The dual to the minimization problem on the right side of (12) is

max
η

ż

Θ

ϕ˚ purγpwqsτpw | θqdυpwq ` ηq dπopθq ´ η. (14)

Remark 4.2. (Smooth ambiguity preferences) When statistical divergence is scaled relative entropy, prefer-

ences over γpwq are ordered by

´ξ log

„
ż

Θ

exp

ˆ

´

ş

W
urγpwqsτpw | θqdυpwq

ξ

˙

dπopθq

ȷ

, (15)

a static version of preferences that Hansen and Sargent (2007) used to frame a robust dynamic filtering and

control problem. These preferences are also a special case of the smooth ambiguity preferences that Klibanoff

et al. (2005) justified with a set of axioms different from the ones we have used here. Furthermore, Maccheroni

et al. (2006a) and Strzalecki (2011) use this formulation to express concerns about model misspecification.32

In contradistinction, the robustness concerns being represented in this subsection are about a baseline prior

over known models and not about possible misspecifications of those models.

4.1.2 Not knowing a prior, II

We modify preferences by using a statistical divergence to constrain a set of prior probabilities. The resulting

preferences satisfy axioms of Gilboa and Schmeidler (1989). Consider:

Π “ tπ : dπpθq “ npθqdπopθq, n P N ,

ż

Θ

ϕrnpθqsdπopθq ď κu (16)

where κ ą 0 pins down the size of the set of priors. Preferences over γpwq are ordered by

min
πPΠ

ż

Θ

ˆ
ż

W

urγpwqsτpw | θqdνpwq

˙

dπpθq. (17)

Remark 4.3. It is convenient to solve the minimization problem on the right side of (17) by using duality

properties of convex functions. The minimized objective for problem (17) can again be evaluated using convex

duality theory. We now explicitly note the dependence of ϕ˚ on ξ and write the dual problem as:

max
η,ξě0

ż

Θ

ϕ˚

„
ż

W

urγpwqsτpw | θqdνpwq ` η | ξ

ȷ

dπopθq ´ η ´ ξκ.

Maximization over ξ ě 0 enforces a constraint on the set of admissible priors.

31The function ´ϕ˚
p´u | ξq is the Legendre transform of ξϕpnq.

32Strzalecki (2011) showed that when Savage’s Sure Thing Principle augments axioms imposed by Maccheroni
et al. (2006a), the cost functions capable of representing variational preferences are proportional to scalar multiples
of entropy divergence relative to a unique baseline prior. The Sure Thing Principle also plays a significant role in
Denti and Pomatto (2022)’s axiomatic construction of a parameterized likelihood to be used in Klibanoff et al. (2005)
preferences.
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Remark 4.4. Within a setting like that of Example 2.6, Ho (2023) used another approach to compute robust

adjustments to posterior expectations. He used this approach to assess the prior sensitivity of empirical

measurements of targets of interest to an investigator. Ho’s framework could also be used to define robust

preferences defined in terms of posterior expectations. For instance, measurements of interest could be

depicted as the maximizer of the negative of an expected loss function of a type common in statistics and

econometrics. More formally, Ho used relative entropy divergence to restrict a set of priors. He computed

expectations conditioned on a signal and minimized over possible implied posterior distributions given a

relative entropy constraint over the priors. The minimizing “prior” from this approach typically depends on

the signal,33 unlike the outcome from solving the ex-ante problem described in Remark 2.5. Dependence of

a minimizing prior on the signal like that in Ho’s formulation also emerges in some recursive formulations

of dynamic problems, a situation that can lead to statistically inadmissible decisions.34

4.2 Not knowing a likelihood

Instead of being about a prior as the previous subsection, we now suppose that the decision maker’s uncer-

tainty is about a likelihood function. We start by supposing that there is a single model that the decision

maker fears is misspecified. We then extend the analysis by introducing a parameterized family of probability

models that a decision maker thinks might be misspecified.

4.2.1 A misspecified model

Consider first a single model that might be misspecified. We study a decision maker who knows a parameter

θo. We also fix a decision δ, a determinant of τ that we continue to leave implicit in our notation. The

decision maker entertains the possible misspecification of

τopwq :“ τp¨ | θoq

in ways that the decision maker cannot precisely describe. But he can say that the alternative models that

he is most worried about are statistically close to his baseline model. The presence of too many statistically

nearby models would prevent a Bayesian from deploying a proper prior over them. (Later we will compare

our approach here to a robust Bayesian approach that requires a family of priors that are mutually absolutely

continuous.)

Notice that τo P L where L is given by (9). To formalize concerns that τopwq is misspecified, we entertain

the following set of repercussion probabilities:

mpwqτopwq, (18)

where

mpwq :“
ℓ

τo

ℓ P L for L given by (9). We represent the decision maker’s ignorance of specific alternative models by

assuming that he entertains a potentially infinite dimensional space L of what we will call “unstructured”

33See formula (2.7) in Ho (2023).
34See Epstein and Schneider (2003) for a formulation of a dynamic choice problem under ambiguity aversion that

deploys multiple priors recursively. Hansen and Sargent (2022) described a possible tension between admissibility
and dynamic consistency.
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models. A decision maker’s expected utility under alternative model ℓτopwqdυpwq is

ż

W

urγpwqsmpwqτopwqdυpwq “

ż

W

urγpwqsℓpwqdυpwq. (19)

Notice that (19) evaluates expected utility for a single choice for m.

To complete a description of preferences, we require a scaled statistical divergence. We consider alter-

native probabilities parameterized by entries in L. Under this perspective, a probability model corresponds

to a choice of m P M. Form a scaled divergence measure:

cpmq “ ξ

ż

W

ϕrmpwqsτopwqdυpwq (20)

where ξ ą 0 is a real number. Variational preferences that use (19) as expected utility over lotteries and

(20) as scaled statistical divergence are ordered by

min
m“ ℓ

τo
,ℓPL

ˆ
ż

W

urγpwqsmpwqτopwqdυpwq ` ξ

ż

W

ϕrmpwqsτopwqdυpwq

˙

. (21)

This formulation lets a decision maker evaluate alternative prize rules γpwq while guarding against a con-

cern that his baseline model τo is misspecified without having in mind specific alternative models τ . Key

ingredients are the single baseline probability τo and a statistical divergence over probability distributions

mpwqτopwqdυpwq.

Remark 4.5. As was the case for robust prior analysis, it is again convenient to solve the minimization

problem on the right side of (21) by using duality properties of convex functions. Because the objective is

separable in w, we can first compute

ϕ˚pu | ξq “ min
mě0

um ` ξϕpmq (22)

where u “ urγpwqs ` η, m is a nonnegative number, and η is a nonnegative real-valued Lagrange multiplier

that we attach to the constraint
ş

mpwqτopwqdυpwq “ 1; ϕ˚pu | ξq is a concave function of u. The minimizing

value of m now satisfies

m˚ “ ϕ1´1

ˆ

´
u

ξ

˙

.

The dual problem to the minimization problem on the right side of (21) is

max
η

ż

W

ϕ˚purγpwqs ` ηqτopwqdυpwq ´ η. (23)

Remark 4.6. We posed minimum problem (21) in terms of a set of probability measures on the measurable

space pW,Wq with baseline probability τopwqdυpwq. Since the integrand in the dual problem (23) depends on

w only through the control law γ, we could instead have used the same convex function ϕ to pose a minimiza-

tion in terms of a set of probability distributions dλpxq with the baseline being the probability distribution

over prizes induced x “ γpwq with distribution dλopxq. Doing that would lead to equivalent outcomes. Rep-

resentations in sections 2 and 2.5 are all cast in terms of induced distributions over prizes. Because control

problems entail searching over alternative γ’s, it is more convenient to formulate them in terms of a baseline

model τopwqdυpwq, as we originally did in subsection 4.2.
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Remark 4.7. If we use relative entropy as a statistical divergence, then

ϕ˚pu | ξq “ ´ξ exp

ˆ

´
u ` η

ξ
´ 1

˙

and dual problem (23) becomes35

max
η

´ξ

ż

W

exp

„

´
urγpwqs ` η

ξ
´ 1

ȷ

τopwqdυpwq ´ η “ ´ξ log

ˆ
ż

W

exp

„

´
urγpwqs

ξ

ȷ

τopwqdυpwq

˙

. (24)

The minimizing m in problem (21) is

m˚pwq “

exp
”

´
urγpwqs

ξ

ı

ş

W
exp

”

´
urγpwqs

ξ

ı

τopwqdυpwq

. (25)

The worst-case likelihood ratio m˚ exponentially tilts a lottery toward low-utility outcomes. Bucklew (2004)

calls this adverse tilting a statistical version of Murphy’s law:

“The probability of anything happening is in inverse proportion to its desirability.”

Remark 4.8. (Risk-sensitive preferences) The right side of equation (24), namely,

´ξ log

„
ż

W

exp

ˆ

´
urγpwqs

ξ

˙

τopwqdυpwq

ȷ

, (26)

defines what are known as “risk-sensitive” preferences over control laws γ. Since a logarithm is a monotone

function, these are evidently equivalent to Von Neumann and Morgenstern expected utility preferences with

utility function

´ exp

„

´
up¨q

ξ

ȷ

in conjunction with the baseline distribution τo over repercussions. Risk-sensitive preferences are widely used

in robust control theory (for example, see Jacobson (1973), Whittle (1990, 1996), and Petersen et al. (2000)).

Remark 4.9. Although our notation suppressed it, the m’s in the minimization problem can depend on the

decision δ, as dependence that carries over to implied densities, ℓ.

We could say that (18) gives a parameterization of alternative models expressed in terms of m or ℓ. But

since the divergence (21) is not expressed as a divergence in terms of priors over the parameter space, we

then could not view preferences (21) as a special case of the robust Bayesian decision theory described in

section 4.1.1. With potential misspecifications present, we have deliberately avoided imposing a baseline

prior over L.36 Instead each m induces an alternative Anscombe and Aumann roulette wheel. For reasons

that will become clear in the next subsection, we think of m’s as ways to introduce ambiguities about

lotteries, disarming the “roulette wheel” analogy.

Remark 4.10. Preferences that use a relative entropy divergence to capture concerns about model misspec-

ification are often referred to as “multiplier preferences.” Because of the different ways that we apply the

35See Dupuis and Ellis (1997, sec. 1.4) for a closely related connection between relative entropy and a variational
formula that occurs in large deviation theory.

36Divergence preferences typically are expressed in terms of probabilities distributions over the collection states,
which in the present case would be over the set L’s.
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language of decision theory, the preceding construction of multiplier preferences differs from constructions

provided by Maccheroni et al. (2006a) and Strzalecki (2011). Specifically, Maccheroni et al. (2006a) define

the domain of their cost function to be probabilities over the state space. In our analysis, the state space is

Θ, which means that their application of variational preferences gives rise to the robust Bayesian approach

in section 4.1.1.

4.2.2 A misspecified likelihood function

We now propose a generalization of the previous approach by starting from a parameterized family of

probabilities τpw | θq and prior probability measure π. Typically, a family of parameterized family of

probability models is specified so that each model is absolutely continuous with respect to an underlying

measure, a condition required to apply likelihood-based methods. Consider relative densities m̂ that for each

θ have been rescaled so that
ż

W

m̂pw | θqτpw|θqdυpwq “ 1. (27)

To acknowledge misspecification of a model implied by parameter θ, let m̂pw | θq represent an “unstructured”

relative perturbation with a parameterized family of densities:

ℓ̂pw | θq “ m̂pw | θqτpw | θq

where ℓ̂p¨ | θq P L for each θ P Θ. With this in mind, let xM be the space of admissible relative densities

m̂pw|θq associated with model θ for each θ P Θ. The pair pm̂, θq implies a probability distribution represented

as

m̂pw | θqτpw | θqdυpwq

over W conditioned on θ. When m̂ is not identically one, we view this as a misspecified likelihood function.

Uncertainty about the nature of this misspecification induces corresponding uncertainty in the induced

distribution, or the lottery in the language of decision theory.

Preferences that acknowledge this form of model misspecification are ordered by solutions to

min
m̂P xM

ˆ
ż

W

urγpwqsm̂pw | θqτpw | θqdυpwq ` ξ

ż

W

ϕrm̂pw | θqsτpw | θqdυpwq

˙

dπopθq, (28)

where the decision maker commits to the baseline prior distribution πo.

Remark 4.11. Please remember that we have left dependencies of τ and γ on δ implicit. Consequently,

constraint (27) holds for each δ P ∆, where τ depends implicitly on δ.

Remark 4.12. Another approach would be to use the baseline prior to construct:

ż

Θ

τpw | θqdπopθq

and treat this as the baseline model of section 4.2.1; this would correspond to a predictive distribution provided

that learning is not formally incorporated into the analysis or that the “prior” dπo has already conditioned

on what has been learned from available data.37

37See Chamberlain (2020) for a discussion of robustness relative to a predictive distribution.
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4.3 Robustness reconsidered

It is useful to compare two approaches to robustness that we have taken. The subsection 4.1.1 decision maker

starts with a baseline prior over parameter vectors and considers consequences of misspecifying that prior.

This decision maker takes as given the parameterized family of densities τpw | θq for θ P Θ. In contrast, the

section 4.2 decision maker searches over the entire space xM, subject to a penalty on a statistical divergence

from a baseline parameterized family of models. This decision maker considers only the baseline prior

distribution.

Our setup allows the parameter space to be infinite dimensional. Consider a prior πo that is consistent

with a Bayesian approach to “nonparametric” estimation and inference. Since τp¨ | θq can be viewed as a

mapping from Θ into L, a prior distribution πo over Θ implies a corresponding distribution over L. This

procedure necessarily assigns prior probability zero to a substantial portion of the space L. Specifying a

prior over the infinite dimensional space L brings challenges associated with all nonparametric methods,

including “nonparametric Bayesian” methods that must assign probability one to what is called a “meager

set.” A meager set is defined topologically as a countable union of nowhere dense sets and is arguably small

within an infinite-dimensional space.38 This conclusion carries over to situations with families of priors that

are absolutely continuous with respect to a baseline prior, as we have here. To us, prior robustness of this

form is interesting, although it is distinct from robustness to potential likelihood misspecifications. Indeed,

the section 4.2 decision maker who is concerned about model misspecification does not restrict himself to

priors that are absolutely continuous with respect to a baseline prior because doing so would exclude many

probability distributions he is concerned about.

The distinct ways in which the section 4.1 and 4.2 formulations use statistical discrepancies lead to

substantial differences in the associated variational preferences, namely, representation (12) or (17) for the

section 4.1 way of prior ambiguity and representation (28) way of ambiguity about the parameterized family

of densites, τp¨ | θq.

4.4 Two examples

It is instructive to apply the distinct approaches of sections 4.1 and 4.2 to simple examples. The first example

gives a simple illustration of preference inputs into robust control problems, and the second one explores a

forecasting problem.

4.4.1 Robust preferences

Assume the following constituents:

• Baseline model is τopwq „ Normalpµo, σ
2
oq

• Alternative structured models τpw | θiq „ Normalpµi, σ
2
i q, i “ 1, . . . , k, where potential parameter

values (states) are θi “ pµi, σiq and parameter space Θ “ tθi : i “ 1, 2, . . . , ku.. The baseline model

can be one of these k models.

• Baseline prior over structured models is a uniform distribution πopθiq “ 1
k , i “ 1, . . . , k.

• Prize is the induced distribution of cpwq “ γpwq.

• Utility function is urcpwqs “ logrcpwqs, where cpwq is consumption

38Sims (2010) critically surveys an extensive statistical literature on this issue. Foundational papers are Freedman
(1963), Sims (1971), and Diaconis and Freedman (1986).
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• Prize rule is γpwq “ exppγ0 ` γ1wq

To obtain an alternative prior πi for i “ 1, . . . , k, we set ni “ kπi so that the product of ni times the

baseline prior is:
ni

k
“ πi.

The expected utility conditioned on parameter vector θi is

ż

W

u rexppγ0 ` γ1wqs τpw|θqdυpwq “ γ0 ` γ1µi,

and a statistical divergence applied to alternative priors is

1

k

k
ÿ

i“1

ϕ pkπiq .

A section 4.1.1 decision maker with variational preferences orders prize rules γpwq “ exppγ0`γ1wq according

to

min
πiě0,

řk
i“1 πi“1

γ0 ` γ1

k
ÿ

i“1

πiµi `
ξ

k

k
ÿ

i“1

ϕ pkπiq .

For a relative entropy divergence, prize rules are ordered by

´ξ log
k

ÿ

i“1

ˆ

1

k

˙

exp

„

´
1

ξ
pγ0 ` γ1µiq

ȷ

“ γ0 ´ ξ log
k

ÿ

i“1

ˆ

1

k

˙

exp

ˆ

´
γ1µi

ξ

˙

,

and the associated minimizing πi is

exp
´

´
γ1µi

ξ

¯

řk
i“1 exp

´

´
γ1µi

ξ

¯ .

A section 4.1.2 decision maker, in effect, chooses the multiplier ξ to hit a relative entropy constraint on the

prior.

A criterion that expresses robustness to prior misspecification with a relative entropy divergence ranks

prizes as either

´ξ log
k

ÿ

i“1

ˆ

1

k

˙

exp

„

´
1

ξ
pγ0 ` γ1µiq

ȷ

,

or,

max
ξ

´ξ log
k

ÿ

i“1

ˆ

1

k

˙

exp

„

´
1

ξ
pγ0 ` γ1µiq

ȷ

´ ξκ

When we use relative entropy as a statistical divergence, variational preferences for a section 4.2 decision

maker are ordered by

γ0 ` γ1µ0 ´
1

2ξ
pσ0γ1q2

Larger values of the positive scalar ξ call for smaller adjustments ´ 1
2ξ pσoγ1q2 of expected utility γ0 ` γ1µo

for concerns about misspecification of τopwqdυpwq.
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4.4.2 Robust forecasting

Consistent with Example 2.5, partition

w “

«

w1

w2

ff

,

where w1 is scalar outcome of a variable to be forecast and w2 constitutes data underlying a forecast. Assume

that:

• The baseline model is τopwq.

• Alternative structured models are τpw | θq for a parameter space Θ “ tθi : i “ 1, 2, . . . , ku. The

baseline model can be one of the k models.

• The baseline prior over structured models is a uniform distribution πopθiq “ 1
k , i “ 1, . . . , k.

• The prize is the induced distribution of the forecast error w1 ´ δpw2q, where δ is the forecast rule.

• The utility function is ´rw1 ´ δpw2qs2.

• The prize rule is γδpwq “ w1 ´ δpw2q.

To study a subsection 4.1.1 decision maker, we proceed as follows. As in the subsection 4.4.1 example,

to obtain an alternative prior πi for i “ 1, . . . , k, we set ni “ kπi so that ni times the baseline prior is

ni

k
“ πi,

and a statistical divergence is

1

k

k
ÿ

i“1

ϕ pkπiq .

Given a forecast rule δ, for each model form the second moment of the forecast error:

σ2
δ piq “

ż

W

rw1 ´ δpw2qs2dτpw | θiq,

and then solve

min
πiě0,

řk
i“1 πi“1

´

k
ÿ

i“1

πiσ
2
δ piq `

ξ

k

k
ÿ

i“1

ϕ pkπiq .

For a relative entropy divergence, prize rules are ordered by

´ξ log
k

ÿ

i“1

ˆ

1

k

˙

exp

„

1

ξ
σδpiq

ȷ

,

and the associated minimizing πi is

exp
”

1
ξσδpiq

ı

řk
i“1 exp

”

1
ξσδpiq

ı ,

which places more emphasis on larger second moments of forecast errors than would the equal weighting that

is implied by setting ξ to be arbitrarily large. A section 4.1.2 decision maker can be interpreted as choosing

the multiplier ξ to hit a relative entropy constraint on the prior.
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When we use relative entropy as statistical divergence, variational preferences for a section 4.2 decision

maker with model misspecification concerns are ordered by

´ξ log

ż

W

exp

ˆ

1

ξ
rw1 ´ δpw2qs2

˙

dτopwq. (29)

Criterion (29) reshapes a baseline density to place more weight on larger squared forecast-errors. When the

baseline probability measure dτo is a normal distribution and δ is the mean conditioned on the forecasting

variables under the reshaped distribution, the change in probability measure preserves normality and leaves

the conditional mean unaltered; however, it increases the conditional variance.39

5 Hybrid models

We now use components described above as inputs into a representation of preferences that includes uncer-

tainty about a prior to put over structured models as well as concerns about possible misspecifications of

those structured models. We use probability perturbations in the form of alternative relative densities in
xM to capture uncertainty about models and probability perturbations in the form of alternative relative

densities N to capture uncertainty about a prior over models.

Let πopθq is a baseline prior over θ. To conduct a prior robustness analysis, consider alternative priors

dπpθq “ npθqdπopθq

for n P N .

Consider relative densities m̂ that for each θ have been rescaled so that

ż

W

m̂pw | θqτpw|θqdυpwq “ 1.

To acknowledge misspecification of a model implied by parameter θ, let m̂pw|θq to represent an “unstruc-

tured” perturbation of that model. With this in mind, let xM be the space of admissible relative densities

m̂pw|θq associated with model θ for each θ P Θ. We then consider a composite parameter pm̂, θq for m̂ P xM
and θ P Θ. The composite parameter pm̂, θq implies a distribution m̂pw | θqℓpw | θqτpw|θqdυpwq over W

conditioned on θ.

To measure a statistical discrepancy that comes from applying m̂ to the density ℓ of w conditioned on θ

and by applying n to the baseline prior over θ, we first acknowledge possible misspecification of each of the

θ models by computing:

T1rγspθq “ min
m̂P xM

ż

W

purγpwqsm̂pw | θq ` ξ1ϕ1 rm̂pw | θqsq ℓpw | θqτpw|θqdυpwq

The T1 operator maps prize rules γ into functions of θ. We use this for both hybrid approaches.

39An extension of this observation shows that in this special case, the conditional mean under the baseline normal
distribution is robust to misspecification concerns represented with relative entropy.
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5.1 First hybrid model

We can rank alternative prize rules γ by including the following adjustment for possible misspecification of

the baseline prior πo:

T2 ˝ T1rγs “ min
nPN

ż

Θ

pT1rγspθqnpθq ` ξ2ϕ2rnpθqsq dπopθq.

Here ϕ1 and ϕ2 are possibly distinct convex functions with properties like the ones that we imposed on ϕ in

section 3.

Such a two-step adjustment for possible misspecification leads to an implied one-step variational repre-

sentation with a composite divergence that we can define in the following way. For m̂ P xM and n P N , form

a composite scaled statistical discrepancy

pDpm̂, n | τ, πoq “ξ1

ż

Θ

ˆ
ż

W

ϕ1 rm̂pw | θqs τpw | θqdυpθq

˙

npθqdπopθq ` ξ2

ż

Θ

ϕ2 rnpθqs dπopθq (30)

for ξ1 ą 0, ξ2 ą 0. Then variational preferences are ordered by

min
m̂P xM,nPN

ż

Θ

ˆ
ż

W

urγpwqsm̂pw | θqτpw | θqdυpwq

˙

npθqdπopθq ` pDpm̂, n | τ, πoq

In Appendix A we establish that divergence (30) is convex over the family of probability measures that

concerns the decision maker.

Remark 5.1. As noted earlier, Cerreia-Vioglio et al. (2013) posit a state space that includes parameters

but also can include what we call repercussions. Thus, think of the state as the pair pw, θq. In this setting,

one could apply a statistical divergence to a joint distribution over possible realizations of pw, θq. Since the

joint distribution can be factored into the product of a distribution over W conditioned on θ and a marginal

distribution over Θ, such an approach can capture robustness in the specification of both τ and πo, albeit

in a very specific way. For instance, for the relative entropy divergence, this results in the joint divergence

measure:

pDpm̂, n | τ, πoq “ξ1

ż

Θ

„
ż

W

m̂pw | θq log m̂pw | θqτpw | θqdυpwq

ȷ

npθqdπopθq ` ξ2

ż

Θ

npθq log npθqdπopθq

for ξ1 “ ξ2.

In earlier work, we have demonstrated important limits to such an approach in dynamic settings.40 As

we have shown here, we find both robustness to model misspecification and robustness to prior specification

to be interesting in their own rights and see little reason to group them into a single ϕ divergence.

5.2 Second hybrid model

As an alternative to the section 5.1 approach, we could instead constrain the set of priors to satisfy:

ż

Θ

ϕ2rnpθqsdπopθq ď κ (31)

so that a decision maker’s preferences over prize rules γ would be ordered by:

min
nPN

ż

Θ

T1 rγs pθqnpθqdπopθq, (32)

40See Hansen and Sargent (2007, 2011) and Hansen and Miao (2018).
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where minimization is subject to (31).

As in Cerreia-Vioglio et al. (2022), preferences ordered by (32) subject to constraint (31) can be thought

of as using a divergence between a potentially misspecified probability distribution and a set of predictive

distributions that have been constructed from priors over a parameterized family of probability densities

within the constrained set Θ.41 Notice how the first term in discrepancy measure (30) uses a prior ndπo to

construct a weighted averaged over θ P Θ of the following conditioned-on-θ misspecification measure

ξ1

ˆ
ż

W

ϕ1 rm̂pw | θqs τpw | θqdυpwq

˙

.

The objective in problem (32) is to make the divergence between a given distribution and each of the

parameterized probability models small on average by minimizing over how to weight divergence measures

indexed by θ subject to the constraint that π P Π.42 Equivalently, in place of (30), this approach uses cost

function
rDpm̂ | τ, πoq “ ξ1 min

nPN

ż

Θ

ˆ
ż

W

ϕ1 rm̂pw | θqs dℓpw | θq

˙

npθqdπopθq.

Remark 5.2. It is possible to simplify computations by using dual versions of the hybrid approaches de-

lineated in subsections 5.1 and 5.2. Such formulations closely parallel those described in our discussions of

robust prior analysis and potential model misspecification in remarks 4.5, 4.6, and 4.7.

6 Dynamic extension

Although a complete treatment of dynamics deserves its own paper, here we describe briefly how to ex-

tend the familiar recursive utility specification of Kreps and Porteus (1978) and Epstein and Zin (1989) to

accommodate our two robustness concerns to an intertemporal environment. We accomplish this by using

conditional counterparts to the preceding analysis to explore consequences of mis-specifying Markov transi-

tion dynamics and prior distributions over unknown parameters. The resulting preferences have a recursive

structure. There is an inherent tension between dynamic consistency and statistical consistency in these

preferences that we discuss elsewhere (Hansen and Sargent (2022)).

6.1 A deterministic warm up

We represent preferences using recursions that apply to continuation values. Abstracting from uncertainty,

a commonly used intertemporal preference specification is captured by the value recursion:

Vt “

”

p1 ´ βq pCtq
1´ρ

` β pVt`1q
1´ρ

ı
1

1´ρ

for 0 ă β ă 1 and ρ ą 0. Vt is the date t continuation value and Ct is date t consumption. The parameter

β governs discounting and the parameter ρ is the reciprocal of the intertemporal elasticity of substitution.

Applying the recursion over an infinite horizon leads to the following expression for the continuation value:

Vt “

«

p1 ´ βq

8
ÿ

j“0

βj pCt`jq
1´ρ

ff
1

1´ρ

41Cerreia-Vioglio et al. (2022) provide an axiomatic justification of set-based divergences as a way to capture
model misspecification within a Gilboa et al. (2010) setup with multiple models.

42By emphasizing a family of structured models, this set-divergence concept differs from an alternative that could
be constructed in terms of an implied family of predictive distributions.
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Since the logarithmic transformation is increasing, we can use the following recursion in the logarithm pVt of

the continuation value to represent preferences:

pVt “
1

1 ´ ρ
log

”

p1 ´ βq exp
”

p1 ´ ρq pCt

ı

` β exp
”

p1 ´ ρq pVt`1

ıı

where pCt is the logarithm of consumption.

6.2 Introducing uncertainty

Let At denote a sigma algebra capturing information available to the decision maker at date t. Think of

the repercussion Wt`1 as generating new information relative to At that is pertinent for constructing At`1.

Think of the continuation value, pVt`1 as the counterpart to a prize that can depend on a repercussion

vector Wt`1. A continuation value pVt`1 is constrained to be measurable with respect to At`1. We explore

model misspecification by using nonnegative random variables Mt`1 that are At`1 measurable and satisfy

E pMt`1 | At, θq “ 1. We explore prior/posterior misspecification using nonnegative random variables Nt

that are measurable with respect At augmented by knowledge of θ and satisfy E pNt | Atq “ 1.

To accommodate robustness concerns in decision making, define preferences with three recursions for

updating the continuation value

pVt “
1

1 ´ ρ
log

”

p1 ´ βq exp
”

p1 ´ ρq pCt

ı

` β exp
“

p1 ´ ρqRt

‰

ı

pRt “ min
Mt`1ě0,EpMt`1|At,θq“1

E
”

Mt`1
pVt`1 ` ξ1ϕm pMt`1q | At, θ

ı

Rt “ min
Ntě0,EpNt|Atq“1

E
”

Nt
pRt ` ξ2ϕn pNtq | At

ı

(33)

where pRt adjusts next-period’s continuation value for potential model misspecification captured by condi-

tioning the unknown parameter θ, and Rt adjusts for “prior robustness.” Date t “priors” actually condition

on At. The three recursions affect values in different ways:

• the first adjusts for discounting and intertemporal substitution;

• the second adjusts for model misspecification;

• the third adjusts for prior misspecification.

The second and third recursions provide a dynamic counterpart to the approach in section 5.1. Replacing

the third recursion in (33) with a constrained counterpart gives a dynamic counterpart to the approach in

section 5.2.43

6.3 Shadow valuation

Following Hansen and Richard (1987) and others, we can use stochastic discount factors to value an as-

sets having an uncertain one-period ahead payoff. We deduce shadow values by computing a one-period

intertemporal marginal rate of substitution. Of particular interest to us are contributions that our model-

misspecification operator pRt and our prior-robustness operator Rt make to this shadow value.

43See Hansen and Sargent (2021, 2022) for elaboration and application of this alternative approach.
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A contribution to the shadow value that comes from the first recursion in (33) looks at marginal contribu-

tions in adjacent time periods. Date t marginal contributions of Ct and Rt to the current period continuation

value are:

MCt “ p1 ´ βq exp
”

pρ ´ 1q pVt

ı

pCtq
´ρ

MRt “ β exp
”

pρ ´ 1q pVt

ı

exp
“

p1 ´ ρqRt

‰

.

Since our aim is to infer the one-period intertemporal marginal rate of substitution, we look across adjacent

time periods using consumption at each date as a numeraire:

MCt`1MRt

MCt
“ β

ˆ

Ct`1

Ct

˙´ρ

exp
”

pρ ´ 1q

´

pVt`1 ´ Rt

¯ı

.

This would give the deterministic intertemporal marginal rate of substitution if we were to substitute pVt`1

for Rt in this expression.

For the uncertainty adjustments, we deduce the marginal contributions by applying the Envelope The-

orem to the minimization problems in the second and third recursions in (33):

• M pVt`1 “ M˚
t`1

• M pRt “ N˚
t

Thus, the minimizing changes in probabilities contribute directly to the shadow valuation. The resulting

increment to a stochastic discount factor process is:

St`1

St
“ β

ˆ

Ct`1

Ct

˙´ρ

exp
”

pρ ´ 1q

´

pVt`1 ´ Rt

¯ı

M˚
t`1N

˚
t

where

• M˚
t`1 adjusts for possible model misspecification

• N˚
t adjusts for possible prior misspecification

7 An approach to uncertainty quantification

Subsection 5 posed a minimum problem that comes from variational preferences with a two-parameter cost

function that we constructed from two statistical divergences. Along with a robust prize rule, the minimum

problem produces a worst-case probability distribution that rationalizes that prize rule. Strictly speaking,

the decision theory tells us that particular values of cost function parameters pξ1, ξ2q express a decision

maker’s concerns about uncertainty, broadly conceived. In the spirit of Good (1952), it can be enlightening

to study how worst-case distributions depend on pξ1, ξ2q. The concluding paragraph of Chamberlain (2020)

recommends exploring sensitivities with respect to a likelihood and with respect to a prior. Sensitivity of

worst-case distributions to pξ1, ξ2q provides evidence about the forms of subjective uncertainty and potential

model misspecification that should be of most concern. That can provide decision makers and outside

analysts better understandings of the consequences of uncertainty aversion.

Motivated partly by a robust Bayesian approach, we have used decision theory to suggest a new approach

to uncertainty quantification. By varying the aversion parameters pξ1, ξ2q, we can trace out two-dimensional
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representations of prize rules and worst-case probabilities. A representation of worst-case probabilities in-

cludes both worst-case priors and a worst-case alteration to each member of a parametric family of models. A

decision maker can explore alternative choices and associated expected utilities by studying how pξ1, ξ2q trace

out a two-dimensional set of worst-case probabilities. In this way, we reduce potentially high-dimensional

subjective uncertainties to a two-dimensional collection of alternative probability specifications that should

most concern a decision maker along with accompanying robust prize rules for responding to those uncer-

tainties.

8 Relation to statistical learning

We briefly compare our approach to related analyses coming from statistical learning theory and, in partic-

ular, PAC (probably approximately correct) Bayesian analysis. See Guedj (2019) for a recent survey of PAC

Bayesian methods and see McAllester (1999) and Cantani (2007), among others, for fundamental contribu-

tions. While their formulations of a decision problem differ from ours, there are intriguing connections.

To understand some of the connections, partition a random vector, Y , with realization y as

Y 1 :“
”

Y1
1 Y2

1 Y2
1 ... YK

1
ı

,

and regard it as “training data” for a machine learning method. For an objective function, construct an

“empirical risk” criterion:

pΦpY, θq :“
1

K

K
ÿ

k“1

ΦpYk, θq.

The object of interest θ can be an element of a collection of functions. Define the population counterpart to
pΦpY, θq as Φpθq, the Law of Large Numbers limit of pΦpW, θq as K Ñ 8. Suppose that an idealized target

decision solves:

θ˚ “ argmin
θPΘ

Φpθq.

This estimator appears in an extensive literature on M estimation; the idealized optimized decision θ˚

defines a parameter or decision of interest. In this setting, we use decisions and parameters interchangeably,

in contrast to our formulation.

A common approach to M estimation is to solve the finite sample analog problem

θ̂ “ argmin
θPΘ

pΦpY, θq.

This approach struggles when the space is Θ is “large”, the typical case with machine learning methods that

fit flexible functional forms with many parameters. More generally, statistical learning often seeks meaningful

worst-case bounds of finite sample approximates to a solution of the population problem.

Motivated by concerns for applications when the space Θ in standard M estimation is expansive, the

PAC Bayesian approach proceeds differently. The approach seeks a probability distribution π over the space

Θ given the data W , rather than a single value, θ. By analogy to Bayesian methods, such a distribution is

referred to as a ‘generalized posterior.’ The approach imposes a baseline prior distribution πo over the space

Θ, and considers generalized posteriors in a family:

dπpθq “ npθqdπopθq
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for
ş

ndπo “ 1.

Instead of solving the finite sample M estimation problem, consider a family of problems:

min
n,

ş

ndπo“1

ż

Θ

pΦpY, θqdπpθq ` ξ

ż

Θ

log npθqnpθqdπopθq (34)

indexed by ξ. Applying the same mathematics we have used in previous sections, minimization brings

exponential tilting:

n˚pθq “

exp
”

´ 1
ξ

pΦpY, θq

ı

ş

Θ
exp

”

´ 1
ξ

pΦpY, θ̃q

ı

dπopθ̃q

The Bayesian PAC uses this minimizer to construct an approximation to a minimizer of the underlying

(infeasible) population problem.

Problem (34) provides a way to incorporate probabilistic restrictions into the M estimation problem.

There are some interesting special cases. When pΦpW, ¨q is the negative of the log likelihood function and

ξ “ 1, we are led to a standard calculation of a Bayesian posterior. Zhang (2006), Grünwald (2011) and

others propose and defend a ‘safe Bayesian framework’ by exploring other values of ξ ą 1 based on robustness

considerations. The Bayesian PAC approach studies alternative specifications of pΦpW, ¨q based on more

general loss functions. As in M-estimation more generally, this construction may embed some robustness

concerns. When ξ tends to infinity the generalized posterior collapses to the prior distribution. When ξ

tends to zero the prior becomes inconsequential, and the generalized posterior collapses to the solution the

finite-sample M estimation solution. The penalty parameter ξ governs a tradeoff between the importance of

the objective pΦpY, ¨q and the baseline prior πo. The PAC-Bayesian literature discusses extensively the role

of the parameter in approximation.

While our approach shares much mathematical structure with PAC-Bayesian methods, it differs in ways

that are significant for applications. The M estimation formulation ties its decision problem directly to an

underlying unknown “parameter” and contains no counterpart to the maximization steps that we use to

represent uncertainty aversions. Furthermore, the PAC-Bayesian Problem (34) conditions on W and focuses

exclusively on uncertainties about unknown states or parameters. Also, PAC-Bayesian methods use Problem

(34) as a device to approximate a solution to an infeasible population problem, which is not a component of

our analysis.

To elaborate more on the differences between PAC-Bayesian methods and our approach, we study decision

problems in which parameters are not the objects of ultimate interest but instead are just intermediate

“means to ends” of constructing decision rules for making choices of economics quantities that are robust

to misspecifications. Rather than replacing a log-likelihood function with an M estimation objective and

possibly down-weighting its importance, we introduce potential likelihood misspecifications explicitly; we

also formally acknowledge possible misspecification of priors. By appropriately adjusting the divergence

“cost” structure, our approach allows us to explore tradeoffs between concerns about misspecifications of

likelihoods, on the one hand, and priors, on the other hand.

9 Concluding remarks

Except for our brief section 6 excursion, we have confined ourselves to a “static” setting that allowed us to

apply and extend a framework created by Maccheroni et al. (2006a) to distinguish ambiguity about a prior and

from concerns for misspecifications of likelihood functions. In doing this we reinterpret objects that appear

29



in the Anscombe and Aumann (1963) formulation to represent both types of doubts, distinct specification

concerns that are familiar to applied statisticians. We intend the present paper as a prolegomenon to a sequel

in which we shall extend and reinterpret the dynamic variational preferences of Maccheroni et al. (2006b).

That dynamic formulation will connect to a dynamic measure of statistical divergence based on relative

entropy and the recursive preferences of Kreps and Porteus (1978) and Epstein and Zin (1989). While the

issues studied here will arise that framework, additional ones such as dynamic consistency and appropriate

choices of state variables for recursive formulations of preferences also appear.44

44To apply quantum methods dynamic asset pricing models, Ghysels and Mogan (2023) deploy extensions of the
formulation developed here. An interesting notion of a “state” again comes into play.
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A Convexity of composite divergence

To verify convexity of (30), consider two joint probability measures on W ˆ Θ:

m̂0pw | θqτpw | θqdυpwqn0pθqdπopθq

m̂1pw | θqτpw | θqdυpwqn1pθqdπopθq.

A convex combination of these two probability measures is itself a probability measure. Use weights 1 ´ α

and α to construct a convex combination and then factor it in the following way. First, compute the marginal

probability distribution for θ expressed as nαpθqdπopθq:

nαpθq “ p1 ´ αqn0pθq ` αn1pθq.

By the convexity of ϕ2, it follows that

ϕ2rnαpθqs ď p1 ´ αqϕ2rn0pθqs ` αϕ2rn1pθqs. (35)

Next note that

m̂αpw | θq “

„

p1 ´ αqn0pθq

p1 ´ αqn0pθq ` αn1pθq

ȷ

m̂0pw | θq

`

„

αn1pθq

p1 ´ αqn0pθq ` αn1pθq

ȷ

m̂1pw | θq.

By the convexity of ϕ1

ϕ1rm̂αpw | θqs ď

„

p1 ´ αqn0pθq

p1 ´ αqn0pθq ` αn1pθq

ȷ

ϕ1rm̂0pw | θqs

`

„

αn1pθq

p1 ´ αqn0pθq ` αn1pθq

ȷ

ϕ1rm̂1pw | θqs.

Thus,

ϕ1rm̂αpw | θqsnαpθq ď p1 ´ αqn0pθqϕ1rm̂0pw | θqs ` αn1pθqϕ1rm̂1pw | θqs. (36)

Multiply (36) by ξ1 and (35) by ξ2, add the resulting two terms, and integrate with respect to τpw |

θqdυpwqdπopθq to verify that divergence (30) is indeed convex in probability measures that concern the

decision maker.
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