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Abstract

This paper uses additive functionals and dynamic mode decompositions to represent

and analyze the co-evolution of cross-sections of private earned income, post-tax-and-

transfer income, and consumption in the Consumer Expenditure Survey (CEX) from

1990 to 2021. We quantify how cross-sectional inequality and redistribution dynamically

interact with aggregate income. Cross-section dynamics contribute only modestly to

the innovation variance of aggregate income growth, while an innovation to aggregate

income affects cross-section dynamics more. We construct value functions for heteroge-

neous synthetic consumers who are exposed to both serially correlated and i.i.d risks in

their income and consumption growth rates. For the median household, we find that

the cost associated with serially correlated risk is orders of magnitude larger than costs

associated with i.i.d risk. We then compare, for each quantile, benefits of eliminating

risks in their consumption growth with benefits from their participation in the US tax and

transfer system. In absolute values, benefits from the latter, which are positive (negative)

for low (high) quantile consumers, far exceed those from the former.
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1 Introduction

This paper estimates a parametric statistical model of cointegrated CEX cross-section quan-

tiles and uses it to organize evidence about how aggregate income dynamically interacts

with redistribution and social insurance across households.1 We detect patterns like those

that motivated 20th century representative agent macroeconomic models and the associated

“neo-classical synthesis” policy perspective that recommends separating macroeconomic

monetary-fiscal policies for moderating business cycles from microeconomic policies that

redistribute income across individuals and insure individuals against idiosyncratic shocks.2

We construct an example of what Koopmans (1947) called a purely descriptive “Kepler

stage” model of business cycles to distinguish it from the “Newton stage” structural models

that Koopmans and his colleagues at the Cowles Commission constructed to study conse-

quences of historically unprecedented government policies. Burns and Mitchell’s (1946) book

as providing a set of averaging procedures for detecting a single business cycle “factor” that

drove co-movements of a collection of variables influenced by “the” business cycle.3 Borrow-

ing ideas about additive and multiplicative functionals from Hansen (2012), we use trend,

martingale and stationary components of additive functionals to represent how aggregate

income interacted dynamically with our CEX cross-sections.4 We use only the CEX data and

synthesize aggregate (earned) income as the cross-section Chisini mean of private earned

income from the CEX quantiles.5 We posit that aggregate income is an additive functional,

driven by a first-order vector autoregression of aggregate income growth and quantiles of

the three cross-sections (scaled by aggregate income). Our specification implies that CEX

quantiles are also additive functionals, which we decompose into their trend, martingale, and

stationary components.6 We use these representations to quantify the dynamic interaction
1These CEX consumption and post-tax-and-transfer income cross-sections measure outcomes after the operation of

monetary-fiscal policies aimed at stabilizing business cycles as well as the redistribution and insurance already present in the
US tax and transfer system. We urge the reader to keep this in mind when looking at our welfare comparisons in Section 6.

2For accounts of the “neoclassical synthesis” and its origins, see Lucas (1987) and Sargent (2015, 2024, In Press).
3As emphasized by Koopmans (1947) and Sargent and Sims (1977), the role of a purely descriptive parametric statistical

model like ours is to detect and organize patterns that should be matched by a “structural” statistical model, cast in terms of
parameters that can be interpreted as describing purposes and constraints of economic decision makers who live inside the
model.

4By basing our statistical representations on Hansen (2012), we avoid pitfalls described by Hamilton (2018) that are
associated with the Hodrick-Prescott pre-filtering method that is still widely used in macroeconomics.

5Thus, our measure of this “aggregated” variable emerges from measurements of diverse disaggregated variables, in the
tradition of Burns and Mitchell.

6Satisfaction of technical conditions described by Sargent and Selvakumar (2024) justify our use of a first-order VAR rather
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between cross-section and aggregate income, and study the heterogeneous welfare benefits

of social and private insurance as well as insurance against both serially correlated and i.i.d

risk to consumption growth.

Section 2 describes our data and how we construct quantiles. Section 3 presents our

approach to constructing and decomposing the additive functionals. Section 4 describes

dynamic mode decompositions and their connection to vector autoregressions. Section 5

presents our findings on the influence of aggregate income on cross-sections and vice versa.

Section 6 constructs welfare comparisons in the spirit of Lucas (1987, Sec. III) and Lucas

(2003), who studied welfare of a representative consumer exposed to i.i.d. risk in consumption

growth. We extend their framework to study diverse consumers who are also exposed to

serially correlated risk in consumption growth. Finally, we compare hypothetical welfare

gains of eliminating risks in individual consumption growth with gains from participating

in the existing US tax and transfer system, or from increasing trend rates of consumption

growth. Section 7 concludes. Seven appendices provide technical details and describe feasible

and worthwhile extensions.

2 Data Description and Compression

The Consumer Expenditure Survey (CEX) is a nationally representative survey of U.S. house-

holds conducted by the Bureau of Labor Statistics. We study quarterly waves of the Consumer

Expenditure Survey (CEX) from 1990 to 2021. Our statistical analysis focuses on three vari-

ables:7 (1) Private income – labor income plus financial income, (2) Post-tax income – private

income plus transfers minus taxes, and (3) Consumption. For each time period t, we rank

all households in the sample by their real consumption level c1,t, c2,t, . . . , cĨ,t, where Ĩ is the

number of households, deflated by the PCE chain-type price index. Then we split them into

one hundred equally sized bins that we call percentiles. If Ĩ is divisible by 100, then each per-

centile contains I = Ĩ
100 households. If not, the bottom 99 bins each contain I households and

the 100th bin contains the remainder. Except for this detail, define yconsp,t as mean consumption

than the higher-order VAR that appears in the more general additive functional of Hansen (2012).
7See Appendix A for details on the data construction and preparation.
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of households in percentile p:

yconsp,t = log
1

I

I∑
j=1

cj+I(p−1),t for p = 1, . . . , 100 (1)

and call it the log real consumption of the p-th percentile of the consumption distribution. We

transform the private income and post-tax income observations in a similar way. To diminish

influences of outliers, we remove the 1st, 2nd, and 99th percentile bins, leaving M = 97

quantiles for each variable. The vector ycons
t = [ycons3,t , . . . , ycons97,t ] collects all the remaining

quantiles in a (1 × M) vector for consumption, which we repeat for private and post-tax

income. For each time period t, we define a Chisini mean (Chisini, 1929) of the cross-section

of private income8:

Yt =
1

M

M∑
p=1

yprivp,t (2)

Figure 1 compares nominal versions of our Chisini means from the CEX quantiles with

corresponding aggregates from the National Income and Product Accounts (NIPA).9 Levels of

the series differ in panel (1a), especially for consumption, but their cyclical patterns in panel

(1b) are broadly similar. The differences in consumption levels can be attributed to coverage

and definitional differences. NIPA consumption includes services to nonprofit institutions,

government expenditures (Medicare/Medicaid), employer expenditures, owner-occupied

rent, and financial services and insurance, which are not included in the CEX measure.

According to Carroll et al. (2015), these differences account for somewhat more than a quarter

of the gap between the two series from 1992 to 2010.

8In the case where Ĩ is divisible by 100, the Chisini mean is equal to the mean of acros Ĩ households.
9We compute private income using NIPA Table 2.1 on Personal Income and its Disposition. NIPA private income =

Personal income (1) - (Employer) supplements to wages and salaries (6) - Government social benefits (17) + Contributions to
government social insurance (25). The numbers in parentheses indicate the line item in NIPA Table 2.1.
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(a) Levels

(b) Deviations from deterministic trends

Figure 1: NIPA and Chisini CEX means
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3 A Descriptive Statistical Model

To prepare our data, we first subtract Yt from all cross section quantiles:10

ỹpriv
t = ypriv

t −Yt (5)

ỹpost
t = ypost

t −Yt (6)

ỹcons
t = ycons

t −Yt (7)

Next, define ỹt to be the (1× 3M ) vector

ỹt =
[
ỹpriv
t − νpriv, ỹpost

t − νpost, ỹcons
t − νcons

]
where νi is a 1 ×M vector of time-series means for each quantile of i = {priv, post, cons}.

Then define yt to be the (3M +1)× 1 vector of aggregate income growth and our three scaled

CEX cross-sections:

yt =

Yt − Yt−1 − ν

ỹ⊤
t

 , (8)

where ν is the in-sample mean of Yt − Yt−1. We assume that {Yt} is an additive functional

defined by

yt+1 = Byt+at+1 (9)

Yt+1 − Yt − ν = e1Byt+e1 at+1, (10)

10By construction, the cross-sectional mean

1

M

M∑
j=1

ỹprivj,t = 0 ∀t (3)

We compute cross-quantile means and standard deviations for each variable. For example, for private income we compute

µpriv
t :=

1

M

M∑
i=1

ỹprivi,t , σpriv
t :=

√√√√ 1

M

M∑
i=1

(ỹprivit − µpriv
t )2. (4)

We report these moments in Figure 11 in appendix A.
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where E[at y
⊤
t−j ] = 0 ∀j ≥ 1, E[at a

⊤
t ] = Ω, e1 =

[
1 0 · · · 0

]
is a (3M + 1)× 1 selection

vector and all eigenvalues of the (3M + 1) × (3M + 1) matrix B are strictly less than 1 in

modulus so that {yt} is an asymptotically stationary stochastic process11. Following Hansen

(2012), decompose Yt as12:

Yt = tν︸︷︷︸
Trend

+

t∑
j=1

Haj︸ ︷︷ ︸
Martingale

+ g yt︸︷︷︸
Stationary

+(g y0+Y0)︸ ︷︷ ︸
Constant

(11)

H = e1 + e1B(I−B)−1

g = e1B(I−B)−1

The resolvent operator (I−B)−1 appears in the formulas for H and g; tν is a deterministic

trend,
∑t

j=1Haj is a martingale that we regard as a “stochastic trend”, g yt is stationary, and

(g y0+Y0) is a constant.13

Figure 2 presents decomposition (11) of Yt.14 Before the 2008 financial crisis, Yt stayed

above the deterministic trend with the martingale component close to zero and the stationary

component the main driver. After 2008, Yt fell and remained persistently below trend until

the end of the sample. Initially, the martingale component fell sharply to minus 15% and

was the main driver of Yt. The stationary component fell gradually and became negative

in 2015, while the martingale component increased. By the end of 2021, Yt was 10% below

the deterministic trend, driven equally by both components. We show below that this

decomposition of Yt conceals substantial heterogeneity in the quantile-specific stationary

components after 2008.

We also decompose cross-section quantiles for individual incomes and consumptions.

Since ỹprivp,t = yprivp,t − Yt − νprivp , we represent the p-th percentile of private income as the

11We estimate B using the Dynamic Mode Decomposition outlined in our related paper Sargent and Selvakumar (2024).
We present a brief overview in Section 4

12Also see the QuantEcon lecture on additive and multiplicative functionals available here https://python-advanced.
quantecon.org/additive_functionals.html. Hansen (2012) specifies an equivalent decomposition with at = Jzt,
where zt is a standard multivariate Gaussian random vector and Ω = JJ⊤. Our representation circumvents numerical issues
associated with the Cholesky decomposition of Ω.

13The martingale and stationary components are typically correlated.
14We estimate all model parameters – ν, νpriv , νpost, νcons, B, Ω – on data until Q4 2008. Thus, the trend tν can be

considered the ”pre-crisis trend”. It is important to keep in mind that Yt is a measure of aggregate private income, capturing a
subset of US GDP.
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Figure 2: Decomposition of aggregate income Yt

additive functional

yprivp,t = tν︸︷︷︸
Trend

+
t∑

j=1

Haj︸ ︷︷ ︸
Martingale

+ eprivp Byt−1+eprivp at−g yt︸ ︷︷ ︸
Stationary

+(g y0+Y0 + νprivp )︸ ︷︷ ︸
Constant

(12)

where eprivp is a (3M + 1) × 1 vector that selects the p-th percentile of private income. We

form counterparts of the decomposition for all quantiles of ypost
t and ycons

t . Evidently, the

deterministic trend tν and martingale
∑t

j=1Haj components are common across quantiles

and variables, but the stationary and constant parts vary. We built in this structure when we

specified our statistical model (9)–(10).

Figure 3 decomposes incomes and consumption quantiles using (12). For the 10th per-

centile, the level of private income is much lower than both post-tax income and consumption.

For 90th percentile households, private incomes are higher than post-tax incomes, indicating

substantial transfers from higher parts of the distribution. Consequently, differences across

percentiles are largest for private income and smallest for consumption.

Keeping in mind that these deviations are sums of the common martingale and the

quantile-specific stationary components in representation (12), the Figure 3 decompositions

indicate interesting patterns in quantiles’ deviations from their own deterministic trends.
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Figure 3: Evolution of quantiles

After the 2008 financial crisis, private income of the 90th percentile fell 10 percent below

trend, and by 2021 the deviation from trend was zero. Similar numbers apply to post-tax

income. Consumption for the 90th percentile, however, fell further – around 15 percent

below trend and remained low until the end of our sample. As for lower quantiles, private

incomes at the 10th percentile fell around 50 percent below trend following 2008. By 2021,

private income was still 40 percent below its trend. Post-tax income and consumption were

much less sensitive, falling at most 15-20 percent below trend. Both variables subsequently

increased and were back to trend by 2021.

A striking aspect of Figure 3 is that, at the 10th percentile, post-tax income is systematically

higher and less volatile than private income, while post-tax income and consumption are

very similar. This indicates substantial redistribution and insurance at the 10th percentile,

but little consumption smoothing through management of private savings. Things look very

different at the 90th percentile, where post-tax income is systematically lower than income,

and consumption is systematically lower than post-tax income. This indicates the presence of

substantial redistribution and social insurance and also of consumption smoothing through

management of private savings. Similar differences across quantiles will also appear in

discounted expected utility functions that we report in section 6.

To provide another perspective, Figure 4 reports results of using equation (12) to decom-
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Figure 4: Components of quantiles

pose deviations of quantiles from their deterministic trends into two parts: the common

martingale component of Yt (black), which makes the same contributions to all quantiles

of all three variables, and idiosyncratic stationary components (green for 90th percentiles,

red for 10th percentiles). The common martingale component (which is the same as the

martingale in Figure 2) fell 15% during the 2008 crisis to below and recovered to around

minus 5% at the end of our sample.

The left panel of Figure 4 shows that for the 10th percentile, martingale and stationary

components both contribute to the large drop in private income relative to its deterministic

trend. While the martingale component dominates initially, the dynamics after 2014 are

largely driven by the stationary component, which accounts for nearly the entire 40 percent

gap from trend by 2021. On the other hand, after 2008 the stationary component for the 90th

percentile was slightly positive, and largely offset the negative martingale component by the

end of the sample.

Post-tax income stationary components for the 10th percentile was close to zero, making

the common martingale component the predominant driver of the fall relative to trend.

The stationary component for the 90th percentile was slightly positive (5 percent), partially

offsetting the negative effect of the martingale component.

For consumption, the stationary components of both the 10th and 90th percentile were

close to zero, making the common martingale component the major driver of consump-
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tion over our period. Toward the end of the sample, the stationary component started to

drive consumption below trend for the 90th percentile. That the idiosyncratic stationary

components are, on the whole, close to zero for the 10th and 90th percentiles suggest that

dynamics of consumption are fairly similar across the distribution with the risks being evenly

distributed.15

Remarkably, the 90th percentile of consumption is around 15 percent below trend at the

end of our sample, compared to only 5 percent below trend for the 10th percentile, despite

the 10th percentile of private income remaining close to 40 percent below trend at the end of

the sample.

4 Role of Dynamic Mode Decomposition

We estimated the parameters of our model by constructing a Dynamic Mode Decomposition

(DMD), a “machine-learning” technique used to study fluid dynamics (see Brunton and Kutz

(2022)) that Sargent and Selvakumar (2024) link to vector autoregressions and linear Gaussian

state-space systems. Our analysis begins with a data set formed by quarterly observations of

the (3M + 1)× 1 vector yt defined in (9). We use these data to estimate the first-order VAR

yt = Byt−1+at (13)

E[at a⊤t ] = Ω, at ⊥ yt−1

The coefficient matrix B is (3M +1)× (3M +1) which, since M = 98, equals 295× 295 in our

application. Our 32 years of quarterly observations means that we have T = 128 observations

with which to estimate the 2952 coefficients in B. Consequently, estimating (9) confronts us

with an underdetermined least squares problem that we solve by using ideas connected to

Dynamic Mode Decompositions. We set a integer N << T and seek a rank-N first-order

15This feature is consistent with the bottom right panel of Figure 13 that plots time-series of demeaned ỹcons
p,t for different

percentiles. It shows that consumption paths are highly correlated across quantiles, exhibiting very similar fluctuations in our
sample. In macro models with preferences and complete market structures like those presented in Ljungqvist and Sargent
(2018, ch. 8), highly correlated consumption paths like these indicate the presence of widespread sharing of aggregate risks.
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VAR representation:

yt = B̂ yt−1+ât (14)

E[âtâ⊤t ] = Ω̂, ât ⊥ yt−1 .

where B̂ is a (3M + 1)× (3M + 1) matrix with rank N . We use the following algorithm to

estimate B̂ in (14):

1. Construct

Y =
[
y1 y2 . . . yT

]
, Y′ =

[
y2 y3 . . . yT+1

]
where Y and Y′ are both (3M + 1)× T matrices.

2. Compute singular value decomposition (SVD) of data matrix Y = UΣV⊤

3. Compress Y by retaining only its N largest singular values and corresponding vectors,

then redefine Y as the compressed data matrix

Y ≈ U[:,:N ]Σ[:N,:N ]V
⊤
[:N,:]

4. Compute a (3M +1)×N matrix Φ and an N ×N diagonal matrix Λ with the following

formulas:

Φ = Y′V[:N,:]Σ
−1
[:N,:N ]W, Λ = W−1(U⊤

[:,:N ]BU[:,:N ])W

where W is a matrix of eigenvectors.

5. Compute

B̂ = Y′Y+ = Y′VΣ−1U⊤ = ΦΛΦ+ (15)

where Y+ is the pseudoinverse of Y, Λ is a diagonal matrix of eigenvalues of B̂, and Φ

contains corresponding eigenvectors.

Formula (15) opens the door to constructing a Dynamic Mode Decomposition because it

implies that our reduced-rank first-order VAR (14) can be represented as

12



x̂t+1 = Λx̂t +ΛΦ+ât (16)

yt = Φx̂t + ât (17)

where x̂t = E[xt |yt−1] = ΛΦ+ yt−1. Because of how it is connected to a linear Gaussian

state-space representation that rationalizes the reduce rank specification of B̂, we call repre-

sentation (16)–(17) a “pseudo-innovations representation” that is associated with the linear

Gaussian state-space representation (see Appendix B).

xt+1 = Λxt+Cwt+1 (18)

yt = Φxt+vt, Evt v
⊤
t = R, (19)

(20)

where Σ∞ = (Φ⊤Ω−1Φ)−1,R = Ω−ΦΣ∞Φ⊤,CC⊤ = Σ∞ −ΛΦ+R(ΛΦ+)⊤.

5 Additional Findings

In section 5.1 we briefly describe estimated parameters and plot the dominant two DMD

modes against components of our data set. In section 5.2 we extract from our statistical

model some quantitative inferences about interactions between aggregate income and our

cross-section quantiles.
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5.1 Parameters and DMD Modes

Setting N = 3, we estimate the following parameters:16

Λ =


0.98 0 0

0 0.85 0

0 0 0.40

 , CC⊤ =


0.27 0.19 −0.04

0.19 0.27 −0.01

−0.04 −0.01 0.4

 (21)

Figure 5: First and second DMD modes

Figure 5 plots the estimated DMD modes. The first mode is highly persistent (λ1 = 0.98)

and strongly correlated with the mean of post-tax income (Corr(µpost
t , x̂1t) = 0.95). The

second mode is less persistent (λ2 = 0.85) and moderately correlated with the mean of

consumption (Corr(µcons
t , x̂2t) = 0.58).

Figure 6 shows the loadings of quantiles on the two dominant modes. The left panel

plots quantile-specific loadings on private income. Since µpriv
t = 0 for all t by construction,

the loadings of private income quantiles must average to zero, thus shedding light on the

increased income inequality associated with an increase in mode 1.

The loadings of post-tax quantiles (middle top panel) on mode 1 are all positive, which

is consistent with mode 1 serving as an aggregate income factor. It also shows that low

and high quantile incomes are more sensitive to mode 1, confirming the ”U”-shape of

income sensitivities across the earnings distribution detected by Guvenan et al. (2017). The

16Visualizing the singular value of the data matrix Y provides an informal guide to choosing a suitable low-rank approxi-
mation of the data. The SVD has two dominant singular values associated with Y (see Figure 14 in Appendix C).Appendix C
plots 50 singular values for our Y data matrix and associated dynamic modes for the largest three singular values.Sargent
and Selvakumar (2024) present simulations that indicate how setting N too small adversely affects inference. We err on the
side of caution and estimate the model with N = 3 and verify that mode 3 indeed resembles noise (Figure 15). We proceed by
focusing on two dominant modes.
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right panel plots loadings of consumption quantiles on mode 1. All loadings are positive,

suggesting that a rise in mode 1 coincides with a rise aggregate consumption. Low quantiles

are more sensitive to mode 1 than high quantiles and their sensitivity is similar across both

post-tax income and consumption. This suggests limited consumption smoothing through

management of their private savings. High consumption quantiles are less sensitive to mode

1 than high post-tax income quantile counterparts, indicating more consumption smoothing

on their part.

Turning to loadings on mode 2 in the lower three panels of Figure 6, consumption quantile

loadings are all positive, so an increase in mode 2 raises all consumption quantiles. In contrast,

an increase in mode 2 is associated with a reduction in post-tax income inequality, since

incomes for low quantiles rise and incomes for high quantiles fall.

5.2 Micro-Macro Interactions

To measure how macro and micro dynamics interact statistically, we compute an orthogonal

decomposition of the innovation covariance matrix:

Figure 6: DMD loadings on modes 1 and 2
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Ω(1,1) R(1,1) (ΦΣ∞Φ⊤)(1,1)

Variance 0.00103 0.0010 2.8e−5

Fraction of Ω(1,1) (%) - 97% 3%

Table 1: Decomposition of variance of aggregate income growth innovation

Ω̂ = R+ΦΣ∞Φ⊤ (22)

Since the (1,1) element of yt corresponds to aggregate income growth Yt − Yt−1 − ν, we

can use the (1,1) elements of Ω,R and ΦΣ∞Φ⊤ to compute the fraction of the variance of

innovation to Yt − Yt−1 − ν that can be attributed to the DMD modes x̂t, represented by

the (1,1) element of ΦΣ∞Φ⊤. Since x̂t was computed using data on cross-section quantiles,

(ΦΣ∞Φ⊤)(1,1) reveals the importance of cross-section dynamics on the dynamics of aggregate

income growth. The residual fraction, computed using the (1,1) element of R, represents

the fraction of variance attributable to the component that is orthogonal to cross-section

dynamics. Table 1 shows that only 3% of the innovation variance can be attributed to the

common modes x̂t, while 97% can be attributed to idiosyncratic component. The table

suggests that, as intermediated through the dynamic modes, cross-section dynamics have

limited consequences for the dynamics of aggregate income growth.17

To investigate possible reverse influences of the dynamics of Yt − Yt−1 − ν on inequal-

ity dynamics, we compute population least squares regressions of innovations to several

percentile differences on innovations to Yt − Yt−1 − ν. We use an appropriate vector b to

define a measure of inequality zt = byt, (e.g. a 90-10 quantile difference for private income),

such that by choosing different vectors b, we create different measures of inequality. We

want to compute a population regression of the innovation az,t to zt on the innovation a1,t to

aggregate income growth y1,t = cyt:

az,t = βa1,t + ξt (23)

17See similar findings by Chang et al. (2024) and a discussion of them by Sargent (2024), who recommended interpreting
them as outcomes of the comprehensive redistribution and social insurance present in the US tax and transfer system, as well
as countercyclical monetary-fiscal policies that Lucas (1987, 2003) concluded had mostly attenuated post WWII business cycles.
In this context, it is tempting to wonder how much HANK model-inspired Ramsey policies, like those studied by Bhandari et
al. (2021) that balance price stability against providing insurance to less well endowed consumers, could have contributed to
those outcomes.
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The innovation variance of zt is bΩb⊤; and Cov(az,t, a1,t) = bΩc⊤. Thus, the fraction of

variance in az,t attributable to a1,t is

βcΩc⊤β⊤

bΩb⊤ (24)

The left panel of Figure 7 plots contributions to variances of inequality of private income,

post-tax income and consumption attributable to the innovation to aggregate income growth.

We use our byt measures of inequality, ranging from 90-10 percentile gaps to 82-18 percentile

gaps. For private income, fractions of attributable variance are between 6% and 15%, with

the highest values for the mid-range percentile differences (around 86-14). This is between

two and five times as large as the 3% variance attribution to the common modes of aggregate

income in Table 1. For post-tax income and consumption cross-sections, variance ratios

are smaller. These variance contributions indicate that aggregate income is a larger source

of inequality in private income than of post-tax income and consumption. Thus, Figure 7

provides another perspective on the pervasive insurance and redistribution present in our

CEX cross-sections from 1990-2021.18

Figure 7: Contributions of aggregate income to inequality

18See Gramm et al. (2024, Fig. 2.1) for graphical evidence of substantial U.S. redistribution of income via taxes and transfers.
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6 Welfare Costs of Martingale and Stationary Shocks

The gains from removing all existing variability in aggregate consumption . . .

are surely well below 1 percent of national income. Policies that deal with the

very real problems of society’s less fortunate – wealth redistribution and social

insurance – can be designed in total ignorance of the nature of business-cycle

dynamics. Lucas (1987, p. 105)

By capitalizing on our statistical model’s representation of serially correlated risks in

quantile-specific consumption growth rates for our CEX consumers, this section extends wel-

fare calculations of Lucas (1987, 2003). We compute welfare consequences of eliminating risks

to consumption growth for hypothetical individuals who are permanently stuck in the same

quantiles of income or consumption.19 We also use the CEX income and consumption data to

estimate quantile-specific values from participation in the US tax and transfer system. These

calculations allow us to appraise a statement of Lucas (1987, p. 105) that fiscal redistribution

and insurance promote individual consumers’ discounted utilities much more than further

moderations of aggregate fluctuations around trend growth rates. Our estimates confirm

Lucas’s statement.

Lucas (1987, Sec. III), Lucas (2003), and Tallarini (2000) used versions of the following

model to calculate welfare benefits of completely eliminating a representative consumer’s

exposure to i.i.d. risk in U.S. post WWII consumption growth per capita.20 Where ct is the log

of per capita consumption Ct, a representative agent orders consumption streams according

to the discounted expected value

v = (1− β)E0

∞∑
t=0

βtct, β ∈ (0, 1) (25)

When ct is generated by the following random walk with drift

ct+1 − ct = µ+ σϵϵt+1, ϵt+1 ∼ N (0, 1), (26)

19See Appendix F where we incorporate the possibility of social mobility to our calculations.
20Obstfeld (1994), Dolmas (1998), Hansen et al. (1999), Alvarez and Jermann (2004), and Barillas et al. (2009) studied

extensions including some that were based on discrete-time versions of risk-sensitive value functions and other recursive utility
functionals.
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the expected discounted value (25) is

v = v(c0) =
β

(1− β)
µ+ c0 (27)

and the conditional expectation of Ct+1 is

EtCt+1 = exp

(
µ+

1

2
σ2
ϵ

)
Ct. (28)

A value function v(c0) for a risk-free path that starts at c0t at t = 0 and that has the same

conditional means E0Ct+j as the risky sequence generated by (26) is

v(cn0 ) =
β

(1− β)

(
µ+

σ2
ϵ

2

)
+ cn0 . (29)

An increment

c0 − cn0 =
βσ2

ϵ

2(1− β)
(30)

is a “compensating difference” that equates (27) to (29). The gap c0 − cn0 in equation (30) is a

percentage of consumption that a representative consumer would sacrifice if he could instead

live in a parallel economy in which σϵ has been set to zero as a result of ideal countercyclical

monetary and fiscal policies. Lucas (1987, Sec. III) and Lucas (2003) interpreted this as an

upper bound on the welfare gains that could be gathered from further improving post WWII

countercyclical U.S. monetary and fiscal policies.

We now provide an extension of formula (30) that applies to our setting. The logarithmic

random walk-with-drift specification (26) on which formula (30) is based exposes a represen-

tative consumer to i.i.d risk in consumption growth. By way of contrast, our specification21

yconsp,t = tν︸︷︷︸
Trend

+
t∑

j=1

Haj︸ ︷︷ ︸
Martingale

+ econsp Byt−1+econsp at−g yt︸ ︷︷ ︸
Stationary

+(g y0+Y0 + νconsp )︸ ︷︷ ︸
Constant

(31)

exposes a consumer in the pth quantile to both i.i.d. risk in consumption growth through at

and serially correlated risk in consumption growth through the martingale
∑t

j=1Haj and

21Here the econs
p is a (3M + 1)× 1 selects ycons

p,t , the p-th percentile of consumption.
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the serially correlated state variables yt.22

We extend Lucas’s equalizing difference calculation (30) for his representative agent’s con-

sumption process (26) to quantile-specific equalizing differences for hypothetical consumers

who are also exposed to quantile-specific serially correlated risks in their consumption growth

rates. We shall compute percentages of current consumption that someone stuck forever in

the p-th consumption quantile would be willing to sacrifice in order to eliminate both the

stationary and the martingale random components on the right hand side of representation

(31).

To this end, our person of interest is someone permanently in the p-th consumption

quantile who values consumption streams according to the discounted expected value23

Vp(ζt, y
cons
p,t ) = (1− β)E0

∞∑
t=0

βtyconsp,t , β ∈ (0, 1) (32)

where yconsp,t is the log of their consumption. Similar to (12), additive functional (10) implies

that yconsp,t = econsp ỹt + Yt + νconsp . Consequently,

ζt+1 = A ζt +C εt+1 (33)

yconsp,t+1 − yconsp,t = Dcons
p ζt + Fcons

p εt+1, (34)

where ζt =
[
1 yt

]⊤
; Dcons

p =
[
ν e1B+econsp (B−I)

]
and Fcons

p = e1 + econsp C. In repre-

sentation (33)-(34), Fpεt+1 expresses the the consumer’s exposure to an i.i.d. component of

risk in quantile-p consumption growth, while Dcons
p ζt expresses the consumer’s exposure to

persistent risk in quantile-p consumption growth.

We seek a value function Vp(ζt, y
cons
p,t ) in (32) that satisfies a recursion

Vp(ζt, y
cons
p,t ) = (1− β)ycons,pt + βVp(ζt+1, y

cons
p,t+1).

22Bansal and Yaron (2004) imposed cross-equation restrictions from consumption Euler equations for US asset prices to infer
the presence of such serially correlated risks in US aggregate consumption. Hansen et al. (2008) and Hansen and Sargent (2010)
also studied long-run risks but intentionally imposed those cross-equation restrictions at a different point in their analysis.

23In our exercises below, we will set β = 0.99 for our quarterly dataset.
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Using logic of Hansen et al. (2008) and Hansen and Sargent (2010), we verify that24

Vp(ζt, y
cons
p,t ) = λcons

p
⊤ζt + yconsp,t (35)

where

λcons
p

⊤ = βDcons
p (I− βA)−1. (36)

We want to compare a quantile-p value function (35) with one associated with a risk-free

certainty-equivalent consumption path. In the spirit of Lucas (1987, 2003) and Tallarini (2000),

we seek an adjustment to consumption at time t that renders the p-th quantile consumer

indifferent between the certainty equivalent plan and the original risky consumption plan

given in (33) - (34). To calculate such a certainty-equivalent, risk-free consumption plan, we

first deduce from (33)-(34) that at time t+ j, p-th quantile consumption satisfies

yconsp,t+j = yconsp,t +ψcons
p ζt +

j−1∑
i=0

Jcons
p,i εt+j−i (37)

where

ψcons
p

⊤ = λcons
p

⊤ = βDcons
p (I− βA)−1 (38)

Jcons
p,i = Fcons

p +

i−1∑
ℓ=0

Dcons
p Al C (39)

αcons
p =

β

2

∞∑
i=0

βiJcons
p,i Jcons

p,i
⊤, (40)

and the scalar αcons
p appears in the following value function Wp(ζt, y

cons
p,t ) = (1−β)

∑∞
j=0 β

jyconsp,t+j

for the p-th quantile for a certainty-equivalent path that starts at (ζt, yconsp,t ):

W p(ζt, y
cons
p,t ) = yconsp,t + λcons

p
⊤ζt + αcons

p (41)

The presence of serially correlated risk in consumption growth in representation (31) shapes

24Hansen and Sargent (2010) deployed continuous-time versions of this value function. The discrete-time version is
available here http://www.tomsargent.com/research/longrunrisk_tom_14.pdf.
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how αcons
p depends on consumption quantile p’s loading onto ζt through Dcons

p and also on

how the p-th quantile loads onto εt+1 through Fcons
p . The inclusion of risk in value function

(41) enters through αcons
p and λcons

p
⊤. Within αcons

p , the i.i.d. part enters through Fcons
p , while

the persistent part enters in two ways, one through the discounted sum of previous shocks

εt+1, and the other through Dcons
p as a constituent of λcons

p
⊤.

Let ycons,CE
p,t be log consumption at time t in the certainty-equivalent plan. We seek a

proportional decrease in the certainty-equivalent path that leaves a p-th quantile consumer

indifferent between the risky and risk-free paths, i.e. Vp(ζt, y
cons
p,t ) = Wp(ζt, y

cons,CE
p,t ), which

implies that

yconsp,t − ycons,CE
p,t = αcons

p (42)

Thus, yconsp,t − ycons,CE
p,t differs across quantiles but is constant across time. This feature is a

direct implication of our specification of the additive process (11) for Yt, where we built in

time-invariance of the compensating differences.

To study evidence of redistribution and social insurance in our CEX data set, we also

compute discounted expected values, in which we temporarily pretend that, rather than

consumption yconsp,t , p-th quantile households consume either total private income yprivp,t or

income net of taxes and transfers ypostp,t . Comparing these objects for private income and

income net of transfers allows us to estimate the value to the p-th quantile consumer of

participating in the US tax and transfer system. Comparing them for income net of transfers

and for consumption allows us to estimate value increments presumably achieved with

consumption smoothing through management of individual savings.25

The left panel of Figure 8 plots certainty-equivalent compensations for eliminating all risk

(long-run and i.i.d) from quantile-specific growth (αcons
p ) for all quantiles of consumption,

after tax and transfer income, and private income. The right panel plots objects associated

with the i.i.d. component of these parameterized by Fcons
p Fcons

p
⊤. First, compensation is

highest for the lower quantiles of private income, reflecting the substantial income risk they

face. This is largely driven by their loadings on εt+1, encoded by Fcons
p Fcons

p
⊤ (right chart).

Agents in the 50th percentile of consumption distribution would be willing to pay around

25Our three CEX data series make it possible for us to entertain mental experiments like this. Lucas (1987, Sec. III), Lucas
(2003), and Tallarini (2000) based their calculations on their calibrated versions of the exogenous consumption endowment,
representative-agent economy of Lucas (1978).
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Figure 8: Compensations for eliminating risks in income or consumption growth

0.5 percent of their current level of consumption to remove all risk in consumption growth.

This is approximately 10-times larger than Lucas’s estimate of 0.05% of consumption for his

representative consumer. Lucas’s estimate, however, is inline with our estimate for i.i.d risk

for the same consumer, which is about 0.05% of consumption. This implies that the remaining

0.45 percent comes from exposure to serially correlated risk in consumption growth.26

Second, for all quantiles, proportional consumption compensations are smaller than

analogous compensations for private and post-tax incomes, while these proportional com-

pensations are similar for all quantiles. These patterns indicate that decrements in values due

to exposures to consumption growth risks are lower than for exposures to income risks. They

also indicate that consumption growth risks are ultimately borne relatively evenly across

quantiles.

Third, the difference in proportional compensations between post-tax income and con-

sumption increase as we move toward higher quantiles. To us, this indicates more con-

sumption smoothing by higher quantile households through management of private savings.

Notice that the same object is negligible for Fcons
p Fcons

p
⊤ in the right panel. This suggests that

the differences in the left chart reflect the ability of private savings to insure households from

serially correlated risks in consumption growth, rather than i.i.d risk.

26Bansal and Yaron (2004), Hansen et al. (2008), and Hansen and Sargent (2010) explore implications for market prices of
risk of exposing representative consumers who dislike it to very persistent risk in consumption growth. Bansal and Yaron call it
“long-run risk”.
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6.1 Welfare benefits of social and private insurance

To put compensating consumption level differences ranging from .05% (Lucas’s) to .5% (ours)

into perspective, we find it useful to compare these numbers with increments or decrements

of our computed value functions for p-th quantile consumers that were delivered by US tax

and transfer system. To accomplish this, we compute Vp(ζt, y
cons
p,t )−Vp(ζt, y

priv
p,t ). We interpret

this difference as value of actions of the US tax and transfer system and/or self-insurance for

a p-th quantile household. Figure 9, which plots this difference in values for all quantiles,

shows for the 10th percentile that it is orders of magnitude larger (0.77) than the value of

eliminating exposure to growth rate risk for any of the three variables plotted in Figure 8. The

value difference of consumption over private income also increases after 2008, albeit small in

magnitude, reflecting the fact that consumption fell much less than private income for this

group. For the 90th percentile, the difference in values is negative, reflecting in part that their

private income is higher than their consumption as a result of how the US tax and transfer

system treats consumers in the 90th percentile; for 90th percentile persons, the absolute value

of the difference plotted in the right panel of Figure 9 indicates that to these consumers, the

redistribution and insurance dwarf the welfare consequences of eliminating exposure to risks

in their income and consumption growth rates.

For these two percentiles, Figure 10 plots the following decomposition of Vp(ζt, y
cons
p,t )−

Figure 9: Vp(ζt, y
cons
p,t )− Vp(ζt, y

priv
p,t ) for p = 10 (left panel) and p = 90 (right panel).
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Figure 10: Where p = 10 in the left panels and p = 90 on the right panels, the blue lines plot

V (ζt, y
cons
p,t ) − V (ζt, y

priv
p,t ) ; the green lines plot V (ζt, y

cons
p,t ) − V (ζt, y

post
p,t ); the red line plots

V (ζt, y
post
p,t )− V (ζt, y

priv
p,t ). See equation (43).

Vp(ζt, y
priv
p,t ):

Vp(ζt, y
cons
p,t )− Vp(ζt, y

priv
p,t ) =

[
Vp(ζt, y

cons
p,t )− Vp(ζt, y

post
p,t )

]
(43)

+
[
Vp(ζt, y

post
p,t )− Vp(ζt, y

priv
p,t )

]
For the 10th percentile, most of the left hand side (blue) is contributed by the second term

in brackets on the right side of equation (43) (red). That the first term is small (green)

confirms that 10th percentile households live virtually hand-to-mouth, so for 10th precentile

households the majority of welfare gains on the left of (43) come from their participation in

the US tax and transfer system. In contrast, for 90th percentile consumers, the first term in

brackets on the right side of equation (43) (the green line) contributes much more, indicating

consequences of substantial private savings.

6.2 Compensating differences in deterministic trends

We now calculate equalizing differences in today’s level of consumption that our hypothetical

households would be willing to sacrifice for an increase in the trend growth rate ν. Let V̂p be

discounted expected utility of someone who is permanently in the p-th consumption quantile

in a fictitious economy with aggregate income trend growth ν̂ > ν. The value function V̂p can
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be represented as

V̂p(ζt, ŷ
cons
p,t ) = λ̂cons

p
⊤ζt + ŷconsp,t , (44)

where λ̂
cons

p
⊤ = βD̂

cons

p (I− βA)−1 and D̂
cons

p =
[
ν̂ e1B+econsp (B−I)

]
. A proportional de-

crease in the high-growth rate ν̂ path that leaves the p-th quantile of consumption indifferent

between ν and ν̂ is

yconsp,t − ŷconsp,t = (λ̂
cons

p
⊤ − λcons

p
⊤)ζt (45)

= β(D̂
cons

p −Dcons
p )(I− βA)−1ζt. (46)

Using definitions of Dcons
p , D̂

cons

p and ζt, we can write the proportional decrease as

yconsp,t − ŷconsp,t = β(ν̂ − ν)ϕ1, (47)

where ϕ1 is the first element of the vector (I − βA)−1ζt. The compensating difference is

constant across time and quantiles, a feature that our additive process (11) builds in.

Formula (47) computes that households in all quantiles would be willing to sacrifice 24.75

percent of current consumption to increase aggregate trend growth ν by 1 percent (from 1.2%

to 2.2%) per annum. This is orders of magnitude larger than the Figure 8 that any household

would be willing to sacrifice to remove all risks to consumption growth. This finding, that

households in all quantiles care much more about increasing trend growth than further

reducing risk in their consumption growth rates, extends Lucas’s (p. 1, 2003) conclusion that

”the potential for welfare gains from better long-run, supply-side policies exceeds by far the potential

from further improvements in short-run demand management.”

It might be enlightening to compute increments in trend growth that would make a

hypothetical household in the p-th quantile of consumption indifferent between increasing

trend growth and eliminating all consumption risk. To do this, we transform (47) to obtain

ν̂p − ν =
(yconsp,t − ycons,CE

p,t )

βϕ1
=

αcons
p

βϕ1
(48)

We can compute analogous measures for value functions for total (social and private) insur-
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ance. Table 2 reports these compensations for eliminating all risks in consumption growth

and the value of insurance for the 10th, 50th and 90th percentiles. We use equation (48)

to compute utility-equivalent trend growth increments. The table shows that the value of

eliminating all risks to consumption growth is equivalent to around a 0.022 percentage point

increase in annual trend growth, and this is similar across all quantiles. These are much

smaller than our estimates of values of redistribution and social and private insurance. For

the 10th percentile, access to the redistribution provided by the US tax, transfer, and financial

system is welfare-equivalent to an increase in annual trend growth of aggregate income

by more than a 3 percentage points. This number is negative for the median and the 90th

percentile – minus 0.75 percentage points and minus 1.21 percentage points respectively.

These quantities further highlight the role the US tax and transfer system in redistributing

welfare across low and high income quantiles.

Value of eliminating Value of
all risk to consumption growth social and private insurance
(yconsp,t − ycons,CE

p,t ) (νCE − ν) Vp(ζt, y
cons
p,t )− Vp(ζt, y

priv
p,t ) νinsurance − ν

Quantile % %, annual. % %, annual.
p = 10 0.54 0.022 78.53 3.17
p = 50 0.52 0.021 -18.70 -0.75
p = 90 0.56 0.023 -29.86 -1.21

Table 2: Compensating differentials for eliminating risks to consumption growth

7 Concluding Remarks

We have used additive functionals and dynamic mode decompositions to analyze the co-

evolution of Consumer Expenditure Survey cross-sections of private earned income, post-tax

income, and consumption from 1990 to 2021. We decomposed a Chisini mean of private

earned income and cross-section quantiles into constant, deterministic trend, martingale,

and stationary components following Hansen (2012). Our statistical model reveals patterns

that illuminate how aggregate income dynamically interacts with redistribution and social

insurance across households.

Our decomposition of aggregate income shows that before the 2008 financial crisis,

aggregate income was briefly above its deterministic trend with the stationary component

27



the main driver. After 2008, the martingale component fell suddenly, while the stationary

component fell gradually. By the end of the sample, they contributed equally to the trend

gap. This aggregate pattern conceals substantial heterogeneity in the stationary components

of quantiles. For the 10th percentile, private income fell substantially after the financial crisis

and remained below trend through 2021. However, both post-tax income and consumption

fell less and returned close to trend by 2021. For the 90th percentile, private income returned

to trend by 2021, as did post-tax income, but consumption remained below trend.

Cross-section dynamics contribute only 3% to the innovation variance of aggregate

income growth, while innovations to aggregate income affect cross-section dynamics more

substantially. For private income inequality measures (e.g. 90-10 percentile difference),

the fraction of variance attributable to aggregate income innovations ranges from 6% to

15%. These fractions are smaller for post-tax income and consumption, indicating that

redistribution and insurance mechanisms attenuate the transmission of aggregate shocks to

inequality.

Our extension of Lucas’s (1987, 2003) welfare calculations to heterogeneous consumers

exposed to serially correlated consumption growth risks yields several findings. Consumers

in the 50th percentile of the consumption distribution would sacrifice approximately 0.5% of

current consumption to eliminate all consumption growth risk—ten times larger than Lucas’s

representative agent estimate of 0.05%. Our estimates recover similar numbers to Lucas’s

when we eliminate only i.i.d risk, suggesting that the persistent component of risk accounts

for 0.45 percentage points of the 0.5% compensating difference. Nevertheless, the further

benefits of eliminating consumption growth risk is quantitatively small. We capitalize on our

additive functional assumption to compute that eliminating all consumption growth risk is

equivalent to an 0.025 percentage point increase in trend growth.

The welfare benefits from participating in the US tax and transfer system dwarf those from

eliminating consumption growth risk. For 10th percentile consumers, the value increment

from the tax and transfer system equals 0.77, orders of magnitude larger than the 0.5% welfare

cost of consumption growth risk. For this group, the benefit is equivalent to around a 3

percentage point increase in trend growth. For 90th percentile consumers, the redistribution

through the tax and transfer system imposes welfare costs that similarly exceed the welfare
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costs of growth rate risk. Decomposition of these welfare effects shows that for 10th percentile

households, most gains derive from tax and transfer redistribution rather than consumption

smoothing through private savings. For 90th percentile consumers, private savings contribute

substantially more to consumption smoothing.

Seven appendices conclude our paper. Appendix A describes data sources. Appendix B

reviews connections between linear-quadratic-Gaussian state space models and Dynamic

Mode Decompositions on which our section 4 analysis is based. Appendix C plots 50 singular

values for our Y data matrix and associated dynamic modes for the largest three singular

values. Appendix D explores consequences of imposing long-run restrictions in the tradition

of Blanchard and Quah (1993) on our section 3 additive functional (9)- (10) of aggregate

income {Yt}. Appendix E provides another decomposition of the section 6 value difference

Vp(ζt, y
cons
p,t ) − Vp(ζt, y

priv
p,t ). Appendix F describes how to extend our analysis to include

transitions across consumption and income quantiles. Appendix G describes how to extend

our section 6 welfare calculations to incorporate concerns about model misspecification using

method described by Barillas et al. (2009).
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A Data

Figure 11 presents the evolution of cross-quantile moments. The levels, the standard devia-

tion of private income (σpriv
t ) is higher than post-tax income (σpost

t ) or consumption (σcons
t ).

Moreover, σpost
t appears to be larger than σcons

t in most periods. σpriv
t exhibits substantial

variation over time, increasing during the 2008 financial crisis and the COVID-19 period. In

contrast, the standard deviations of post-tax income (σpost
t ) and consumption (σcons

t ) are more

stable, reflecting the smoothing effects of taxes, transfers, and consumption behavior.

Figure 11: Cross-quantile moments

Figure 12 shows the 90-10 percentile differences for all three variables. The difference

is largest and most volatile for private income, smaller for post-tax income, and smallest

for consumption. These patterns are consistent with consumption smoothing, whereby

households adjust their consumption less than their income fluctuations, and with the

redistributive effects of taxes and transfers. The figure also shows that this measure of

inequality has increased for private income since 2008, while it has gradually declined for

both post-tax income and consumption over the same period.

30



Figure 12: 90th percentile minus 10th percentile

Figure 13: Demeaned time-series of quantiles, ỹprivp,t , ỹpostp,t , ỹconsp,t
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Code Mneumonic
1990-2004 2004-2013 2013-2022

Private income
Income from salary or wages FSALARYX FSALARYM FSALARYM
Income from non-farm business FNONFRMX FNONFRMM FSMPFRXM
Income from own farm FFRMINCX FFRMINCM
Income from interest on savings accounts or bonds INTEARNX INTEARNM INTRDVXM
Regular income earned from dividends, royalties, estates FININCX FININCXM ROYESTXM
Income from pensions or annuities PENSIONX PENSIONM RETSURVM
Net income or loss received from roomers or boarders INCLOSSA INCLOSAM
Net income or loss received other rental properties INCLOSSB INCLOSBM NETRENTM
Income from regular contributions from alimony and other ALIOTHX ALIOTHXM
Income from care of foster children, cash scholarships OTHRINCX OTHRINCM OTHRINCM
Transfer income
Income from Social Security benefits and Railroad Benefit checks FRRETIRX FRRETIRM FRRETIRM
Supplemental Security Income from all sources FSSIX FSSIXM FSSIXM
Income from unemployment compensation UNEMPLX UNEMPLXM
Income from workmen’s compensation and veteran’s payments COMPENSX COMPENSM OTHREGXM
Income from public assistance including job training WELFAREX WELFAREM WELFAREM
Income from other child support CHDOTHX CHDOTHXM
Food stamps JFDSTMPA
Food stamps and electronic benefits FOODSMPX FOODSMPM JFSAMTM

Table 3: Categorizing CEX income into private and transfers
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B Connections to LQG State-Space Models

Sargent and Selvakumar (2024) describe conditions under which approximation (14) is

consistent with an underlying linear-quadratic-Gaussian (LQG) state-space model:

xt+1 = Axt+Cwt+1 (49)

yt = Gxt+vt (50)

where yt is our observed (3M + 1) × 1 vector, xt is an N × 1 vector of latent states, wt ∼

N(0, IN×N ) is the state innovation, vt ∼ N(0,R(3M+1)×(3M+1)) is the observation noise. The

conditions are27

• M ≫ N

• A is diagonal so that xi,t+1 = Aii xi,t+
∑

j Cij wj,t+1

• G has full column rank

• ∥G⊤G ∥ = O(M) and ∥R ∥ = o(M)

The state-space model in equations (49)-(50) implies an infinite-order VAR for yt:

yt =

∞∑
j=1

B∞
j yt−j +at (51)

with:

E[at a⊤t ] = Ω = GΣ∞G⊤+R (52)

E[at y⊤
t−j ] = 0 ∀j ≥ 1 (53)

B∞
j = G(A−KG)j−1K ∀j ≥ 1 (54)

where K is the steady-state Kalman gain and Σ∞ is the steady-state covariance of the Kalman

filter state estimate error. The innovations representation associated with this infinite-order

27See Sargent and Selvakumar (2024) and Iao and Selvakumar (2024).
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VAR is:

x̂t+1 = Ax̂t +Kat (55)

yt = Gx̂t + at (56)

where x̂t = E[xt |yt−1] is the Kalman filter estimate of the state based on past observations,

and at = yt−E[yt |yt−1] is the innovation or prediction error. Sargent and Selvakumar (2024)

show that (A−KG) ≈ 0 under their restrictions, which implies that

B∞
j ≈


GK j = 1

0 j > 1,

(57)

so that the infinite-order VAR in equation (51) is well-approximated by a first-order VAR:

yt = Byt−1+at (58)

where B ≈ B∞
1 = GK. Moreover, (A−KG) ≈ 0 implies that E[xt |yt−1] ≈ E[xt |yt−1],

which we exploit to align the innovations representation with the reduced-rank VAR esti-

mated by DMD.

As stated in the text, estimating reduced-rank VAR (14) generates a pseudo-innovations

representation:

x̂t+1 = Λx̂t +ΛΦ+ât

yt = Φx̂t + ât,

which aligns with the authentic innovations representation in equations (55)-(56) after we

set A = Λ,K = ΛΦ+,G = Φ,Σ∞ = (G⊤Ω−1G)−1,R = Ω − GΣ∞G⊤,CC⊤ = Σ∞ −

KRK⊤.
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C Singular Values and DMD Modes

Figure 14 plots singular values of the Y matrix. Figure 15 plots time series of three DMD

modes x̂t associated with the largest three singular values. As noted in the text, we retain

only the two largest singular values when we estimate B via reduced-rank least squares.

Figure 14: 50 largest singular values of DMD data matrix Y

Figure 15: Time-series of estimated DMD modes x̂t

D A Blanchard-Quah Analysis

To impose the long-run restrictions of Blanchard and Quah (1993), we represent the additive

functional (9)- (10) for {Yt} as

yt+1 = Byt+Qεt+1 (59)

Yt+1 − Yt − ν = e1Byt+e1Qεt+1 (60)
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by setting at+1 = Qεt+1, where QQ⊤ = Ω and εt+1 ∼ N (0, I). We want to impose that ε1t is

the only shock that has a permanent effect on aggregate income, i.e.

lim
j→∞

E[Yt+j |ε1t] ̸= 0

lim
j→∞

E[Yt+j |εit] = 0 ∀i ≥ 1

To implement this, we compute Q according to

Q = (I−B)Q̃ (61)

Sy(0) = Q̃Q̃⊤ (62)

where Sy(0) = (I−B)Ω(I−B)⊤ is the spectrial density matrix of yt at frequency zero.28

Figure 16 plots a prediction error variance decomposition of Yt attributable to ε1,t) and

to all other shocks. It shows that indeed first shock accounts for an increasing share of the

variance of aggregate income Yt as the horizon increases, reaching about 95% at very long

horizons.

Figure 17 plots the impulse response functions of 10th and 90th percentiles of income

and consumption computed using our Blanchard and Quah identified system (59)-(60). The

impulse response functions show that a positive permanent shock to aggregate income

initially increases inequality in private income as the 90-10 percentile gap widening for about

50 periods before gradually returning to its steady state. For post-tax income, 90 and 10

percentiles both rise, the 90th percentile albeit rising more. Inequality in post-tax income thus

rises, but much less than private income. This highlights the smoothing consequences of fiscal

policy. For consumption, the 90th percentile responds very little, while consumption of the

10th percentile rises. These muted responses combine to produce a small fall in consumption

inequality in response to a permanent aggregate income shock.

28Due to the reduced-rank B and thus the approximate reduced-rank nature of Ω, we encountered numerical issues when
computing the Cholesky factorization of Sy(0) to obtain Q̃. Instead we compute the LDL decomposition of Sy(0), and inspect
the diagonal entries in D. We found that all negative entries were within numerical precision of zero, and replaced then with
zero. Calling the new matrix D̃, we compute Q̃ = LD̃.

36



Figure 16: Variance decomposition of structural shocks

Figure 17: Impulse response

E Another Decomposition

We construct an alternative decomposition of Vp(ζt, y
cons
p,t )− Vp(ζt, y

priv
p,t ):

Vp(ζt, y
cons
p,t )− Vp(ζt, y

priv
p,t ) = (λcons

p
⊤ − λpriv

p
⊤
)ζt + (yconsp,t − yprivp,t ) (63)

We interpret the first term on the right as a measure of the increment in value attributable

to social and private insurance against serially correlated risk in growth rates, while the
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Figure 18: Where p = 10 in the left panels and p = 90 on the right panels, the blue lines

plot Vp(ζt, y
cons
p,t ) − Vp(ζt, y

priv
p,t ) ; the green line plots (λcons

p
⊤ − λpriv

p
⊤
)ζt; the red line plots

yconsp,t − yprivp,t . See equation (63).

second term measures consequences of redistribution. Figure 18 plots components of this

decomposition. For both 10th and 90th percentile, the second term (red) is the predominant

actor. In the case of the 10th percentile, the second term has become larger since 2012, while

the first term becomes smaller. For the 90th percentile, the second term has fallen since 2020,

while the first term has risen.

We can further decompose each term on the right hand side of value decomposition (63),

(λcons
p

⊤ − λpriv
p

⊤
)ζt = (λcons

p
⊤ − λpost

p
⊤
)ζt + (λpost

p
⊤ − λpriv

p
⊤
)ζt (64)

yconsp,t − yprivp,t = (yconsp,t − ypostp,t ) + (ypostp,t − yprivp,t ) (65)

Equation (64) decomposes the value attributable to insurance against serially correlated

risk in consumption growth into private insurance (first term) versus social insurance (second

term). Similarly, equation (65) decomposes the consequences of redistribution into private

savings (first term) versus social (second term).

The panels in the top row of Figure 19 plot the components of (64) for the 10th (left)

and the 90th (right) percentiles. For the 10th percentile, the value of social insurance (red)

is the predominant driver of the value of total insurance (blue), while the value of private

insurance (green) is negligible. For the 0th percentile, the value of private insurance (green) is

the predominant driver of overall insurance, while social insurance is close to zero across the
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Figure 19: Where p = 10 (left panels) and p = 90 (right panels) the top panels plot the decom-

position of (λcons
p

⊤−λpriv
p

⊤
)ζt; see equation (64). The bottom panels plots the decomposition

of yconsp,t − yprivp,t ; see equation (65).

sample. These findings are again consistent with the hand-to-mouth nature of low income

households, and that the welfare system plays a small role for for upper quantile households.

The panels in the bottom row of Figure 19 plot the components of (65) for the 10th and

90th percentile. The left hand side panel shows that the majority of ycons10,t − ypriv10,t is driven by

ypost10,t − ypriv10,t , suggesting again that redistribution plays a large role for these households. The

right hand side panel shows that, for the 90th percentile ycons10,t − ypost10,t is the dominant driver,

suggesting that private savings is more important than social redistribution.
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F Mobility across quantiles

We can construct an hypothetical consumer residing now in consumption quantile p who is

exposed to possible transitions to other consumption quantiles with one-quarter transition

probabilities described by a time-invariant M ×M stochastic matrix P. The scaled expected

discounted utility (1− β)E0
∑∞

t=0 β
tyconsp,t is now given by value function

V (ζt, y
cons
p,t ) = (1− β)yconsp,t + β

M∑
i=1

Pp,iV (ζt+1, y
cons
i,t+1) (66)

If we guess that this value function takes a form

V (ζt, y
cons
p,t ) = λcons

p
⊤ζt +

M∑
i=1

bp,iy
cons
i,t

we can verify that λcons
p , bi,1, . . . , bi,M for i = 1, . . . ,M satisfy

λcons
i

⊤ = β
∑
j

Pij

(
λcons
j

⊤A+
∑
k

aj,kD
cons
k

⊤

)
(67)

bi,k = (1− β)δik + β
∑
j

Pijbj,k (68)

where δi,k is the Kronecker delta that obeys δi,k = 1 if i = k and 0 otherwise.

G Fear of Misspecification

We can study agents who fear model misspecification. We follow Hansen et al. (2008) and

Hansen and Sargent (2010) who order a representative household’s preferences with a value

function that satisfies the recursion

W (ζt, y
cons
p,t ) = (1− β)ycons,p

t +T1
[
βW (ζt+1, y

cons
p,t+1)

]
(69)

T1
[
βW (ζt+1, y

cons
p,t+1)

]
= min

m(εt+1)≥0,E[m(εt+1)]=1
E
[
m(εt+1)

(
βW (ζt+1, y

cons
p,t+1) + θ1 logm(εt+1)

) ∣∣∣∣ζt, yconsp,t

]
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where we can interpret T1 as implementing the multiplier preferences of Hansen et al. (1999).

The worst-case model is given by

ζt+1 = A ζt +C ε∗t+1 (70)

yconsp,t+1 − yconsp,t = Dcons
p ζt +Gcons

p ε∗t+1 (71)

where εp∗t+1 = εt+1 + w∗
p where w∗

p = −β
θ (C⊤ λcons

p + Gcons
p

⊤). Hansen and Sargent (2010)

show that the value function has representation

W (ζt, y
cons
p,t ) = yconsp,t + λcons

p
⊤ζt + κ

cons
p (72)

with κcons
p = −β2

2(1−β)θ ||λ
cons
p

⊤C+Gcons
p ||2, and λcons

p as given in (67). As in appendix F, we

could also allow transitions across quantiles by appropriatedly introducing a stochastic

matrix P governing them.

References

Alvarez, Fernando and Urban J Jermann, “Using asset prices to measure the cost of business

cycles,” Journal of Political economy, 2004, 112 (6), 1223–1256.

Bansal, Ravi and Amir Yaron, “Risks for the long run: A potential resolution of asset pricing

puzzles,” The journal of Finance, 2004, 59 (4), 1481–1509.

Barillas, Francisco, Lars Peter Hansen, and Thomas J Sargent, “Doubts or variability?,”

Journal of Economic Theory, 2009, 144 (6), 2388–2418.

Bhandari, Anmol, David Evans, Mikhail Golosov, and Thomas J Sargent, “Inequality,

Business Cycles, and Monetary-Fiscal Policy,” Econometrica, 2021, 89 (6), 2559–2599.

Blanchard, Olivier Jean and Danny Quah, “The dynamic effects of aggregate demand and

supply disturbances: Reply,” The American Economic Review, 1993, 83 (3), 653–658.

Brunton, Steven L. and J. Nathan Kutz, Data-Driven Science and Engineering: Machine Learn-

ings, Dynamical Systems, and Control, second edition, Cambridge University Press, 2022.

41



Burns, Arthur F and Wesley C Mitchell, Measuring business cycles number burn46-1, National

bureau of economic research, 1946.

Carroll, C. D., T. F. Crossley, and J. Sabelhaus, Improving the Measurement of Consumer

Expenditures, University of Chicago Press, 2015.

Chang, Minsu, Xiaohong Chen, and Frank Schorfheide, “Heterogeneity and aggregate

fluctuations,” Journal of Political Economy, 2024, 132 (12), 4021–4067.

Chisini, O., “Sul concetto di media,” Periodico di Matematiche, 1929.

Dolmas, Jim, “Risk preferences and the welfare cost of business cycles,” Review of Economic

Dynamics, 1998, 1 (3), 646–676.

Gramm, Phil, Robert Ekelund, and John Early, The Myth of American Inequality: How

Government Biases Policy Debate (With a New Preface), Rowman & Littlefield, 2024.

Guvenan, Fatih, Sam Schulhofer-Wohl, Jae Song, and Motohiro Yogo, “Worker Betas: Five

Facts about Systematic Earnings Risk,” American Economic Review: Papers Proceedings, 2017,

107 (5), 398–403.

Hamilton, James D, “Why you should never use the Hodrick-Prescott filter,” Review of

Economics and Statistics, 2018, 100 (5), 831–843.

Hansen, Lars Peter, “Dynamic valuation decomposition within stochastic economies,” Econo-

metrica, 2012, 80 (3), 911–967.

and Thomas J Sargent, “Fragile beliefs and the price of uncertainty,” Quantitative Economics,

2010, 1 (1), 129–162.

, John C Heaton, and Nan Li, “Consumption Strikes Back? Measuring Long-Run Risk,”

Journal of Political economy, 2008, 116 (2), 260–302.

, Thomas J Sargent, and Thomas D Jr. Tallarini, “Robust permanent income and pricing,”

The Review of Economic Studies, 1999, 66 (4), 873–907.

Iao, Man Chon and Yatheesan J. Selvakumar, “Estimating HANK with Micro Data,” Techni-

cal Report, New York University 2024.

42



Koopmans, Tjalling C, “Measurement without theory,” The Review of Economics and Statistics,

1947, 29 (3), 161–172.

Ljungqvist, L and T J Sargent, Recursive Macroeconomic Theory, 4 ed., MIT Press, 2018.

Lucas, Robert E Jr., “Asset prices in an exchange economy,” Econometrica, 1978, pp. 1429–1445.

, Models of business cycles, Vol. 26, Oxford Blackwell, 1987.

, “Macroeconomic priorities,” American Economic Review, 2003, 93 (1), 1–14.

Obstfeld, Maurice, “Evaluating risky consumption paths: The role of intertemporal substi-

tutability,” European economic review, 1994, 38 (7), 1471–1486.

Sargent, Thomas J., “Robert E. Lucas Jr.’s collected papers on monetary theory,” Journal of

Economic Literature, 2015, 53 (1), 43–64.

, “Haok and Hank Models,” in Sofı́a Bauducco, Andrés Fernández, and Giovanni L.

Violante, eds., Heterogeneity in Macroeconomics: Implications for Monetary Policy, Series on

Central Banking, Analysis, and Economic Policies, Santiago, Chile: Central Bank of Chile,

2024, pp. 13–38.

, “Macroeconomics after Lucas,” Journal of Political Economy, In Press.

and Christopher A. Sims, “Business cycle modeling without pretending to have too much

a priori economic theory,” in “New methods in business cycle research,” Minneapolis,

Minnesota: Federal Reserve Bank of Minneapolis, 1977, pp. 145–168.

and Yatheesan J. Selvakumar, “Dynamic Mode Decompositions and Vector Autoregres-

sions,” Technical Report, New York University 2024.

Tallarini, Thomas D Jr., “Risk-sensitive real business cycles,” Journal of monetary Economics,

2000, 45 (3), 507–532.

43


	Introduction
	Data Description and Compression
	A Descriptive Statistical Model 
	Role of Dynamic Mode Decomposition
	Additional Findings
	Parameters and DMD Modes
	Micro-Macro Interactions

	Welfare Costs of Martingale and Stationary Shocks
	Welfare benefits of social and private insurance
	Compensating differences in deterministic trends

	Concluding Remarks
	Data
	Connections to LQG State-Space Models
	Singular Values and DMD Modes
	A Blanchard-Quah Analysis
	Another Decomposition
	Mobility across quantiles
	Fear of Misspecification

