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Abstract

We state sufficient conditions on matrices A,C,G,R defining a linear state-space
model that allow us to infer them from a reduced-rank first-order vector autoregression
(VAR). We use a Dynamic Mode Decomposition (DMD) to compute that VAR and show
how dynamic modes relate to hidden Markov states in the state-space representation.
We compute a reduced-rank first order VAR for quantiles for income, post tax and
transfer income, and consumption from the US Consumer Expenditure Survey. We
relate our findings to a “neo-classical synthesis” that was widely practiced by leading
twentieth-century macroeconomists and still is today.
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1 Introduction

Leading practitioners of 20th century macroeconomics accepted a “neoclassical synthe-

sis” that separated public policies intended to attenuate business cycles from policies

intended to redistribute income. That synthesis justified models that were designed

to explain aggregate quantities and prices and that are cast in terms of representative

agents.1 Thus, James Tobin and other members of President John F. Kennedy’s eco-

nomic team believed that “a rising tide lifts all boats” and practiced a macroeconomics

that intentionally ignored distribution effects.2 Empirical evidence assembled by the

National Bureau of Economic Research that culminated in Burns and Mitchell (1946)

had isolated a one-dimensional reference business cycle that theorists practicing the

“neoclassical synthesis” sought to explain.

This paper is squarely in that Burns and Mitchell tradition. We use a Dynamic Mode

Decomposition (DMD)3 to extract aggregate US business cycle dynamics from Con-

sumer Expenditure Survey (CEX) data between 1990 and 2021. The resulting descrip-

tive statistical model of US business cycle dynamics is an example of what Koopmans

(1947) called a “non-structural Kepler stage” model that compresses data and reveals

patterns that “structural Newton stage” models would explain in terms of parameters

that describe market structures and decision makers’ preferences, constraints, and

information flows.4 Section 2 describes how DMD estimates a reduced-rank first-order

vector autoregression in a setting in which least-squares regression coefficients are

underdetermined. It provides pseudo code that section 3 then applies to CEX data.

1For an account of the neoclcassical synthesis and its relationship to old and new heterogeneous agent Keynesian
models, please see Sargent (2023). For evidence that Robert E. Lucas, Jr., adhered to it, please see Sargent (2015).

2See Heller (1966) and Tobin (2015) for authoritative accounts of New Frontier economic policy advice and Blinder
(2022) for a faithful account of President Kennedy’s approach to macroeconomic policy.

3For example, see Brunton and Kutz (2022, sec. 7.2).
4Koopmans regarded Burns and Mitchell (1946) as such a “Kepler” stage model of business cycles, in contrast to

the structural, simultaneous stochastic difference equation models of business cycles that could be constructed with
tools developed by Koopmans (1950), Hood and Koopmans (1953), and Marschak (1953). The present analysis is the
spirit of Sargent and Sims (1977), though as we shall see in section 4 , the statistical model of hidden factors is quite
different.
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Section 3 infers “dynamic modes” that underlie the evolution of CEX percentiles,

then computes and plots them. Section 4 goes on to describe how dynamic modes

are related to other objects that appear in what we call a “pseudo innovations rep-

resentation”. Section 4 relates a pseudo innovations representation to the authentic

innovations representation that is associated with a particular linear Gaussian state

space model.5 That link allows us to interpret DMD modes as estimates of hidden

factors in that state-space model. We state conditions on a linear state space repre-

sentation that are sufficient to make an infinite-order VAR implied by an authentic

innovations representation align with a reduced-rank first-order VAR inferred by the

DMD algorithm. These conditions require that hidden factors in the state-space model

follow univariate first-order autoregressions with shocks that are possibly correlated

contemporaneously, and that each period a long column vector of observables provides

enough information about those hidden factors. As the length of the observation

vector grows, the pseudo innovations representation aligns better and better with the

authentic innovations representation. This occurs because a big enough collection of

contemporaneous noisy measurements of linear combinations of the hidden factors

contains the same information about the hidden states as would be provided by an

infinite history of those measurements.6 When these conditions prevail, it is possible

to recover matrices defining the state-space model from objects computed by DMD,

a finding that justifies a fast algorithm for estimating parameters of a state-space sys-

tem. Section 5 llustrates, checks, and stress-tests our section 4 theoretical findings

by conducting two “lab experiments” with an example theoretical model. Section 6

concludes.

5See Ljungqvist and Sargent (2018, secs. 2.7-2.10) for a compact description of innovations representations and
their link to vector autoregressions.

6That averaging observations over large cross-sections can accelerate learning about hidden dynamic factors is
reminiscent of Chamberlain and Rothschild (1982). More recent examples include Forni et al. (2000) and Forni and
Lippi (2001)
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2 Reduced Rank First-Order VAR

2.1 Data and Model

Let yt be an an M × 1 vector of variables at t = 1, . . . , T + 1, and assume that M > T ,

so there are more variables than time periods. Horizontally stack yt vectors to create

two M × T ”tall and skinny” matrices Y and Y′:

Y = [y1,y2, . . . ,yT ] (1)

Y′ = [y2,y3, . . . ,yT+1]. (2)

We estimate a first-order vector autoregression

yt = Byt−1+at , at ⊥ yt−1 (3)

E[at a⊤t ] = Ω. (4)

Use M(T + 1) data points to estimate the M2 parameters in B. Since M2 > M(T + 1),

a least squares estimator B̂ of B is underdetermined, so we choose7

B̂ = argmin
rank(B)=N

||Y′−BY ||F (5)

To compute B̂, we first represent Y with a reduced Singular Value Decomposition

(SVD)8

Y = ŨΣ̃Ṽ
⊤

7||D ||F denotes the Frobenius norm
∑

i,j D
2
i,j .

8Anderson (1951) and Anderson (1999) approach estimating reduced-rank regressions by first computing an
unrestricted least-squares regression. This approach is infeasible in our M > T setting.
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where Ũ is M × T , Σ̃ is T × T and Ṽ
⊤

is T × T . We compress Y and approximate it in

terms of its N largest singular values:

Y ≈ UΣV⊤,

where from now on we set Y equal to this compressed version UΣV⊤ of the original

data set, U = Ũ[:, : N ], Σ = Σ̃[: N, : N ] has N singular values as its only non-zero

entries, and V⊤ = Ṽ
⊤
[: N, :]. Here U is M × T , V is T × N , Σ is N × N , and V⊤

is N × T . We use this reduced-order SVD approximation of the original Y matrix to

compute

B̂ = Y′Y+,

where Y+ = VΣ−1U⊤ is a generalized inverse of Y that verifies Y+Y = IT×T .

We use these inputs to represent our reduced-rank first-order VAR in terms of N

underlying “dynamic modes” by implementing the following steps:9

1. Use U and B̂ to construct B̃N×N = U⊤ B̂U.

2. Construct an eigen decomposition

B̃ = WΛW−1

where columns of the N ×N matrix W are eigenvectors of B̃ and eigenvalues of

B̃ appear on the diagonal of the diagonal matrix Λ.

3. Define

ΦM×N ≡ Y′VΣ−1W .

4. Recognize a finding of Tu et al. (2014) that columns of Φ are eigenvectors of B̂
9Here we are following and extending steps laid out by Brunton and Kutz (2022, sec. 7.2).
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that share eigenvalues with B̃, so that

B̂ = ΦΛΦ+ (6)

where Φ is M ×N , Λ is N ×N and Φ+ is the N ×M (left) generalized inverse

that verifies Φ+Φ = IN×N .

5. Define an N × 1 vector of “dynamic modes” by10

x̃t ≡ Φ+ yt .

6. Use representation (6) of B̂ to express the estimated reduced rank first-order VAR

as

yt = ΦΛΦ+ yt−1+ ât, ât ⊥ yt−1 (7)

7. Multiply both sides of equation (7) by the N × M matrix Φ+ to obtain x̃t =

Λx̃t−1 +Φ+ât. Use it together with x̃t−1 = Φ+ yt−1 in equation (7) to form the

system

x̃t = Λx̃t−1 +Φ+ât (8)

yt = ΦΛx̃t−1 + ât

8. Construct moving average representation for modes x̃t:

x̃t+j = Λjx̃t +

j−1∑
s=0

ΛsΦ+ at+j−s

10In section 4, we’ll link these modes to an N × 1 hidden state vector xt that is defined implicitly by x̃t ≡ E[xt |yt].
We’ll also define another projection x̂t = E[xt |yt−1].
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9. Construct j step ahead conditional covariances of modes:

E(x̃t+j − E x̃t+j |x̃t)(xt+j −E x̃t+j |x̃t)
⊤ =

j−1∑
s=0

ΛsΦ+Ω̂(Φ+)⊤Λs (9)

In sections 4 and 5, we describe conditions under which outcomes of the DMD

algorithm can be associated with objects that define a linear, Gaussian hidden Markov

model. Those sections indicate indicate additional purposes a DMD analysis can serve.

We set the stage for these by first proceeding to our application to quantiles from US

CEX data.

3 US income and consumption dynamics

We construct representation (8) and use it to describe salient features of US business

cycles from 1990 to 2021. We want to study connections between cross-section dynamics

and the macroeconomic averages that macroeconomic models are designed to describe

and understand. We characterize cross-section distributions by their quantiles.11

3.1 Data matrix Y

We gather data on private income, post-tax income and consumption from quarterly

waves of the Interview section of the Consumer Expenditure Survey between 1990 and

2021.

For Consumption we sum total expenditure in the current month (TOTEXPCQ)

and total expenditure in the previous month (TOTEXPPQ). We do this because, while

households are interviewed once every three months, timings may not match calendar

quarters. Summing both measures is a common approach that the BLS has suggested.

11Let Ft[0, B] → [0, 1] be a cumulative distribution function for a possibly bounded nonnegative random variable
at t. Associated with c.d.f. F is a “quantile function” Q : [0, 1] → [0, B] that under some regularity conditions is the
inverse of F . Here we’ll work with “percentiles” defined as Q( 1

i
), i = 1, . . . , 100.
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Private income consists of a subset of categories that sum to before-tax income. Due

to changes in definitions over time, the relevant codes are FINCBTAX (1990-2004) and

FINCBTXM (2004-2021). FINCBTXM also changed its definition in 2013, but retained

the same code name. We categorize the sub-categories of FINCBT∗ series into either

private income or transfer income. Private income is defined as the sum of wages,

business income, financial income, income from rental properties and pensions or

annuities from any source. Transfer income is all other sub-categories of before-tax

income that are not private income. Table 6 in Appendix A describes the categorization.

Post-tax income is private income plus transfers (i.e. before-tax income) minus

taxes paid. Relevant codes are FINCATAX (1990-2004), FINCATXM (2004 - 2013) and

FINCATXEM (2013-2021).

The Interview survey asks about income over the past 12 months, while it asks

about quarterly amounts of consumption. As recommended by the BLS, we divide all

income data by four. We remove all households that consume more than their reported

annual incomes in a single quarter.

From these data, we constructed time series of cross-section distributions for con-

sumption, private income, and post-tax income. We’ll describe how we did this for

consumption and note that we followed the same steps to construct panels for the

other two variables. For wave t, we rank all Ĩ households by their consumption levels

c1,t, c2,t, . . . , cĨ,t. Then, we split them into one hundred equally sized bins that we call

percentiles. If Ĩ is divisible by 100, then each percentile contains I = Ĩ
100 households.

If not, the bottom 99 bins each contain I households and the 100th bin contains the

remainder. Except for this detail, define q̃p,t as mean consumption of households in

percentile p:

q̃p,t =
1

I

I∑
j=1

cj+I(p−1),t for p = 1, . . . , 100

Quantity q̃p,t is the consumption level of the p-th percentile of the consumption
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distribution. We repeated this step for every wave to obtain a time-series of consump-

tion at each percentile. We noticed suspicious ”jumps” in the constructed time-series

for private and post-tax income in Q1-2013 and suspect that these come from the

aforementioned changes in variable definitions. To respond to this situation, we spliced

the pre-jump and post-jump data in Q1-2013 by setting Q1-2013 consumption equal to

Q4-2012, and recursively adding subsequent changes in consumption in the post-jump

data to the adjusted series. We deflated each time-series by the Personal Consumption

Expenditures price index to obtain real objects and then seasonally adjusted. Call the

cleaned, real, seasonally adjusted consumption percentiles qp,t.

We removed 1st and 2nd percentile bins, because consumption for those are neg-

ative in some periods. Since earnings in the CEX are top coded, we also removed

the 99th percentile bins. We formed quarterly growth rates so that our consumption

growth variable is

yconsp,t = log qp,t − log qp,t−1 p = 3, . . . , 98 and t = 1, . . . , T

Proceeding in this way for the two income concepts, our final data set is a quarterly,

seasonally adjusted time-series of private income, post-tax income, and consumption

growth distributions from 1990 to 2021.
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We stack our three cross-sections to form matrix Y. Consequently, M = 291 and

Y =



yprivate3,1 . . . yprivate3,T

... . . .
...

yprivate98,1 . . . yprivate98,T

ypost−tax
3,1 . . . ypost−tax

3,T

... . . .
...

ypost−tax
98,1 . . . ypost−tax

98,T

ycons3,1 . . . ycons3,T

... . . .
...

ycons98,1 . . . ycons98,T



(10)

To interpret “dynamic modes” that we shall recover from our reduced-rank first-

order VAR, we calculate seasonally adjusted growth rates of the first two moments of

the private income, post-tax income and consumption distributions. We describe how

we do this for the consumption series, again noting that we used the same procedure

to compute cross section moments for the two income concept series.

To obtain one cross-section moment, we take the cross-section mean of consumption

q̄t :=
1
97

∑98
p=3 qp,t. Then we seasonally adjust and take log differences log q̄t− log q̄t−1 =:

µcons
t . (Taking means across quantiles qp,t or households ci,t yields the same quantities.)

To obtain another moment, we compute the cross-section variance of consumption

st :=
1
97

∑98
p=3(qp,t − q̄t)

2. Then we seasonally adjust and take log differences log st −

log st−1 =: σcons
t .12 The final objects, µcons

t and σcons
t , represent growth rates of the first

two moments of the consumption distribution.

12An alternative procedure would compute the variance across households st := 1
I

∑I
i=1(ci,t − q̄t)2. Note that

in constructing σcons
t , we are ignoring the variances within each percentile bin. We also compute the variance from

percentiles as described in Chang et al. (2021, Appendix A) with very similar empirical results.

10



3.2 A Reduced-Rank First-Order VAR

We set N = 2 and apply the steps in Section 2 to data matrix Y and extract what

DMD researchers call “dynamic modes”, i.e., the N components of x̃t = Φ+ yt. Thus,

mode i is x̃i,t = Φ+
:,i yt, where Φ+

:,i is the ith column of the M × N matrix Φ+. The

modes evolve according to the first block of equations in the dynamic system (8) or of

the corresponding dynamic system (8) with one-step ahead prediction errors in the

dynamic modes having been orthogonalized via a Cholesky decomposition. i.e., as

x̃t+1 = Λx̃t +Het+1. Our algorithm infers

Λ =

0.83 0

0 0.72

 , HH⊤ =

0.11 0.05

0.05 0.13

 , (11)

so both modes are persistent and their innovations have a similar variances. Since HH⊤

is not diagonal, the modes are correlated. The one-step ahead conditional correlation

between the two modes is 0.48. By setting h = 100 in formula (9) we approximate an

unconditional covariance matrix to be0.33 0.14

0.14 0.26


with an associated unconditional correlation of 0.46 between the two modes. These

objects will be useful below in rationalizing our findings against the existing results in

the literature.

Figure 1 displays a mode x̃1,t, standardized to zero mean and unit standard devia-

tion. The dark line in Figure 1 plots mode x̃1,t, i.e., the inner product of yt with Φ+
:,1;

the three colored dashed lines show standardized growth of average private income

(µprivate
t ), after-tax income (µpost−tax

t ) and consumption (µcons
t ) defined at the bottom of

section 3.1.
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Figure 1: Mode 1, x̃1,t = Φ+
:,1yt (standardized)

,

µprivate
t µpost−tax

t µcons
t

Constant 0.32 0.31 0.36 0.36 0.19 0.18
(0.05) (0.04) (0.04) (0.04) (0.04) (0.04)

Mode 1 0.66 0.64 0.48
(0.08) (0.07) (0.06)

Mode 2 0.85 0.81 0.42
(0.07) (0.06) (0.07)

R-squared 0.38 0.55 0.41 0.57 0.32 0.21

Table 1: Regression results of growth of first moment of distributions (µt) on modes

Table 1 shows the results of six bivariate regressions of the growth of average

incomes and consumption (the dashed lines in Figure 1) on modes 1 and 2. The

coefficients on both modes are significant and positive in all regressions, and the

R2 is also substantial. The R2 associated with mode 1 is higher than mode 2 for

consumption, and vice versa for income. Evidently, mode 1 is highly correlated with

cross-section averages for all three cross-sections, so it seems to be Burns and Mitchell’s

unidimensional “reference cycle” index of business cycles.

To indicate how quantiles of our three cross-sections respond to mode 1, figure 2

plots the first column of Φ. All components (or “loadings”) are positive: as mode 1
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rises, so do all quantiles of incomes and consumption.

Figure 2: Loadings Φ·,1 of quantiles on mode 1

Low quantiles of private income growth are more sensitive to mode 1 than are high

quantiles. All quantiles of total income growth are less sensitive to mode 1 than are

corresponding quantiles of private income growth. Most consumption quantiles are

even less sensitive.

Figure 3 shows mode x̃2,t. The dark line in Figure 3 plots standardized mode x̃2,t

while the three colored dotted lines show standardized growth rates of the cross-section

standard deviations of income and consumption variables. Table 2 shows counterparts

to the Table 1 regressions that use cross-section standard deviations, instead of cross-

section averages. Coefficients on both modes are positive and significant, and R2

statistics of the mode 2 regressions are high for all three variables.

To indicate how quantiles of our three cross-sections respond to mode 2, figure

2 plots the second column of Φ. When mode 2 rises, higher quantiles of all three

cross-sections increase more than lower quantiles. Private income growth falls for low
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Figure 3: Mode 2, x̃2,t = Φ+
:,2yt (standardized)

σprivate
t σpost−tax

t σcons
t

Constant 0.39 0.39 0.43 0.42 0.11 0.10
(0.11) (0.06) (0.12) (0.06) (0.13) (0.09)

Mode 1 0.50 0.76 0.70
(0.20) (0.20) (0.21)

Mode 2 2.1 2.19 1.98
(0.10) (0.11) (0.15)

R-squared 0.05 0.77 0.11 0.79 0.08 0.59

Table 2: Regressions of growth of second moment of distributions (σt) on modes

quantiles. Mode 2 seems to be an ”inequality mode”.

3.3 Connections with other data summaries

Our DMD detects different responses of income and consumption quantiles to two

dynamic modes. The reference cycle mode 1 affects low quantiles of private income

the most, and provokes smaller responses of other quantiles. In contrast, responses of

all consumption quantiles to model 1 are similar.

Various papers have inferred that higher quantiles consumption are more respon-

sive to business cycles than lower ones. Parker and Vissing-Jorgensen (2009) regress the
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Figure 4: Loadings Φ·,2 of quantiles on mode 2

annual change in log consumption on the coincident change in log aggregate real per

capital consumption using CEX data. They find that the sensitivity of the top 10% of the

distribution is substantially higher than that of the lower 80%. They find a qualitatively

similar relationship for income using data from Piketty and Saez (2003). Guvenan

et al. (2014) and Guvenan et al. (2017) compute a similar regression on Social Security

Administration data and find that exposures of earnings to aggregate variables are

”U-shaped” with respect to the earnings level.

Are our results compatible with these? To find out, we substitute our DMD esti-

mates of Λ,H, and Φ in system (8) and simulate data of length T = 1000. For every

period t and each variable, we calculate cross-sectional means, i.e.,

ȳprivatet =
1

97

98∑
i=3

yprivatei,t , ȳpost−tax
t =

1

97

98∑
i=3

ypost−tax
i,t , ȳconst =

1

97

98∑
i=3

yconsi,t

We then compute time-series regressions of percentiles on the corresponding aggregate.
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For private income, the regression is

yprivatei,t = αprivate
i + βprivate

i ȳprivatet + ϵprivatei,t for i = 3, . . . , 98 (12)

Figure (5) plots βi as a function of the percentile rank.13 The left chart is for

private income and shows that households in the low quantiles have high betas on

aggregate private income growth; those in the middle of the distribution have lower

betas, while betas are slightly higher for upper quantiles. This pattern is qualitatively

similar to the ”U-shaped” betas described by Guvenan et al. (2014).14 The right panel

shows corresponding betas for the consumption distribution. It shows that the highest

quantiles of consumption are most responsive to aggregate consumption growth, in line

with the findings of Parker and Vissing-Jorgensen (2009) and others. Thus, computing

regressions like those in the literature on data simulated from our estimated DMD

model yields similar results.

According to our DMD, the aggregate variables used in regressions (12) are actually

combinations of two correlated dynamic modes. Consequently, estimated βis are

functions of DMD loadings Φ[i,:] on both modes. Increasing consumption loadings on

inequality mode 2 drive the increasing βcons
i , not loadings on the reference cycle mode

1. A similar effect, albeit smaller quantitatively appears in the left panel. Our DMD

model indicates that those ”U-shaped” private income betas found by Guvenan et al.

(2014) are being driven by fluctuations in the inequality mode 2, not the reference cycle

mode 1.

13Almost identical plots arise when we weight quintile growth rates by the corresponding income/consumption
shares. We calculate simple means in favor of clarity.

14Since the Social Security Administration data used by Guvenan et al. (2014) is not top coded, the authors are able
to include very high income individuals – the top 0.1% of households – in their analysis. This difference might explain
why our income betas are not as distinctly ”U-shaped”.
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Figure 5: Aggregate regression betas

3.4 Impulse responses

To construct impulse response functions with orthogonal shocks, it is useful to calculate

a lower triangular Cholesky decomposition HH⊤ = Φ+Ω̂(Φ+)⊤ and then transform

the first equation of representation (8) to

x̃t = Λx̃t−1 +Het (13)

where et is a standardized random vector. Figure 6 plots impulse responses to a 1

standard deviation increase in the first orthogonalized shock. Since innovations ât

to the modes are correlated, the first shock affects both modes (top left panel). The

first shock affects the lower private income quantiles much more than it does the

higher quantiles. Differences in responses are much lower for after-tax income and

consumption quantiles.

The impulse responses also imply differential effects to income and consumption

inequality. Figure 7 plots the impulse response of the difference between the 95th

17



Figure 6: Impulse response to orthogonalized shock 1

percentile and the 5th percentile to a one-standard deviation decrease in shock 1. It

shows that private income growth inequality increases substantially, and consumption

inequality falls. These results are also consistent with existing literature on the business

cycle dynamics of inequality. Using CPS data, Meyer and Sullivan (2013) find income

inequality rose during the 2009 recession, while consumption inequality fell. In a more

recent paper, Meyer and Sullivan (2023) confirm their original findings and attribute

this dichotomy to asset ownership, the prices of which fell dramatically during the

2009 recession. In response to the negative shock, post-tax income inequality rises,

albeit much smaller in magnitude than private income. Its reaction is consistent with

government transfers being an important redistribution mechanism, as documented in

Heathcote et al. (2023).15

Another implication of the impulse response to shock 1 is that consumption in-

15Heathcote et al. (2023) also infer the importance of household income pooling in the muting of consumption
inequality. Since our private income variable is already at the household level, our current analysis is unable to speak
to that insight.
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Figure 7: Impulse response of 95th - 5th percentile income and consumption to decrease

in shock 1

equality – defined as the cross-sectional standard deviation – arising from shock 1

is ”smoother” than income inequality. To quantify this, we simulate a long sample

(T = 1000) from system (8), setting shock 2 always equal to zero. For each period,

we calculated an inequality measure for each variable, defined as a cross-sectional

standard deviation. The result is a time-series of our measure of inequality {σ̂t} for

each variable. Table 3 shows sample variances of inequality for all three variables for

the simulated data; these are our estimates of the variances of our inequality measures

attributable to shock 1. 16

Private income Post-tax income Consumption
Variance of inequality 0.11 0.002 0.001

Table 3: Estimated variance of inequality due to shock 1 from simulated data

16Explicitly, for consumption, the calculation is

1

1000

1000∑
t=1

(
σ̂cons
t −

1

1000

1000∑
t=1

σ̂cons
t

)2

The analagous computations are also done for private income and post-tax income.
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The variance of private income inequality is higher than are the variances of post-

tax income and consumption. This is consistent with findings of Heathcote et al. (2010)

(see figure 13), who plot the different measures of inequality in disposable income and

non-durable consumption between 1980 and 2005. These inequality measures include

the variance of the log, the Gini coefficient, the P50-P10 ratio and the P90-P50 ratio. In

all four cases, the time-series of consumption inequality appears, to the naked eye, less

volatile than that of disposable income.

Figure 8 plots impulse responses to a 1 standard deviation increase of the second

orthogonalized shock. By virtue of the lower triangular cholesky decomposition, the

second shock affects only the second mode. Across our three variables, differences in

responses of the 5th and 95th percentiles are largest for private income. For private

income, the 5th quantile falls by 0.6ppts while the 95th quantile increases by a similar

magnitude. It seems that shock 2 ”redistributes” private income. Not so for post-tax

income and consumption quantiles. Responses of all quantiles are positive, though

they are larger in magnitude for higher quantiles.
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Figure 8: Impulse response to orthogonalized shock 2

4 Two Innovations Representations

In section 2, we described how to construct a reduced-rank first-order vector autoregres-

sion and then use it to cast a linear state space representation (8) in terms of dynamic

modes x̃t. In this section, we use this system to construct a related one that we call a

pseudo innovations representation that is cast in terms of a different N ×1 state vector

x̂t. To accomplish this, we begin by recalling that in section 2, we implicitly defined an

N × 1 hidden state by a projection

x̃t = Ext |yt .

We now define a distinct projection

x̂t = Ext |yt−1 .
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System (8) implies that x̂t is related to x̃t−1 by

x̂t = Λx̃t−1 = ΛΦ+ yt−1 . (14)

With equation (14) in mind, multiply both sides of the first equation of (8) by Λ and

substitute x̂t for Λx̃t−1 in the second equation of (8) to obtain the following pseudo

innovations representation:

x̂t+1 = Λx̂t +ΛΦ+ât (15)

yt = Φx̂t + ât, ât ⊥ yt−1 .

It is enlightening to compare pseudo innovations representation (15) with an authentic

time-invariant innovations representation

x̂t+1 = A x̂t +Kat (16)

yt = G x̂t + at, at ⊥ yt−1

that is associated with the linear state-space model

xt+1 = Axt+Cwt+1 (17)

yt = Gxt+vt,

where shocks wt+1 ∼ N (0, IN×N ), measurement errors vt ∼ N (0,RM×M ) and ws ⊥

vτ for all s, τ ; here A is N × N , C is N × N and G is M × N . Now x̂t = E[xt |yt−1],

and at = yt−E[yt |yt−1], at ⊥ as ∀t ̸= s for yt = {ys}s<t and the Hilbert space
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H(at) = H(yt). Furthermore, Ω ≡ E[at a⊤t ] = GΣ∞G⊤+R, where Σ∞ and K satisfy

Σ∞ = E[xt−x̂t][xt−x̂t]
⊤

= CC⊤+KRK⊤+(A−KG)Σ∞(A−KG)⊤ (18)

K = AΣ∞G⊤(GΣ∞G⊤+R)−1.

Comparing systems (15) and (16) tempts us to match objects according to

A = Λ, K = ΛΦ+, G = Φ (19)

However, the distinct least-squares orthogonality conditions ât ⊥ yt−1 and at ⊥ yt−1

are tell-tale signs that a pseudo-innnovations representation (15) is associated with a

first-order VAR, while an authentic innovations representation (16) is associated with

an infinite-order VAR. This means that in general it is not appropriate to expect the

mapping in (19) to prevail.

However, in subsection 4.1, we describe restrictions on the linear state space model

(17) that make a first-order VAR satisfy least-squares orthogonality conditions that

raise its status to become an infinite-order VAR, thereby creating connections (19).17

Under those restrictions we can infer parameters of an authentic linear state space

model (17) from our reduced-dimension first-order VAR objects Λ,Φ.

4.1 Restricted Linear state-space model

We impose the following restrictions on state-space system (17).

1. M >> N

2. A is a diagonal

17This requires that the innovations ât be orthogonal to the linear space spanned by yt−1 and not just orthogonal
to yt−1.
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3. G has full column rank

Item 1 confines us to a “tall and skinny” Y settings. Item 2 asserts that each

component of xt follows an AR(1) process with shocks that can be correlated across

components. Item 3 requires columns of G to be linearly independent.18,19

To facilitate connecting pseudo and authentic innovation representations, we recycle

notation and temporarily define x̃t ≡ E[xt |yt], so that now

x̃t = x̂t + Lat (20)

L = Σ∞G⊤(GΣ∞G⊤+R)−1

and consequently

x̃t+1 = Ax̃t + L+ât+1 (21)

yt+1 = ΦΛx̃t + ât+1

4.2 Connections

Innovations representation (16) implies an infinite-order VAR for the {yt} process:

yt =

∞∑
j=1

B∞
j yt−j +at (22)

E[at y⊤
t−j ] = 0 for all j ≥ 1

E[at aTt ] = Ω = GΣ∞G⊤+R (23)

B∞
j = G(A−KG)j−1K ∀j ≥ 1 (24)

18Item 3 is an identifying assumption on G that precludes rewriting the state-space model with fewer factors. To
see this, suppose G was rank N − 1. Then it would be possible to rewrite the linear state-space model with N − 1
factors, implying that only N − 1 factors are identified.

19It is useful to compare our restrictions with those coming from a principle components analysis of Bai and Ng
(2008) who describe a set of possible identifying restrictions on G and xt that involve either (a) orthogonality of the
hidden factors, or (b) orthogonality of the loadings G, and/or (c) some zero restrictions on elements of G. By contrast,
item 3 does not restrict any particular elements of G, a useful feature for our section 3 application.
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where rank(B∞
j ) = N ∀j ≥ 1. Under the three restrictions we have imposed on

state-space system (17), (A−KG) ≈ 0, so that (24) implies

B∞
j ≈


GK j = 1

0 j > 1

(25)

Consequently, the infinite order VAR (22) becomes a first order VAR

yt = B∞
1 yt−1+at, (26)

which is equivalent to the reduced-rank first VAR (3) with B ≈ B∞
1 . This means

that the pseudo-innovations representation approximates an innovations representation

well. Consequently, our restrictions on state-space system (17) rationalize connections

asserted in equations (19). We can proceed to infer R and CC⊤. From the above

formulas for K and Σ∞, it follows that

A⊤−G⊤K⊤ =
[
I−G⊤Ω−1GΣ∞

]
A⊤ .

When A−KG = 0, this formula implies that I = G⊤Ω−1GΣ∞, which implies that

Σ∞ satisfies

Σ∞ = (G⊤Ω−1G)−1.

Then from equation from (23), we infer

R = Ω−GΣ∞G⊤ (27)

25



When A−KG = 0, equation (18) implies Σ∞ = CC⊤+KRK⊤, which in turn

implies

CC⊤ = Σ∞ −KRK⊤ . (28)

Next, we can use system (17) to solve the discrete Lyapunov equation

Vx = AVxA
⊤+CC⊤ (29)

for V, the stationary covariance matrix of hidden state vector x. Then we can compute

the covariance matrix decomposition

Vy = GVxG
⊤+R . (30)

4.3 Algorithm

The preceding findings present us with pseudo-code for estimating A,CC⊤,G,R for

our state-space model (17) that we describe in algorithm 1.

4.3.1 A computational detail

In step 9. of Algorithm 1, it is possible that Ω̂ is ill-conditioned, which poses a problem

for matrix inversion in step 10. One option is to calculate the generalized inverse.

We do this by computing the Singular Value Decomposition (SVD) of Ω̂. Recycling

previous SVD notation,

Ω̂ = ŨΣ̃Ṽ
⊤

For a chosen k, we construct U = Ũ[:, : k], Σ = Σ̃[: k, : k] and V⊤ = Ṽ
⊤
[: k, :].

Then, Ω̂−1 = VΣ−1U⊤ where Σ−1 = diag( 1
Σ1,1

, . . . , 1
Σk,k

). In the CEX application, we
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Algorithm 1 Pseudo-code for inferring A,G,R,CC⊤

1. Set number of modes (factors) N

2. Compute Φ, Λ and B̂ via DMD.

3. Approximate A with Λ.

4. Approximate G with Φ.

5. Approximate L with Φ+ and K with K̂ = ΛΦ+

6. Approximate x̃t with Φ+ yt.

7. Approximate x̂t with Λx̃t−1.

8. Approximate E[yt+j |yt] = GAj x̃t with ΦΛjx̃t.

9. Approximate Ω with

Ω̂ =
1

T − 1

T∑
t=1

âtâ
⊤
t

where ât = yt−B̂ yt−1.

10. Approximate Σ∞ with
Σ̂∞ = (Φ⊤Ω̂−1Φ)−1

11. Approximate R with
R̂ = Ω̂−ΦΣ̂∞Φ⊤

12. Approximate CC⊤ with

ĈC⊤ = Σ̂∞ − K̂R̂K̂
⊤
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choose k to satisfy

∑k
i=1 Σ̃i,i∑T
i=1 Σ̃i,i

≥ 0.975.

4.4 State-space objects recovered from our estimated first-order VAR

As presented in Section 4, estimates of A and G are immediate from the DMD algorithm,

provided in (11) and Figures 2 and 4. We use steps 10 and 12 of Pseudo-code 1 to

recover shock covariance matrix CC⊤ and conditional covariance Σ∞. We use step 11

of Pseudo-code 1 to estimate R. We obtain

ĈC
⊤
=

0.018 0.015

0.015 0.055

 Σ̂∞ =

0.055 0.030

0.030 0.078

 ,

while Figure 9 plots the diagonal of R̂, the variance of the measurement error. Measure-

ment error variances are highest at the very low and very high quantiles, and relatively

small for middle quantiles.

We use equations (29) and (30) to compute Vy. We decompose unconditional

variances diag(Vy) into parts attributable to the factors (diag(GVxG
⊤)) and parts

attributable to the measurement error (diag(R)). We present these in Figure 10. In the

middle quantiles for both income variables, the proportion of the variance explained

by the factors is around 50%. This proportion falls to around 20% for both low and

high quantiles. For consumption, for most quantiles only around 20% of the variance

is explained by the factors.

To form a frequency-by-frequency counterpart of variance decomposition (30), we
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Figure 9: Measurement error variances

Figure 10: Decomposition of unconditional variance Vy = GVxG
⊤+R of y.
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Figure 11: Spectral density decomposition of y at eight-year frequency ( ω = 2π
32 )

form the spectral densities of processes x and y at at frequencies ω ∈ [0, 2π] :

Sx(ω) = [I−A e−ωj ]−1CC⊤[I−A⊤ eωj ]−1

Sy(ω) = GSx(ω)G
⊤+R (31)

Figures 11 and 12 decompose diag(Sy(ω)) into a part diag(GSx(ω)G
⊤) attributable

to the factors and a part diag(R) attributable to measurement errors at frequencies

corresponding to periods of 8 years and 20 years, respectively.20 Figures 11 and 12

indicate that the two hidden factors explain large percentages of the variances of

quantiles at 20-year and 8-year frequencies.

20Since our data is quarterly, for a eight-year period ω = 2π
32

and for a twenty-year period ω = 2π
80
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Figure 12: Spectral density decomposition of y at twenty-year frequency ( ω = 2π
80 )

5 Laboratory

We apply our algorithm to artificial outcomes generated by a state-space model in

which N = 2, M is an even integer greater than 2, and

A =

0.9 0

0 0.7

 , C =

0.5 0.4

0 0.5

 (32)

G̃ =



1 0

...
...

1 0

0 1

...
...

0 1


, R = 0.25IM

31



The first M
2 rows of G̃ are [1, 0] and the second M

2 rows are [0, 1], so G̃ has full column

rank. To aid comparison for different M , we normalize columns of G̃ to have norm
√
M . Call the normalized matrix G. Within this setting, we first study large-sample

outcomes in which we know population moments. Then we report averages of statistics

from repeated random samples.

5.1 Population Objects

From A,C,G,R we compute population objects B,K,Σ∞,Ω,B∞
1 by first enlisting the

quantecon class LinearStateSpace to compute population moments of the stationary

distribution of the process {xt,yt} and the associated population cross-covariagrams

E[xt x
⊤
t ] ≡ Σx, E[yt y

⊤
t ] ≡ Σy, and E[xt y

⊤
t ] ≡ Σxy. These allow us to compute

population first-order autoregressive coefficients B via

B = GAΣxG
⊤Σ−1

y

After that, we use the quantecon class Kalman to compute the innovations represen-

tation and the associated K,Σ∞. This allows us to compute the population B∞
1 and

one-step-ahead conditional covariance matrix Ω via

B∞
1 = GK

Ω = GΣ∞G⊤+R .

Next, we use equation (27) to calculate a population analogue of R̂ by setting G = Φ.

We then use R̂ as an input to step 12 from Pseudo-code 1 to compute a version of ĈC
⊤

to approximate CC⊤.

We performed these calculations for M = 2,M = 300,M = 1000 to obtain outcomes

we report in Table 4. Frobenius norms reported in the first three rows describe how well

a pseudo innovations representation approximates an authentic one. As anticipated,
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as M gets larger, ||A−KG ||F approaches zero, as do approximation error measures

M−1||B−B∞
1 ||F and M−1||K−AG+ ||F . In addition, ĈC⊤ approaches CC⊤ and

R̂ approaches R.

Object M = 2 M = 300 M = 1000

||A−KG ||F 0.5 0.02 0.003
M−1||B−B∞

1 ||F 0.2 3e−5 3e−6

M−1||K−AG+ ||F 0.25 3e−6 2e−7

M−1||R̂−R ||F 0.2 0.001 0.0004

||ĈC⊤ −CC⊤ ||F 0.5 0.004 0.001

Table 4: Population objects

These findings with population objects set the stage for an experiment in which

we construct repeated samples of M × T data matrices Y, to be described in the next

subsection.

5.2 Sample Counterparts

We apply our algorithm to samples paths {yt}T+1
t=1 generated by state-space sys-

tem (32). For each sample j = 1, . . . J , we create data matrices Y(j) and

Y′(j). We apply Pseudo-code 1 to acquire the following objects for sample j:

Λ(j),Φ(j), K̂
(j)

, Ω̂(j), Σ̂
(j)
∞ , R̂

(j)
, ĈC

⊤(j). Then we calculate element-wise means across

all samples. For example, we compute

Ê[Λ] ≡ 1

J

J∑
j=1

Λ(j)

where Ê[Λ] is an N ×N matrix of sample means. We then subtract the sample mean

from its population counterpart to approximate mean errors of our sampled DMD

estimators.

We set T = 150 and J = 1000. Table 5 reports Frobenius norms of mean errors.
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Object M = 300 M = 1000

||Ê[Λ]−A ||F 0.032 0.022

M−1||Ê[Φ]−G ||F 4.0e−3 2.5e−3

M−1||Ê[B̂−B ||F 1.05−4 4.3e−5

M−1||Ê[K̂]−K ||F 2.5e−5 4.0e−6

M−1||Ê[Φ+]− L||F 4.0e−5 5.9e−6

M−1||Ê[Ω̂]−Ω||F 5.0−3 4.0e−3

||Ê[Σ̂∞]−Σ∞||F 0.25 0.20

M−1||Ê[R̂]−R ||F 0.034 0.017

||E[ĈC
⊤
]−CC⊤ ||F 0.20 0.19

Table 5: Sampled objects

6 Concluding remarks

We have used a Dynamic Mode Decomposition to represent salient statistical features of

the cross-sectional dynamics of income and consumption in the Consumer Expenditure

Survey. We detect two dominant, correlated dynamic modes: one seems to be a

Burns and Mitchell (1946) reference cycle; the other seems to be an inequality factor.

Loadings of cross-section quantiles on these modes reflects substantial government

redistribution and provision of consumption insurance. Impulse responses of quantiles

to innovations in the business cycle mode provoke different responses in earned income

and consumption to a shock. It seems plausible that this ”Kepler stage” finding can

be reconciled with ”Newton stage” structural models that government redistribution

policies.

We link the DMD algorithm to a particular linear Gaussian state-space model. We

describe restrictions on that state-space model that make noisy measurements of linear

combinations of factors at one point in time equivalent to observing an infinite history

of such noisy observations. This connection makes DMD a fast and inexpensive way to

estimate state-space fundamentals for this special high-dimensional linear Gaussian

factor model. Our application to CEX data illustrates that.
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A Appendix
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Code Mneumonic
1990-2004 2004-2013 2013-2022

Private income
Income from salary or wages FSALARYX FSALARYM FSALARYM
Income from non-farm business FNONFRMX FNONFRMM FSMPFRXM
Income from own farm FFRMINCX FFRMINCM
Income from interest on savings accounts or bonds INTEARNX INTEARNM INTRDVXM
Regular income earned from dividends, royalties, estates FININCX FININCXM ROYESTXM
Income from pensions or annuities PENSIONX PENSIONM RETSURVM
Net income or loss received from roomers or boarders INCLOSSA INCLOSAM
Net income or loss received other rental properties INCLOSSB INCLOSBM NETRENTM
Income from regular contributions from alimony and other ALIOTHX ALIOTHXM
Income from care of foster children, cash scholarships OTHRINCX OTHRINCM OTHRINCM
Transfer income
Income from Social Security benefits and Railroad Benefit checks FRRETIRX FRRETIRM FRRETIRM
Supplemental Security Income from all sources FSSIX FSSIXM FSSIXM
Income from unemployment compensation UNEMPLX UNEMPLXM
Income from workmen’s compensation and veteran’s payments COMPENSX COMPENSM OTHREGXM
Income from public assistance including job training WELFAREX WELFAREM WELFAREM
Income from other child support CHDOTHX CHDOTHXM
Food stamps JFDSTMPA
Food stamps and electronic benefits FOODSMPX FOODSMPM JFSAMTM

Table 6: Categorizing CEX income into private and transfers
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