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Abstract:

This paper is an exploratory analysis of the convergence of three informatiocnally
decentralized learning algorithms for finite-action., finite-plaver games of
incomplete information. The algorithms jnvolve repeated plays of a static “one-shot”
game to allow players to "learn" about the unknown preferences and beliefs of their
opponents. The first algorithm, the linear reward-inaction algorithm (LRI). posits
that players choose actions according to 3 probability distribution which is modified
after each play of the game according to an exogenous linear updating rule. The LRI
algorithm can only converge to vertices of the simplex, but whether or not such
vertices can be guaranteed to coincide with pure strategy Nash equilibria is an open
question. The second algorithm is a simple "Bayesian" learning algorithm where each
- player chooses an action to maximize his single-~stage posterior expected utility,
conditioned on observaticns of opponents' plays in previous plays of the game. We
show that this algorithm is equivalent to an Euler method for numerically integrating
a certain differential equation. Numerical examples suggest that the algorithm is
not globally convergent- in particular it appears that it camnnot converge to a mixed
strategy equilibrium. The third algorithm 4is a "modified Bayesian" learning
algorithm in which players generally select the action which maximizes their
posterior expected utility, but occasionally experiment by randomly choosing "non-
optimal" actions. We show that a single play of this experimentation game can be
interpreted as a game of incomplete information. and demonstrate that if the modified
Bayesian algorithm converges, it must converge to a locally stable Bayesian Nash
equilibrium (BNE) of the incomplete information game. Further, we show that as a
parameter o governing the degree of incomplete information goes to 0, the set of BNE
converges to a subset of the NE of the complete information game, including mixed
strategy equilibria. Numerical examples show that the while the algorithm does indeed
converge to mixed strategy equilibria, the rate of convergence is very slow.
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A practical limitation of the concept of Nash equilibrium (NE) is the assumption
that plavers have common knowledge of each others' objective functions. In games
played in "real life" situations this assumption is almost never satisfied. yet there
is mounting experimental evidence with human subjects (e.g. Smith. 1982) that even
without such common knowledge, realized outcomes are surprisingly close to the Nash
equilibrium outcome- especially when the games are repeated.a sufficient number of
times to give the players 4 chance to "learn". Harsanyi's notion of "Bavesian Nash

equilibrium” (BNE) attempts to deal with the problem of incomplete information by

assuming that players know only their own objective functiens but have prior
probabifity distributions over a pre-defined space of possible objective functions of
their opponents. However this only pushes the information problem into a higher
dimensional space since Bayesian equilibrium depends on the assumption that players
have common knowledge of each others' prior probabilicy distributions. It seems
likely that players of real life games will be as ignorant of their opéonents' priér
beliefs as they are of their objective functions. However even though the somuaon
knowledge assumptions are not literally true of real life games. it need not imply

that game theory is irrelevant as a positive theory of strategic behavior. There may

exist relatively simple learning strategies or learning algorithms that allow plavers
to learn the relevant parté of their opponents' objectives and . beliefs. leading to
decentralized coordination of behavior and convergence to a Nash equilibrium in
repeated plays of the game. Ideally one would like a learning theory which leads to
Nash equilibrium behavior in the limit; while at the same time providing a theory of
disequilibrium behavior along the path to éonvergence. At the very minimum. a

candidate theory should satisfy three criteria: 1) it should be privacv-preserving

recognizing the absence of common knowledge about other players' objective and

beliefs, 2) it should be decentralized recognizing the absence of a single agent or

rauctioneer” to coordinate the independent actions of the players. and 3) it should

be globally convergent recognizing that the plavers’ lack of knowledge may initially



lead them to use strategies which may be far from the equilibrium strategies.

These are strong reguirements and indeed we do not vet know whether there even
exists an algorithm which satisfies all thrge properties., The related literature on
stability of general equilibrium is not very encouraging. For example. the well known
counter examples of Scarf show that Walrasian tatonnement fails to be globally (or
even Jlocally) convergent., The "instability theorem" of Jordan (1986) goes even
further and shows that anv continuous strategy adjustment rule for any game-form
which Nash implements the Walarasian equilibrium is unstable in the sense that there
exist economies for which the adjustment rule fails to converge to the competitive
equilibrium, including the instability of tantonnement as a specisal case. These
problems have lead Hahn to conlude in his (1982) survey "a great deal of skilied and
sophisticated work has gone into the study of processes by which an economy could
attain an equilibrium... While some special medels exist, we shall have to conclude
that we still lack a satisfaq;ory discriptive theory of the invisible hand"”. These
results are discouraging given the relatively simple structure of sconomic
equilibria, and the fact that they satsify certain desirable properties such as
Pareto efficiency {(which make such equilibria equivalent to solutions of a cerrain
optimization problgm). Nash equilbria are generally not Pareto efficient, s0 in some
sense the problem of findiﬁg a2 informationally decentralized, globally converzent
Jearning rule’ may be even harder in this case. However while the theuretical
obstacles may be large, we believe that there must exist some, possibly very
sophisticated, convergent Jlearning process, otherwise how can one explain the
widespread convergence to Nash equilibrium in experimental games?

This paper is a modest initial attempt to analyze learning algorithms for finite
player, finite action games. We present three learning algorithms which are
consistent with Hurwicz's (1960) notion of "informational decentralization" (criteria
2 and 3 above). All of the élgorithms generate a sequence of probability

- distributions for players' actions. and can be viewed as mnonlinear stochastic



difference equations on the unit simplex. Section 5 presents the linear rewaxd-
inaction algorithm (LRI) which has a long history in the literature on cybernetics
and learning in biological systems (Bush and Mosteller (1958;. Mendel and Fu (197C).
and Tsetlin (1973)). Recently Narendra and Wheeler (1986) used the LRI algorithm to
establish convergence to a wunique pure strategy Nash equilibrium in a class of
identical payvoff automata games. Narendra and Wheeler proved that‘by proper choice of
a fixed "stepsize parameter A, one can guarantee convergence to the equilibrium peint
with probability 1-0(A). In section 5 we app;y the LRI algorithm to non-identical
payoff automata games. We argue that Narendra and Wheeler's proof of convergence,
generalizes directly to this case. Unfortunately. their proof is apparently incorrect
since the LRI algoirthm must converge to a vertex of the simplex with prohability 1.
but a non-identical payoff game need not have a pure strategy equilibrium point.
Whether or not Narendra and Wheeler's theorem itself is incorrect vemains an open
- question. In section 3 we present a natural "Bavesian" learning algorithm wherebv
each player chooses a2 strategy which maximizes his expected utilitv ziven his current
posterior distribution on the strategies of his opponents. Since the posterior is
based only on the obhserved actions of the other plavers, the Bavesian learning
algorithm is informationally decentralized. We show that the Bavesian learning
algorithm c¢an be viewed.as an Euler~type method for solving a certain differesntial
equation. We conjecture, but have not vet formally prern. that the Bavesian learning
algorithm is locally convergent to a strict pure strategy equilibrium (provided one
exists). We also conjecture, but have not proven, that the Bavesian algorithm cannot
converge to non-strict pure strategy equilibria or mixed strategvy ecuilibria. .Thus.
if no strict pure sﬁrategy equilibria exist. the algorithm will "wander" fourever. In
section 4 we present a modified Bayesian learning algorithm which allows the plaver
to "experiment" with new strategies. We relate this "experimentation game” to a game
of incomplete information including the original complete information game as a

special case. In section 2 we define the incomplete information game., cuaracterize



the set of Bavesian Nash equilibria (BNE). and show that as the “experimentation
parameter" ¢ governing the degree of incomplete information tendé to zero. the.set of
BNE of the game of incomplete information converge to a subset of Nash equilibria
(NE) oﬁ the game of cpmplete information (including mixed strategy equilibria). Using
ﬁhese results, we show in section 4 Qhat for fixed o, if the modified Bavesian
learning algorithm converges with positive probability. it must converge to a locally
stable BNE of the game of incomplete information. If the limiting complete
information game has a strict pure strategy equilibrium, then for sufficiently Small
¢ the incomplete information game must have a locally stable BNE in a neighborhood of
the pure strategy NE. Combining the above results. our results show that bv choosing
the parameter ¢ sufficiently small, the modified Bayesian learning algorithm can
converge to a point arbitrarily close to a Nash equilibrium point ¢f the original
complete information game, including mixed strategy equilibrium points. Thus, by
allowing the agents to experiment with possibly non-optimal actions., we can induce
encugh smoothness into the problem to obtain convergence to wmixed strategy
equilibrium points.

The idea behind the convergence proofs is to show that the sequence of action
probabilities asymptotically follow trajectories of a certain ordinary differential
equation fODE) whose zerés correspond ﬁo equilibria of the game. In the case of the
Bayesian learning algorithms. we use a theorem of Ljung {1977) to show that the only
possible 1limit points are the locally stable stationary points of the ODE. In the
case of the Bayesian learning algorithm the ODE only has zeros at vertices of the
simplex, implying convergence to pure strategy equilibria but not mixed strategy
equilibria. The ODE for the modified Bayesian algorithm does have zeros in the
interior of the simplex, even in the limit as o0, Numerical examples show that
indeed, the algorithm converges to mixed strategy equilibria. Unfortunately. we have
not vet discovered, sufficient conditions to guarantee global convergence with

probability 1. so we can't rule out the possiblity that the modified Bavesian



algorithm could wander forever., What we need are conditions that 1) guarantee global
'asymptotic stability to at least one zero of the ODE (or at a minimum. to guarantee
that the invariant set of the ODE equals the stable manifold of at least one
equilibrium point), and 2) that the algorithm will visit a domain of attraction of a
locally stable fixed point safﬁiciently often to  be "sucked in". In analogy to
simulated annealing algorithms, we need the algorithm to "bougce around” a lot
initially so that it can escape vectorfields of unstable regions and get caught in a
domain of attraction of a fixed point, just as simulaﬁed annealing algorithm bougces
out of vectorfields leading to local minima to eventually get caught in the domain of
attraction of the global minimum point. The degree of experimentation., as indexed by
¢. provides the noise or "heat" which can lead tﬁe algorithm to bounce into a demain
of attraction of a fixed point. Based on our computer experiments. we find that by
starting out the algorithm with ¢ large and letting it decrease sufficiently slowlvy
(at rate 1/JT), we obtain convergence. This version of the modified learning
alpgorithm can be viewed as a stochastic version of a homotopy ‘T"path-following”
aléorithm fdr computing fixed points. Homotopy path-following algorithms are globally
convergent under a "full-rank" assumption (Garcia and Zangwill. 1983). Thus we
conjecture that if the certain full rank and stability conditions can be established.
we can guarantee global coﬁvergeace with probability arbitrarily close to 1 by
starting the modified algorithm with a value of ¢ sufficiently large and letting it
approach 0 sufficiently slowly (at rate 1/JT or lliog(T)). The existing
literature on learning algorithms for games is small. Most of the work (Crawford
{1974), Lakshmivarahan and Narendra (1982)) focuses on learning algorithms for two-
person zerc sum games or cooperative games. Narendra and Wheeler (1986) used a simple

linear reward-inaction algorithm (LRI) and demonstrated its convergence in a class of

identical payoff automata games with unique pure strategy equilibria. Specificallv.
Narendra and Wheeler showed that by proper choice of a fixed "stepsize" parameter A.

one can guarantee convergence to the equilibrium point with probability 1-0(3 1.
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Although it 1is globally convergent and informationally decentralized. the IRI
algorithm has two major shortecomings: 1) it cannot converge to a mixed strategy
equilibrium, and 2) it is only minimally consistent ﬁith individually rational
behavior. Recent work by Fudenberg and Kreps (1988) studies local stability of NE for
non-identical payvoff games'undef adjustment or "behavioral rules" similar in_spirit
to cnes used here, but they focus on establishing local stability rather than global
stability. In addition, Fudenberg and Kreps focus on the issue of how players come to

have common knowledge of their opponents' choice of strategies. rather than how

players come to have common knowledge of their opponents' objective functions. Thus,

Fudenberg and Kreps assume that the players "know the structure of the game and their
opponents' payoffs, but they are uncertain about how their oppomnents will plav" (p.
2). Besides the LRI algorithm, the only other informationally decentralized. globallv
convergent algorithm we know of is due to Rosen (1963) who developed a T"gradient
algorithm" for a class of con;}nuous action concave games with ungiue pure strateg:y
equilibria. We are not aware of any informationally decentralized learnine algorithus
that are globally convergent to mixed strategy equilibria. However even if we succesd
in proving global convergence of the modified Bayesian algorithm, we are still Ffar
away from having a “"successful" theory of learning behavior because all of these
algorithms appear to conéerge far too slowly to be consistent with observed
trajectories in human experiments. Specifically, altﬁough all the algorvithms are able
to get into a domain of attraction of a fixed point fairly rapidly. once in a
neighborhood the convergence is very slow1 The problem with the slow local
convergence seems to be that 1) the Bayesian procedure for updating beliefs "learns”
far too slowly in comparison to what apparently occurs in games with human subjects,

and 2) the algorithms use no curvature information of the fixed point mapping.

1 The rapid initial convergence suggests that these algorithms micht offer practical
methods for generating starting values for traditional solution algorithms such as
Newton's method, ‘ '



information that is responsible for the rapid local convergence rates of Newton and

quasi-Newten methods.
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2. Computing Nash Equilibria as Limits of Bayesian Nash Equilibria

The Jlearning algorithms we present c¢an be viewed as stochastic fixed point
algorithms., OQur discussion in the introduction suggests that fixed points
corresponding to mixed strategy equilibria of complete information games way be
irregular, i.e. they mav not be sufficiently smooth functions of the underlving
parameters to insure global convergence, This section paves the way for our
subsequent results by showing how the addition of a small -amount of incomplete
information can smooth out the model, guaranteeing convergence to a mixed strategy
equilibrium. Normally one thinks of games of incomplete information as heing wore
complicated objects to solve than games of complete informatiop. 50 it is ironic that
such a trick actually makes it easier to compute an equilibrium of the original game.
More formally, we present a class of finite player., finite action games of complete
information. and a closely related class of games of incomplete information indexed
by a parameter ¢. When o=0, the two games coincide. We establish that the Bavesian
Nash equilibria of the incomplete information games are regular in the sense of
Debreu (19{6) and Dierker (1970)., there are an odd number of such equilibria. and
that set of Bavesian equilibria converge to a subset of the set of Nash equilibria of
 the complete information game as o~0. To simplify notation we present unotation for
games with only two pléyers. but all our results appear tno generalize in a
straightforward manner to the case of N-player games.

Consider first the notation for the game of complete information. Plaver 1
chooses one of Ni possible actions, and player 2 choose one of N: possible actions.
When player 1 chooses action i, i=l,..,.,N4, and player 2 chooses action j.
j=l,...,N2, the players receive rewards u.(i.j) and ua2(i.j). respectively. We have a
game of complete information provided that it is common knowledge that both players
are rational and that both know (NiNz.ui.u2). Actions (i*.j*) constitute a pure

strategy Nash equilibrium if




o* - 4*
i € argmax wa(i.j ) ' —
1£i8Ny
(1)
l* o* -
i € argmax ua(i ,3). -
1£34N2

Let SN denote the N-1 dimensicnal simplex, i.e. SN={pERNlpzo. zip(i)zl}. Probability

distributions (pi}pz)ESN‘xsuz constitute a mixed strategy Nash equilibrium if
N -
i € supp(ps) ® i € argmax I us(d.k)pz2(k)
1<dsN, k=1
(2) . -
Na
j & supp(pa) = j € argmax I ua(d,k)pa(k). -
18dsN, k=1

where supp(p.)={iip:(i)¥0}. While‘ pure strategy equilibria need not exist. Nash's
{1950) theorem guarantees that at least one mixed strategy equilibrium always exists.

Now consider a clogely related game of incomplete information. As before there
are only two players who havq N1 and Np possible actiovns. respectively, Ler ﬂ151§1
and anRFz represent private information of the plavers and let 520 he a fixed scalar -
parameter. Suppose that when the players choose actions (i,j) they receive rewards —
wa{i,3)+eN (i) and uzx(i.jl+oM2(j). Although player 1 does not know the type ?3 of his
opponent, he has a prior probability density q.(N:) over the possible types of plaver
2. Similarly player 2 ﬁas prior probability density 9gz{(M.). We have a game of
incomplete information provided that it is common knowledge that each player is
rational (i.é. chooses an action to maximize his expected utility given his prior} -
and both players know (Ni,N2,uU1,u2,91.92). Decision rules d:(M:) and d2(Mz)

constitute a Bayesian Nash equilibrium provided

d:l.(“:&.) = argnax[ Iu;(i.dz(ﬁg))+cﬂ1(i)!q;(ftg)dﬂz . .
ISiSNz. LY . '
(3)

da(z) = -argmaxf [ua(da(M31).9)4aN2(3) Iqa(Na)dns.
1<5<N, 91,

-



Define the (best) response probabilities ﬂi(pz.o)ﬁégl. ﬂa(pl,c)égz by

Nz

M,(pa.0)(i) = | I{i = argmax I ua(k.i)p2(i)+oN2(k)}g2(M1)dN,

N, 15ksN, j=1
(4)
o Na
Ao(pa,o)(i) = §{ I{j = argmax £ u2(i,k)p2(id+oMa(k)}q.(Mz)dM.
N, 1<k<N, i=1

Implicit in (4) is fhe assumption that there are no ties, i.e. the argmax is uniquely
attained. This will be true provided the players have atomless priors, or in measure-
theoretic terms, if qi and gz are absolutely continuous. The following assﬁmption
puts some additional restrictions on the players' prior beliefs to guarantee that the
integrals in (3) and (4) are well defined.

(Al) 9« and gz are absoiutely continuous probability densities on ‘RN‘ and RNz

with unbbunded support and finite first moments.

Direct computation of the Bayesian Nash equilibrium defined in {(3) séems to be a
formidable task since it defines the equilibrium decision rules (dy.dz) as a fixed
point in the infinite~dimensional space of pairs of functions (f..fz) mapping RV g 2
into {1....,Na}x{1......N2}. A shortcut is to calculate the equilibrium via response

Nz

probabilities. Define a fiﬁed point (p..P=) in the product space Sles by

n 1(?2,0)

o
'-l
H

(5)
Pz = nz(l’-’mc)-

Brouwer's theorem guarantees that a fixed point must exist since the simplex 1is a
compact, convex set and the response probabilities are continuoué functions of
(p1.p2). Note that if the random variables f: and M. have unbounded support by (al).
the fixed point in (5) will always be an interior peint of SN":{SN2 provided ¢>0. This

provides an "inward pointing" condition used to establish that (5) has an odd number

10



of fixed points. Intuitively, {px,P2) are the ‘"reduced-form" probability
distributions over each agent's actions induced by the decision rules (d,.dz) and the
priors (qi.,q2). The fixed point condition (5) says that the players' action
probabilities must be mutual best responses. Given the fixed point (pi,pz) Theorem 1
shows that it is a simple matter to recover the underlying Bayesian Nash equilibrium

decision rules.

Theorem 1 Supéose (A1) holds. Let (pi.p2) be a fixed point of (5) and define che

decision rules dy and ds: by

Nz
di(Ma) = argmax £ ua(k,i)pz{(j)+toNi(k)
1£ksN, =1
(6)
Na
da(Mz) = argmax I u=2(i,k)p.(i)+oN (k).

1gksN, i=1

Then (d,.dz) are Bayesian Nash equilibrium decision rules.

The great advantage of computing the BNE via (3) is not only that the Ffixed
point problem has been reduced to a finite-dimensional simplex. but alsc that the
fixéd points of (5) are regular. This is a consequence of the Williams-baly-Zacharyv
theorem (for statement énd proof, see McFadden, 1981) which shows that undei (al).
the response probability functions defined in (4) are continuously differentizble
functions of (pi.p2.,0). Differentiability implies that the Ffixed point can be

computed as a zero of the function F(p,o) defined by

nx(Pz-U) ~ Pa
(7) F(pi.p1.0) =
nz(P:.-O') -~ P2

In particular. one can compute the fixed point by Newton's method provided the

{N1+N2)%(N,4Nz) Jacobian metrix

11



-1 M1(p2,0)/3pa
(8) BF(p @) /8P = | 31 (p,y,0)/3pa -I

is non-singular in a neighborhood of a fixed point. Note that the off-diagonal blocks
of the Jacobian, 8M1(pz2,0)/9p2 and 8M2(pa,0)/ps, have columns that sum to zero due to
the adding up restrictions placed on (;,1;) as elements of a simplex. Since the set
of invertible matrices is an open., dense set, it seems reasonable to suppose that if
the Jacohian were not invertible at a particular value of ¢, a small perturbation of
¢ will make it invertible. We conjecture (on the basis of extensive computer

calculations), but have not yet been able to prove, the following result:

Conjecture l; For almost all p;ESNl and pzﬁgﬁz and o3>0, 3F{(p,o)/3p is invertible.

The regularity and inward pointing condition immediately imply the following results:

Theorem 2: (Lefschetz Fixed Point Theorem) If all fixed points of (5) are regular,

then {5) has an odd number.of isolated fixed points.

Theorem 3: (Implicit Function Theorem) In a neighborhood about any regular fixed

point, there exist continuous functions pi(s). p2(s) satisfying:

(=)
|

= M,(p2(s),s) - pa(s)
{9)

[
i

= T (px(s),8) - pals)

for all s in a neighborhood of o©>0.

i2



Theorem 3 suggests that the limit points {(p.%.pa®) given by p;*=limdﬂop1(c) and
pa*zlimaqopa(c). will be Nash equilibrium points of the complete information game,
Some care is required to show this, however. Note first that Theorem 3 implies cthat

p:(s) and pz(s) are continuous functions of s in a neighborhood of ¢>0. This

neighborhood need not necessafily contain the limit point 0. Secondly it is not
immediately obvious that the limiting points, if they exist, will in fact be Nash
equilibria of the complete information game. Third. the response functions M,(p..c}
and M.(pi,0), appear to converge pointwise to vertices of S'* and sN= as o~0. It is
not clear, therefore, how it is possible that p:(¢) and p2(¢) can converge Lo nixed
strategy equilibria of the complete information game. Actually., convergence to
vertices only occurs at points pi. and p. at which the argmax in (2) is unique.

Lemma 1 Suppose pz*=limoqopg(o) is such that for some 12igN,

Na T Na
(10) T wa(i,Pdp2*(i) > I ualk,idpa2*(i)
j=1 j=1

for k®i, 1Sk<N.. Then

{11) lim M,(pz(o).o) = e, = lim M (po*,0)
o0 o

th

where ei is the i unit vector.

Lemma_z Suppose pa*=lima*0p2(c) is such that action k is non-optimal. then

(12) lim R1(pa(e),0)(k) = 0 = lim M, (p,*,0)
a*{ a0 '

The proof of both lemmas is a simple application of the Lebesgue Dominated
Convergence theorem. If p: is such that two distinct actions i, j attain the argmax.
then Lemma 1 does not hold. In this case limcﬂ&T;(pz(c).o) depends on the

distributuion q,, the precise way in which pz(0) approaches its limit pa*, and

13
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possibly on how ¢ approaches 0 as well. For example, if gq. is a multivariate extreme
value distribution, then the response probability T, is given by then well-known

multinomial Jogit formula:

(13) Melpa.o)(i) = oXPLV/0}
Na
T exp{V./o}
j=1 J
where
N2
{14) V., = Z uw(j,k)pa(k).
J k=1

Suppose that Vizvj > Vi for k # i,j. Then (14) implies

1/2 if m=i=j
{15) lim ni(PatU)(m) =
a*Q 0 otherwise.

-

Thus in this case the limiting response probabilities assigns equal probability to
the utility-maximizing actions among which player 1 is indifferent. Suppuse that the
limiting complete information game has a mixed strategy equilibrium (p.%.p2%) where
plaver 1 plays actioﬁs i, § with probabilities p.%(i)=.4, pa%(j)=.6. Then the
pointwise convergence result in (15) seems to rule out convergence to a mixed
strategy equilibrium since limc*dT1(pz*;o)(i)=.5¢p1*(i)‘ Note, however. that when
there is no wungiue argmax it does not follow that limcqopn(0)=pz* implies
limcﬁg11(pa(c),o)#limaﬁgT;(pz*,o). For example, suppose that in the example in
equation (15) that pz(c¢) is such that Vjﬂvi+ac and Vi >V for all k # i.j. Then it
is easy to see that limcﬂgl1(pz(a).o)texp{a}l{1+exp{a}] even though
limc*&Tz(pz*.a)=112. These examples suggest that convergence to a ﬁixed strategy
equilibrium is a very delicate matter. However computer experiments show that in fact

BNE of the incomplete information game do converge to a mixed strategy equilibrium of

14



the complete information game with no special problem. The following Theorem provides

some insight on why this occurs.

Theorem 4 Let (pa.*,p=*) be a cluster point of (pi(e),p2(cv)) as ¢=0. Then (pi*.,p2%*) is

either a pure or mixed strategy equilibrium of the game of complete information.

Proof Since the cartesian product of simplices is compact., we know that at least one
cluster point {p.*.,pe*) exists for any sequence of o's. Thus we are free to choose a
subsequence {ot} with qt40 such that limr”m(pl(at),pz(ct)) = (pa¥.,pa2¥). There are
four cases to consider depending on whether the best response functions defined in
{2) have unique argmax's when evaluated at (p1*,p2*%). Suppose that at (p.*.pa2%) the
argmax in (2) is unique for both players. Then Lemma 1 immediately implies that p.* =

lim “Fl(pz(ct)’°t> = lim

= 1(92*.Gt) = e, where i* = argmax,

el ua(ik)pat(k).

Similarly we have pa* = limt@ayﬁ(pz(ot).at) = lim

k
tqaﬂz(pz*.ct) = ej* where 4% =
argmaijkUa(j.k)pl*(k). It follows immediately from the definition (1) <chat
(px*.pz*)=(ei*.ej*) is a pure strategy Nash equilibrium point of the complete
information game. Now consider the case where at {pai*.pa*), both plavers have
multiple actions that attain the argmax in (2). Then lemma 2 implies that p.*(k)=0
and p2*(k')=0 for any actions k, k' of players 1 and 2 that Jdo not attain the
‘respective argmax's in (2). This immediately implies that pi#® and pz% put all their
mass on the set actions that attain the argmax in (2). But this is exactly the
condition (3) defining a mixed strategy equilibrium of the complete information game,

The proofs of the other two cases (where one player has a unique argmax and the other

has multiple argmax's at (p:*,p=*)), is similar to the above arguments. A
Let BENE(o) denote the set of Bavesian Nash equilibria of the incomplete
information game with parameter o, and let NE dencte the set of Nash equilibria of

the complete information game. Let limcmoBNE(c)'be the set of all cluster points  of

135



(pi(ct).pa(ct)) for all sequences {Gt} with Uf*ﬂ. Then we have:

.14 C
Corrollary lxmcéOBNE(c) & NE.

Under what conditions does limcﬁoBNE(o)=NE? Since for each ¢ > 0 the ser BNE(o)
consists of an odd number of isolated points in the interior of s¥4s¥2 | it seems
clear that this will hold in the limit as well. This suggests that in order for
limU@dBNE(o)=NE we will need to restrict our attention to complete information ganes
with only a finite number of isolated equilibria. Actually, we need an additional

restriction: each pure strategy equilibrium point (i%*,j*) must be a strict Nash

equilibrium, i.e. i* and j* are the unique argmax's for players 1 and 2.
Definition We say that the complete information game is regular if 1) each mixed
strategy equilibrium point (pi*,p2*) is locally isolated, and 2) each pure strategy

equilibrium point is a strict Nash equilibrium.

1f a particular game is not regular. an arbitrarily small perturbation of the

player's payoffs will make it regular: thus regularity is a generic property.

Conjecture 2: If the complete information game is regular, limoqoBNE(c)=NE.

Conjecture 3: If 1im0+0(pl(o),pz(o))=(p1*.pz*) is a pure strategy equilibrium. then

it is a strict Nash equilibrium.

The conjectures 2 and 3 arose from numerical experiments with a simple 2x2 game with

pavoff matrix:

[’12‘1 1"

3 1.5 1 1.5
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The game has two pure strategy equilibria (1,1) and (2,2) and no mixed strategy
equilibria. Notice that in this case there are an even number of equilibria and the
(2.25 equilibrium is not strict. In order to see what is going on in the incomplete
information game, noté.that we can collapse the fixed point condition (5} into a

single equation:
(16) par = D (M a(psr,a),0).

Intuitively, (16) says that an equilibrium point p.* must be a best response to
players two's best response to pi*. Using the adding up restriction that
p2 {1)+p:(2)=1, it suffices to plot only the first coordinate of p: and T, in figure 1
below. Thus, the numericazl results using extreme value priocrs for Ny and %,, show
that for any o > 0 there is only one Bayesian Nash equilibrium of the incomplete
information game and it converges to the (1,&) equilibrium as ¢=0. It is quite clear
that the Bayesian equilibrium will never converge te the (2.2) equilibrium: since
player 1 is indifferent between actions 1 and 2 if plaver 2 takes action 2. plaver
two will impute response probabilities of (.3 .5) for plaver 1. buﬁ given any
randomization between actions 1 and 2, player 2 will find higher expected urtility to
taking action 1. Thus it will be impossible for the Bayesian Nash -equilibrium to
converge to the (2,2) equilibrium.

Finally. it is useful to illustrate the above convergence results in the case of

limiting mixed strategy equilibria. Consider first the following 2x2 game with pavoff

[11|o o}
0 0 |3 3

Notice that this is a regular game with 3 equilibria: 2 pure strategy equilibria

matrix

(1,1) and (2.2) and a mixed strategy equilibrium (pi?.pz*) with pa*r=pa*={(3/4,1/4).

Figure 2 shows that in this case there are 3 BXKE. The pointwise limit of

17
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MNy(Ma(p1,0),0) is a step function with a. discontinuity at the mixed strategy
equilibrium point pa(L)=3/4. If we take the convex hull of the left and right limit
points of the limit funcfion, we get an upper hemicontiﬁuous correspondence that
defines. player 1's best response correspondence in the limiting complete information
game. This best reponse correspondence has three fixed points corresponding to the 3

Nash equilibria of the game. As ¢~0, N;(N:(p1.0),0) undergoes homotopic deformation
to its discontinuous limit. Even thouéh the limit function is discontinucus and has

ne interior fixed points ({corresponding to the mixed strategy equilibrium),

nevertheless it is still the case that the middle BNE converges teo the mixed strategy

equilibrium (3/4,1/4).

Now consider the following 2x2 game with payoff matrix:

[1_2|4
2171

Lo+
RV

Notice that this is a regular game with no pure strategy equilibria and a unique
mixed strategy equilibrium p.*=(1/2,1/2), pe*=(3/4,1/4). Figure 3 shows that the
corresponding incomplete informatioﬁ game has a uniqﬁe equilibrium and that it
converges to the unique complete information mixed strategy equilibrium as o—0.

These results suggest a practical “"path following" algorithm for computing mixed
strategy equilibria: start with 0o>0 and compute an equilibrium of the incomplete
information game using Newton's method. Then compute the NE as the - limit of the

sequence (p;*(at),pa*(ot)) where ¢ is a sequence tending to zero. The path following

t

algorithm uses the solution (pl*(ct),pz*(at)) as a starting point for computing the

equilibrium (pi*(o, . .),p2*(0,_,.)) at step t+l. Thedrem 3 guarantees that this path is

t+1 t+1

smooth. and that by choosing ¢ sufficiently ¢close to o, we can guarantee that

t+i t

(p;*(ot),pz*(ct)) is in a domain of attraction of (pi*(o Yope®{o }) so the

t+l

convergence of Newton's method is guaranteed, provided the Jacobian matrix (8) is

t+1
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nonsingular for all c>0f Since the path following algorithm exploits smoothness and
the quadratic rate of convergence of Newton's method. we expect it to be much faster
than standard combinatorial fixed point algorithms such as Scarf's algorithm and its
variants. The only difficult problem is to find conditions to guarantee that(8) is
invertible ﬁof all (paispz2,0). The invertib;lity and -the jmplicit function thecrem
implies a monotonic path {p.(s),pa2(s)} which can be followed to a solution
(p2(0),p2(0)). If the Jacobian become singular a some o>0. then Garcia and Zangwill
derive a "homotopy differential equation" which essentially re-parameterizes Cthe
problem to allow the path following algorithm to reverse itself in o-space and still
converge to a solution (p2(0).p2(0)). Unfortunately a path following alogrithm baszed
on solution to the homotopy differential equations does not appear to have a simple

interpretation in terms of a learning algorithm with experimentation.

19
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3. Convergencé of the Bayesian Learning Algorithm
The "Bavesian" learning algorithm is also known as "solution by fictious play”
is known to have susequences which converge to NE in 2-person zero-~sum games (cf.

Owen, 1982). The algorithm works as follows. The one-shot game between plavers 1 and

2 is repeated T times. In plays 1,...,T player 1 observes actions i2(1).....1i2{(T) of
player 2 and player 2 observes actions i:(1),....,i:(T) of player 1. Let di(t)=ei (t)
1
and dg(t)=ei (t)’ where e; is the ith unit wvector. At play t with data
a .

{d+(1),....,da(t-1)}, player 2 forms an estimate (histogram) of player 1's action

probability vector pa as follows

- t-1
(17) p2(t-1) = % d.(s)/t.
s=0

Similarly plaver 1 forms an estimate of player 2's action probability vector p.

- t-1
(18) p2(t-1) = T ds(s)/t.
=0

Here d;(O)Eint(SNI) and da(O)Eint(gha) are initial values which can be interpreted as
"initial beliefs", or alternatively as the expected values of each plaver's prior
probability distributions f.(pa), £2(pi) over the possible values of their opponents’

J
action probability vector. Specifically, if player 1 has a Dirichlet prior over SI\2

(19) fa(palda(0)) = (O - o -+ da(0)Na))
CA GG ) B L C G ET9))
pz(l)ida({})(l)*l]. .. pz(Na){dz(o)(NQ)_ll'
then
(20) E{ps! d2(0)} = d2(0).
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Similarly if player 2 has a Dirichlet prior over SNi.

(21) fa(palda(0)) = [(A(ODF . . - + du(OW))
T{d.(0)(1)) . . . P(da(0)(N1))
(114203111 [d2(0) (Na)-1]

. Pl(N;)

then
(22) E{pa! d:(0)} = d2(0).

Since Dirichlet is conjugate to the wmultinomial distribution. the

distributions

£2(pal d2(0),....,da(t~1))

fa(p:1da(0),....,da(c~1))

-

are Dirichlet with expected values given by:

(23) E{pa! d2(0).....,da(t-1)} = palt-1)

,pa(t-1).

(24) E{palda(0),....,da(t-1)}

posterior

Thus the updating rules (17) and (18) can be interpreted as posterior means generated

by a Bayesian learning procedure. Given the players' posterior beliefs (of which the

posterior means are sufficient statistics)}, each player c¢hooses an action to maximize

expected utility

Nz -
(25) i2(t) = argmax I ua(i,j)p2(t-1)(j), da(r) = €5, (t)
121K, j=1 *
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(26) i2(t) = argmax £ ux(i,jlp:(t-1)(1i), dz(t) = e, (£)"
125<N. i=1 2

In the case an argmax in (25) or (26) is not unique, we assume players use some tie=-
breaking rule to determine a unique chosen alternative (such as randomization) so
that ¥t>0  di(t) and d.{t) are vertices of SNl and SNz. Now., re-write (17) and (18)

recursively as

(27) pa(t) = pilt-1) + 1 [ dat) = pa(t-1) |
t+1

(28) pa(t) = palt-1) + 1 [ da(t) - palt-1) 1.
t+l

The Bayesian learning algorithm consists of the system (25}, (26), (27). and (28), a
deterministic svstem of nonlinear difference equations, Since the product of
simplices is compact, the sequence {;1(t).;2<c)} must have a convergent subsequence.
Suppose it has a cluster point (pi%*,pz*). Then from (25) and (26}, it is easy tu see
that {p.*,p2*) is a Nash equilibrium point: if iesupp(pi¥). then i must be an argmax
of (23) infinitely often, so it must be an argmax in the limit against po*. Similarly
if jesupp{pz*), then j must be an argmax of (26) infinitely often, sc it must be an

argmax in the 1limit against pi*. But this 1is precisely the condition (2) for

(p1+*,p2*) to be a Nash equilibrium peint.

Lemma: Any cluster point of the modified Bayesian learning algorithm is a Nash

equilibrium.
This is an extremely weak convergence result since the sequence need not stay at

(p2*,pa2%), but continually cycle through the simplex. Given a fixed tis-breaking

rule, we will almost never expect the sequence (27) and (28) to converge to a mixed
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strategy equilibrium point {pa*,pe*). since the probability distribution over the
elzaments in the set of argmax's need not correspond to the distributicon required to
supporl the mixed strategy equilibrium. Thus, we conjecture that the Bavesian
learning élgorithm will not converge to a mixed strategy equilibrium point. expect in
the event of a stochastic tie-breaking rule that happens to coincide with the Nash
equilibrium probability distributions.

The Bayesian learning algorithm can be interpreted as using Euler's method (with

decreasing stepsize h=1/(t+1)) to solve the ODE

dpa(t)/dt di{p2(t)) ~ pa(r)
(29) = F(p)
dpa(t)/dt d2(pa(t)) =~ pa2(t)

where we use the (inconsistent) notation di{p2{t))} and da(pi(t))} to emphasize the
fact that the action probabilities depend on t only through p.(t) and p.(t) (see (25)
and (26)).

Theorems from numerical analysis on the convergence of Fuler's method show that
with decreasing stepsize h=1/(1+t) the difference between the trajectories of Euler's
method (27) and (28) and the actual solution to the ODE (29) are 0(h) at a pre-

determined point to. However such theorems tell us little about the asymptotic

behavior of the trajectories as te™®. Although non-stochastic. the system (253), (26).
(27) and (28) fits within the <¢lass of recursive stochastic algorithms whose
asymptotic behavior was analyzed by Ljung {(1977). who handles non-stochastic svstems
as a special case, Ljung's Theorem 1 establishes that under weak regularity
conditions, if the ODE (29) has an invariant set Dc with domain of attraction DA’ and
if the trajectories of the learning algorithm visit a closed subset of DA infiniéely
often, then ;(t)=(;1(t);;a(t)) converges to Dc as t—w, Recall that the invariaht set

Dc is the set of absorbing states of the ODE, i.e. it is the set of points DC such
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that once a trajectory p{t) of (29) enters Dc it never leaves DP. An obvious subset

of Dc are the equilibrium points, i.e. the zaros of F(p). Clearly any zero of F{(p) is

a pure strategy NE of the complete information geme: since d.(t) and do(t) are
vertices, it is obvious that no mixed strategy equiiibria can be a zero of F(p).
Ordinarily, the zeros of F{p) are strict pure strategy equilibria. but it may happen
that by coincidence of the tie~breaking rule a non-strict pure strategy NE may be a
zero. Thus, the invariant set DC to which the learning algorithm converges (assuming
that the assumptions of the Ljung's theorem can be verified) includes pure strategy
NE of the complete information game. The problem is that DC may include other points
which are not equilibria. such as closed orbits or limit cycles. One needs a “"global
asymptotic stability" condition to guarantee that Dc consists only of zercs of Fip).
Since we have not been able to define a suitable Liapunov function to guarantee
global stability. we proceeded to analyze a series.of examples on the computer.
Consider the 2x2 game natrices presented in section 2. ﬁecall that the first

example had the payoff matrix

with one strict pure strategy equilibrium, one non-strict pure strategy equilibrium,
and no mixed strategy equilibria. As' expected, Table 1 shows that the algorithm
converges to the pure strategy equilibrium. Starting the learning algorithm with
initial conditions d:{(0) and dz(0) arbitrarily close to the (1. 1.5) equilibrium were
not successful: the algorithm invariable converged to the (1,2) equilibrium (note
that the tie~bfeaking rule used in this case was to to choose alternative 1 in case
both alternatives yielded. the same expected utility). Table 2 reports numerical

results for the learning algorithm on the game with payoff matrix
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oo |3 31

which has two strict pure strategy equilibria and a mixed strategy equilibrium at
pi¥=pa*=(3/6.1/4), Depending on initial conditions we were able to generate
trajectories for {p(t)} that converged to either the (1.1) equilibrium or the (3.3)
equilibrium, but the algorithm never converged to the mixed strategy equilibrium.

Finally, consider the game with payoff matrix

which has no pure strategy equilibria and a unique mixed strategy equilibrium
p22={1/2,1/2) and pa*=(3/4.1/4). As can be seen from Table 3, the learning algorithm
appeared to drift about a neighborhood of the equilibrium (pi*.pz*). but even after
hundreds of thOuéands and even millions of iterations., it showed no signs of actually
converging to the equilibrium.

Overall the numerical results demonstrate the slow rate of convergence of
Bayesian learning, taking tens of thousands of iterations to converge to a small
neighborhood of a striét equilibrium. It is evidence that the Bayesian procedure for
updating beliefs may be somewhat "stupid" in the sense that after view@ng thousands
of observations of one'sopponent taking the same action, the algorithm is unwilling

to take of leap of faith and conclude that the opponent is actually plaving the

action with probability 1.

25
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4. Convergence of a Modified Bayesian Learning Algorithm

Section 3 showed that the simple Bayesian learning may converge to a strict pure
strategy NE if one exists, but it is an open question whether it can converge to a
mixed strategy equilibrium (although the last numerical example of section 3 suggests
that the #lgorithm may Fhover about"” a mixed strategy equilibrium without ever
completely converging to it). Ljung's theorems.indicate that the only possible limit
points of the learning algorithm are the locally stable zeros of the ODE
dp(t)/dt=F(p(t)) defined in (29). Since mixed strategy equilibria cannot be zeros of
F(p), and since F 1is not differentiable at a mixed strétegy equilibrium point,
Ljung's theorem appears to rule out the possibility of copveréince to a Qéxed .
strategy equilibrium. Unfortunately, Ljung's theorem 3 cannot be used becaﬁse it
assumes that F(p) is continuously differentiable in a neighborhood of any 1£mi£ point
- p*. The analysis of section 2 indicates that by adding a small amount of incomplete
information indexed by o. one could obtain equilibria p* which are arbitrarily close
to equilibria of the complete information game as ¢—0, and which are all regular
equilibria. This implies tﬁét the corresponding differential equation.F(p.U) defined
in (7) is continuously differentiable in a neighborhood of any Ffixed point. Thus
Ljung's theorem 3 applies, and we can conclude that if the modified Bayesian learning
algo;ithm (to be defined below) converges with positive probability, it must converge
to a 1ocall? stable zero of F(p,o), i.e. a Bavesian pash equilibrium of the
incomplete information game defined in section 2. Section 2 also suggested a "path
following™ algorithm that leads to a NE of the complete information game as o0,
including mixed strategy equilibria. This suggests running the modified Bavesian
learning algorithm allowing ¢ to approach zeroc as a function of t will cause the
learning algorithm to follow a path to a NE. including mixed strategy equilibria.
Numerical examples demonstrate that this is indeéd the case. but unfortunately. it
appears very difficult to prove that such an algoritﬁm must be globally convergent

with probability 1.



The modified Bayesian learning algorithm uses the same updating rules for the
probability estimates pa(t) and pz(t) given in (17) and (18). but now the agents'

decisions are random variables iy(t) and iz(t) defined by

~ Na -~ -~ L
(33) i2(t) = argmax £ ua(i,j)p=(t-1)(j)+oN.(t)(i), di(t) = e{ (e)
15188, j=1 *
» Nl - -~
(34) i2(t) = argmax I uz(i,Ppa(t-1)(1)+aM2(t)(3), da(t) = e{ (t)
138N i=1 2

where 0>0 is a fixed parameter and M.(t) is an IID draw at play t from q. and Tz(t)
is an IID draw from g=. Under (Al) of section 2 the argmax's in (33) and (34) are
unique with probability 1 so the decision rules d.(t) and d.(t) are well-defined and

Na N2

are elements of § with probability 1 without the need for excgenous tie-
breaking rules. One interpretation of (33) and (34) is that each player maximizes
expected utility, but each accounts for private information ax(t) and ﬁz(t) that
randomly affects their decisionmaking each period.' Alternmatively, one could think

(33) and (34) as defining a choice process whereby the plavers try to maximize

expected utility on average, but occasionally "experiment" by randomly choosing

alternative actions. Note that each replication of this "experimentation game” is not
the same as repeated plays of the incomplete information game of section 2, since the
I1D assumption implys that new "types" are randomly drawn in each replication,

The modified Bayesian learning algorithm defined by equations (27). (28), (33)
and (34) is é nonlinear system of stochastic difference equations., a system which
also fits within the class of recursive stochastic algorithms analyzed by Ljung
(1977). Ljung's results suggest that the asymptotic behavior of the modified Bavesian

learning algorithm will be governed by the QDE



dpa(t)/dt gl(Pz(t)-U) - palt)

(35) Flp.oJ.

il
1#

dp=(t)/dt Ma(pa(t),o) =~ palt)

We know from section 2 that for almost all >0, F(p.o) has an odd number of locallr
isolated zeros and each zero is a BNE of the game of incomplete information. Further
we know that I, and T, are continuously differentiable functions of p, and p=. S0

Ljung's Theorem 3 applies.

Definition: A BNE p* is locally stable if F(p*)=0 and the Jacobian aF(p*.0)/8p has

eigenvalues all of whose real parts are negative.

Theorem 5: If the Modified Bayesian algorithm converges with positive probability. it

-

must converge to a locally stable BNE of the game of incomplete information.

Theorem 5 leaves open the possibility that the modified Bayesian algorithin may
not converge at all. There are three situations under which this can occur: 1) F(p.s)
may not have 'ggz locally stable zeros, 2) the invariant set DC of the ODE (33) may
not equal the stable manifold of the set of zeros of P(p,o) {(i.e. the equilibria may
not be globally asymptotically stable), and 3) even if the equilibria are globally
asymptotically stable, the algorithm may not visit a domain of attraction of DC
inifinitely often ({(and will thus fail to be "sucked in"). If is tempting to search
for a Liapunov function V(p) similar to the one constructed in the case of the
Bayesian learning algorithm, thus guaranteeing global asymptotic stability of (35).
Unfortunately the Lefschetz Index theorem suggests that any such effort is bhound to
fail for the following reason., Existence of a3 Liapunov function V{p) implies that

each zero of F(p.c¢) is locally stable. However since eigenvalues come in conjugate
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pairs. this would dimply that each equilibria has the same index (3ince the
determinant of the Jacobian equals the product of ica‘ eigenvalues). However the
Lefschetz Index Theorem would then imply that BNE are always uniéue. but we know from
the numericall examples of section 2 that this is not the case. Therefore it
immediately follows that at least one BNE is _locally unstable. We formalize this

argument as
Jemma 3: At least one BNE must be locally unstable.

We do not yet know whether there are sufficient conditions guaranteeing that at
Aleasﬁ 1 BNE is locally stable., However even if we were to establish this., we would
still face the difficult task of showing that the invariant set DC of (35) did not
contain closed orbits that could capture {p(t)} and lead to nonconvergence of the
process. Finally even if we could demonstrate this, we would still have ro prove that
{p{t)} visited a domain of attraction of a stable BNE infinitely often.

At this point there is little else we can say from a theoretical lével ahout the
convergence of the modified Bayesian learning algorithm. To get some imsight on its
properties we resort to numerical computation of several examples. Table 10 compares
the trajectories of the modified Bayesian lea;ning algorithm to the trajectories of
the Newton path-following algorithm when ¢ is allowed to teand to zero according to
the sequence ga(t)=5//t. The table shows approximate aggreement of the trajectories.
tending to supﬁort our claim that the modif;ed-Bayesian ~learning algorithm  can be
viewed as a. stochastic path-following alogithm. After 30,000 iterations with
c(30000)=.0288, both algorithms yielded probability vectors close to a mixed strategy
equilibrium pa2#={.5,0..5). p2*=(1/3,1/3.1(3). Noté. however, that the .off—diagonal
blocks of the Jacobian are tending to infinity since the best response correspondence
is non~differentiable at a mixed strategy point. These growing off-diagonal parts

induce growing oscillatory characteristic roots of the Jacobian matrix making
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'convergence increasing difficult as o(t)=0 even though the real parts of the
characteristic roots are converging to -1. Table 11 provides an illustration of
possible non~convergence of the modified learning algorithm arising from problems of
oscillatory roots that occur when the initial value of o is chosen ~too small. Here
o{1)=.5, and the algorithm showed no signs of converging even‘ after 30.000
iterations. The trajectories appeared to cycle about the non-strict pure strategy
equilibrium point, gradually approaching it, but being suddenly repelled if it
approached to closely. Table 12 shows the corresponding trajectory when the .initial
value of ¢ is sufficiently high to avoid getting ttappped into cycles. After 60.000
iterations the algorithm appeérs to héve setﬁ@gd'down to the unique mixed strategy

equilibrium of the game.
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5. Convergence of fhe LRI Learning Algorithm

The linear reward-inaction algorithm has been described in many places (see,
e.g. Lakshimvarahan ., (1981))., and since this section closely follows Narendra and
wyeeler (1986), we will only provide only a brief sketch of the. algorithm and the
convergence theorem and refer the reader to the above references for further details.
‘The LRI algorithm is an adjustment rule for stochastic automata games. The one shot
game is played repeatedly, and at play t players 1 and 2 take actions i.(t) and iz(t)
as random draws from probability distributions ps.(t)ESN1 and pz(t)eiyz . respectively.
Suppose we normalize the players' payoffs so that for all i,j we have 0fui(i,j)$l and
0<u2(i,j)<1. Define d*(t):eil(t) and da(z)=eie(t), i.e.'.dl(t) and ds(t) are the

N2 Nz

vertices of S © and S corresponding to actioms ii1(t) and i2(t). The LRI algorithm

is a simple linear rule for updating the players' action probabilities given by

p1{t+l) palt) + t\‘-h‘.(i:.(t)qia(t))idl(t) - pa(t)]
(36)

p2(t) + Aua(ia(t). iz(t)){da(t) - pa(t)]

p2(t+l)

where A€ (0,1) is a fixed stepsize parameter. 1t follows from (36) that ?:(t+1)6:§*

and pz(t+1)ESN2 for any il(t): ia(t). According to (36), if player 1 takes action
i=i,(t) at play t then at play t+1 his probability of taking action 1 always
increases, and the probability of taking action j#i decreases to make p.(t+l) sum to
1. The magnitude of the increase in the probability of taking action i, [p.(t+1)(i)-
p2(t)(i)], depends on the size of the realized reward r=u.(ii(t).i=(t)): if r is
close to 0 then the probability of taking‘action i is increased very little. if r |is
clese ‘to 1 it is increased a lot. Thus LRI automata reépond positively to good
payoffs, but do not react adversely to bad payoffs in the sense of reducing the
probability of taking action i. Other learning schemes, such as the linear reward-

penalty scheme. force the player to reduce his probability of taking action i when he

receives a bad payoff. Note that while LRI automata respond to payoffs, they do so
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only in a very indirécﬁ way: they are not "rational” in the sense of choosing actions
to maximize so objective function. The learning algorithm can be inteérpreted as a
strategy followed by relatively stupid players. who choose randomly but show some
myopic response to favorable ocutcomes. Note also that the LRI algorithm satisfies the
requirement of informational decentralization: neither player needs to know the
payoff function 9f his oppcnent.l

The convergence analysis of the LRI algorithm begins with the observation that
Ni Ne

(36) induces a Markov process on S with stationary transition probabilities.

Thus, {p1(t),p2(t)} is a Markov process whose absorbing states consist of the

N“, It is easy to see from (36) that unless u: and u, are

identically 0. no point of ;hé interior of 8V xs® s absorbing. Thus, to prove

vertices of .SleS

convergence of the LRI algorithm we need to show that the process eventuaily hits cne
of the absorbing vertices with probability 1. This result follows from the theorv of

-

compact Markov processes:

Theorem 5 With probability 1 the Markov process {p:(t).p2(t)} defined by (36)

converges to a vertex of gNiygNe,

Proof: The result follows immediately from Theorem 4.3 of Norman <(1972) provided

NarsN2 45 a compact state space, a

{pr(t),p2(t)} 1is a compact Markov process. Since §
sufficient condition for {p.(t),p=2(t)} to be compact is that the process is distance
diminishing. To wverify this condition in the present case, write the algorithm (36)
in vector form as p(t+1)aTﬁp(t}.k,x(t)). where x(t)=(ix(t),i2(t)). Then {p.(t).p={t)}

is distance diminishing (i.e..T is a stochastic contraction) if

1 In fact, the players need not even know their own payoff functions. All the players

need to know is their realized payoffs u,(i.(t).iz(t)) and wa(i (t),12(t)}.
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(37) ~osup HT(pr Ax) - TP A.x) I <l p* - p? U,
pl;é p2 .
X, A

It is straightforward to verify from  (36) that T indeed satisfies the distance
diminishing condition, so it follows that {p:(t),p2(t)}} converges to a vertex of

SN"xSNa

with probability 1. ]

It follows immediately that the LRI algorithm is only capable of converging to
pure strategy Nash equilibrium points, and in fact, it is only capable of converging
to strict pure strategy NE. In order to show that {pi(t),p=(t)} converges to a strict
NE, Narendra and Wheeler (1986) showed that by choosing the stepsize parameter A
sufficiently small, the trajectories of {p.{t).p2(t)} will follow the trajectories of

; . . . N N
a certain ODE, whose stable stationary points are the vertices of & *xs"?®
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corresponding to the strict NE., Define the function W(p) mapping Snlxs‘ into itself

by:
(38) W(p) = E{p(t+1)-p(t)! p(L)=p}/A.

From the definition of the 1IRI algorithm in {36) it follows that the vertices of

SN"xSNz are zeros of W(p). Let f{t) be the solution to the ODE df{(t)/de=W(f(L))

N

subject to the initial condition f(O)szint(SN‘xS 2). Then following arguments of

Lakshmivarahan (1981) one can show that there exist constants k. and ks such that

E{p(n) -~ £(nr)} = kA
(39)

E{{p(n) -£(ar)]} = kah. 0=0.1.2,... p(0)=p.

[}



and where f(n)=f(oh\). Since {p(n)} converges to a vertex with probability 1. (39)
implies that the ODE df(t)/dt=W(£(t)) is globally asymptotically stable. Narendra and

Wheeler define a vertex e* to be a stable stationary point is
(40) eW(p)(1)/3p(i) < 0 Wi,

The c¢rux of Narendra and Wheeler's convergence result is the (tediocus. but

straightforﬁérd) demonstration that e* is a vertex of SN‘XSN2 corresponding to a
~strict Nash equilibrium if and only if e* is a stable stationary point of the ODE.

Narendra and Wheeler take this result as implying that when the stepsize A is
sufficiently small, <the trajectories of {p:(t),p2(t)} are arbitrarily close to the
trajectories of the ODE df(t)/dt=W(£(t)). which can only converge to a locallv stable
zero of W, the strict pure strategy equilibrium point.

However there is a paradox in the Narendra Wheeler proof: their stability
arguments do not depend at all on the fact that the game they originally analyzed was
an identical payoff game with a unigue pure strategy equilibrium point. Thus. if
their convergence proof is'correct, one can apply it to establish the convergence of
the LRI algorithm in non-~identical payoff games. However herg is whefe the paradox
arises: consider the behavior of the LRI algorithm in a non-identical pavoff game
with no pure strategy equilibria. Their stability argument then shows that each
vertex is locally unstable. Thus by choosing A sufficiently small, the trajectories
of {p2(t),p=(t)} will follow the ODE trajectories arbitrarily closelyv. and hence will
never converge to a vertex. However this contradicts Thereom 5 which shows that with
probability 1, the trajectories must converge to a vertex.

The problem in the Narendra-wheeler argument seems to be their definition of

"stability" (40). We can seen no reason why (40) should imply global asymptotic

34



stability {or even local stability), and conversely, why the  reverse inequality
should imply that the wvertex 1is locally wunstable., If there 1is no necessary
connection between condition (40) and stability. there is no guarantee that
trajectories of the ODE converge only to pure strategy equilibrium points. implying
that the LRI algorithm could faii to learn even in identical payoff games.

In exteﬁsive computer simulations, the LRI algorithm uqually converged to a pure
strategy equilibrium in non-identical payoff games., but occasionally it would get
trapped at a non-equlibrium wvertex. Such examples are not proof that the LRI
algorithm can fail to converge, however, because one can always argue that by
choosing a smaller stepsize parameter A the new trajectories might converge to the
Nash equilibrium. Although the Narendra-Wheeler proof seems to be incorrect, it is an

open question whether their Thecrem is true or false.
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Table 1: Convergence of Bayesian Learning Algorithm in Example 1

enter 1 to enter new choice probabilities

enter 2 to start from center of simplex

enter 3 to start from existing values

enter 4 to start from random initial probabilities
enter (1,2,3): 4

initial action probabilities

pl

0.047309 0.952491
p2

0.183894 ¢.816106
iteration 100
pl _

0.990569 0.009431
p2

0.99192 0.00808
iteration 500
el

0.9980499 0.001901
p2

0.998371 . 0.001629
iteration 1000
rl

0.999048 0.000952
p2

0.999185 0.000815
iteration 2000
prl

0.999524 0.000476
p2

0.999592 0.000408
iteration 5000
rl

0.99981 0.00019 .
p2

0.999837 0.000163
iteration 10000
pl '

0.999905 9.523959E~005
p2 '

0.999918 8.160245E-005
p2

(0.999959 ' 4.100830E-005
iteration 20000
pl :
0.999952 4.762218E-005
p2

0.999959% 4.080327E-005



Table 2: Convergence of Bayesian Learning Algorithm in Example 2

énter 1 to enter new choice probabilities

enter 2 to start from center of simplex

enter 3 to start from existing values

enter 4 to start from random initial probabilities

enter (1,2,3): 4

initial action probabilities

rl
0.24278 0.75722
p2
0.223778 0.776222
jiteration 100
rl
0.002404 0.997596
p2 _
0.002216 0.997784
iteration 500
pl .
0.000485 0.999515
p2
0.000447 0.999553
iteration 1000
pl i
¢.000243 0.999757
p2
0.000224 0.999776
iteravion 2000
pl '
0.000121 £.999879
pe
0.000112 0.999888
iteration 5000
rl
4.854633E~005 0.999951
p2
4, 474658E~005 0.999955
iteration 10000
prl
2.427559E~005 0.999976
P2
2.237553E~005 0.999978
iteration 20000
pl
1.213B40E-005 0.999988
p2
1.118832E-005 0.999989
iteration 30000
pl
8.,092403E-006 0.999992
p2 .
7.459006E-006 0.999993



Table 3: Convergence of Bayesian Learning Algorithm in Example 3

enter 1 to enter new choice probabilities

enter 2 to start from center of simplex

enter 3 to start from existing values

enter 4 to start from random initial probabilities
enter (1,2,3): 4

initial action probabilities

pl

0.276849 0.723151
p2 .

0.04664 0.95336
iteration 100
rl

0.557197 0.442803
p2

0.78264 0.21736
iteration 500
pl

0.525503 0.4674437
p2

0.732628 G.267372
iteration 1000
pl

0.490786 0.509214
p2

0.75629 0.24371

iteration 10000
rl

0.506077 0.493923
p2

0.753429 0.246571
iteration 20000
pl )

0.505339 0.494661
P2

0.751915 0.248085
iteration 50000
pl

0.5039495 (. 496005
p2

0.749086 0.250914
iteration 75000
Pl

0.49981 0.50019
p2

0.752084 0.247916

~y - -

e



&ABLE 10: COMPARISON OF TRAJECTORIES OF MODIFIED BAYESIAN LEARNING ALGORITHM
AND NEWTON PATH FOLLOWING ALGORITHM

Pavoff matrix for plaver 1

0 0 3
0 1 1
-1 2 2

Nash equilibris

pl=(1.0.0) p2=(1.0.0)
p1=(1/2,0,1/2) p2=(1/2.1/3.1/6) pl=

initial action probabilities

pl

0.33333333
p2

0.33333333
Iteration 100
pl |

0.38943894
p2

0.15181518
1lpl

0.35994101
1p2

0.07886023
Iteration 200
pl

0.39966833
p2

0.12603648
ipl

0.44347253
lp2

0.08105542
lteration
pl

0.39977852
p2

0.12403101
1pl

0.43628010
ip2

0.08280040
Iteration 400
pl

0.40482128
p2

0.11055694
1pl

0.49667751
lp2

0.08696348
lteration 3500
pl

0.43379907
p2

0.10645376
ipl

0.54852338
1p2

0.10691312

0.33333333

0.33333333

300

sig= 0.49751860

0 0 -1

-1 2 3

0.

¢.

0.

0.

0.

0.

g.

¢.

0.25082508 0
0.38943894 0.
0.12321779 0.
0.36331059 0
sig= 0.35267281
0.16583748 0
0.34991708 0.
0.05979309 0.
0.33458060 0.
sig= 0.28819521
0.12403101 0.
0.34994463 0.
0.03874827 0
0.30243041

sig= 0.24968808
0.10058188
0.33250208
0.02134208
0.29207184

sig= 0.22338353
0.08050566 0
0.31803061
0.01295916
0.31587771 0

1 1 2

0.33333333

33333333

.35973597

45874587

51684120

.55782918

43669420

52404643
49673438

58436398

47619048

52602436

.52497163

61476919

49459684
55694098
48198041

62096468

.48569528

57551564

43851746

.57720918

Payoff matrix for plaver 2

(1/2,0.1/2) p2=(0.1/3.2/3)

initial sig=5

fixed point at
pl

0.41895816
p2

0.16805039
1pi(p2) :

0.41895316
1p2(pl)

0.16805039
fixed point at
pl .

0.44144161
p2

0.17780012
1pl(p2)

0.44144161
1p2(pl)

0.17780012
fixed point at
pl

0.45357138
p2

0.18902747
1pl(p2)

(0.45357138
1p2(pl)

0.18902747
fixed point at
pl

0.46139243
pl

0.19900445
1pi(p2)

0.46139243
ip2(pl)

0.19900445
fixed point at
pl

0.46693277
p2

0.20765832
1pi(p2)

0.46693277
lp2(pl)

0.20765832

p1=(1/2,0,1/2) p2=(1/3,1/3,1/3)

sig=

0.

0.49751860

12110599

.34880881
.121103599

.34880881
0.35267281

07740141
.34346067
07740141

. 34346067
0.28819521

.05659888
.34072124
.05659888

34072124
0.24968808

.04434884
.33906036
L04434884

.33906036
0.22338353

.03626304
.33795072
.03626304

. 33795072

det=2.70

.45993585
.48314080
.45993585

48314080 \
det=4.52 .

48115699
47873921
48115699

L47873921

det=6.38

. 48982974
47025129
48982974

47025129

det=8.24

49425873

46193518

49425873

.46193518

det=10.08

49680418
L 45439096
.49680418

. 45439096

i



TABLE 10, pace 2

Iteration 1000
pl

0.45987346
B2

0.11821512
1pl

0.46937452
1p2

0.14114322
Iteration 2000
Pl

0.47892720
p2

0.14659337
1pl

0.49060600
1p2

0.18365986
Iteration 3000
pl

0.49356795
p2

0.17143238
1pl

0.561889%60
1p2

0.23813203
Iteration 10040
pl :
0.49668366
P2

0.20441289
ipl

0.55379188 3.27158848E-006

1p2
. 0.26332407
Iteration 20000
pl _
0.30039165
P2
0.24240455
1pl

0.44961211 2.58437883E-007

1p2
0.29418016

Tteration 30000

pl

0.50466096
p2

0.25803584
1lpl

0.46426471 2.80980081E~008

1p2
0,331354274

sig= 0.15803489

0.04329004
0.33999334
0.00420203

0.32130097

8ig=0.11177546

0.02215559
0.33499917
0.00091323

0.33296195

sig=0.07070361

0.00886489

0.32740119

4.03212685E-005

0.34690248

sig= 0.04999730

0.00443289

0.32970036

0.34357272

0.49683650
0.54179154
0.52622344

0.53755581

0.49891721
0.51840746

0.50848077

'0.48337820

0.49756715
0.50116643
0.43807008

0.41496548

0.49888344
0.46588674

. 0.44620485

- 0.39310321

. sig= 0.03535446

0.00226635

0.33569988

0.35656987

0.00151106

0.33469995

0.38791980

sig= 0.02886703

0.49734180
0.42189557
0.55038763

0.34924997

0.49382798
0.40726420
0.53573527

0.280353746

fixed point at
pl

0.48098115
p2

0.23777024
1pl(p2)

0.48098115
1p2(pl)

0.23777024
fixed point at
pl

0.49052958
p2

0.26962593
1p1(p2)
' 0.49052958
1p2(pl)
" 0,26962593
fixed point at
pl

0.49721623
p2

0.30567833

1pi(p2)
0.49721623
1p2(p1)
0.30567833
fixed point at
pl .
0.49935254
p2
0.32453004
lpi(p2)
0.49935254
1p2(pl1)
0.32453004
fixed point at

- pl

0.49994368

P2
0.33226614

- 1p1(p2)

0.49994368
1p2(pl1)

0.33226614
fixed. point at
pl -
0.49999286
p2

0.33316809
1pl(p2)

0.49999286
lp2(pl)

0.33316809

sig=
0.01813324
0.33546942
0.01813324

0.33546942
sig=

0.00795170
0.33415439
0.00795170

0.33415439
sig=

0.00205294
0.33349934
0.00205294

0.33349934
sig=

0.00044747
0.33336159
0.00044747

0.33336159
sig=

3.78327852E-005
¢.33333510
3.78527852E~005

0.33333510
sig=

4.77656039E-006
0.33333352
4.77656039E~006

0.33333352

0.13803489

0.11117755

0.07070361

0.04999750

0.03335446

0.02886703

" 0.50000236

det=18.83
0.50088561 ...
0.42676034
0.50088561

0.42676034
det=34.15 -

0.50151872
0.39621968
0.50151872

0.39621968
det=64.61

0.50073083
0.36082233

0.50073083

0.36082233
det=G3,45

0.50019999
0.34210837
0.50019999

0.34210837 o
det=142.87

0.50001847 ._
0.33439876
0.50001847

0.33439876
det=203.40

0.50000236

0.33349839

0.33349839

-



TASLE 10, Pree 3

Iteration 40000 sig= 0.02499969

Pl 0.49869587 0.00113331 0.50017083

e 0.26147680 0.32995008 0.40857312

e 0.60060944 2.06241677E~009 0.39939056
e 0.29251458 0.33512923 £.37235618

Iteration 50000 sig= 0.02233813

Pl 0.49297087 0.000%0484 0.50612430

e 0.26908312 0.33413172 0.39678516

et 0.47299662 5.53304607E~010 0.52700338
il 0.23550620 0.26593691 0.49855689

Iteration 60000 sig= 0.02041224

o 0.50284717 0.00075554 0.49639728

. 0.27608429 0.33383333 0.39008239

il 0.48143309 1.53515306E-010 0.51836691
e 0.33743312 0.37706281 0.28550407

fixed point at
pl .

0.49999879
p2

0.33330106
1pi(p2)

0.49999879
1p2(p1)

0.33330106
fixed point at
pl

0.49999975
p2
0.33332594
1pl(p2)

0, 49999975
1p2(pl)

0.33332594
fixed point at
pl

0.49999994
p2

0.33333135
1pi(p2)

0.49999994
1p2(pl)

0.33333135

siéx

8.07577276E-007
0.33333336

8.07577276E~007

0.33333336
sig=

1.65221804E-007
0.33333334
1.65221804E~007

0.33333334
sig=

4.04413770E~008
0.33333333
4.04413770E-008

(0.33333333

0.02499969

0.02233813

0.02041224

det=268.39
0.50000040
0.33336558
0.50000040

0.33336552
det=333,24

0.50000008
0.33334072
0.50000008

0.33334072
det=401.09

0.50000002
0.33333531
0.50000002

0.33333531
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TABLE 11: EXAMPLE OF NON-CONVERGENT TRAJECTORY OF MODIFIED BAYESIAN LEARNIKG

ALGORITHM WHEN INITIAL VALUE OF SIG 15 TOO SMALL

Payoff matrix for player 1

-

— OO
B = O
R

Nash egquilibria

plﬂ(l,0,0) p2=(1,0.0)

0
-1
2

initial action probabilities

0.99998661
lteration 5000
Pl

0.94267813
p2

0.95187629
ipl

0.98197684
ip2

0.98557421
Iteration 6000
pl

0.94606454
p2

0.95406321
ipl

0.93967252
1p2

0.94787984

ot 0.33333333 0.33333333 0.33333333
P2 0.33333333 0.33333333 0.33333333
Iteration 100 sig= 0.04975186
Pt 0.70627063 0.22112211 0.07260726
P 0.60726073  0.15181518 0.24092409
et 0.74429198 0.00091623 0.25479178
o 0.12409348  0.57941331 0.29649322
Iteration 500 sig= (0.02233835
- 0.59747172 0.22621424 0.17631404
e 0.55156354 0.20026613 0.24817033
el 0.01158076 1.97718317E-008 0.98841922
o 0.86109823 0.00354985 0.13535192
Iteration 1000 sig= 0.01580349
pi 0.74159174 0.11322011 0.14518815
* 0.77256077 0.10023310  °0.12720613
ip: 0.99994262 5.73789152E-005 6.15579437E-013
02

1.33878293E-005 1.25227284E-016

sig= 0.00707036
0.02826101 0.02906085
0.02266213 0.02546157
0.01802316 7.46249703E~055

0.01442579 2.91725605E~055
sigz 0.00645443

0.02971727 0.02421819
0.02471810 0.02121869
0.06032748 3.41254896E-060

0.05212016 1.14866372E~059

Payoff matrix for player 2

pl=(6/9,2/9.1/9) p2=(5/8.2/8.1/8)

initial sig=.5

Iteration 7300 sig= 0.00577312

pl

0.85406390 0.12656090 0.01937519
p2

0.85952984 0.12349465 0.01697551
1pl . e
1.87513324E-007 0.99999981”2.78235035E4052

2.53177796E~007
Iteration 9000

0.99999975 1.90048649E-036 -
sig= 0.00527017

. Pl

. 0.71173573 0.27211791 0.01614635
P2 0.71629078 0;23&67763 0.04903159 ;_
é?§7915167ﬁ-012 1.00000000 2.352983364E-028 -
i?35890463Ew029 2.54297744E~009 1.000000G0
Iteration 10000 sig= 0.00499975

0.67846549 0.30700263 0.01453188
. 0.64466887 0.21121221 0.14411892
et 0.99999963 2.118398335-007 1.60102860E~007 ~
%?5?175831E—0a6 8.34040775E-022 1.00000000
Iteration 20000 sig= 0.00333545 o
- 0.61788577 0.1535089%9 0.22860524
221 0.67273303 0.10561139 0.22165558
p _

1.00000000 3.27228288E-042 3.47453464E-030

1?2 v a
1.00000000 4.91376345E~038 2.32605059E~057

Iteration 30000 sig= 0.00288670 )

pl -
0.74525294 0.10234103 0.15240603

p2
0.78181838 0.07040876 0.14777285

1p1 [
1.00000000 1.34214615E~034 6.28203380E-075

1p2

1.00000000 3.45081068E~031 4.07925165E-097 .



~FABLE }2: EXAMPLE OF CONVERGENCE OF MODIFIED BAYES1AN LEARNING ALGORITHM
BY SETTING INITIAL VALUE OF SIG SUFFICIENTLY HIGH

Pavoff matrix for player 1

L = I ]
PO
o W

Nash equilibria

p1=(1,0,0) p2=(1,0.,0)

pl=(6/

initial action probabilities

rl .
0.33333333
p2

0.33333333

Iteration 100
pl

0.38943894
pl

0.55775578
ipl

0.39381415
1p2

0.65900751
Iteration 1000
pl

0.58474858
p2

0.71861472
1pl

0.70768331
1p2

0.69538053
Iteration 3000
pl

0.64833700
p2

0.63413584
ipl

0.60835774
1p2

0.72300092
Iteration 10000
pl

0.66546679
p?

0.65726761
Ipl

0.73718825 ,
1p2

0.74423052
Iteration 20000
pl

0.65308401
p2

0.64993417
1pi

0.71436246
Ip2

0.78573996

0.33333333
0.33333333

sig=s 0.4975186
0.16171617
0.16171617
0.18225169

0.15398465
sig= 0.15803489

0.19613720
0.12021312
0.19670176

0.15006110
sig= 0.07070361

0.20162634
0.20902486
0.24306239

0.17960182
sig= 0.04999750

0.20101323
0.20501283
0.18020700

0.19866463
sig= 0.03535446

0.21075613
0.21910571
0.21279345

0.13771882

1
o
ocoo
O W e

9.2/9.1/9)

0.33333333
0.33333333
0

0.44884488
0.28052805
0.42393417

0.18700784

0.21911422
0.16117216
0.09561493

0.15455838

0.15003666

' 0.13683930

0.14857987

0.09739726

0.13351998
0.13771956

0.08260475

" 0.05710485

0.13615986
0.13096012
0.07284408

07654121

o

Payoff matrix for player 2

p2=(5/8,2/8.1/8)
indhial 3“’13 5

Iteration 50000
pl

0.65819350
p2 :
0.63065405
I1pl

0.61528355
1p2

0.83337813
Iteration 60000
pl

0.66697777
p2

0.65204469
1pl

0.69752328
Ip2

0.51671834
Mixed point at
pl

0.66400191
p2

0.63532478
1pl(p2)

0.66400191
lp2(pl)

0.63532478

sig=

sig= 0.02236046
0.21318240
0.23696193
0.17741983

0.11613422
sig= 0.02041224

0.21850191
0.22593512
0.28730405
0.30808605
0.02041224

0.21724662

0.23551494

0.21724662

0.23551494

0.12862409

0.13238402

0.20729662

0.05048763

0.11452031
0.12202019
0.01517267

0.17519561

det=138,09¢

0.11875148
0.12916028
0.11875148

0.12916028

Mixed strategy of complete information game

pl

0.66666667
p2

0.62500000

0.22222222

0.25000000

0.11111111

- 0.12500000

1
i
i

i
i



