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Abstract

This paper provides a general framework for analyzing self-confirming policies. We study
self-confirming equilibria in recurrent decision problems with incomplete information
about the true stochastic model. We characterize stationary monetary policies in a
linear-quadratic setting.
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1 Introduction

Perspective Policies often persist. Absent switching costs, the reason must be that the
goals and beliefs of the policy maker also persist, which is possible only if long-run data coin-
cide with what the policy maker expected. This belief-confirmation property does not imply
that a persistent policy is justified by correct beliefs. Indeed, even if the stochastic conse-
quences of the persistent policy are observable in the long run, a policy maker’s expectations
about the consequences of alternative policies may be incorrect. We call self-confirming a
policy justified by beliefs consistent with the long-run data affected by the policy itself. This
paper provides a framework for the analysis of such self-confirming, stationary policies. We
first develop a general analysis of self-confirming policies in recurrent decision problems with
incomplete information about the true stochastic model. Next we apply and illustrate the
theory with a characterization of stationary monetary policies in a linear-quadratic setting.

Consider an either moderately patient or impatient agent (she) who makes recurrent
decisions under uncertainty. In each period she takes an action a that, via a feedback function
f , delivers an observable outcome, or message, m = f (a, s) that depends on an unobservable
state of nature s. A fixed, unknown stochastic model σ∗ (that is, a probability measure over
the states) determines an i.i.d. process of state realizations. The agent knows the feedback
function f , but not the stochastic model σ∗. Note that, for some action a, the same outcome
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m may result from multiple states, i.e., f (a, ·) need not be injective; in this case, the realized
outcome does not reveal the realized underlying state as exemplified below. There are no
structural links between periods, but the agent observes the realized outcome in each period
t and therefore updates her subjective belief µt about the fixed unknown model σ

∗. Over
time, given a true model σ∗ and a prior belief, the intertemporal subjective expected utility
maximizing strategy yields a convergent active learning process, i.e., a stochastic process of
actions and updated beliefs (at,µt) that converges almost surely.

1 The realization (a∗, µ∗)
of the stochastic limit satisfies almost surely the following two properties:

• Confirmed beliefs: µ∗ assigns probability 1 to the set of models σ that are observa-
tionally equivalent to the true model σ∗ given action a∗;2

• Subjective best reply: action a∗ maximizes the agent’s one-period subjective ex-
pected utility given belief µ∗.

We take “confirmed beliefs”and “subjective best reply” to be the characterizing prop-
erties of stationary actions and beliefs. We call self-confirming equilibrium an action-belief
pair (a∗, µ∗) with these properties. Indeed, conceptually this is a special case of the self-
confirming equilibrium idea of Battigalli (1987) and Fudenberg and Levine (1993a), applied
to one-person games with incomplete information about the probabilities of states.3 The
key observation is that the confirmed belief µ∗ need not assign probability 1 to the true
stochastic model σ∗ and, therefore, action a∗ may differ from the objective best reply to σ∗.
In other words, although equilibrium beliefs are disciplined by long-run empirical frequencies
of observations, they do not necessarily concentrate on the true model σ∗, so the long-run
action a∗ may be objectively sub-optimal. This can happen even if the decision maker is
quite patient: in the learning phase a positive discount factor can induce experimentation
with actions that do not maximize one-period subjective expected utility, but the option
value of experimentation vanishes in the limit.4

Consider the following heuristic example. A decision maker is asked to repeatedly bet
on the color of a ball that will be drawn from an urn that contains 90 black, green, or yel-
low balls. After the draw, she is told whether she won (in which case she receives 1 euro)
or not (in which case he receives 0 euros). Thus, there are three states, S = {B,G, Y },
three actions A = {b, g, y}, and two monetary outcomes M = {0, 1}. The feedback function
attains value 1 when the action matches the state (f(B, b) = f (G, g) = f(Y, y) = 1) and
value 0 otherwise. Thus, winning reveals the realized state, but losing only rules out one
state out of three. Suppose the urn contains 45 black balls, 35 green balls, and 10 yellow
balls, i.e., σ∗ (B) = 1

2 , σ
∗ (G) = 7

18 , and σ
∗ (Y ) = 1

9 . The objective best reply is to bet on
B, but the decision maker does not know this. Suppose she keeps betting on G. With high
objective probability, she is going to win more than 1

3 of the times and she may come to

1See, e.g., Easley and Kiefer (1988) and the references therein. We use boldface letters to distinguish
random variables from their realizations. The working paper version of Battigalli et al. (2019) describes the
exact relationship between our framework and the stochastic control framework of Easley and Kiefer, showing
that they are essentially equivalent.

2That is, to models that induce the same distribution of outcomes as σ∗ when a∗ is chosen.
3The one-person assumption matters only for two related results of our abstract analysis. We expand on

this in the literature review.
4See Section 4.2, where we also consider a kind of converse result.
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deem very likely that the urn contains more green than black or yellow balls. Indeed, bet-
ting on G infinitely many times she will almost certainly observe that the winning frequency
is 7

18 and in the long run her limit belief µ∞ will assign probability 1 to the set models{
σ : σ (G) = 7

18

}
. As long as her limit belief µ∞ also assigns a suffi ciently high probabil-

ity to the set of models
{
σ : σ (G) = 7

18 > max {σ (B) , σ (Y )}
}
, she will find it optimal to

keep betting on G, which is an objectively sub-optimal choice. Indeed, betting on G with
such beliefs is a self-confirming equilibrium given the true model σ∗. Even if she initially
experiments betting on B, suffi ciently many unlucky outcomes will dissuade her from doing
it again. In other words, the vagaries of the active learning process may well drive her in
the trap of choosing forever the “satisficing” action g that wins more that 1

3 of the times
rather than to experiment with b long enough to realize that it yields an even higher winning
frequency.

Thus, in a self-confirming equilibrium, the decision maker may be best-replying to empir-
ically confirmed but wrong views about the actual data generating model. She may thus get
trapped in self-confirming behavior that differs substantially from the objectively optimal
behavior postulated by rational expectations models.5 This trap and the resulting welfare
loss is, at the same time, especially relevant and disturbing for policy making. It is relevant
when policy makers cannot obtain enough reliable evidence before choosing (e.g., with exter-
nally valid lab or field experiments), but instead have to rely on evidence that is a by-product
of their actual policies; it is disturbing because welfare in self-confirming equilibria can be
lower than in rational expectations equilibria. The main contribution of the present paper
is to provide a formal steady-state framework in which this important policy issue can be
rigorously studied. We then use this framework and illustrate the macroeconomic relevance
of our analysis in the context of a 70’s U.S. policy debate about whether there is a trade-off
between inflation and unemployment that can be systematically exploited by a benevolent
policy maker.

Illustrative Application We consider a stylized model economy in which a policy maker
chooses average inflation a and observes an unemployment/inflation outcome (u, π) = f (a, s)
that depends on the unobservable random state s of the economy. This model economy
can be interpreted as reflecting an aggregate response function of a continuum of market
agents. Assuming a quadratic loss function, we completely characterize the self-confirming
equilibrium map that associates each conceivable model economy with a corresponding set of
self-confirming beliefs and monetary policies. Given a fixed policy, the monetary authority
infers from long-run data the first and second moments of the joint distribution of u and π,
and hence the slope of the Phillips curve; but it cannot infer the true policy multiplier. We
show that observing (in the long run) the distribution of (u, π) leaves the monetary authority
with a residual one-dimensional uncertainty about the model economy, parameterized by the
direct impact of policy on unemployment (i.e., neglecting the impact on u through π).

For example, even if the true model is a rational expectations augmented Phillips curve,

5 In order to remove pervasive inconsistencies of pre-rational-expectations models, rational-expectations
models often assume that decision makers know the true data generating process, thus making decisions
objectively optimal. The traditional Nash equilibrium concept shares this objective best-reply feature. The
Bayesian Nash equilibrium concept of Harsanyi (1967) instead allows for subjective and incorrect beliefs about
parameters, without imposing a confirmed-beliefs condition. Therefore, Bayesian Nash equilibrium does not
refine self-confirming equilibrium.
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in equilibrium the monetary authority may believe that its policy does not shift the Phillips
curve and hence that there is an exploitable trade-off given by the slope of the Phillips
regression; the (Keynesian) monetary policy is optimal given a (falsely) conjectured trade-
off, the subjectively expected unemployment rate coincides with the natural rate, and average
inflation is (objectively) excessive. But we do not take a stand on what the true model is
and so also consider self-confirming equilibria where the monetary authority pushes average
inflation to zero falsely believing that there is no exploitable trade-off. Whatever the case,
our analysis shows how partial identification may trap policy makers in inferior, yet self-
confirming, policies that result in significant losses compared to the objectively optimal
policies.

Manifesto Partial identification pervades economic policy debates: despite the use of
sophisticated econometric techniques, economists disagree about how the economy works.
Therefore, at least some economists must be wrong, but all of them should hold beliefs
consistent with the data, which indeed only partially identify the relevant unknowns. The
agents that inhabit our models – in particular, policy makers– are in a similar position,
but their partial identification problem is exacerbated because what they can infer about
the relevant unknowns depends on their own behavior, so it is endogenous. Thus, differ-
ent policies justified by different beliefs – so, ultimately, by different (possibly conflicting)
economic views– may be self-confirming. Such beliefs may even be dogmatic, for example
because they assign probability one to a parameter vector resulting from observed long-run
frequencies and untested, possibly false, identifying hypotheses.

To escape the partial identification trap more experimentation may be advisable. But
we do not see an easy way out: large-scale social experiments can have huge costs, captured
in our framework by the opportunity cost of not using a one-period subjective best reply,
while small-scale ones may have little external validity.

Roadmap As anticipated, the first part of this paper (Sections 2-4) develops an abstract
analysis of self-confirming choices. The general contribution of this part is to provide a
theoretical framework that is:

• broad enough to include the finite one-period setting in which self-confirming analysis
was originally developed within game theory as well as the infinite setup relevant for
many economic applications, including macroeconomic policy analysis;

• specific enough to provide welfare implications for relevant policy questions with the
backdrop of a neat learning foundation.

The main issues that we address at this abstract level concern the scope of partial iden-
tification (Section 3), equilibrium values, and the resulting effects on the decision maker’s
welfare (Section 4.3). The most novel results of the abstract part concern the latter topic.
We show that if among two policies justified by different self-confirming beliefs one allows
better identification of the true model, even if only partially, then this policy yields higher
welfare. Similarly, self-confirming equilibria justified by sharper beliefs yield higher welfare.
The theoretical concepts of this first part are illustrated and clarified by a running example
of a monopolist facing an uncertain demand.
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The second part of the paper (Sections 5 and 6) builds on the abstract analysis to
gain a better perspective on economic policy. Section 5 frames the classical debate on the
possibility of systematically exploiting unemployment/inflation trade-offs and provides novel
results. In particular, the scope of partial identification is characterized in Section 5.2, while
equilibria, their values, and the welfare effects of model uncertainty are analyzed in Section
5.3. Sections 5.4 and 5.5 illustrate the analysis by considering two important special cases.
Section 7 offers some concluding remarks. Finally, Section 6 sketches a more general analysis
of self-confirming economic policies.

Appendix A collects some more technical material and all the formal proofs.

Related literature Our analysis contributes to and provides a bridge between two strands
of literature, one in game theory and the other in macroeconomics, that are concerned with
related issues, but have so far proceeded with limited cross fertilization and very different
languages.

In the game-theoretic literature, a strategy profile that satisfies the properties of con-
firmed beliefs and subjective best reply has been called “conjectural equilibrium”(Battigalli,
1987, Battigalli and Guaitoli, 1988), “self-confirming equilibrium”(Fudenberg and Levine,
1993a) and “subjective equilibrium”(Kalai and Lehrer, 1993, 1995). Here we adopt the more
self-explanatory terminology of Fudenberg and Levine. We refer the reader to Battigalli et
al. (2015) for an up-to-date discussion of this literature. Here we point out that, although we
focus on one-person decision problems with uncertainty, our abstract analysis extends seam-
lessly to n-person games except for the aforementioned comparative results about equilibrium
values. To our knowledge, papers in the extant literature either consider finite (one-period)
games, or games with no randomness. We extend the analysis of self-confirming equilibria
to settings with inherent randomness and possibly infinite spaces of strategies and states of
nature. Technically, this extension is not straightforward, it requires mathematical precision
and care. We also point out that the learning foundation of the equilibrium concept is more
solid in the one-person case analyzed here: while self-confirming equilibria of multi-person
games represent the steady states of learning dynamics, convergence to a steady state is not
guaranteed under general conditions, as is instead the case when the model can be effectively
reduced to a one-person decision problem (see Section 4.2). Finally, note that Battigalli et
al. (2015) is focused on the interaction between ambiguity aversion and self-confirming equi-
libria in games. Here instead we consider a decision maker who maximizes her subjective
expected utility (i.e., she is ambiguity neutral). This simplifies the general analysis without
affecting the illustrative examples and the application. Indeed, they feature conditions under
which the degree of ambiguity aversion does not affect the set of self-confirming equilibria
(see Section 7 and Battigalli et al. 2021), although it may well affect learning dynamics and
the likelihood to be trapped in the long run in self-confirming equilibria with an objectively
suboptimal choice (see Battigalli et al. 2019).

The macroeconomic literature focuses on policy making and learning dynamics. Sargent
(1999) explains the rise and fall of US inflation assuming that the monetary authority se-
quentially estimates a Phillips curve, ignoring its impact on expectations, and best replies
to updated beliefs. Standard OLS estimation leads to a Keynesian self-confirming equilib-
rium, but if instead recent observations are given more weight, because the monetary policy
maker’s decisions make the Phillips curve slowly shift and rotate over time, the process first
approaches a neighborhood of this equilibrium, but then recurrently abandons it when the
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Phillips curve looks “more vertical” leading the monetary policy maker to lower inflation.6

Cho et al. (2002) and Sargent and Williams (2005) sharpen the theoretical analysis of such
learning dynamics.7 Cho and Kasa (2015) note that the low inflation outcome at the end of
Sargent’s (1999) narrative – according to the postulated learning model– cannot persist ei-
ther; therefore, they consider an alternative stochastic learning dynamic in which the policy
maker best responds to the current estimate of an aggregate supply model, out of a set of
conceivable functional forms, as long as the model passes a statistical test; when the model is
rejected, a new model is selected at random and the process is restarted. Also, in their model
the Keynesian self-confirming equilibrium cannot persist, because, in the very long-run, the
monetary authority adopts a vertical Phillips curve model.8 In our paper, we focus only on
the set of possible limit points of learning dynamics. Furthermore, in our monetary policy
application, we follow Sargent (2008) and assume that the monetary authority may believe
in the exploitability of a trade-off between unemployment and inflation. Unlike the papers
we have mentioned, we do not take a stand on a true model economy. Thus, instead of
assuming that the true model economy features a rational-expectations augmented Phillips
curve, we characterize the self-confirming equilibria and values for many conceivable models.

Other papers in the literature focus, like ours, mainly on self-confirming equilibrium poli-
cies rather than learning dynamics. In particular, Battigalli and Guaitoli (1988) analyze the
self-confirming equilibria with rationalizable beliefs of a stylized policy game with incomplete
information, showing that there are equilibria with Keynesian features and equilibria with
new-classical features. Fudenberg and Levine (2009) discuss the Lucas critique through the
analysis of refined self-confirming equilibria in some insightful illustrative examples; they
emphasize the role of rationalizable beliefs and of robustness to experimentation. Unlike the
foregoing papers, we formally analyze a one-agent framework, which makes the issue of the
rationalizability of beliefs mute. According to the application, when the one-agent frame-
work is interpreted as a reduced form of a multi-person game, the shape of outcome/feedback
function f may implicitly represent such rationalizability constraints, e.g., the decision maker
is a leader and the outcome function captures the best-reply behavior of followers; this is
clarified by our monopoly example. As for the monetary policy application, only a genuinely
game-theoretic model of the economy would allow a thorough analysis of the rationalizability
of self-confirming beliefs, but tackling such diffi cult issue is beyond the scope of this article.
In a series of papers, Saint Paul (e.g., 2013, 2018) considers an expert who knows the true
model and advises the policy maker while pursuing her own policy agenda; the policy maker
and the agents in the market fully trust the expert as long as the data are consistent with
her advice. With this, the expert manipulates the policy maker and market agents under a

6See also, Cogley and Sargent (2005), Sargent et al. (2006), and Cogley et al. (2007).
7The phrase “escaping Nash inflation”in the title of Cho et al. (2002) deserves an explanation. When the

decision model is interpreted as a game between the monetary authority and a representative agent, a self-
confirming equilibrium outcome is also a (possibly subgame imperfect) Nash equilibrium outcome. Battigalli
(1987) and Fudenberg and Levine (1993) provide suffi cient conditions for the realization-equivalence between
Nash and self-confirming equilibrium. Such conditions are satisfied in the model of Cho et al.

8 In his work on rational belief equilibria, Kurz (1994a,b) analyzes stochastic dynamics where agents’
beliefs may be incorrect, but are eventually consistent with the long-run frequencies of observables, which is
in the spirit of self-confirming equilibrium. The most important difference with the literature on the latter is
that, although Kurz analyzes multi-agent systems, he does not use a game theoretic framework. Specifically,
unlike game models, there is no function specifying how agents’actions and– possibly– exogenous variables
determine outcomes and observables.
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self-confirmation constraint. Finally, Gaballo and Marimon (2021) analyze a directed search
model of the credit market where lenders post excessively high interest rates because of
confirmed pessimistic beliefs about returns on investments, but the monetary authority can
break the spell by easing credit. The main difference with our monetary policy application
is that we study the self-confirming actions and beliefs of the monetary authority, not of the
agents in the market.9

To the best of our knowledge, besides the novelty of several results, our paper is unique
in integrating an abstract analysis of self-confirming policies with an economic application.
There are under-appreciated complementarities between abstract theory and applications.
The former allows to focus on key concepts and properties uncluttered by specific modeling
features, the latter helps to better understand the abstract theory and points to its relevance.
Here we consider a monetary policy application, but the scope of our analysis goes well
beyond that. For example, the diffi culty of thorough experimentation and its consequences
for welfare naturally arise in the context of environmental policies.

2 Preliminaries

2.1 Mathematics

Differently from Battigalli et al. (2015), the Phillips curve exploitation model that motivates
and illustrates this paper features infinite action, state, and consequence spaces as well as
unbounded payoff functions. The necessary adaptation is conceptually natural, but techni-
cally nontrivial. In particular, it requires that the analysis be carried out within a standard
Borel space (X,X ), where X is a completely metrizable and separable topological space and
X is its Borel sigma algebra. The Borel sets B ∈ X are themselves standard Borel spaces
under the relative sigma algebra X ∩B.10 When X is countable (i.e., finite or denumerable),
standardness requires X to be the power set of X (see Appendix A.1).

We denote by ∆ (X) the collection of all probability measures on X , endowed with the
natural sigma algebra,11 which in turn makes ∆ (X) a standard Borel space too. With this,
the Borel subsets Σ of ∆ (X) with their relative sigma algebras are standard Borel spaces
themselves. The meaning of ∆ (Σ) is then obvious. Finally, δ : X → ∆ (X) denotes the
canonical Dirac embedding of X into ∆ (X), that is, δ (x) is the probability measure on X
which assigns probability 1 to each Borel set containing x ∈ X.12

Let (Y,Y) be another standard Borel space. The Cartesian product X ×Y is a standard
Borel space with respect to the product sigma algebra. Moreover, each measurable function
ϕ : X → Y induces a measurable distribution map ϕ̂ : ∆(X)→ ∆(Y ) defined by

ϕ̂(ξ) = ξ ◦ ϕ−1

for each probability measure ξ ∈ ∆(X). That is, ϕ̂(ξ) (B) = ξ(ϕ−1(B)) for all sets B in Y.13

9The model is not explicitly represented as a game. Therefore the connection to the traditional self-
confirming equilibrium concept is not immediate.
10See Kechris (2012) for the properties of standard Borel spaces that we use.
11That is, the sigma algebra generated by the evaluation maps ξ 7→ ξ (B) for all B ∈ X .
12The usual notation for the Dirac measure concentrated on x is δx.
13See Appendix A.1. In the applied probability literature, ϕ̂(ξ) (B) is sometimes denoted by ϕ̂ (B | ξ),

interpreted as the probability of observing a realization in B given ξ with “measurement”ϕ.
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Lemma 1 Let ϕ : X → Y be a measurable function. The following conditions are equivalent:

(i) ϕ is one-to-one,

(ii) ϕ̂ is one-to-one,

(iii) ϕ−1 (Y) = X .

Interpreting x as a state and y = ϕ (x) as an observable outcome, we can phrase these
equivalent conditions as follows:

(i) ϕ reveals the state x in X,

(ii) ϕ̂ reveals the distribution ξ in ∆(X),

(iii) ϕ generates the sigma-algebra X .

Finally, we say that X and Y are isomorphic, written X ∼= Y , if there is a bimeasurable
bijection ϕ : X → Y , that is, ϕ is measurable and ϕ−1 : Y → X is a well defined measurable
function.

2.2 Classical subjective expected utility

Let S be a space of states of nature, A a space of actions available to the decision maker,
C a space of consequences, and ρ : A × S → C a measurable consequence function that
associates a consequence ρ (a, s) ∈ C with each pair (a, s) ∈ A×S of action and state. When
consequences are monetary, C is a (Borel) subset of the real line.

The quartet
(A,S,C, ρ) (1)

is the basic structure of the decision problem. The inherent randomness characterizing the
realization of states – often called physical uncertainty– is described by probability models
σ ∈ ∆ (S) that can be regarded as possible generative mechanisms. For each probability
model σ, actions a are evaluated through their expected utility∫

S
v (ρ (a, s)) dσ (s)

where v : C → R is a measurable and bounded above von Neumann-Morgenstern utility
function. It is often convenient to write the criterion in the expected-payoff form

R (a, σ) =

∫
S
r (a, s) dσ (s)

where r : A× S → R is the payoff (or reward) function r = v ◦ ρ. Also the payoff function
is easily seen to be measurable and bounded above. All our integrals are thus well defined,
but may take value −∞.

The decision maker may not know the true probability model σ∗ but is able to posit a
(measurable) collection Σ ⊆ ∆ (S) of probability models that contains the true one; that
is, σ∗ ∈ Σ. We thus abstract from misspecification issues. We call structural the kind of
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information that allows the decision maker to posit the collection Σ. For example, if the
problem is to bet on the color, white or black, of a ball drawn from a two-color urn, and it
is only known that the urn contains n balls, then Σ has n + 1 elements and is isomorphic
to the set

{
0, 1

n , ...,
n−1
n , 1

}
of possible fractions of white balls. When Σ is a singleton,

i.e., the true model is known, the decision maker confronts only risk. Otherwise, she faces
model uncertainty.14 We can also give Σ a somewhat different interpretation: it represents
a backdrop theory accepted by the decision maker, which happens to be correct (i.e., such
that σ∗ ∈ Σ). In particular, as we assume that the same decision problem is faced infinitely
often, representing uncertainty with Σ rests on the assumption that the process of states is
i.i.d.15

The decision maker ranks actions according to the classical subjective expected utility
(SEU) criterion:16

V (a, µ) =

∫
Σ
R (a, σ) dµ (σ) , (2)

where µ ∈ ∆ (Σ) is a subjective prior probability over models that reflects personal beliefs
about models that the decision maker may have, in addition to the structural information
behind Σ.17 This representation admits the reduced form∫

Σ
R (a, σ) dµ (σ) =

∫
S
r (a, s) dσµ (s) = R (a, σµ) ,

where σµ ∈ ∆ (S) is the subjective predictive probability defined by σµ (E) =
∫

Σ σ (E) dµ (σ)
for each E ∈ S. This reduced form is the original representation of Savage (1954), who
derived σµ from preferences over bets.

The decision problem can then be summarized by the sextet

D = (A,S,C, ρ,Σ, v) (3)

that combines the basic structure (1) with the information and taste traits Σ and v. A few
special cases are noteworthy.

(i) When the support of µ is a singleton {σ}, that is, µ = δ (σ), the decision maker believes
(maybe wrongly) that σ is the true model. The predictive probability trivially coincides
with σ and criterion (2) reduces to the Savage expected payoff criterion R (a, σ). Being
a predictive probability, σ here is a subjective probability measure, albeit one derived
from a dogmatic belief.

(ii) When Σ is a singleton {σ∗}, the decision maker has maximal structural information
and, as a result, knows that σ∗ is the true model. In this case, there is only physical un-
certainty, quantified by σ∗, without any model uncertainty. Criterion (2) again reduces

14Model uncertainty is also called model ambiguity (see Hansen and Marinacci, 2016).
15 If, instead, the process of states were assumed to be Markovian, probability models would be kernel

functions (with finitely many states, transition probability matrices) rather than elements of ∆ (S).
16The integral is well defined, for each Σ and each µ ∈ ∆ (Σ), because the expected payoff function

R (a, ·) : ∆ (S)→ [−∞,∞) is, for every action a, measurable and bounded above on ∆ (S) and hence on Σ.
17See Marinacci (2015) for a discussion of this setup. Classical SEU is proposed by Cerreia-Vioglio et al.

(2013), where “classical”refers to the fact that a posited set of probability models is a basic feature of classical
statistics.
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to the expected payoff criterion R (a, σ∗), but now interpreted as a von Neumann-
Morgenstern criterion. For instance, if the decision maker either observed infinitely
many draws from a given urn or were just able to count the balls of each color, she
would learn/know the urn composition and Σ would be a singleton.

(iii) When Σ ⊆ {δ (s) : s ∈ S}, there is no physical uncertainty, but only model uncertainty,
quantified by µ. We can identify prior and predictive probabilities: with a slight abuse
of notation, we can write µ ∈ ∆ (S) and so (2) takes the form R (a, µ ◦ δ).18

Throughout this part (Sections 2-4), we illustrate the abstract theoretical concepts with
a stripped-down monopoly example.

Example 1 (Monopoly: Unknown demand) A monopolist choosing output a ≥ a faces an
imperfectly known (state-dependent) inverse demand function a 7→ P (a, s). We interpret
the lower bound a ≥ 0, when strictly positive, as a pre-commitment to a minimum level of
production. If a = 0 there is no pre-commitment. The firm knows the slope, but not the
intercept, which has a permanent component θ modified by an additive noise ε:

P (a, s) = max {0, s− a} = max {0, θ + ε− a} ,

where s ∈ S = [s, s̄] ⊆ R++, θ ∈
[
θ, θ̄
]

= [s+ ε̄, s̄− ε̄], and ε ∈ [−ε̄, ε̄] is the realization of
a random variable ε with known distribution η and 0 mean.19 The firm has a known linear
cost function, with average and marginal cost c > 0. To further simplify the analysis, we
assume that price is certainly strictly positive on the relevant range of outputs, i.e., also for
the largest subjective best reply across all possible beliefs. This is the case if20

θ − 3

2
ε̄− θ̄ − c

2
> 0.

With this, we can ignore the 0-price floor, and the relevant inverse demand map becomes
a 7→ (θ + ε− a). For each θ ∈

[
θ, θ̄
]
, let Tθ : [−ε̄, ε̄] → S denote the translation map

ε 7→ (θ + ε). We can parameterize Σ as follows:21

Σ =
{
σ ∈ ∆ (S) : ∃θ ∈

[
θ, θ̄
]
, σ = η ◦ T−1

θ

} ∼= [θ, θ̄] .
The consequence function (again, in the relevant range of outputs) is the profit function

ρ (a, s) = a (s− a− c) .

Under risk neutrality, v is the identity on the range of ρ; thus, r = ρ. Given the parame-
terization of Σ, the objective expected payoff and subjective expected utility can be written
as

R (a, θ) = E (a (θ + ε− a− c)) = a (θ − a− c)
18See Corollary 4 in Appendix A.1.
19We write random variables in boldface font and their realization in normal font.
20 Ignoring the 0-price floor,

(
θ̄ − c

)
/2 is the best reply to the most optimistic belief. The condition

guarantees that, at this largest output, price is strictly positive even with the lowest inverse demand function.
This implies that the standard first-order conditions identify a global subjective optimum.
21Recall that Σ ∼=

[
θ, θ̄
]
means that Σ and

[
θ, θ̄
]
are isomorphic.
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and

V (a, µ) =

∫ θ̄

θ
a (θ − a− c) dµ (θ) = (Eµ (θ)− c) a− a2.

We obtain case (i) if the firm is certain of θ, case (ii) if it knows θ∗, and case (iii) if there
is no noise, i.e., ε̄ = 0 and S =

[
θ, θ̄
]
.

The example clarifies that decision problem D could be the reduced form of a multi-
agent model where the unknown state s represents the behavior of other agents, such as
buyers. Such behavior is unaffected by choice a, either literally, or because it represents a
profile of strategies (decision functions) rather than actual actions. In the quantity-setting
monopoly, s may be determined by a distribution of private valuations, with output a sold in
a multi-unit uniform price auction and with unit-demand buyers bidding their valuations as
their dominant bid. For a price-setting monopolist valuations determine individual demand
functions as optimal reactions to the set price. In these cases, the map a 7→ ρs (a) is
determined by rational behavior of the un-modeled agents. In an alternative interpretation,
the firm is a monopolistic competitor of negligible size and s represents general market
conditions.

3 Partial identification

3.1 Feedback

The decision maker faces decision problem D recurrently in a stationary environment with
an i.i.d. process of states determined by unknown probability model σ∗. To determine what
actions and beliefs can be stable given σ∗, we have to specify the information obtained ex
post by the decision maker for each action a and state s. We model such information through
a (measurable) feedback function

f : A× S →M

where M is a space of messages. By selecting an action a ∈ A, the decision maker receives
a message

m = fa (s)

when s occurs.22 The decision maker’s (ex post) information about the state is thus en-
dogenous. When M is finite, such endogenous information is represented by the partition{
f−1
a (m) : m ∈M

}
of the state space S that the messages induce, which depends on the

choice of action a. This partition generates the algebra of events whose probability can be
inferred from the long-run frequencies of messages. When M is infinite, it may be the case
that this collection of events cannot be recovered from the partition. Hence, it is technically
convenient to represent information with the sigma algebra

Fa =
{
f−1
a (B) : B ∈M

}
.

A decision problem with feedback is described by the octet

(A,S,C, ρ,Σ, v,M, f) (4)

22Here fa : S →M denotes the section f (a, ·) of f at a.
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where a feedback function and a message space are added to the decision problem (3).
When information does not depend on action a, we say that there is own-action indepen-

dence of feedback about the state; formally, Fa = Fa′ for all a, a′ ∈ A. The most important
instance of own-action independence is perfect feedback, which occurs when each section fa
of the feedback function f generates S – that is, in view of Lemma 1, when fa is one-to-one
for each a ∈ A. In this case, messages reveal to the decision maker which state obtained,
regardless of the chosen action. When this is not the case, feedback about the state is im-
perfect, maximally so when each section fa is constant, so that Fa = {∅, S} and all states
return the same message.

An action a is fully revealing if fa is one-to-one, that is, if it allows the decision maker
to learn which state obtained. Under perfect feedback, all actions are fully revealing. The
existence of fully revealing actions is a weak form of “endogenous”perfect feedback.

We assume throughout that consequences are observable. Formally, this amounts to
assuming that, for each action a ∈ A, the section ρa of the consequence function ρ is Fa-
measurable. The next result, which will play an important role in our analysis, characterizes
this assumption within a decision problem with feedback (4).

Proposition 1 Consequences are observable if and only if, for each action a ∈ A, there
exists a measurable function ga : M → C such that

ρa = ga ◦ fa.

In this case, the payoff ra = v ◦ ρa of each action a is Fa-measurable.

In words, messages encode consequences and so payoffs. In particular, when the conse-
quences of the actions are the only observed messages, we have C = M and f = ρ. This is the
most common and important case of feedback, which is also featured by our macroeconomic
application.

Example 2 (Monopoly: Feedback) A natural assumption about feedback for the quantity-
setting monopoly of Example 1 is that the firm observes the realized market price, that is (for
the relevant range of outputs)

f (a, s) = P (a, s) = s− a

and ga is the affi ne map p 7→ a (p− c) from market price to profit. Note, however, that if the
firm has a zero lower bound a = 0, assuming that a realized price can be observed even with 0
output to sell is contrived; indeed, the most plausible assumption is that nothing is observed.
The same observability pattern occurs with an alternative assumption about feedback: the
firm only observes its revenue, f (a, s) = ρ (a, s) + ca, e.g., because it is the grower of a
unique variety of weed sold to a dealer who returns the proceeds from an auction. With
0 production, nothing can be observed, with positive production a > 0, the unit price and
realized state can be backed out: p = ρ/a+ c (per-unit revenue) and s = p+ a. To sum up,
both feedback functions satisfy observability of consequences, and each interior choice (a > 0)
is revealing. Thus, own-action independence of feedback about the state holds if there is a
strictly positive lower bound on production a > 0. Absent this constraint (a = 0), own-action
independence of feedback about the state fails because 0-output reveals nothing, while positive
output is revealing.
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3.2 Partial identification correspondence

In our steady state setting, a message distribution ν ∈ ∆ (M) can be interpreted as a long-
run empirical frequency of messages received by the decision maker. Specifically, for each
Borel set B ∈ M, ν (B) is the long-run empirical frequency with which messages m belong
to B. For any action a ∈ A, consider the distribution map f̂a : Σ → ∆ (M) defined by
f̂a (σ) = σ ◦ f−1

a . That is,

f̂a (σ) (B) = σ (s ∈ S : fa (s) ∈ B)

for each B ∈ M.23 Then f̂a (σ) (B) is the long-run empirical frequency with which the
decision maker receives messages m in B, when action a is chosen and σ is the true model.
The inverse correspondence f̂−1

a from ∆ (M) to ∆ (S) partitions the latter set into classes

f̂−1
a (ν) =

{
σ ∈ ∆ (S) : f̂a (σ) = ν

}
of models that are observationally equivalent given that action a is chosen infinitely often
and that the frequency distribution of messages ν is observed in the long-run conditional on
a. In other words, f̂−1

a (ν) is the collection of all probability models that may have generated
ν given a.

If action a is fully revealing, then f̂a is one-to-one and so f̂−1
a (ν) is at most a singleton

for every ν. In this case the decision problem is identified under a since different models
generate different message distributions, which thus uniquely pin down models. Otherwise,
when f̂−1

a (ν) is nonsingleton for some ν, we have partial identification under action a. In
the extreme case when f̂a is constant – that is, when all models generate the same message
distribution– the decision problem is completely unidentified under action a. Interestingly,
f̂a is constant if and only if fa is constant, that is, all states generate the same message (see
Lemma 7 in Appendix A.1).

Now recall that the decision maker posits a set of models Σ determined by structural
information or a backdrop theory. Upon observing ν, one can conclude that the data gener-
ating model belongs to

f̂−1
a (ν)︸ ︷︷ ︸
data

∩ Σ︸︷︷︸
theory

.

For this reason, models σ and σ′ in Σ such that f̂a (σ) = f̂a(σ
′) = ν are observationally equiv-

alent under action a. Formally, given an action a, two models σ, σ′ ∈ Σ are observationally
equivalent if

f̂a (σ) = f̂a(σ
′).

We denote the class of models observationally equivalent to σ given a by

Σ̂a (σ) =
{
σ′ ∈ Σ : f̂a(σ

′) = f̂a (σ)
}

= f̂−1
a (f̂a (σ)) ∩ Σ. (5)

In other words, Σ̂a (σ) is the partially identified set of models given action a.24 We can
thus regard the map Σ̂a (·) : Σ⇒ Σ, which associates to each element of Σ its observational
equivalence class, as the partial identification correspondence determined by action a.

23As previously observed, this is sometimes denoted f̂a (B | σ).
24We can also write Σ̂a (σ) = {σ′ ∈ Σ : σ′|Fa = σ|Fa}, i.e., partial identification is determined by the

information sigma algebra Fa.
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It is easy to see that Σ̂a has convex values if the collection Σ is convex. Moreover, if f̂a
is one-to-one, then Σ̂a is the identity: Σ̂a (σ) = {σ} for all σ ∈ Σ. In this case, message
distributions identify the true model. In contrast, when Σ̂a (σ) is nonsingleton there is
genuine partial identification.

Summing up, the collection {Σ̂a(σ)}σ∈Σ is a measurable partition of Σ and its cells
consist of probability models that are observationally equivalent under action a. Clearly, the
dependence on a is lost under own-action independence of feedback about the state.

Example 3 (Monopoly: Partial Identification) Consider the quantity-setting monopoly of
Example 1. If feedback is the realized price and output a > 0 is chosen infinitely often,
the firm observes in the long-run the average price E (pa) = θ − a, and θ is identified:
θ = E (pa) + a. With a 0-lower bound (a = 0), producing 0 instead reveals nothing. Thus,
given the parameterization of Σ, the partial identification correspondence is

Σ̂a (σ (θ)) ∼= Θ̂a (θ) =

{
{θ} if a > 0,[
θ, θ̄
]

if a = 0.

3.3 Comparative statics

The extent of partial identification depends, intuitively, on how informative is the underlying
feedback function. To formalize this intuition, we need to compare feedback functions accord-
ing to their informativeness. To this end, we say that a feedback function f ′ is coarser (or
less fine) than a feedback function f if, for each a ∈ A, f ′a is Fa-measurable or, equivalently,
if there exists a measurable function ha : M →M ′ such that

f ′a = ha ◦ fa.
In the monopoly example, with a 0-lower bound (a = 0) and under the assumption that a
notional realized price could be observed even at 0 output, realized revenue/profit f ′a (s) =
ρa (s) is a coarser feedback than realized price fa (s) = Pa (s), with ha (p) = ap.

A coarser feedback function is less informative. Using this comparative notion, we show
that a less informative feedback function aggravates the decision maker’s partial identification
problem, thus formalizing the previous intuition. Given feedback functions f and f ′, we let
Σ̂a (·) and Σ̂′a (·) denote the identification correspondences respectively derived from f and
f ′.

Proposition 2 Fix feedback functions f and f ′. If f ′ is coarser than f , then Σ̂a (σ) ⊆ Σ̂′a (σ)
for all a ∈ A and σ ∈ Σ.

Coarser feedback functions thus determine, for each action, coarser observational equiva-
lence relations: a worse information translates into a lower degree of statistical identification.
In particular, the assumption that consequences are observable makes the consequence func-
tion ρ the coarsest possible feedback. Perfect feedback is, instead, the finest.

4 Self-confirming actions and beliefs

4.1 Definition

Throughout this section, we fix a decision problem

(A,S,C, ρ,Σ, v,M, f)
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with feedback and observable consequences, where Σ contains the true model σ∗ that gen-
erates the states.

With this, we introduce a concept that is at the heart of our analysis and is motivated
by the partial identification issues discussed in the previous section.

Definition 1 An action-belief pair (a∗, µ∗) ∈ A × ∆ (Σ) is a self-confirming equilibrium
given σ∗ if

∀a ∈ A, V (a∗, µ∗) ≥ V (a, µ∗) (6)

and
µ∗ ∈ ∆(Σ̂a∗ (σ∗)). (7)

The definition relies on two pillars: the optimality condition (6) that ensures that action
a∗ is subjectively optimal under belief µ∗, and the belief confirmation condition (7) that
guarantees that belief µ∗ is consistent with the data that action a∗ reveals in the long run.25

In fact, given model σ∗, action a∗ determines the message distribution ν∗ = f̂a∗ (σ∗), which
is the long-run evidence that disciplines the subjective belief µ∗. In this respect, note that

Σ̂a∗ (σ∗) = f̂−1
a∗

(
f̂a∗ (σ∗)

)
∩ Σ = f̂−1

a∗ (ν∗) ∩ Σ.

Therefore, Σ̂a∗ (σ∗) depends only on the induced message distribution ν∗.
Note also that condition (7) makes self-confirming equilibrium for decision problems with

feedback a genuine equilibrium concept. Indeed, we already mentioned in the Introduction
that it characterizes the steady states of learning dynamics in stochastic control problems.
Relatedly, it is a fixed-point concept: suppose for simplicity that there is a unique best reply
B (µ) for each belief µ; then, a self-confirming belief is a fixed point of the correspondence

µ 7→ ∆(Σ̂B(µ) (σ∗)).

Finally, it is worth noting that a self-confirming belief may exclude the true model.26 We
can indeed formulate the data confirmation condition (7) as follows:

µ∗︸︷︷︸
belief

f̂−1
a∗ (ν∗)︸ ︷︷ ︸
data

∩ Σ︸︷︷︸
theory

 = 1. (8)

The equilibrium belief must thus exclude everything which is not consistent with either
observations or structural information/theory, that is,

µ∗︸︷︷︸
belief

f̂−1
a∗ (ν∗)c︸ ︷︷ ︸
contra data

∪ Σc︸︷︷︸
contra theory

 = 0, (9)

but it may exclude other models as well, including the true one.
Under own-action independence of feedback about the state, the data confirmation con-

dition (7) becomes µ∗ ∈ ∆(Σ̂ (σ∗)). We thus return to a traditional optimization notion with

25Here, since Σ̂a∗ (σ∗) is a measurable subset of Σ, the set ∆(Σ̂a∗ (σ∗)) is identified with the family of
elements of ∆ (Σ) that assign probability 1 to Σ̂a∗ (σ∗).
26See the example in the introduction.
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a purely exogenous data confirmation condition. In particular, under perfect feedback – and
so full identification– the optimality condition (6) becomes

∀a ∈ A, R (a∗, σ∗) ≥ R (a, σ∗) , (10)

since condition (7) requires µ∗ = δ (σ∗). In this case, common in the rational expectations
literature, the decision maker has a correct belief about the true model and confronts only
risk.

We say that an action a∗ ∈ A is objectively optimal given σ∗ if it satisfies the optimality
condition (10). Objectively optimal actions are the ones that the decision maker would
select if she knew the true model, that is, under full identification. As such, they provide
an important benchmark to assess alternative courses of action, as the next welfare analysis
will show.

That said, observe that a “rational-expectations”pair (a∗, δ (σ∗)), where action a∗ is ob-
jectively optimal and belief δ (σ∗) is concentrated on the true model, is a self-confirming
equilibrium. Indeed, σ∗ ∈ Σ̂a∗ (σ∗) and so δ (σ∗) (Σ̂a∗ (σ∗)) = 1. Traditional rational-
expectations analysis can thus be seen as the special case of ours that arises when the
decision maker confronts only risk.

We close the section with a useful equivalence result. The optimality condition (6) can
be written in predictive form as R (a∗, σµ∗) ≥ R (a, σµ∗) for each a ∈ A. Relatedly, the data
confirmation condition (7) implies that the predictive probability σµ∗ belongs to Σ̂a∗ (σ∗) if
it belongs to Σ.27 In this case, (a∗, δ (σµ∗)) is a self-confirming equilibrium too. Hence we
have the following dogmatic equivalence principle.

Proposition 3 Let (a∗, µ∗) be a self-confirming equilibrium given σ∗. If σµ∗ ∈ Σ, then
(a∗, δ (σµ∗)) is a self-confirming equilibrium as well, with V (a∗, µ∗) = V (a∗, δ (σµ∗)).

4.2 Steady state interpretation

To give perspective on the self-confirming equilibrium concept, we discuss in more detail
its steady state interpretation by adapting to our framework some results in stochastic con-
trol, as found in the classic work of Easley and Kiefer (1988). The working paper version of
Battigalli et al. (2019)28 describes the exact relationship between our framework and the sto-
chastic control framework of Easley and Kiefer, showing that they are essentially equivalent,
moreover, they put forward an analysis of learning dynamics for the case of an ambiguity
averse decision maker. To ease matters, throughout this subsection we assume that the sets
M , S, and Σ are finite.

The distribution f̂a (σµ) ∈ ∆ (M) identifies, by assigning them a positive probability, the
messages that the decision maker deems possible to receive when µ is his prior and a is the
action he selected. If m ∈ supp f̂a (σµ), it is possible to compute the posterior probability

∀σ ∈ Σ, µ (σ |a,m) = µ (σ)
σ (fa = m)

σµ (fa = m)
= µ (σ)

f̂a (σ) (m)

f̂a (σµ) (m)
.

27The conjectural equilibrium conditions, stated for games by Battigalli (1987), are written in predictive
form.
28 IGIER w.p. 588, Bocconi University.
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The next result (cf. Lemma 2 in Easley and Kiefer, 1988) shows that priors and posteriors
are equal under the data confirmation condition (7). Updating thus no longer operates
when beliefs satisfy this condition, a property that clarifies the steady state rationale of the
self-confirming equilibrium notion as a rest point of a learning process.

Lemma 2 Let a ∈ A and suppµ ∩ Σ̂a (σ∗) 6= ∅. Then µ ∈ ∆(Σ̂a (σ∗)) if and only if
µ (· |a,m) = µ (·) for all m ∈ supp f̂a (σµ).

Consider a decision maker who faces a problem with feedback (D, f) for infinitely many
periods. The state process is i.i.d. with unknown marginal measure σ ∈ Σ; the corresponding
product measure on S∞ is denoted σ∞. The decision maker starts with a prior belief µ0 ∈
∆ (Σ) at the beginning of period t = 1 and holds updated posterior belief µt ∈ ∆ (Σ) at the
end of each period t ≥ 1 and the beginning of period t+ 1. If action at is chosen in period t
and message mt is observed at the end of the same period, then

∀σ ∈ Σ, µt (σ |at,mt ) = µt−1 (σ)
f̂at (σ) (mt)

f̂at (σµ) (mt)
(11)

is the Bayes update of µt−1 given (at,mt). The decision maker carries out a stationary
strategy29

α∗ : ∆ (Σ)→ A

µt−1 7→ at = α∗
(
µt−1

)
that maximizes the discounted expected utility∫

Σ

( ∞∑
t=1

βt−1R (at, σ)

)
dµ0 (σ) ,

where β ∈ (0, 1) is the discount factor. We call such α∗ an optimal stationary strategy for
the repeated decision problem (D, f, β, µ0).

Every stationary strategy α∗ yields a corresponding stochastic process of actions and
beliefs

(
α∗
(
µ∗t−1

)
,µ∗t−1

)
t≥1

defined on probability space (S∞, σ∞) and adapted to the fil-
tration on S∞ induced by feedback f , where µ∗0 = µ0 and µ

∗
t (s∞) is the Bayes update

of µ∗t−1 (s∞) given action α∗
(
µ∗t−1 (s∞)

)
and message f

(
α∗
(
µ∗t−1 (s∞)

)
, st
)
. Next we pro-

vide simple suffi cient conditions for such an active learning process to converge to a self-
confirming equilibrium. Of course, since the realized history of states (st)t≥1 is random,
the limit of the process is, in general, also random. With this, we say that a random pair
(a∗,µ∗) : S∞ → A×∆ (Σ) is a random self-confirming equilibrium given model σ∗ if, σ∗,∞-
almost surely, the pair (a∗,µ∗) is a self-confirming equilibrium given σ∗.

Proposition 4 Let (D, f, β, µ0) satisfy the following assumptions:

(i) A is a compact and convex subset of an Euclidean space;

29A strategy is stationary if it depends only on updated beliefs about the model. As the set of optimal
strategies always contains a stationary strategy, the stationarity restriction is without substantial loss of
generality.
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(ii) a 7→ f̂a is continuous, and f̂a(σ)(m) > 0 for every (a, σ,m) ∈ A× Σ×M ;

(iii) r : A× S → R is continuous and strictly concave on A;

(iv) µ0 (σ) > 0 for every σ ∈ Σ.

Then an optimal stationary strategy α∗ exists and, for every σ∗ ∈ Σ, the induced ac-
tive learning process

(
α∗
(
µ∗t−1

)
,µ∗t−1

)
t≥1

converges, σ∗,∞-almost surely, to a random self-
confirming equilibrium (α∗ (µ∗∞) ,µ∗∞) given model σ∗.

The proposition is, essentially, a self-confirming interpretation of stochastic control re-
sults of Easley and Kiefer (1988) and so we omit its proof.30 Heuristically, the existence of
an optimal stationary strategy follows from standard results in dynamic programming. The
martingale convergence theorem implies that there exists a random belief µ∗∞ : S∞ → ∆ (Σ)
such that, σ∗,∞-almost surely, µ∗t → µ∗∞ (cf. Theorem 4 in Easley and Kiefer, 1988).
The Bayesian updating function, which via (11) associates µt to µt−1 given actions and
messages (at,mt), is continuous on ∆ (Σ). Hence, for every sample path s∞ = (st)t≥1

such that µ∗t (s∞) → µ∗∞ (s∞) (hence, by σ∗,∞-almost sure convergence, every s∞ such
that

∏T
t=1 σ

∗(st) > 0 for all T ) and for every action a∞ in the set of limit points of
(α∗ (µ∗t (s∞)))t≥1 (which is not empty, by compactness of A), it must be the case that
µ∗∞ (s∞) is a∞-invariant, that is, µ∗∞ (s∞) (· |a∞,m) = µ∗∞ (s∞) (·) for every possible m. In
view of Lemma 2, this is equivalent to the confirmed beliefs condition (7). Since the value of
experimentation vanishes in the limit, every such action a∞ maximizes the one-period sub-
jective expected value V (·,µ∗∞ (s∞)) (cf. Lemma 4 in Easley and Kiefer, 1988). By assump-
tion (iii), V (·,µ∗∞ (s∞)) has a unique maximizer, therefore limt→∞ (α∗ (µ∗t (s∞)) ,µ∗t (s∞)) =
(arg maxa∈A V (a,µ∗∞ (s∞)) ,µ∗∞ (s∞)), which is a self-confirming equilibrium (cf. Theorem
5 in Easley and Kiefer, 1988).

Can any self-confirming equilibrium action be interpreted as a limit point of an active
learning process? We can provide a simple, but partial answer by recalling that if (a∗, µ∗) is

self-confirming and σµ∗ ∈ Σ, then also
(
a∗, δσµ∗

)
is self-confirming. With this, if the initial

belief is µ0 = δσµ∗ , then the resulting active learning process is constant at
(
a∗, δσµ∗

)
. Also,

if the decision maker is impatient (β = 0) and (a∗, µ∗) is self-confirming, then the learning
process starting at µ0 = µ∗ is constant at (a∗, µ∗).

4.3 Value and welfare

We now turn to a “welfare analysis,”that is, we compare equilibrium values with objective
expected payoffs, including the maximum expected payoff that could be attained by the
decision maker if she knew the true model σ∗. We start with an important preliminary
result: since we assume that consequences are observable, it follows that, for each action,
observationally equivalent models yield the same objective expected payoff.31

Lemma 3 Let (a, σ) ∈ A×∆ (S). If model σ′ ∈ ∆ (S) is observationally equivalent to model
σ under a, then R (a, σ′) = R (a, σ).

30For more details on this result, also in the case of an ambiguity averse agent, see Battigalli et al. (2019).
31This lemma extends Lemma 1 of Battigalli et al. (2015) to the present setup with possibly infinite spaces

of actions and states.
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This has a noteworthy consequence for self-confirming equilibrium values.

Proposition 5 If (a∗, µ∗) is a self-confirming equilibrium given σ∗, then

V (a∗, µ∗) = R (a∗, σ∗) .

Thus, the value of any self-confirming equilibrium (a∗, µ∗) coincides with the true ex-
pected payoff of a∗, irrespective of the supporting belief µ∗. As a result, because of the data
confirmation condition, the optimality condition (6) amounts to assuming that the “true
value” of the self-confirming equilibrium action is higher than the subjective value, under
the equilibrium belief, of all alternative actions. This interplay of objective and subjective
features shows the substantial bite of the data confirmation condition.

Lemma 3 has interesting comparative welfare implications. For our welfare analysis, it
is convenient to focus on actions that are part of some self-confirming equilibrium, thus
neglecting the supporting confirmed beliefs.

Definition 2 Action a∗ is a self-confirming (equilibrium) action given σ∗ if there exists a
belief µ∗ ∈ ∆ (Σ) such that (a∗, µ∗) is a self-confirming equilibrium.

Since in this case V (a∗, µ∗) = R (a∗, σ∗) ≤ supa∈AR (a, σ∗), the decision maker incurs a
welfare loss

` (a∗, σ∗) = sup
a∈A

R (a, σ∗)−R (a∗, σ∗) ≥ 0

when she selects the self-confirming action a∗. In particular, ` (a∗, σ∗) = 0 if and only if
a∗ is objectively optimal; the loss is caused by the decision maker’s ignorance, which makes
it possible to assign positive subjective probability to (neighborhoods of) models different
from the true one. Our next result shows that self-confirming equilibria with sharper basic
subjective assessments yield higher welfare (lower loss). Formally, µ∗ is absolutely continuous
with respect to (i.e., “sharper than”) ν∗ if, for every Borel set B ⊆ Σ, ν∗ (B) = 0 implies
µ∗ (B) = 0 (equivalently, µ∗ (B) > 0 implies ν∗ (B) > 0). This means that µ∗ rules out more
models than ν∗; in particular, if Σ is finite, it means that suppµ∗ ⊆ suppν∗.

Proposition 6 Let (a∗, µ∗) and (b∗, ν∗) be self-confirming equilibria such that µ∗ is ab-
solutely continuous with respect to ν∗, then ` (a∗, σ∗) ≤ ` (b∗, σ∗).

Consider the self-confirming equilibria (a∗, µ∗) and (b∗, ν∗) such that (i) a∗ yields better
identification than b∗ (i.e., Σ̂a∗(σ

∗) ⊆ Σ̂b∗(σ
∗)), and (ii) µ∗ and ν∗ do not rule out any model

consistent with the statistical evidence given a∗ and b∗ respectively. Then, we obtain a special
case of Proposition 6 and we can conclude that ` (a∗, σ∗) ≤ ` (b∗, σ∗). The following result
shows that we can dispense with condition (ii): Independently of their justifying confirmed
beliefs, self-confirming actions with better identification properties exhibit lower losses.

Proposition 7 Let a∗ and b∗ be self-confirming actions given σ∗. If Σ̂a∗(σ
∗) ⊆ Σ̂b∗(σ

∗),
then ` (a∗, σ∗) ≤ ` (b∗, σ∗).

Propositions 6 and 7 are the only results in our analysis that depend on the one-person
assumption in an essential way. In a multi-person game they hold only for the comparison
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of equilibria where the strategies of all players but one are the same and the focus is on the
welfare of the only agent playing a different strategy.

The next related result shows that an action with the best identification properties –
thus, optimal from a purely statistical viewpoint– is self-confirming only when objectively
optimal. Truth is ancillary to the decision maker’s pursuit of her goals (and so of her
happiness).

Proposition 8 An action a ∈ A such that Σ̂a(σ
∗) ⊆ Σ̂a′(σ

∗) for each a′ ∈ A is self-
confirming given σ∗ if and only if it is objectively optimal.

Under own-action independence of feedback about the state, Σ̂a(σ
∗) is independent of a.

Therefore, Proposition 8 yields the following noteworthy implication.

Corollary 1 Under own-action independence of feedback about the state, every self-confirming
action is objectively optimal.

Example 4 (Monopoly: self-confirming equilibrium) Under the assumptions of Example 1,
certainty equivalence holds and the subjective best reply function of the monopolist is

B (µ) = B (Eµ (θ)) = max

{
a,
Eµ (θ)− c

2

}
,

where θ parameterizes models according to the average intercept of the inverse demand func-
tion. Since any positive output is revealing (see Example 3), if the firm is pre-committed
to a positive minimum output (a > 0) own-action independence of feedback holds and the
only self-confirming output is the objective best reply max {a, (θ∗ − c) /2}. Next, suppose
that a = 0, and furthermore θ < c and θ∗ > c. Then own-action independence of feed-
back does not hold and there are two self-confirming actions: (i) the fully revealing action
a∗ = (θ∗ − c) /2 > 0 is the objective best reply, thus illustrating Proposition 8, and (ii)
b∗ = 0 is justified by any “pessimistic” belief µ such that Eµ (θ) < c, which is trivially
consistent with long-run evidence because b∗ = 0 is fully un-revealing. The comparison of
self-confirming actions a∗ and b∗ illustrates Proposition 7: indeed, a∗ is more revealing than

b∗ and ` (a∗, θ∗) = 0 <
(
θ∗−c

2

)2
= ` (b∗, θ∗).

The example prompts the following question. We explained in Section 4.2 that self-
confirming equilibria are limit steady states of active learning processes. Suppose that the
monopolist believes it is optimal in the short run to produce 0, but deems it possible that
the objective best reply is positive, i.e., that θ > c. Should she not experiment with a
positive output? This depends on several elements: her subjective belief, her degree of
patience (discount factor), and the amount of noise. If the subjective probability µ (θ > c)
is relatively small and price is noisy, it is dynamically optimal not to experiment even if
the decision maker is moderately patient. In particular, noise is important: only repeated
experimentation with positive output can provide reliable evidence, and this has a high
subjective opportunity cost.32 In sum, the decision maker is not just a statistician: she is

32On the other hand, without noise (ε̄ = 0) a one-off experimentation with positive output would identify
the true model, making the no-experimentation region in the belief-discount factor space very small.
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not interested in discovering the true model per se, unless the action (played in the long run)
that allows the discovery is subjectively optimal.

In this first part we expressed and analyzed the self-confirming equilibrium concept in an
abstract framework amenable to policy applications. This requires to allow for an infinite
action space (e.g., to use calculus) and for an infinite state space, and to posit an objective
probability model characterizing the data generating process. Technically, the latter calls
for the use of standard Borel spaces. Many of the themes analyzed within the framework of
the first part are illustrated in the second part by an application to monetary policy.

5 Phillips curve exploitation model

We now illustrate our machinery in the context of a 1970’s U.S. policy debate about whether
a trade-off between inflation and unemployment can be systematically exploited by a benev-
olent policy maker. We extend a formulation of Sargent (1999, 2008), who presents a self-
confirming equilibrium in which a policy maker believes in a model asserting an exploitable
trade-off between unemployment and inflation while the truth is that the trade-off is not
exploitable.33

5.1 Steady state model economies

We study a class Θ of model economies θ at a (stochastic) steady state. We assume that
unemployment u and inflation π, beyond depending on the unknown θ, are affected by
random shocks w and ε with zero mean, and by a monetary policy variable a. Specifically,
unemployment and inflation outcomes (u, π) are connected to the state of the economy
s = (w, ε, θ) and the government action a according to

u = θ0 + θ1ππ + θ1aa+ θ2w, (12)

π = a+ θ3ε. (13)

The vector parameter θ = (θ0, θ1π, θ1a, θ2, θ3) ∈ R5, that is, the last component of the
state vector, specifies the structural coeffi cients of an aggregate supply equation (12) and
an inflation determination equation (13). Coeffi cients θ1π and θ1a are slope responses of
unemployment to actual and planned inflation,34 while the coeffi cients θ2 and θ3 quantify
shock volatilities (see Sargent, 2008, p. 18). Finally, the intercept θ0 is the baseline rate of
unemployment that would (systematically) prevail at a zero planned inflation policy a = 0.

Throughout the section we maintain the following assumption about structural coeffi -
cients.

Assumption 1 θ0 > 0, θ1π < 0, θ2 > 0 and θ3 > 0.

In words, we posit a strictly positive baseline rate of unemployment, as well as strictly
positive shock coeffi cients (nontrivial, possibly asymmetric, shocks thus affect both the infla-
tion and the unemployment equations, their unknown values form the first component (w, ε)

33Section 6 of the working paper version contains a more general analysis of self-confirming economic
policies.
34The economic interpretation is that planned inflation a affects agents’expectations to an extent parame-

terized by θ1a.
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of the state vector). Finally, we assume that – other things being equal– more inflation
reduces unemployment.

The reduced form of each model economy is

u = θ0 + (θ1π + θ1a) a+ θ1πθ3ε+ θ2w, (14)

π = a+ θ3ε. (15)

The coeffi cients of the reduced form are ξ = (θ0, θ1π + θ1a, θ1πθ3, θ2, θ3) ∈ R5. Since θ3 6=
0 (Assumption 1), it is easy to check that different structural parameter vectors θ ∈ Θ
correspond to different reduced form parameter vectors ξ, that is, θ 6= θ′ implies ξ 6= ξ′.

We assume that only realized unemployment and inflation are observable by the monetary
authority. Thus, the reduced form above will give us the feedback function (u, π) = f (a, s) of
the previous sections. Specifically, rewriting (14) and (15) as

u (a,w, ε, θ) = θ0 + (θ1π + θ1a) a+ θ1πθ3ε+ θ2w,

π (a,w, ε, θ) = a+ θ3ε

makes the dependence of observables (u, π) on action a and (unobservable) realized states
(w, ε, θ) explicit, which allows us to study the present policy problem within our general
framework. Formally, the message space M = R2 now consists of unemployment/inflation
pairs, and the feedback function is f = (u,π) : A×

(
R2 ×Θ

)
→ R2.

The policy multiplier ξ2 = θ1π + θ1a = θ1a − |θ1π| quantifies the impact of planned
inflation on unemployment. It is the sum of the direct and indirect impact of planned
inflation on unemployment quantified, respectively, by θ1a and θ1π. There is a systematic
trade-off between unemployment and inflation when the multiplier is strictly negative, that
is, ξ2 < 0. If so, the model economy is Keynesian; otherwise, it is new-classical. In the rest
of the section we make the following hypothesis on the multiplier.

Assumption 2 ξ2 ≤ 0.

Thus, we assume that an increase in planned inflation never increases unemployment.
A possible interpretation of the model is that θ1a/ |θ1π| is the constant fraction of experi-
enced/sophisticated agents in the economy who factor planned inflation into their expecta-
tions, and ξ2/θ1π is the fraction of inexperienced/naive agents.

To sum up, the set of parameters is

Θ =
{
θ ∈ R5 : θ0 > 0, θ1a ≤ −θ1π, θ1π < 0, θ2 > 0, θ3 > 0

}
.

To clarify our language, we note that we keep using “model” in the same sense as in the
previous sections, that is, a probability measure over states, or a specific parameter value that
determines such measure. Thus, a set of parameterized equations like (12)-(13) corresponds
to a class of models. We will therefore refer subclasses of models satisfying some restrictions
as “kinds”. With this, our analysis will pay special attention to the following two competing
kinds of model economies.
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5.1.1 Lucas-Sargent models

The first kind of model economy, based on Lucas (1972) and Sargent (1973), is

u = θ0 + β (π − a) + θ2w = θ0 + βθ3ε+ θ2w,

π = a+ θ3ε,

where β ≡ θ1π = −θ1a, and so θ = (θ0, β,−β, θ2, θ3) and ξ = (θ0, 0, βθ3, θ2, θ3). In such
new-classical models the policy multiplier ξ2 is zero, and so the systematic part of inflation
a has no effect on unemployment; only the unsystematic part θ3ε does.

5.1.2 Samuelson-Solow models

A second kind of model economy, based on Samuelson and Solow (1960), is

u = θ0 + θ1ππ + θ2w = θ0 + θ1πa+ θ1πθ3ε+ θ2w,

π = a+ θ3ε,

where θ1a = 0 and so θ = (θ0, θ1π, 0, θ2, θ3) and ξ = (θ0, θ1π, θ1πθ3, θ2, θ3). In such Keynesian
models, the policy multiplier ξ2 = θ1π is strictly negative: monetary policies affect, at steady
state, unemployment rates.

5.2 The policy problem: setup and identification

5.2.1 Setup

The monetary authority chooses policy a. As anticipated, the state space is the Cartesian
product S = W × E × Θ, which expresses that the monetary authority is uncertain about
both shocks and permanent features of the economy, or models. The consequence space C
consists of unemployment and inflation pairs c = (u, π), so we set C = U × Π ⊆ R2. The
consequence function ρ : A× (W × E ×Θ)→ C is

ρ (a,w, ε, θ) = (u (a,w, ε, θ) ,π (a,w, ε, θ)) ,

which is the unemployment/inflation pair (u, π) determined by policy a and state (w, ε, θ),
with matrix representation

ρ (a,w, ε, θ) =

[
θ0

0

]
+ a

[
θ1π + θ1a

1

]
+

[
θ2 θ1πθ3

0 θ3

] [
w
ε

]
. (16)

5.2.2 Factorization

As anticipated, we assume that the messages received by the monetary authority are the
policy outcomes. Hence, a message m = (u, π) consists of an unemployment and inflation
pair, and the feedback function

f = ρ = (u,π)

corresponds to the reduced form of the model economy. When the monetary authority
chooses policy a and in the long run observes a distribution over (u, π) pairs, it can partially
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infer the underlying stochastic model σ. For example, if σ has finite support, the induced
probability of outcome (u, π) is35

f̂a (σ) (u, π) = σ ({(w, ε, θ) : (u (a,w, ε, θ) ,π (a,w, ε, θ)) = (u, π)}) . (17)

The partially identified set Σ̂a (σ) of stochastic models indistinguishable from σ is the set of
σ′ that induce the same joint distribution on unemployment/inflation outcomes given a.

At this point, it is convenient to add structure to this setup to provide a sharp charac-
terization of the partially identified set corresponding to each policy a and model σ. Within
a state s = (w, ε, θ), the pair (w, ε) represents random shocks and θ parameterizes a model
economy. This suggests factorizing the probability models σ ∈ Σ ⊆ ∆ (W × E ×Θ) as

σ = q × δ (θ) , (18)

where the true marginal distribution of shocks q ∈ ∆ (W × E) is assumed to be known and
δ (θ) ∈ ∆ (Θ) is a Dirac probability measure concentrated on a given economic model θ ∈ Θ,
a permanent feature of the environment. We thus parameterize probability models with θ
and write σθ.

The simplifying assumption that, at a steady state, the distribution q of shocks is known
is common in the rational expectations literature since Lucas and Prescott (1971) and Lucas
(1972). The resulting factorization (18) has two modeling consequences: (i) it establishes a
one-to-one correspondence between model economies and probability models (in particular,
a true economic model θ∗ corresponds to a true probability model σθ∗); (ii) since q is known,
it allows us to identify Σ with Θ via the relation

Σ = {q × δ (θ) ∈ ∆ (S) : θ ∈ Θ} ,

and so to define the prior µ on Θ.36

A first dividend of the factorization is that the objective function (2) takes the simpler
form

V (a, µ) =

∫
Θ

(∫
W×E

r (a,w, ε, θ) dq (w, ε)

)
dµ (θ) , (19)

where r (a,w, ε, θ) = v (ρ (a,w, ε, θ)) is the utility of outcome/message (u, π) = ρ (a,w, ε, θ).
In the rest of the section we maintain the following assumption on the known shock

distributions.37

Assumption 3 Eq (ε) = Eq (w) = Eq (εw) = 0 and Eq
(
ε2
)

= Eq
(
w2
)

= 1.

In words, shocks are uncorrelated and normalized.

35 In the general case, for any measurable set of outcomes O ⊆ U ×Π,

f̂a (σ) (O) =
(
σ ◦ f−1

a

)
(O) = σ ({(w, ε, θ) : (u (a,w, ε, θ) ,π (a,w, ε, θ)) ∈ O}) .

36The map θ 7→ q × δθ is bijective and measurable. See Corollary 3 in the appendix.
37Whenever convenient, in what follows we will use the shorthand notation E for integrals, for example

Eq (ε) =
∫
W×E εdq (w, ε).
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5.2.3 Identification

In this “factorized”setup, we can shift our focus from observationally equivalent probabil-
ity models σ to observationally equivalent model economies θ. The partially identified set
becomes:

∀θ ∈ Θ, Σ̂a (θ) =
{
θ′ ∈ Θ : f̂a (σθ′) = f̂a (σθ)

}
.

With this, a sharp identification result holds.

Proposition 9 The partial identification correspondence Σ̂a : Θ→ 2Θ is

Σ̂a (θ) =
{
θ′ ∈ Θ : θ′0 + θ′1aa = θ0 + θ1aa, θ

′
1π = θ1π, θ

′
2 = θ2, θ

′
3 = θ3

}
. (20)

Given the true model θ, the shock coeffi cients θ2 and θ3 are thus identified, along with the
slope θ1π of the Phillips curve, independently of the chosen policy a. As we discuss below,
the intercept of the curve is also identified, but it depends on the maintained policy a through
the unidentified parameter θ1a. This important identification result is made possible by some
moment conditions, formally spelled out in the proof. We can, however, heuristically describe
them via the bivariate random variable (ua,πa) : W×E×Θ→ U×Π that, for a given policy
a, represents the unemployment and inflation rates determined by the state (w, ε, θ).38 The
monetary authority infers the following moments from the long-run distribution of outcomes:

• Eθ (ua) = θ0 + (θ1π + θ1a) a,

• Eθ (πa) = a,

• Varθ (ua) = θ2
1πθ

2
3 + θ2

2,

• Varθ (πa) = θ2
3,

• Covθ (ua,πa) = θ1πθ
2
3.

Therefore,

θ1π =
Covθ (ua,πa)

Varθ (πa)
(21)

is the beta coeffi cient of the Phillips regression of unemployment on inflation,39

θ2
2 =

(
1− Corr2

θ (ua,πa)
)

Varθ (ua)

is the residual variance of ua (unexplained by the regression), and θ3 is the standard deviation
of inflation.

Finally, though the two structural coeffi cients θ0 and θ1a remain unidentified even in the
long-run, they satisfy

θ0 + θ1aa = Eθ (ua)−
Covθ (ua,πa)

Varθ (πa)
Eθ (πa) , (22)

where the right side is the alpha coeffi cient of the Phillips regression. In the long-run, the
alpha coeffi cient is observed by the monetary authority, but what is observed depends on
the policy a that the authority chooses.
38Formally, ua and πa are the sections u (a, ·) and π (a, ·) at policy a of the random variables u and π,

respectively.
39The Phillips regression u = α+ βπ is run by the monetary authority using long run data.

25



5.2.4 Estimated model economy

As an approximation of a situation in which the dataset is large and the sample variance
is small, we take the idealized perspective of a monetary authority (or its econometrician)
who can rely on an infinite dataset and therefore can perfectly estimate the identifiable
parameters by observing some moments of the true distribution as specified in Proposition
9.

The moments that identify the three coeffi cients θ1π, θ2, and θ3 do not depend on the
chosen policy a, but only on the true model θ. To emphasize this key feature, we denote by β̂
the beta regression coeffi cient that identifies θ1π,40 by σ̂u|π the residual standard deviation
that identifies θ2, and by σ̂π the standard deviation of inflation that identifies θ3. In contrast,
the alpha regression coeffi cient that identifies the sum θ0 + θ1aa depends on policy a; we
denote it by α̂ (a).

With this, we can write

Σ̂a (θ) =
{
θ′ ∈ Θ : θ′0 + θ′1aa = α̂ (a) , θ′1π = β̂, θ′2 = σ̂u|π, θ

′
3 = σ̂π

}
.

As a result, the long-run estimated version of the model economy (12)-(13) that the monetary
authority considers is

u = α̂ (a) + β̂π + σ̂u|πw, (23)

π = a+ σ̂πε, (24)

α̂ (a) = θ0 + θ1aa. (25)

In particular, (23) is the estimated aggregate supply equation and (24) is the estimated infla-
tion equation. The intercept of the former equation depends on policy a via eq. (25), which
only partly identifies the two coeffi cients θ0 and θ1a. In turn, this makes the policy multiplier
ξ2 = β̂ + θ1a unidentified. We will momentarily address this key partial identification issue.

5.2.5 Partial identification line

The monetary authority cannot identify – even in the long-run– the two structural co-
effi cients θ0 and θ1a. The former is the average unemployment at zero planned inflation,
θ0 = Eθ (u0); the latter is the “direct”impact of policy on unemployment.

The parameter space of the estimated model economy (23)-(25) reduces to Θ = Θ̃ ×
{(β̂, σ̂u|π, σ̂π)}, where Θ̃ = R++ × (−∞,−β̂] is the collection of all possible values (θ0, θ1a)

of the two remaining unidentified coeffi cients and {(β̂, σ̂u|π, σ̂π)} is the singleton containing
the identified vector (θ1π, θ2, θ3). To ease notation, in what follows we will consider directly
Θ̃ as the parameter space. As a result, the parameter space is now a subset of the plane. By
(20), the partial identification correspondence Σ̂a : Θ̃→ 2Θ̃ becomes

Σ̂a (θ) =
{(
θ′0, θ

′
1a

)
∈ Θ̃ : θ′0 = −θ′1aa+ θ0 + θ1aa

}
. (26)

In words, Σ̂a (θ) is a straight line in the plane, with slope −a and intercept θ0 + θ1aa
(determined by the policy a and by the true economic model θ). We thus have a partial

40By Assumption 2, the beta coeffi cient of the Phillips regression is negative, that is, β̂ < 0. This negative
sign will be tacitly assumed when interpreting our findings.
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identification line that defines a linear relationship between the two unidentified coeffi cients,
given the true model. In other words, partial identification is unidimensional.

Given true model θ = (θ0, θ1a), the collection {Σ̂a (θ) : a ∈ A} of partial identification
lines is the family of all straight lines in the plane that pass through the true model (θ0, θ1a)
and have slope −1/a. In each such line there is a unique Lucas-Sargent model, characterized
by θ′1a = −β̂, as well as a unique Samuelson-Solow model, characterized by θ′1a = 0. In other
words, partial identification lines feature a unique specimen of each kind of models.

Figure 5.2.5: Partial identification line.

Figure 5.2.5 illustrates the previous analysis. In particular, LS stands for Lucas-Sargent
model and SS for Samuelson-Solow model, while the red (resp., blue) line is the partial
identification line that correspond to policy a = 0 (resp., a > 0).

5.3 The policy problem: value, equilibria and welfare

5.3.1 Value and equilibrium

As much of the literature, we assume a quadratic von Neumann-Morgenstern utility function
v : C → R given by v (u, π) = −u2−π2, so that the reward function r : A×S → R becomes:

r (a,w, ε, θ) = −u2 (a,w, ε, θ)− π2 (a,w, ε, θ) .

The linear model economy and quadratic utility together form a classic linear quadratic
policy framework.

Lemma 4 For every (θ, a) ∈ Θ̃×A, we have R (a, θ) = v (Eθ (ua) , Eθ (πa)) + const.

The linear quadratic framework thus allows us to express the expected reward as the
utility of expectations. As a result, the objective function (19) becomes

V (a, µ) =

∫
Θ̃
v (Eθ (ua)),Eθ (πa)) dµ (θ) + const. (27)
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As for self-confirming equilibria, we begin with a piece of notation: throughout the rest
of this section we fix a true model economy θ∗ (rather than θ) in Θ̃, while θ (rather than θ′)
denotes a generic element of Θ̃. With this notation, the partial identification line is

Σ̂a (θ∗) =
{

(θ0, θ1a) ∈ Θ̃ : θ0 = θ∗0 + (θ∗1a − θ1a) a
}
.

Hence, a policy and belief pair (a∗, µ∗) ∈ A×∆(Θ̃) is self-confirming if and only if

a∗ ∈ arg max
a∈A

V (a, µ∗)

and
µ∗
(

Σ̂a∗ (θ∗)
)

= 1.

Next we characterize self-confirming equilibria of the estimated model economy (23)-(25).
In both equilibrium conditions, the true multiplier ξ∗2 = β̂

∗
+ θ∗1a and its conjectured value

Eµ∗(ξ2) = β̂
∗

+ Eµ∗ (θ1a) play a key role.41

Proposition 10 A policy and belief pair (a∗, µ∗) ∈ A×∆(Θ̃) is a self-confirming equilibrium
given θ∗ if and only if

a∗ = −
θ∗0

(
β̂
∗

+ Eµ∗ (θ1a)
)

1 +
(
β̂
∗

+ θ∗1a

)(
β̂
∗

+ Eµ∗ (θ1a)
) (28)

and

µ∗

(θ0, θ1a) ∈ Θ̃ : θ0 = θ∗0 −
θ∗0

(
β̂
∗

+ Eµ∗ (θ1a)
)

1 +
(
β̂
∗

+ θ∗1a

)(
β̂
∗

+ Eµ∗ (θ1a)
) (θ∗1a − θ1a)


 = 1. (29)

The result can be heuristically derived in the special case of dogmatic beliefs, when µ∗ is
concentrated on a single parameter vector θ̄ =

(
θ̄0, θ̄1a

)
∈ Θ̃, that is, µ∗ = δ

(
θ̄
)
. By (27),

up to a constant the monetary authority’s value function is

V (a, µ∗) = −E2
θ̄ (ua)− E2

θ̄ (πa) .

The conjectured multiplier is ξ̄2 = β̂
∗

+ θ̄1a. For instance, a new-classical authority that
believes that there is no systematically exploitable trade-off between inflation and unem-
ployment assumes θ̄1a = −β̂∗ (and so the conjectured multiplier is zero). In contrast, a
Keynesian authority that believes in a trade-off may assume, for instance, θ̄1a = 0 (the
conjectured multiplier is then β̂

∗
, and so strictly negative).

Based on the estimated model economy (23)-(25), a dogmatic authority conjectures that,
according to the chosen policy a, the expected values of inflation and unemployment are
constrained by the equation

Eθ̄ (ua) = θ̄0 +
(
θ̄1a + β̂

∗)
Eθ̄ (πa) .

41Recall that β̂
∗
is the beta regression coeffi cient of unemployment over inflation (given the true model θ∗).
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This conjectured constraint is the version of the estimated aggregate supply equation (23)
that the authority expects to face systematically given its dogmatic belief. So the authority’s
decision problem is

min
a∈A

E2
θ̄ (ua) + E2

θ̄ (πa) ,

sub Eθ̄ (ua) = θ̄0 +
(
θ̄1a + β̂

∗)
Eθ̄ (πa) .

With this, the Lagrangian is

E2
θ̄ (ua) + E2

θ̄ (πa) + λ
(
Eθ̄ (ua)−

(
θ̄0 +

(
θ̄1a + β̂

∗)
Eθ̄ (πa)

))
and the first-order conditions are

2Eθ̄ (ua) = −λ 2Eθ̄ (πa) = λ
(
θ̄1a + β̂

∗)
Eθ̄ (ua) = θ̄0 +

(
θ̄1a + β̂

∗)
Eθ̄ (πa) .

By solving them we get

Eθ̄ (πa) = B
(
θ̄
)
≡ −

θ̄0

(
β̂
∗

+ θ̄1a

)
1 +

(
β̂
∗

+ θ̄1a

)2 .

Since Eθ̄ (πa) = a, the monetary authority’s best reply is thus the policy a = B
(
θ̄
)
. As a

result, a policy and belief pair
(
a∗, δ

(
θ̄
))
is a self-confirming equilibrium if and only if

a∗ = B
(
θ̄
)

(subjective best reply) (30)

and
θ̄0 = θ∗0 +

(
θ∗1a − θ̄1a

)
a∗ (confirmed beliefs). (31)

Simple algebra shows that this is the case if and only if

a∗ = −
θ∗0

(
β̂
∗

+ θ̄1a

)
1 +

(
β̂
∗

+ θ∗1a

)(
β̂
∗

+ θ̄1a

) (32)

and

θ̄0 = θ∗0 −
θ∗0

(
β̂
∗

+ θ̄1a

)
1 +

(
β̂
∗

+ θ∗1a

)(
β̂
∗

+ θ̄1a

) (θ∗1a − θ̄1a

)
, (33)

which are the equilibrium relations (28) and (29) in the case of dogmatic beliefs.42

Figure 5.3.1.a illustrates the previous heuristic argument when the true model is of Lucas-
Sargent kind, so that θ∗0 is the natural rate of unemployment and θ

∗
1a = −β̂∗ (and so the true

policy multiplier ξ∗2 is zero). Under this true model, policy a induces average unemployment

42Note that, with the dogmatic value θ̄1a of θ1a in place of its expectation Eµ∗ (θ1a), the dogmatic equilib-
rium relations are identical to the general ones. This is a consequence of the certainty equivalence principle
stated in Proposition 3.
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Eθ∗ (ua) = θ∗0 and average inflation Eθ∗ (πa) = a. But a monetary authority with dogmatic
belief δ

(
θ̄
)
expects to observe the pair of long-run averages (Eθ̄ (ua) , a). This dogmatic

belief is confirmed, and so condition (31) is satisfied, if Eθ̄ (ua) = θ∗0, that is, if the pair of
average unemployment and average inflation lies on the vertical partial identification line with
abscissa θ∗0. The subjective best reply condition (30) is represented by the tangency between
the (red) indifference curve and the (green) conjectured constraint, according to which an
increase ∆a in average inflation yields a −ξ̄2∆a decrease in average unemployment, where
ξ̄2 = β̂

∗
+ θ̄1a is the conjectured multiplier.

Figure 5.3.1.a: Self-confirming equilibrium
in a new-classical world.

When the dogmatic belief is such that θ̄1a = 0 so that ξ̄2 = β̂
∗
becomes the conjectured

multiplier, the monetary authority is “orthodox”Keynesian. See Figure 5.3.1.b.

Figure 5.3.1.b: Equilibrium with “orthodox”
Keynesian beliefs.
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The conjectured constraint is Eθ̄ (ua) = θ̄0 + β̂
∗
Eθ̄ (πa). Its slope is the beta coeffi cient of

the Phillips regression, which represents the trade-off between inflation and unemployment
that the Keynesian authority believes to be systematically exploitable.

5.3.2 Policy activism and welfare

To complete our equilibrium analysis we need to compare the self-confirming equilibrium
action with the objectively optimal one and to compute the resulting welfare loss.

To this end we need to consider the estimated policy multiplier ξ2 = β̂ + θ1a. The
authority underestimates the multiplier when Eµ∗(ξ2) > ξ∗2 and overestimates it when
Eµ∗(ξ2) < ξ∗2.

43 In structural terms, Eµ∗(ξ2) ≷ ξ∗2 if and only if Eµ∗ (θ1a) ≷ θ∗1a. For instance,
when θ∗1a and Eµ∗ (θ1a) are positive this means that the multiplier is under/overestimated if
and only if the direct impact of planned inflation on unemployment is over/underestimated.

The objectively optimal policy is

ao = −
θ∗0

(
β̂
∗

+ θ∗1a

)
1 +

(
β̂
∗

+ θ∗1a

)2 . (34)

It is immediate to see that a∗ = ao if and only if Eµ∗ (θ1a) = θ∗1a, (and so Eµ∗(ξ2) = ξ∗2).
The equilibrium action is objectively optimal when the monetary authority has a correct
expected value of the estimated policy multiplier ξ2. More generally, next we show that
policy hyperactivism characterizes authorities that overestimate the policy multiplier, while
hypoactivism characterizes authorities that underestimate it.44

Proposition 11 Given a true model θ∗, for every self-confirming equilibrium (a∗, µ∗),

(i) Eµ∗ (θ1a) < θ∗1a if and only if policy a
∗ is hyperactive, i.e., a∗ > ao;

(ii) Eµ∗ (θ1a) = θ∗1a if and only if policy a
∗ is objectively optimal, i.e., a∗ = ao;

(iii) θ∗1a < Eµ∗ (θ1a) < −β̂
∗
if and only if policy a∗ is hypoactive, i.e., 0 < a∗ < ao;

(iv) Eµ∗ (θ1a) = −β̂∗ if and only if policy a∗ is zero-target-inflation, i.e., a∗ = 0.

For the monetary authority, both kinds of deviations from objective optimality, hyper-
activism and hypoactivism, cause the same welfare loss. Indeed:

Proposition 12 The welfare loss is ` (a∗, θ∗) = (1 + (β̂
∗

+ θ∗1a)
2) (a∗ − ao)2.

In the next section we will illustrate this result with a few examples.

5.4 Policy dogmatism and its welfare consequences

5.4.1 Equilibria

Assume that the monetary authority has dogmatic equilibrium beliefs µ∗ = δ
(
θ̄
)
. A pair(

a∗, δ
(
θ̄
))
∈ A × ∆(Θ̃) is self-confirming if and only if it satisfies relations (32) and (33).

Two special cases are noteworthy.
43Both ξ∗2 and Eµ∗(ξ2) are negative (Assumption 2), and so Eµ∗(ξ2) ≷ ξ∗2 if and only if |Eµ∗(ξ2)| ≶ |ξ∗2|.
44Since ξ∗2 ≤ 0 (Assumption 2), the cases considered in the proposition exhaust all possibilities. Also note

that, since Eµ∗ (θ1a) ≤ −β̂∗, Eµ∗ (θ1a) = −β̂∗ is equivalent to µ∗(θ1a = −β̂∗) = 1.
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New-classical authority Suppose the monetary authority believes that the policy mul-
tiplier is zero, i.e., θ̄1a = −θ̄1π. Since in equilibrium θ1π is identified by the slope of the
Phillips regression, we have θ̄1a = −β̂∗. Here the conjectured constraint is vertical at the
baseline unemployment rate θ∗0: the new-classical authority does not believe in any system-
atically exploitable trade-off between inflation and unemployment. A zero-target-inflation
equilibrium policy results (Proposition 11-(iv)).

Keynesian authority Suppose the monetary authority believes that there is a fully ex-
ploitable trade-off between inflation and unemployment, i.e., θ̄1a = 0. Then, in equilibrium,
the conjectured policy multiplier ξ̄∗2 = β̂

∗
is strictly negative. A positive-target-inflation

equilibrium policy results:

a∗ = − θ∗0β̂
∗

1 + β̂
∗ (
β̂
∗

+ θ∗1a

) and θ̄ =

θ∗0
 1 + β̂

∗2

1 + β̂
∗ (
β̂
∗

+ θ∗1a

)
 , 0

 . (35)

By Proposition 11, such a policy is hyperactive if θ∗1a > 0, hypoactive if θ∗1a < 0, and
objectively optimal if θ∗1a = 0.

To sum up, the two equilibria feature new-classical nonintervention a la Friedman-Hayek
and Keynesian activism, respectively. Regardless of the true model economy, such policy
prescriptions emerge through suitable dogmatic beliefs.

5.4.2 A new-classical world

So far we did not fix a specific economic model. Now, by way of example, assume that a
Lucas-Sargent model economy θ∗ = (θ∗0,−β̂

∗
) ∈ Θ̃ is the true model, with no systematically

exploitable trade-off between inflation and unemployment. Then, the pair
(
a∗, δ

(
θ̄
))
is a

self-confirming equilibrium if and only if a∗ = −θ∗0(β̂
∗

+ θ̄1a) and θ̄0 = θ∗0(1 − (β̂
∗

+ θ̄1a)
2).

Hence, the policy and belief pair(
−θ∗0

(
β̂
∗

+ θ̄1a

)
, δ

(
θ∗0

(
1−

(
β̂
∗

+ θ̄1a

)2
)
, θ̄1a

))
is the dogmatic self-confirming equilibrium in a Lucas-Sargent model economy. By Propo-
sition 11, policy a∗ is hyperactive when θ̄1a < θ∗1a and objectively optimal when θ̄1a = θ∗1a.
The welfare loss is ` (a∗, θ∗) = θ∗20 (β̂

∗
+ θ̄1a)

2.

Next we consider two different equilibria in this new-classical world according to the
monetary authority’s dogmatic beliefs.

New-classical authority Suppose the monetary authority correctly believes that there

is no exploitable trade-off between inflation and unemployment, that is, µ∗ = δ
(
θ̄0,−β̂

∗)
.

The pair
(
a∗, δ

(
θ̄0,−β̂

∗))
is a self-confirming equilibrium if and only if a∗ = 0 and θ̄0 = θ∗0.

As a result, the policy and belief pair(
0, δ

(
θ∗0,−β̂

∗))
(36)
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is the new-classical self-confirming equilibrium. It features a zero-target-inflation policy,
which is the objectively optimal policy (so, there is no welfare loss) as well as the fully
revealing one that allows the authority to learn, in the long-run, the true coeffi cient θ∗0.

Keynesian authority Suppose the monetary authority wrongly believes that there is a
fully exploitable trade-off between inflation and unemployment, with say µ∗ = δ

(
θ̄0, 0

)
.

The pair (a∗, δ
(
θ̄0, 0

)
) is a self-confirming equilibrium if and only if a∗ = −θ∗0β̂

∗
and θ̄0 =

θ∗0(1− β̂∗2). The policy and belief pair(
−θ∗0β̂

∗
, δ
(
θ∗0

(
1− β̂∗2

)
, 0
))

(37)

is thus a Keynesian self-confirming equilibrium. It features an hyperactive positive-target-
inflation policy. Since it is not the objectively optimal policy, the monetary authority suffers
a welfare loss ` (a∗, θ∗) = (θ∗0β̂

∗
)2.

5.4.3 A Keynesian world

What we noted above can be reversed as we consider the case of a Keynesian model econ-
omy where the policy multiplier ξ2 is different from zero, i.e., the monetary authority may
systematically reduce average unemployment. To consider a stark (although implausible)
example, suppose that θ∗ = (θ∗0, 0) ∈ Θ̃ is the true model, that is, there is a full system-
atically exploitable trade-off between inflation and unemployment because monetary policy
does not affect expectations (θ∗1a = 0). A Keynesian authority makes the objectively optimal
positive-inflation choice in equilibrium. A new-classical authority chooses zero inflation, an
inferior outcome.

5.4.4 Welfare consequences

What are the welfare implications of incorrect beliefs under dogmatism? By way of exam-
ple, we consider a new-classical authority in a Keynesian economy, as well as a Keynesian
authority in a new-classical economy. The loss of a new-classical zero inflation policy in a
Keynesian economy, with θ∗1a = 0, is (θ∗0β̂

∗
)2. It is the same loss of a Keynesian nonzero

inflation policy (37) in a new-classical economy: a mistaken new-classical authority has the
same lower welfare as a mistaken Keynesian one.

5.5 Policy agnosticism and a curious interplay

5.5.1 Equilibria

Suppose that the monetary authority is not dogmatic, but has instead a two-model belief.45

Specifically, she is uncertain whether the true model is of the Lucas-Sargent or Samuelson-
Solow kind and her self-confirming subjective belief µ∗ assigns positive probability mass to
just one specimen of each kind, so that the (subjective) support consists of two points: a

45Cogley and Sargent (2005) and Cogley et al. (2007) study dynamic Bayesian policy problems where
beliefs assign positive probability to three model economies (dynamic specifications of the two models we
consider here and a third related model).
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Lucas-Sargent model (θls0 (µ∗) ,−β̂∗) and a Samuelson-Solow (Keynesian) model (θss0 (µ∗) , 0).
Denoting by µ∗k ∈ [0, 1] the subjective weight of the latter model, we can write belief µ∗ as

µ∗ = (1− µ∗k) δ
(
θls0 (µ∗) ,−β̂∗

)
+ µ∗kδ (θss0 (µ∗) , 0) . (38)

Since Eµ∗ (θ1a) = − (1− µ∗k) β̂
∗
, the expected multiplier is Eµ∗(ξ2) = µ∗kβ̂

∗
and the pair

(a∗, µ∗) is a self-confirming equilibrium if and only if

a∗ = − θ∗0β̂
∗
µ∗k

1 + β̂
∗
µ∗k

(
β̂
∗

+ θ∗1a

) (39)

and

θls0 (µ∗) =
θ∗0

1 + β̂
∗ (
β̂
∗

+ θ∗1a

)
µ∗k

, θss0 (µ∗) =
θ∗0

(
1 + β̂

∗2
µ∗k

)
1 + β̂

∗ (
β̂
∗

+ θ∗1a

)
µ∗k

. (40)

As a result, in this case, a pair of the form− θ∗0β̂
∗
µ∗k

1 + β̂
∗
µ∗k

(
β̂
∗

+ θ∗1a

) , (1− µ∗k) δ
 θ∗0

1 + β̂
∗ (
β̂
∗

+ θ∗1a

)
µ∗k

,−β̂∗
+ µ∗kδ

 θ∗0

(
1 + β̂

∗2
µ∗k

)
1 + β̂

∗ (
β̂
∗

+ θ∗1a

)
µ∗k

, 0


is a self-confirming equilibrium for every µ∗k ∈ [0, 1]. We thus have a continuum of equilibria
parameterized by the subjective weight µ∗k of the model of the Samuelson-Solow kind (and
so by the expected multiplier µ∗kβ̂

∗
). In particular, the equilibrium policy a∗ is increasing

in µ∗k: the higher the weight of the Keynesian model, the higher the planned inflation. If
µ∗k = 0 we get back to the dogmatic new-classical equilibrium, while if µ∗k = 1 we get back
to the dogmatic Keynesian equilibrium (Section 5.4.1).

In equilibrium, the coeffi cients (40) of the models of the Lucas-Sargent and Samuelson-
Solow kind depend on the authority’s subjective weight µ∗k: different weights correspond to
different Lucas-Sargent and Samuelson-Solow equilibrium specifications. Though the support
of the equilibrium belief (38) always contains a specimen of both classes of model economies,
that specimen changes as the weight µ∗k changes. Finally, the welfare loss is

` (a∗, θ∗) =
θ∗20

(
β̂
∗
µ∗k + β̂

∗
+ θ∗1a

)2

(
1 + β̂

∗
µ∗k

(
β̂
∗

+ θ∗1a

))2
(

1 +
(
β̂
∗

+ θ∗1a

)2
) . (41)

This curious interplay between the models deemed possible and the weight on each kind
of model is our main finding for the two-model self-confirming belief; therefore, it will be
further clarified in a prominent special case.

5.5.2 A new-classical world

Assume that a Lucas-Sargent model economy θ∗ = (θ∗0,−β̂
∗
) is the true model. If so, by

(39) and (40) the pair (a∗, µ∗) is a self-confirming equilibrium if and only if a∗ = −θ∗0β̂
∗
µ∗k,
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θls0 (µ∗) = θ∗0 and θ
ss
0 (µ∗) = θ∗0(1 + β̂

∗2
µ∗k). Hence, in this case, the pair(

−θ∗0β̂
∗
µ∗k, (1− µ∗k) δ

(
θ∗0,−β̂

∗)
+ µ∗kδ

(
θ∗0
(
1 + β∗2µ∗k

)
, 0
))

is a self-confirming equilibrium for every subjective weight µ∗k ∈ [0, 1]. The welfare loss is
` (a∗, θ∗) = (θ∗0β̂

∗
µ∗k)

2.

As implied by the analysis of Section 5.5.1, we have a continuum of equilibria parame-
terized by the weight µ∗k of the model of the Keynesian (Samuelson-Solow) kind: if µ

∗
k > 0

the equilibrium policy is hyperactive, if µ∗k = 0 we get the dogmatic new-classical equilib-
rium (36). Moreover, if µ∗k = 1 we get back to the dogmatic Keynesian equilibrium (37).
Now, however, the equilibrium coeffi cient θls0 (µ∗) is pinned down by the true natural rate
of unemployment θ∗0: the monetary authority understands that, if the true model were of
the Lucas-Sargent kind, average unemployment and baseline unemployment at 0-planned
inflation would coincide; furthermore, in the case under consideration the average rate of
unemployment must be the natural rate. In contrast, the subjective equilibrium coeffi -
cient θss0 (µ∗) = θ∗0(1 + β̂

∗2
µ∗k) still depends on weight µ

∗
k: a higher subjective weight of

the Samuelson-Solow specification corresponds to a higher planned inflation in equilibrium,
hence, to a higher Phillips regression line, whose horizontal intercept is θss0 (µ∗). Thus, the
support of the equilibrium belief always contains a specimen of the Samuelson-Solow model;
it, however, changes as µ∗k changes. More generally, a two-model belief is determined by
its (subjective) support and the relative likelihoods of the two models in the support. The
self-confirming equilibrium conditions jointly discipline these two aspects of the belief.

Figure 5.5.2 illustrates. The monetary authority is uncertain about the true economic
constraint, the vertical line at the natural rate of unemployment or the Phillips regression
line. Since the true model is of the Lucas-Sargent kind, at a self-confirming equilibrium the
average unemployment expected by the monetary authority must be the natural rate θ∗0; the
subjective best reply condition is expressed by the tangency between the (red) indifference
curve and a (green) line describing the expected constraint, the slope of which is intermediate
between the vertical line at the natural rate θ∗0 and the Phillips regression line (which, in

turn, depends on weight µ∗k via the equilibrium relation θ0 = θ∗0(1 + β̂
∗2
µ∗k)). Comparing the

correct-belief equilibrium (a, µ) = (0, δ (θ∗)) with the represented self-confirming equilibrium
determined by µ∗k > 0, one can see that the latter features higher planned inflation a∗ > 0
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and higher horizontal intercept θss0 (µ∗) > θ∗0.

Figure 5.5.2.a: Two-Model self-confirming
equilibrium.

Figure 5.5.2.b gives an alternative geometrical representation. Fix the true model θ∗

and an alternative model θ. Every policy a induces a pair of objective expected rewards,
the reward under model θ∗, R(a, θ∗), and the reward under model θ, R(a, θ). By changing
a one obtains the locus of possible pairs of rewards. If R(a, θ∗) 6= R(a, θ), the monetary
authority can infer which of the two models is true from the observed long-run average pay-
off. Therefore, the partial identification condition is R(a, θ∗) = R(a, θ). At a self-confirming
equilibrium (a∗, µ∗) with suppµ∗ = {θ∗, θ}, this belief-confirmation condition must hold;
therefore, the equilibrium point (R(a∗, θ∗), R(a∗, θ)) is at the intersection of the main diago-
nal in the (R(·, θ∗), R(·, θ))-space, the “partial identification line,”with the locus of feasible
pairs {(R(a, θ∗), R(a, θ)) : a ∈ A}, the constraint. At this intersection point, the constraint
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curve must be tangent to the constant-SEU line with slope (1− µ∗k)/µ∗k.

Figure 5.5.2.b: Self-confirming equilibrium in the
expected rewards space.

Recall thatB (·) denotes the best reply function. With this, R (B (θ∗) , θ∗) = V (B (θ∗) , δ (θ∗)) >
V (B (µ∗) , µ∗). Indeed, V (B (θ∗) , δ (θ∗)) > V (B (µ∗) , δ (θ∗)) = R (B (µ∗) , θ∗) because
B (µ∗) is not a best reply to θ∗. On the other hand, R (B (µ∗) , θ∗) = V (B (µ∗) , µ∗) be-
cause R (B (µ∗) , ·) is constant on the support of self-confirming belief µ∗ (see Lemma 3 and
Proposition 5). The correct-belief equilibrium (B (θ∗) , δ (θ∗)) features sharper beliefs than
(B (µ∗) , θ∗). Therefore, this is an instance of Proposition 6: self-confirming equilibria with
sharper beliefs yield higher values and lower losses.

6 Steady state policies

The analysis of the Phillips curve example suggests a general form of the policy problem
that extends to our steady state setup the classic policy Tinbergen-Theil framework. This
is the subject matter of this final section that builds upon, and sums up, what we did so far
in the paper.

6.1 Setup

A steady state model economy is described via the structural form relation

ϕ (x, y, η, θ) = 0 (42)

where x ∈ X is a (specified) exogenous variable, y ∈ Y is an endogenous variable, η ∈ H
is a shock variable (that is, an unspecified exogenous variable), and θ ∈ Θ is a structural
parameter that indexes the model economy. All variables can be multidimensional (more
generally, they can live in vector spaces).
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The endogenous variable is determined within the model, given the values that the other
variables take on (outside the model); that is, the endogenous variable y solves equation
(42). To ease matters, suppose that the solutions of this equation are always unique, so that
we can write the solution function

y = ψ (x, η, ξ)

which is called the reduced form of the model economy, where ξ = g (θ) is a reduced form
parameter.46

Example 5 A simple model economy consists of a system of linear equations θ1x + θ2y =
η. The entries of the (square, for simplicity) matrices θ1 and θ2 are the parameters, and
ϕ (x, y, θ) = θ1x + θ2y − η. If matrix θ2 is invertible, the reduced form is y = ψ (x, η, ξ) =
ξ1x+ ξ2η, where ξ = g (θ1, θ2) =

(
−θ−1

2 θ1, θ
−1
2

)
. N

Suppose that the exogenous variable can be decomposed as x = (a, ζ) ∈ A × Z, where
the variables a and ζ are, respectively, under and outside the control of the policy maker.
The policy maker chooses policy a in order to affect the value of the endogenous variable,
which we assume to be payoff relevant, and so we denote it by c. The reduced form becomes

c = ψ (a, ζ, η, ξ)

The state space is S = Z ×H × Θ, the consequence space is C, and ρ : A × S → C is the
consequence function, with ρ (a, ζ, θ) = ψ (a, ζ, g (θ)).47 Policy multipliers correspond to the
derivative of ψ with respect to a (partial derivatives if a is multidimensional).

Example 6 In the Phillips curve example the structural form is (12)-(13), with c = (u, π),
η = (ε, w), and θ = (θ0, θ1π, θ1a, θ2, θ3). The function ϕ is linear, given by

ϕ (u, π, a, w, ε, θ) = −
[

1 −θ1π

0 1

] [
u
π

]
+

[
θ0

0

]
+ a

[
θ1a

1

]
+

[
θ2 0
0 θ3

] [
w
ε

]
There are no exogenous variables (e.g., government expenditures). The reduced form is
(14)-(15), with ψ linear and given by

ψ (a,w, ε, ξ) =

[
ξ1

0

]
+ a

[
ξ2

1

]
+

[
ξ4 ξ3

0 ξ5

] [
w
ε

]
Finally, g (θ) = (θ0, θ1π + θ1a, θ1πθ3, θ2, θ3), ρ is given by (16), and ξ2 is the policy multi-
plier.48 N

The rest of the decision problem specification is as the one presented in Subsection 2.2,
we report here the essential elements. The physical uncertainty about the states’realizations

46We do not discuss here the conditions that, along with the uniqueness of solutions, ensure the existence of
the reduced form representation (see, e.g., Rothenberg, 1971). The economic relevance of multiple solutions
is discussed by Jovanovic (1989); in this case, we have a solution correspondence, and so a reduce form
correspondence.
47Here we tacitly assume that ψ and g are such that ρ satisfies Savage’s Consequentialism.
48Assumption 1 of the example here amounts to requiring that the function θ 7→ g (θ) be one-to-one, so

that distinct structural parameters correspond to distinct reduced form parameters.

38



is described by probability models σ ∈ ∆ (S). Policy makers posit a collection Σ ⊆ ∆ (S) of
these distributions and, given any σ ∈ Σ, evaluate policy a via its expected utility R (a, σ) =∫
S r (a, s) dσ, where is r = v ◦ ρ is a reward function based on a von Neumann-Morgenstern
utility function v : C → R. Given his subjective prior µ over models σ, the policy maker
then ranks actions according to the criterion V (a, µ) =

∫
ΣR (a, σ) dµ (σ).

6.2 Economic and stochastic model uncertainties

In the Phillips curve example we considered a state s = (w, ε, θ) in which we distinguish a
shock pair (w, ε) and a model economy θ. The key factorization (18) builds on that distinc-
tion. This distinction also applies to the general policy problem, which features two types
of model uncertainties. First, there is uncertainty about the economics of the phenomenon
under consideration, and so about the economic models that explain it. Second, there is un-
certainty about the statistical performance of such economic models, due to the errors that
affect measurements and shocks; the latter represent the unexplained variation caused by,
possibly many, minor explanatory variables that the policy maker is “unable and unwilling
to specify”, as Marschak (1953) p. 12 remarks.49

We can call, respectively, economic model uncertainty and stochastic model uncertainty
the two types of uncertainty. The former is more fundamental than the latter since it reflects
the economic views of policy makers.50 This is why, by assuming q known, in the Phillips
curve example we focused on economic model uncertainty.

In general, the state spaces relevant for policy problems can be represented as Cartesian
products of factors that represent the two types of uncertainty. In this case, versions of
the factorization (18) would apply with a twist: uncertainty about the probability model
that describes the exogenous variable, absent in the Phillips curve example, must also be
considered. We thus factor the probability models σ ∈ Σ ⊆ ∆ (Z ×H ×Θ) as σ = q × δθ̄,
where — to focus on economic model uncertainty — we assume that the joint probability
model q ∈ ∆ (Z ×H) for the exogenous and shock variables is known and that δθ̄ ∈ ∆ (Θ)
is a Dirac probability measure concentrated on a given economic model θ̄ ∈ Θ. As in the
example, we can identify Σ with Θ without loss of generality. In particular, R (a, θ) =∫
r (a, ζ, η, θ) dq (ζ, η).

6.3 Partial identification and equilibrium

The analysis of partial identification and the notion of self-confirming equilibrium presents
no any novelties for the generalized policy problem. But for the sake of completeness, here
we briefly discuss them.

We assume that the messages that the policy maker receives are the values of the en-
dogenous variable c, that is, f = ρ.51 Since we identify Σ with Θ, the distribution map

49 In a similar vein, Koopmans (1947) p. 169 writes that “... stochastic ... in that the behavior of any group
of individuals, and the outcome of any production process, is determined in part by many minor factors,
further scrutiny of which is either impossible or unrewarding.”
50A main instance of what Denzau and North (1994) and, more recently, Rodrik (2014) call “ideas”. Note

that economic model uncertainty subsumes the parametric uncertainty considered by Friedman (1953) and
then Brainard (1967) in policy problems.
51 Inter alia, this assumption implies that own-action independence of feedback cannot hold in nontrivial

policy problems (recall our discussion in Section 3.2).
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and the partial identification correspondence are given here by f̂a (θ) (E) = q(ρ−1
a,θ (E)) and

Σ̂a (θ) = {θ′ ∈ Σ : f̂a
(
θ′
)

= f̂a (θ)}.52 In particular, Σ̂a (θ) is the collection of all model
economies that are observationally equivalent when θ is the true model and a is the chosen
policy.

Moment conditions based on lung-run observed values of the endogenous variable may
allow the policy maker partially to identify the structural parameter θ, regardless of the
chosen action. For instance, in the Phillips curve example the three coeffi cients θ1π, θ2 and θ3

were identified via suitable moment conditions (see Section 5.2.3). In this case, the parameter
space can be factored as Θ = Θ̃×{θ̂}, where θ̂ is the sub-vector estimated through long-run
observations, independently of the chosen action (i.e., any learning dynamics should ensure
the knowledge of θ̂). A lower dimensional parameter space Θ̃ results and, consequently, the
partial identification correspondence can be reduced to Σ̂a : Θ̃ → 2Θ̃. In the Phillips curve
example θ̂ = {β̂, σ̂u|π, σ̂u} and Θ̃ = R++ × (−∞,−β̂].

In view of all this, the notion of self-confirming equilibrium is easily stated for the policy
problem: a policy and belief pair (a∗, µ∗) ∈ A × ∆(Θ̃) is self-confirming if and only if
a∗ ∈ arg maxa∈A V (a, µ∗) and µ∗(Σ̂a∗ (θ∗)) = 1.

6.4 Steady state policy rules

A natural question is whether a notion of a steady state policy rule emerges in our setup.
When Σ is a singleton, that is, when structural information allows the policy maker to know
the true model, such a rule is given by the best reply correspondenceB (θ) = arg maxa∈AR (a, θ)
for each θ ∈ Θ̃. A policy maker who knows the true model economy best replies to such
knowledge by taking the objectively optimal policy. Since q is known, this corresponds in
our steady state setup to the case originally studied by Tinbergen (1952) and Theil (1961).53

The interplay between policies and information substantially complicates matters when
Σ is nonsingleton. For simplicity we study the case, often considered in applications, when
best replies to beliefs are unique. If so, self-confirming equilibria can be stated as equilibria
in beliefs. Formally, say that a policy problem is nice if the best reply correspondence is a
function B : ∆ (Σ)→ A, with B (µ) = arg maxa∈A V (a, µ). In words, there is a unique best
reply to each belief, as standard concavity conditions on reward functions would ensure. For
instance, linear quadratic problems (like the Phillips curve example) are nice.

In a nice policy problem, given a true model θ∗ ∈ Σ, a pair (a∗, µ∗) ∈ A×∆ (Σ) of actions
and beliefs is a self-confirming equilibrium if and only if a∗ = B (µ∗) and

µ∗
(

Σ̂B(µ∗) (θ∗)
)

= 1. (43)

Hence, there is a unique equilibrium condition (43), which is cast in terms of beliefs (actions
being pinned down by the best reply function). For this reason in nice policy problems we
can view self-confirming equilibria as fixed points in the space of beliefs. To this end, define
the correspondence Tθ∗ : ∆ (Σ)→ 2∆(Σ) by

Tθ∗ (µ) = ∆
(

Σ̂B(µ) (θ∗)
)
.

52ρa,θ : Z ×H → C is the section of ρ at (a, θ) and E ⊆ C is any measurable subset.
53 In the terminology of Brainard (1967), a singleton Σ means a nonrandom parameter θ (see also Blinder,

1998, p. 11). A nonrandom θ is assumed, for example, also by Poole (1970) in his classic IS-LM policy
analysis under uncertainty (see, e.g., Poole, 1970, p. 215).
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Any belief ν ∈ ∆(Σ̂B(µ) (θ∗)) is consistent with the long-run frequency distribution of ob-
served values of the endogenous variable. This suggests the following notion.

Definition 3 Given a true model θ∗ ∈ Σ, a belief µ ∈ ∆ (Σ) is self-confirming if µ ∈ Tθ∗ (µ).

In words, self-confirming beliefs are consistent with the long-run data — that is, the
observed values of the endogenous variable —gathered through the optimal policy that they
induce.54

Let M (θ∗) = {µ ∈ ∆ (Σ) : µ ∈ Tθ∗ (µ)} be the collection of all self-confirming beliefs
when θ∗ is the true model. The steady state policy rule hθ∗ : M (θ∗) → A is the restriction
of the best reply function on M (θ∗), that is, hθ∗ (µ) = B (µ) for all µ ∈ M (θ∗). According
to this rule, policy makers best reply to beliefs that, in the long run, are consistent with the
data that they collect through their policies.

6.5 Brainard conservatism?

When the monetary authority knows the true model θ∗, the policy rule is

B (θ∗) = −
θ∗0

(
β̂
∗

+ θ∗1a

)
1 +

(
β̂
∗

+ θ∗1a

)2 . (44)

For each θ∗ the rule prescribes the objectively optimal policy ao. When, instead, the mone-
tary authority does not know the true model θ∗, by Proposition 10 the set M (θ∗) consists
of the beliefs µ ∈ ∆ (Σ) such that

µ

(θ0, θ1a) ∈ R2 : θ0 = θ∗0 −
θ∗0

(
β̂
∗

+ Eµ (θ1a)
)

1 +
(
β̂
∗

+ θ∗1a

)(
β̂
∗

+ Eµ (θ1a)
) (θ∗1a − θ1a)


 = 1.

This leads to the following characterization of steady state policy rules.

Proposition 13 The steady state policy rule hθ∗ : M (θ∗)→ R satisfies the certainty equiv-
alent principle, that is,

hθ∗ (µ) = −
Eµ (θ0)

(
β̂
∗

+ Eµ (θ1a)
)

1 +
(
β̂
∗

+ Eµ (θ1a)
)2 . (45)

If µ is not dogmatic, then

hθ∗ (µ) =


√

Varµ(θ0)
Varµ(θ1a) if Covµ (θ0, θ1a) 6= 0

0 if Covµ (θ0, θ1a) = 0

.

54This fixed point characterization is easily seen to hold in full generally in our setup (beyond the policy
case considered here) when best replies are unique.
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Our steady state policies thus do not feature the “Brainard conservatism principle,”that
is, they are not more prudent than what the certainty equivalent principle would prescribe.55

The partial identification caused by the authority’s limited structural information does not
translate into a policy conservatism a la Brainard: but the long-run data confirmation con-
dition that characterizes our policy rules puts the certainty equivalent principle back in
business.

The policy rule depends on the ratio of standard deviations
√

Varµ (θ0) /Varµ (θ1a) when
beliefs are not dogmatic (and so such deviations are not zero). Higher conjectured variabil-
ity in θ0, the (systematic) rate of unemployment in absence of policy interventions, leads to
higher policy activism. The opposite is true when it is the conjectured variability in θ1a,
and so in the policy multiplier, that becomes higher. However, within the certainty equiva-
lent principle, in our steady state setup different types of parametric uncertainty determine
different policy responses, some more aggressive and some more conservative. In particular,
higher multiplier uncertainty makes policies more conservative; in this different sense, a form
of Brainard conservatism does hold in steady state.

7 Concluding remarks

While applied theorists and economists more generally can benefit from seeing the self-
confirming equilibrium concept in action, we think it is important to frame such applications
within the context of an abstract analysis. Indeed, this allows to better understand key essen-
tial concepts like partial identification given the equilibrium choice, endogeneity of feedback
about the state, and the role of observability of consequences. In this paper we put forward
an abstract framework for the analysis of self-confirming policies amenable to economic ap-
plications, hence featuring both intrinsic randomness and (possibly) infinite spaces of actions
and states. All the concepts and techniques can be extended to n-person games, but we focus
on decision problems with uncertainty (i.e., one-person games with incomplete information)
for several reasons. First, the analysis is simpler and it suffi ces for our examples and the eco-
nomic policy applications. Second, it clarifies that self-confirming equilibrium is a genuine
equilibrium concept also in a one-person setting, because equilibrium beliefs are disciplined
by choice-dependent evidence. This should be contrasted with Harsanyi’s (1967) Bayesian
equilibrium whereby subjective beliefs about unknown parameters are not disciplined by
evidence; thus, in one-person settings Bayesian equilibrium just requires that the decision
maker best reply to her subjective belief. Finally, we are not aware of simple and interesting
n-person generalizations of our new comparative welfare results, Propositions 6 and 8. Our
economic policy applications illustrate the abstract framework and extend previous work in
several ways. In particular, they take a more neutral perspective on the true model economy
and they consider general beliefs rather than dogmatic ones. Besides the n-person case, sev-
eral other extensions of the selfconfirming equilibrium idea are conceivable. Here we consider
a few that we find worth exploring.

55Blinder (1997) names this principle after the classic finding of Brainard (1967) that, even in linear
quadratic problems, parametric uncertainty may make policies more prudent in this sense. See also Soderstrom
(2002) and Bernanke (2007) for a discussion of the principle.
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Ambiguity aversion It is possible to allow for non-neutral attitudes toward perceived
ambiguity,56 e.g., by considering the smooth ambiguity model of Klibanoff et al. (2005), or
the maxmin model of Gilboa and Schmeidler (1989). This is done in a companion paper
(Battigalli et al. 2021). Here we give a hint of why such extension is immaterial in the
examples and application of this paper. Go back to Figure 5.5.2.b. Choices are represented
as vectors of objective expected rewards. The best-reply condition requires that the set of
feasible vectors is separated by the upper-contour set of vectors preferred to the chosen one,
which under ambiguity aversion is convex. The key observation is that, in our examples and
application, every undominated feasible vector is on the “effi cient”boundary of the convex
hull of the feasible vectors, i.e., it is not dominated by convex combinations of feasible
vectors. By an intuitive application of the separating hyperplane theorem, this means that
if a feasible vector is a best reply under ambiguity aversion, then it is also a best reply under
ambiguity neutrality (subjective expected utility maximization), with the upper half-space
delimited by the separating hyperplane as upper-contour set.

Prospect Theory It would be also natural to extend the selfconfirming equilibrium idea
and its applications to prospect theory models à la Kahneman and Tversky (1979) — see
Wakker (2010) for an extensive treatment. The exercise is natural, but also challenging. On
one hand, the equilibrium payoff is a natural (endogenous) reference point for the prospect
theory analysis of selfconfirming equilibria. On the other hand, including the long-run empir-
ical information represented by the partially identified set Σ̂a (σ) in a prospect theory model
is less immediate than doing it in a smooth ambiguity or in a maxmin model. A possibility
is to require the distortion functions featured by prospect theory (for gains and losses) to
affect a specific model in Σ̂a (σ). An alternative route is to consider “smooth ambiguity
like”versions of prospect theory à la Vinogradov (2013), and require the equilibrium prior
to be supported on Σ̂a (σ) (this yields the previous approach if the decision maker’s prior
is a Dirac measure at some point in Σ̂a (σ)). In any case, the problem definitely deserves
more attention, and presents an avenue for future research. The works of Peter Wakker on
prospect theory provide a starting point for this intriguing companion quest.

Motivated beliefs Kunda (1990) wrote an influential paper on how motivation influences
reasoning. Since then, “motivated beliefs” became an important topic in psychology and
also in economics, as exemplified in the Introduction by Epley and Gilovich to an interesting
symposium on this topic in the 2016 summer issue of the Journal of Economic Perspectives.
In their contribution, Benabou and Tirole (2016) cite reports of how agents neglect negative
information, distort it, or choose not to obtain important information at little or no cost.
Such behavior is explained in economic models where agents’utility directly depends on their
posterior beliefs and agents take this into account in forming their (action-depedent) beliefs.
The self-confirming equilibrium (SCE) idea instead posits agents who take information more
seriously and exploit all the information they obtain, given their choices. Despite such
clear differences, SCE can be combined with belief-dependent motivations to explain an
important stylized fact studied by the motivated-beliefs literature, i.e., the reluctance to
acquire materially useful and cheap information (see Mannahan 2021). Consider a decision
maker (DM) with a prior belief µ over probabilistic models parameterized by an unknown

56That is, lack of certainty about the objective probabilities of consequences of choices.

43



personal trait θ ∈ Θ ⊂ R, such as her intelligence, general ability, or health. Let µ′ denote
her realized posterior belief, conditional on the received message (material outcome) given
her action. To fix ideas, let the DM’s “psychological utility” (Battigalli and Dufwenberg,
forthcoming) be the sum of a standard utility function and an ego-utility component that
depends on a posterior estimate of the unknown trait: v̄ (m, a, µ′) = v (m, a) + e

(
Eµ′ (θ)

)
,

where e (·) is an increasing function. The decision maker can either choose a status-quo
action a∗ that yields a known (or learned) distribution of material outcomes, or an alternative
action at (e.g., taking a test) that yields a θ-dependent distribution of material outcomes,
and that would teach her about her trait. It may well be the case that, absent the ego-
utility component, the best choice (possibly the dominant one) would be to take the test.
But if function e (·) is concave, the expected variability of the posterior estimate Eµ′ (θ)
may make taking the test too “ego-risky” for the DM. In this case, the status-quo action
a∗ would be an SCE action. This is somewhat similar to the preference for the status quo
in an SCE under smooth-ambiguity aversion (Battigalli et al. 2015), with concavity of the
“second-order utility”replaced by concavity of ego-utility.

A Appendix

A.1 Additional mathematical preliminaries

For the theory of standard Borel spaces we refer to Mackey (1957) and Kechris (2012). First
of all, note that if X is a standard Borel space, then X contains all the singletons. To prove
it, it suffi ces to take a metric d on X that generates the Borel sigma algebra: X = B(Td).
For each x ∈ X and all n ∈ N, each open ball B1/n (x) = {x′ ∈ X : d (x, x′) < 1/n} belongs
to the topology: B1/n (x) ∈ Td ⊆ X . Then

{x} =
⋂
n∈N

B1/n (x) ∈ X .

In particular, if X is countable, then X must be its power set.
Since several sigma algebras may be involved in the proofs, given a standard Borel space

(X,X ), we sometimes write BX instead of X to denote its sigma algebra.

Lemma 5 Let X and Y be measurable spaces and let ϕ : X → Y be measurable. Then
ϕ̂ : ∆(X)→ ∆(Y ) is measurable with respect to the natural sigma algebra.

Proof The natural sigma algebra B∆(Y ) of ∆(Y ) is generated by the sets of the form

{ν ∈ ∆ (Y ) : ν (C) ≤ c}

for all C ∈ BY and c ∈ R. Now, for all such sets

ϕ̂−1 ({ν ∈ ∆ (Y ) : ν (C) ≤ c}) = {ξ ∈ ∆ (X) : ϕ̂(ξ) ∈ {ν ∈ ∆ (Y ) : ν (C) ≤ c}}
=

{
ξ ∈ ∆ (X) :

(
ξ ◦ ϕ−1

)
(C) ≤ c

}
=

{
ξ ∈ ∆ (X) : ξ

(
ϕ−1 (C)

)
≤ c
}
,

which belongs to B∆(X) because the measurability of ϕ guarantees that ϕ−1 (C) ∈ BX , and
B∆(X) is generated by the sets of the form {ξ ∈ ∆ (X) : ξ (B) ≤ b} for all B ∈ BX and b ∈ R.
Therefore, ϕ̂ is measurable. �
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Note that this lemma does not require the measurable spaces (X,X ) or (Y,Y) to be
standard Borel, but rather hinges on the choice of the natural sigma algebras on ∆ (X) and
∆ (Y ).

Lemma 6 Let X and Y be standard Borel spaces and let ϕ : X → Y be measurable. If ϕ is
one-to-one, then ϕ̂ is one-to-one. In this case:

• ϕ (X) ∈ Y, hence (ϕ (X) ,Y ∩ ϕ (X)) is a standard Borel space;

• ϕ : X → ϕ (X) is a measurable isomorphism;

• X = ϕ−1 (Y), that is, ϕ generates X ;

• ϕ̂ : ∆(X) → ∆(ϕ (X)) is a measurable isomorphism (under the identification of ϕ̂(ξ)
on Y with its restriction to Y ∩ ϕ (X)).

In particular, the following three statements are equivalent:

(i) ϕ : X → Y is one-to-one;

(ii) ϕ̂ : ∆(X)→ ∆(Y ) is one-to-one;

(iii) ϕ generates X .

Proof The proof is based on Mackey’s Monomorphism Theorem (henceforth MMT, see,
Mackey, 1957, Theorem 3.2, and Kechris, 1994, Corollary 15.2).

MMT If ϕ : X → Y is an injective and measurable map between two standard Borel spaces
X and Y , then ϕ (X) ∈ BY and ϕ is a measurable isomorphism between (X,BX) and
(ϕ (X) ,BY ∩ ϕ (X)). In particular, ϕ (B) ∈ BY for all B ∈ BX .

By MMT, for each B ∈ BX , since ϕ (B) ∈ BY , then B = ϕ−1 (ϕ (B)) ∈ ϕ−1 (BY ), whence
BX ⊆ ϕ−1 (BY ); and the converse inclusion follows from the measurability of ϕ : X → Y .
Thus ϕ generates BX . This proves the first three points of the statement.

If ξ, ξ′ ∈ ∆ (X), then ϕ̂ (ξ) = ϕ̂
(
ξ′
)
if and only if ξ

(
ϕ−1 (C)

)
= ξ′

(
ϕ−1 (C)

)
for all

C ∈ BY , that is, if and only if ξ and ξ′ coincide on the sigma algebra ϕ−1 (BY ) generated
by ϕ. But ϕ−1 (BY ) = BX , then ξ (B) = ξ′ (B) for all B ∈ BX , thus ξ = ξ′. Therefore, ϕ̂ is
one-to-one.

If ϕ̂ : ∆(X) → ∆(Y ) is one-to-one, since it is measurable and the spaces are standard
Borel, by MMT, it follows that ϕ̂ (∆ (X)) is a Borel subset of ∆ (Y ) and ϕ̂ is a measurable
isomorphism between

(
∆ (X) ,B∆(X)

)
and

(
ϕ̂ (∆ (X)) ,B∆(Y ) ∩ ϕ̂ (∆ (X))

)
.

With this, every element ν = ξ ◦ ϕ−1 of ϕ̂ (∆ (X)) is a probability measure on BY ,
ϕ (X) ∈ BY , and ν (ϕ (X)) = ξ

(
ϕ−1 (ϕ (X))

)
= ξ (X) = 1. Thus, the restriction ι (ν) of an

element ν ∈ ϕ̂ (∆ (X)) to the sigma algebra BY ∩ϕ (X) of ϕ (X) is an element of ∆ (ϕ (X)).
That is, the map

ι : ϕ̂ (∆ (X)) → ∆(ϕ (X))
ν 7→ ι (ν)

that associates to each ν ∈ ϕ̂ (∆ (X)) with its restriction ι (ν) to BY ∩ ϕ (X) is well defined.
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We want to show that, ι is a measurable isomorphism between
(
ϕ̂ (∆ (X)) ,B∆(Y ) ∩ ϕ̂ (∆ (X))

)
and

(
∆(ϕ (X)),B∆(ϕ(X))

)
.57

By MMT again, it is suffi cient to prove that it is bijective and measurable (since both
spaces are standard Borel).

Measurability: First note that B∆(ϕ(X)) is generated by the sets of the form {λ ∈ ∆ (ϕ (X)) : λ (D) ≤ d}
for all D ∈ Bϕ(X) = BY ∩ ϕ (X) (⊆ BY ) and d ∈ R. Now, for all such sets

ι−1 ({λ ∈ ∆ (ϕ (X)) : λ (D) ≤ d}) = {ν ∈ ϕ̂ (∆ (X)) : ι (ν) ∈ {λ ∈ ∆ (ϕ (X)) : λ (D) ≤ d}}
= {ν ∈ ϕ̂ (∆ (X)) : ι (ν) (D) ≤ d}

(since D ∈ Bϕ(X) = BY ∩ ϕ (X) ) = {ν ∈ ϕ̂ (∆ (X)) : ν (D) ≤ d}
= {ν ∈ ∆ (Y ) : ν (D) ≤ d} ∩ ϕ̂ (∆ (X)) ∈ B∆(Y ) ∩ ϕ̂ (∆ (X))

that is, ι is measurable.
Injectivity: Let ν, ν ′ ∈ ϕ̂ (∆ (X)) be such that ι (ν) = ι (ν ′). For all C ∈ BY ,

ν (C ∩ ϕ (X)) ≤ ν (C) = ν (C ∩ ϕ (X))+ν (C ∩ ϕ (X)c) ≤ ν (C ∩ ϕ (X))+ν (ϕ (X)c) = ν (C ∩ ϕ (X)) ,

that is, ν (C) = ν (C ∩ ϕ (X)) and C ∩ ϕ (X) ∈ BY ∩ ϕ (X) = Bϕ(X), then ν (C) =
ι (ν) (C ∩ ϕ (X)). Since the same considerations apply to ν ′, it follows that

ν (C) = ι (ν) (C ∩ ϕ (X)) = ι
(
ν ′
)

(C ∩ ϕ (X)) = ν ′ (C) ,

and so ν = ν ′.
Surjectivity: Next we show that, for every λ ∈ ∆(ϕ (X)), the set function ξλ (B) =

λ (ϕ (B)) for all B ∈ BX belongs to∆ (X) and ι (ϕ̂ (ξλ)) = λ. This is suffi cient for surjectivity
of ι because then λ = ι (ϕ̂ (ξλ)) ∈ ι (ϕ̂ (∆ (X))). First observe that ξλ : BX → [0, 1] is
well defined because, by MMT, for all B ∈ BX , we have ϕ (B) ∈ BY ∩ ϕ (X), and λ :
(BY ∩ ϕ (X))→ [0, 1]. Moreover, denoting by ψ : ϕ (X)→ X the inverse isomorphism of ϕ,
for every B ∈ BX , ϕ (B) = ψ−1 (B).58

Thus ξλ (B) = λ (ϕ (B)) = λ
(
ψ−1 (B)

)
is a probability measure on X. Finally, for every

D ∈ BY ∩ ϕ (X),

ι (ϕ̂ (ξλ)) (D) = ϕ̂ (ξλ) (D) = ξλ
(
ϕ−1 (D)

)
= λ

(
ϕ
(
ϕ−1 (D)

))
= λ (D)

as wanted.
So far, we have shown that, if ϕ is injective, then the map

ϕ̃ = ι ◦ ϕ̂ : ∆ (X) → ∆ (ϕ (X))
ξ 7→

(
ξ ◦ ϕ−1

)
|BY ∩ϕ(X)

57When this is done,
ι ◦ ϕ̂ : ∆ (X)→ ϕ̂ (∆ (X))→ ∆(ϕ (X))

that associates to each ξ ∈ ∆ (X) the restriction of ϕ̂ (ξ) to BY ∩ ϕ (X) is the isomorphism we were looking
for.
58 If y ∈ ϕ (B), then y = ϕ (x) for some x ∈ B, then ψ (y) = x ∈ B and y ∈ ψ−1 (B). Conversely, if

y ∈ ϕ (X) is such that y ∈ ψ−1 (B), then y = ϕ (x) for some x ∈ X and ψ (y) ∈ B, but ψ (y) = x, hence
x ∈ B and y = ϕ (x) ∈ ϕ (B).
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is an isomorphism of standard Borel spaces; and that for all λ ∈ ∆(ϕ (X)), the set function
ξλ = λ ◦ ϕ, defined by (λ ◦ ϕ) (B) = λ (ϕ (B)) for all B ∈ BX , belongs to ∆ (X) and
λ = ι (ϕ̂ (ξλ)) = ϕ̃ (λ ◦ ϕ); that is,

ϕ̃−1 (λ) = λ ◦ ϕ

for all λ ∈ ∆ (ϕ (X)).
This proves the fourth point of the statement.
Finally, we already proved that if ϕ is injective, then ϕ generates BX , and that if ϕ

generates BX , then ϕ̂ is injective. The proof is concluded by showing that, if ϕ̂ is injective,
so is ϕ. We will actually prove the contrapositive statement.

Recall that δ : X → ∆ (X) is the Dirac embedding of X into ∆ (X). For each x ∈ X, we
have ϕ̂(δ (x)) = δ (ϕ (x)). In fact, for all C ∈ BY ,

ϕ̂(δ (x))(C) = δ (x)
(
ϕ−1 (C)

)
=

{
1 if x ∈ ϕ−1 (C) , i.e. ϕ (x) ∈ C
0 if x /∈ ϕ−1 (C) , i.e. ϕ (x) /∈ C = δ (ϕ (x)) (C) .

(46)
Therefore, if ϕ is not one-to-one, ϕ̂ is not one-to-one. In fact, if there are x 6= z in X such
that ϕ (x) = ϕ (z), then

ϕ̂(δ (x)) = δ (ϕ (x)) = δ (ϕ (z)) = ϕ̂(δ (z)),

but δ (x) and δ (z) are different probability measures on X because the latter contains all
singletons. �

At the opposite side of the spectrum we have the case of constant functions.

Lemma 7 Let X and Y be standard Borel spaces and let ϕ : X → Y be measurable. Then
ϕ is constant if and only if ϕ̂ is constant.

Proof If ϕ ≡ ȳ is constant, then given any σ ∈ ∆ (X) and any C ∈ Y,

ϕ̂ (σ) (C) = σ
(
ϕ−1 (C)

)
= σ ({x ∈ X : ϕ (x) ∈ C})

= σ ({x ∈ X : ȳ ∈ C}) = δ (ȳ) (C)

irrespective of σ.
The converse is proved by contraposition. If ϕ is not constant, then there exist x 6= y

such that ϕ (x) 6= ϕ (y), but then

ϕ̂(δ (x)) = δ (ϕ (x)) 6= δ (ϕ (y)) = ϕ̂(δ (y))

where the two external equalities follow from (46) and the internal inequality by the fact
that ϕ (x) 6= ϕ (y) and singletons are measurable in C. �

Let (X,X ), (Y,Y), and (Z,Z) be measurable spaces, f : X → Y and g : Y → Z, and
h : X → Z. It is convenient to denote by F = f−1 (Y) ⊆ X , G = g−1 (Z) ⊆ Y, and
H = h−1 (Z) ⊆ X the sigma algebras generated by f, g, and h, respectively. Moreover, we
will say that h is f -measurable if it is F-Z-measurable.
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Lemma 8 Let (X,X ) be a measurable space, and let (Y,Y) and (Z,Z) be standard Borel
spaces. Then the following conditions are equivalent for two measurable functions f : X → Y
and h : X → Z:

(i) h is f -measurable – that is, h−1 (Z) ⊆ f−1 (Y);

(ii) there exists a measurable function g : Y → Z such that h = g ◦ f .

Proof See, e.g., Chow and Teicher, 1997, Theorem 1.4.4. �

The next result completes Lemma 1.

Corollary 2 Let (Θ,BΘ) and (S,BS) be Borel spaces and fix a map p : Θ→ ∆ (S). Then p
is measurable if and only if

∀B ∈ BS , ∀b ∈ R, {θ ∈ Θ : p (θ) (B) ≤ b} ∈ BΘ,

that is, θ 7→ p (θ) (B) is measurable for all B ∈ BS. If, moreover, p is one-to-one, then:

• p (Θ) ∈ B∆(S);

• p : Θ→ p (Θ) is a measurable isomorphism;

• p̃ : ∆ (Θ) → ∆ (p (Θ)) defined by p̃ (µ) (B) = µ
(
p−1 (B)

)
(B ∈ Bp(Θ)) is a measurable

isomorphism and, for every λ ∈ ∆ (p (Θ)), the inverse image of λ through p̃ is λ ◦ p.

Proof Since B∆(S) is the sigma algebra generated by the functions φB : ∆ (S)→ R defined
by φB (ξ) = ξ (B) for all B ∈ BS , a map p : Θ → ∆ (S) is measurable if and only if φB ◦ p
is measurable for all B ∈ BS (see, e.g., Berberian, 1997, Proposition 1.3.8). But, given any
B ∈ BS , p (B | θ) = p (θ) (B) = (φB ◦ p) (θ) for all θ ∈ Θ, thus p (B | ·) = φB ◦ p, proving
the first part of the statement.59 The rest follows from the statement of Lemma 6 setting
X = Θ, Y = ∆ (S), and ϕ = p, with the exception of the explicit expression p̃−1 (λ) = λ ◦ p,
for which the last paragraph of the proof of Lemma 6 has to be inspected. �

Corollary 3 Let (Θ,BΘ) and (T,BT ) be Borel spaces and fix q ∈ ∆ (T ). Then

p : Θ → ∆ (T ×Θ)
θ 7→ q × δ (θ) = p (θ)

is measurable and one-to-one.

Proof Injectivity is obvious, so we have only to show that

∀B ∈ BT×Θ,∀b ∈ R, {θ ∈ Θ : p (θ) (B) ≤ b} ∈ BΘ,

that is, θ 7→ q × δ (θ) (B) is measurable for all B ∈ BT × BΘ. Now for each θ ∈ Θ,

q × δ (θ) (B) =

∫
Θ
q (Bη) dδ (θ) (η) = q

(
Bθ
)
,

where Bθ = {t ∈ T : (t, θ) ∈ B}, and a crucial step in the proof of the Fubini-Tonelli Theorem
(see, e.g., Billingsley, 2012, p. 246) consists precisely in showing that the map θ 7→ q

(
Bθ
)
is

measurable for all B ∈ BT × BΘ. �
59Notice that this part does not rely on the fact that the measurable spaces (Θ,BΘ) or (S,BS) are Borel,

but rather on the choice of the natural sigma algebra on ∆ (S).
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Corollary 4 Let (S,BS) be a Borel space. Then: δ (S) ∈ B∆(S), δ : S → δ (S) is a mea-
surable isomorphism, and λ 7→ λ ◦ δ is a measurable isomorphism between ∆ (δ (S)) and
∆ (S).

Proof In order to apply the previous Corollary 2 with Θ = S and p = δ, we have only to
verify that {s ∈ S : δ (s) (B) ≤ b} ∈ BS for all B ∈ BS and b ∈ R; but this follows from the
fact that {s ∈ S : δ (s) (B) ≤ b} = {s ∈ S : 1B (s) ≤ b} and indicators of measurable sets are
measurable functions. �

A.2 Feedback and identification

First recall that, for each a ∈ A, fa : S → M is measurable and so is f̂a : ∆ (S) → ∆ (M).
Since Σ ∈ B∆(S), and points are measurable in standard Borel spaces, then for every ν ∈
∆ (M) the set{

σ′ ∈ Σ : f̂a(σ
′) = ν

}
=
{
σ′ ∈ ∆ (S) : f̂a(σ

′) = ν
}
∩ Σ ∈ B∆(S) ∩ Σ = BΣ,

and so Σ̂a (σ) =
{
σ′ ∈ Σ : f̂a(σ

′) = f̂a (σ)
}
is a measurable subset of both Σ and ∆ (S) for

all σ ∈ Σ.
For the next result, recall that ρ : A× S → C is the consequence function and that the

feedback functions considered here satisfy observability of consequences, which is a main-
tained assumption.

Lemma 9 Let f and f ′ be feedback functions for a decision problem D. Then:

(i) ρ is coarser than f ;

(ii) if fa is one-to-one for every a ∈ A, then f ′ is coarser than f ;

(iii) if f ′ is coarser than f , then Σ̂a (σ) ⊆ Σ̂′a (σ) for all (a, σ) ∈ A× Σ.

Proof (i) Since consequences are observable, for each action a ∈ A there exists a measurable
function ga : M → C such that ρa (s) = ga (fa (s)) for all s ∈ S. (ii) By assumption, for
each a ∈ A, fa : S → M is Borel measurable and one-to-one. By Lemma 6, fa (S) is a
Borel subset of M and fa : S → fa (S) is a Borel isomorphism. Then, the inverse function
f−1
a : fa (S)→ S is Borel measurable.60 Arbitrarily choose s̄ ∈ S and set

ka (m) ≡
{
f−1
a (m) m ∈ fa (S) ,
s̄ m /∈ fa (S) .

It is easy to see that ka defines a Borel measurable map from M to S such that, for every
s ∈ S,

f ′a (s) = f ′a
(
f−1
a (fa (s))

)
= f ′a (ka (fa (s))) =

(
f ′a ◦ ka

)
(fa (s)) .

60Caveat: In the proof of Lemma 6, the inverse isomorphism f−1
a : fa (S) → S is denoted f ′a, but here f

′
a

is a section of the feedback function f ′ that is not an inverse of f .
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Setting ha = f ′a ◦ ka : M → M ′ yields the desired result. (iii) Let (a, σ) ∈ A× Σ. For every
σ′ ∈ Σ̂a (σ), σ′

(
f−1
a (BM )

)
= σ

(
f−1
a (BM )

)
for all BM ∈ BM . But h−1

a (BM ′) ∈ BM for all
BM ′ ∈ BM ′ , then

σ′
((
f ′a
)−1

(BM ′)
)

= σ′
(

(ha ◦ fa)−1 (BM ′)
)

= σ′
(
f−1
a

(
h−1
a (BM ′)

))
= σ

(
f−1
a

(
h−1
a (BM ′)

))
= σ

(
(ha ◦ fa)−1 (BM ′)

)
= σ

((
f ′a
)−1

(BM ′)
)

and σ′ ∈ Σ̂′a (σ). �

A.3 Additional definitions

The self-confirming (equilibrium) correspondence

Γ : Σ→ 2A×∆(Σ)

associates to each possible true model σ∗ the collection Γ (σ∗) of its self-confirming equilibria
(a∗, µ∗). It is also convenient to consider the (equilibrium) action correspondence

γ : Σ→ 2A

that associates each possible true model σ∗ with the collection γ (σ∗) of its self-confirming
(equilibrium) actions, that is, actions a∗ such that (a∗, µ∗) ∈ Γ (σ∗) for some belief µ∗.

A.4 Model uncertainty

Let µ∗ � ν∗ denote the µ∗ is absolutely continuous with respect to (informally, “sharper
than”) ν∗. We show that self-confirming equilibria with sharper basic subjective assessments
have higher values, hence – by Proposition 5– lower losses.

Proposition 14 If (a∗, µ∗) , (b∗, ν∗) ∈ Γ (σ∗) and µ∗ � ν∗, then R (a∗, σ∗) = V (a∗, µ∗) ≥
V (b∗, ν∗) = R (b∗, σ∗).

Proof Since µ∗
(

Σ̂a∗ (σ∗)
)

= 1 and ν∗
(

Σ̂b∗ (σ∗)
)

= 1, then µ∗ � ν∗ implies µ∗
(

Σ̂b∗ (σ∗)
)

=

1 and so µ∗
(

Σ̂b∗ (σ∗) ∩ Σ̂a∗ (σ∗)
)

= 1. The optimality condition (6) for a∗ and Proposition

5 deliver

R (a∗, σ∗) = V (a∗, µ∗) ≥
∫

Σ̂a∗ (σ∗)
R (b∗, σ) dµ∗ (σ) =

∫
Σ̂a∗ (σ∗)∩Σ̂b∗ (σ∗)

R (b∗, σ) dµ∗ (σ) .

Since, by Lemma 3, R (b∗, σ) = R (b∗, σ∗) for all σ ∈ Σ̂b∗ (σ∗), it follows that V (a∗, µ∗) ≥
R (b∗, σ∗) = V (b∗, ν∗), where the last equality follows from Proposition 5. �

Priors µ∗ and ν∗ that are mutually absolutely continuous are called equivalent, denoted
µ∗ ∼ ν∗; this means that they agree on what models are possible (or impossible). By the
previous result, if µ∗ ∼ ν∗ then V (a∗, µ∗) = V (b∗, ν∗) for all pairs of self-confirming equilibria
(a∗, µ∗) , (b∗, ν∗) ∈ Γ (σ∗). The value of self-confirming equilibria is thus pinned down by what
the decision maker deems possible, whereas the specific shape of the prior is value-irrelevant.
But more is actually true: actions can be exchanged across such self-confirming equilibria.
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Proposition 15 If (a∗, µ∗) , (b∗, ν∗) ∈ Γ (σ∗) and µ∗ ∼ ν∗, then (a∗, ν∗) , (b∗, µ∗) ∈ Γ (σ∗).

Proof As observed, R (a∗, σ∗) = V (a∗, µ∗) = V (b∗, ν∗) = R (b∗, σ∗), but then

• R (b∗, σ∗) = V (a∗, µ∗) ≥ V (a, µ∗) for all a ∈ A and µ∗
(

Σ̂b∗ (σ∗)
)

= 1 since ν∗
(

Σ̂b∗ (σ∗)
)

=

1;

• R (a∗, σ∗) = V (b∗, ν∗) ≥ V (b, ν∗) for all b ∈ A and ν∗
(

Σ̂a∗ (σ∗)
)

= 1 since µ∗
(

Σ̂a∗ (σ∗)
)

=

1.
�

The results on the value that we just established for subjective model uncertainty extend
to objective model uncertainty. In particular, self-confirming (equilibrium) actions with bet-
ter identification properties have higher values, regardless of which confirmed beliefs support
them.

Proposition 16 If (a∗, µ∗) , (b∗, ν∗) ∈ Γ (σ∗) and Σ̂a∗(σ
∗) ⊆ Σ̂b∗(σ

∗), then V (a∗, µ∗) ≥
V (b∗, ν∗).

Proof The optimality condition (6) for a∗ and Proposition 5 deliver

R (a∗, σ∗) = V (a∗, µ∗) ≥
∫

Σ̂a∗ (σ∗)
R (b∗, σ) dµ∗ (σ) =

∫
Σ̂b∗ (σ∗)

R (b∗, σ) dµ∗ (σ)

but, by Lemma 3, R (b∗, σ) = R (b∗, σ∗) for all σ ∈ Σ̂b∗ (σ∗), it follows that

V (a∗, µ∗) ≥ R (b∗, σ∗) = V (b∗, ν∗)

where the last equality follows from Proposition 5. �

Also observe that, if Σ̂a∗ (σ∗) = Σ̂b∗ (σ∗), then R (a∗, σ∗) = V (a∗, µ∗) = V (b∗, ν∗) =
R (b∗, σ∗). With this, if (a∗, µ∗) , (b∗, ν∗) ∈ Γ (σ∗) then

• R (b∗, σ∗) = V (a∗, µ∗) ≥ V (a, µ∗) for all a ∈ A and µ∗
(

Σ̂b∗ (σ∗)
)

= 1 since µ∗
(

Σ̂a∗ (σ∗)
)

=

1;

• R (a∗, σ∗) = V (b∗, ν∗) ≥ V (b, ν∗) for all b ∈ A and ν∗
(

Σ̂a∗ (σ∗)
)

= 1 since ν∗
(

Σ̂b∗ (σ∗)
)

=

1.

Finally, the following results relate self-confirming equilibrium actions to objectively op-
timal actions:

Corollary 5 A fully revealing action is self-confirming if and only if it is objectively optimal.

Under own-action independence of feedback about the state, we have a stronger result.
Eq. (5) and Lemma 3 imply:

Corollary 6 Under own-action independence of feedback about the state, an action is self-
confirming if and only if it is objectively optimal.

Thus, from a decision perspective, own-action independence of feedback is equivalent to
perfect feedback.
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A.5 Other proofs

Proof of Lemma 1 See Lemma 6. �

Proof of Proposition 1 See Lemma 8. �

Proof of Proposition 2 See Lemma 9. �

Proof of Lemma 3 Fix a ∈ A. Observability of consequences implies that ρa (s) =
ga (fa (s)) for each s ∈ S, where ga : M → C is BM − BC-measurable; as fa : S → M
is Fa − BM -measurable, then ρa : S → C is Fa − BC-measurable. Moreover, v : C → R is
BC −BR-measurable and bounded above, and so ra = v ◦ ρa : S → R is Fa −BR-measurable
and bounded above. Thus,

∀σ ∈ ∆ (S) , Ra (σ) =

∫
S
radσ =

∫
S
radσ|Fa . (47)

In particular, if σ ∈ Σ and σ′ ∈ Σ̂a(σ), then Ra (σ) =
∫
S radσ|Fa =

∫
S radσ

′
|Fa = Ra(σ

′). �

Proof of Proposition 5 If (a∗, µ∗) ∈ A×∆ (Σ) and µ∗
(

Σ̂a∗(σ
∗)
)

= 1, then

V (a∗, µ∗) =

∫
Σ
R (a∗, σ) dµ∗ (σ) =

∫
Σ̂a∗ (σ∗)

R (a∗, σ) dµ∗ (σ) = R (a∗, σ∗) ,

because, by Lemma 3, R (a∗, σ) = R (a∗, σ∗) for all σ ∈ Σ̂a∗(σ
∗). �

Proof of Proposition 6 It follows immediately from Proposition 5 and Proposition 14. �

Proof of Proposition 7 It follows immediately from Proposition 5 and Proposition 16. �

Proof of Proposition 8 Suppose that Σ̂a(σ
∗) ⊆ Σ̂b(σ

∗) for each b ∈ A. We already
observed that if a is objectively optimal, then (a, δ (σ∗)) ∈ Γ (σ∗) and a ∈ γ (σ∗). As for
the converse, let µ∗ ∈ ∆ (Σ) be such that (a, µ∗) ∈ Γ (σ∗). Since Σ̂a(σ

∗) ⊆ Σ̂b(σ
∗) for each

b ∈ A and, by Lemma 3, for each b it is true that R (b, σ) = R (b, σ∗) when σ ∈ Σ̂b(σ
∗), then

R (a, σ∗) ≥
∫

Σ̂a(σ∗)R (b, σ) dµ∗ (σ) = R (b, σ∗), as wanted. �

Proof of Corollary 5 Given a true model σ∗ ∈ Σ, the result follows from Proposition 8
since if a is fully revealing, then Σ̂a(σ

∗) = {σ∗} ⊆ Σ̂a′(σ
∗) for every a′ ∈ A. �

Proof of Corollary 6 Given a true model σ∗ ∈ Σ, the result follows from Proposition 8
since own-action independence of feedback implies Σ̂a(σ

∗) = Σ̂a′(σ
∗) for every a, a′ ∈ A.

Hence, γ (σ∗) = arg maxa∈AR (a, σ∗). �

Proof of Proposition 9 Recall that a is fixed. We first prove the inclusion ⊆. If θ′ ∈ Σ̂a (θ),
then ρ̂a

(
q × δ

(
θ′
))

= ρ̂a (q × δ (θ)). In particular,∫
S
h (ρa) d

(
q × δ

(
θ′
))

=

∫
S
h (ρa) d (q × δ (θ)) , (48)

for all h : R× R→ R for which the integral is defined. Next observe that:
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1. For h (u, π) = π and θ′′ ∈ Θ, we have that
∫
S πd (q × δθ′′) = a.

2. For h (u, π) = π2 and θ′′ ∈ Θ, we have that
∫
S π

2d
(
q × δ

(
θ′′
))

= a2 +
(
θ′′3
)2.

3. For h (u, π) = u and θ′′ ∈ Θ, we have that
∫
S ud

(
q × δ

(
θ′′
))

= θ′′0 +
(
θ′′1π + θ′′1a

)
a.

4. For h (u, π) = u2 and θ′′ ∈ Θ, we have that
∫
S u

2d
(
q × δ

(
θ′′
))

=
(
θ′′0 +

(
θ′′1π + θ′′1a

)
a
)2

+(
θ′′1π
)2 (

θ′′3
)2

+
(
θ′′2
)2.

5. For h (u, π) = uπ and θ′′ ∈ Θ, we have that
∫
S uπd

(
q × δ

(
θ′′
))

= a
(
θ′′0 +

(
θ′′1π + θ′′1a

)
a
)
+

θ′′1π
(
θ′′3
)2.

Given (48), note that point 2 gives θ′3 = θ3, then points 3 and 5 give θ′1π = θ1π. With
this, point 3 again yields θ′0 + θ′1aa = θ0 + θ1aa. Then point 4 gives(
θ′0 +

(
θ′1π + θ′1a

)
a
)2

+
(
θ′1π
)2 (

θ′3
)2

+
(
θ′2
)2

= (θ0 + (θ1π + θ1a) a)2 + (θ1π)2 (θ3)2 + (θ2)2 ;

point 3 says that the first summands on both sides coincide, and we already established(
θ′1π
)2 (

θ′3
)2

= (θ1π)2 (θ3)2; therefore, θ′2 = θ2. This concludes the proof of the first set
inclusion and formalizes the moments heuristics described in the main text.

In order to obtain the opposite inclusion, note that some simple algebra delivers, for each
θ′′ ∈ Θ and each (u, π) ∈ R2,

ρ̂a
(
q × δ

(
θ′′
))

((−∞, u]× (−∞, π]) = q (Qθ′′) ,

where Qθ′′ =

{
(w, ε) ∈W × E :

wθ′′2 + εθ′′1πθ
′′
3 ≤ u−

(
θ′′0 + aθ′′1a

)
− aθ′′1π

θ′′3ε ≤ π − a

}
.

Now, consider θ′ ∈ Θ such that θ′0 + θ′1aa = θ0 + θ1aa, θ′1π = θ1π, θ′2 = θ2, θ′3 = θ3, then
Qθ′ = Qθ, hence ρ̂a

(
q × δ

(
θ′
))

((−∞, u]× (−∞, π]) = ρ̂a (q × δ (θ)) ((−∞, u]× (−∞, π])

implying that ρ̂a
(
q × δ

(
θ′
))

= ρ̂a (q × δ (θ)) and θ′ ∈ Σ̂a (θ). �

Proof of Lemma 4 Some simple algebra shows that

R (a, θ) = −
∫
W×E

u2 (a,w, ε, θ) dq (w, ε)−
∫
W×E

π2 (a,w, ε, θ) dq (w, ε)

= − (θ0 + (θ1π + θ1a) a)2 − a2 − θ2
2 − θ2

3θ
2
1π − θ2

3

= −E2
θ (ua)− E2

θ (πa)− θ2
2 − θ2

3θ
2
1π − θ2

3

= v (Eθ (ua) ,Eθ (πa)) + κ,

where, being Θ̃ = {(θ0, θ1a)} = R2, we set κ = −θ2
2 − θ2

3θ
2
1π − θ2

3 since this polynomial can
be regarded as a constant term. �

Proof of Proposition 10 It holds

R (a, θ) = −
(

(θ1π + θ1a)
2 + 1

)
a2 − 2θ0 (θ1π + θ1a) a+ κ.
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Thus, V (a, µ∗) is – up to a constant– equal to

−
∫

Σ̂a∗ (θ∗)

(((
β̂
∗

+ θ1a

)2
+ 1

)
a2 + 2θ0

(
β̂
∗

+ θ1a

)
a

)
dµ∗ (θ)

= −
∫
R

(((
β̂
∗

+ θ1a

)2
+ 1

)
a2 + 2 (θ∗0 + (θ∗1a − θ1a) a

∗)
(
β̂
∗

+ θ1a

)
a

)
dµ∗ (θ1a)

= −
∫
R

((
β̂
∗2

+ θ2
1a + 2β̂

∗
θ1a + 1

)
a2 + 2θ∗0

(
β̂
∗

+ θ1a

)
a+ 2a∗ (θ∗1a − θ1a)

(
β̂
∗

+ θ1a

)
a
)
dµ∗ (θ1a)

= −
∫
R

((
β̂
∗2

+ θ2
1a + 2β̂

∗
θ1a + 1

)
a2 + 2θ∗0

(
β̂
∗

+ θ1a

)
a+ 2a∗

(
θ∗1aβ̂

∗
+ θ∗1aθ1a − θ1aβ̂

∗ − θ2
1a

)
a
)
dµ∗ (θ1a)

= −
(
β̂
∗2

+ Eµ∗
(
θ2

1a

)
+ 2β̂

∗
Eµ∗ (θ1a) + 1

)
a2 − 2θ∗0

(
β̂
∗

+ Eµ∗ (θ1a)
)
a

− 2a∗
(
θ∗1aβ̂

∗
+ θ∗1aEµ∗ (θ1a)− Eµ∗ (θ1a) β̂

∗ − Eµ∗
(
θ2

1a

))
a.

The first order condition ∂V (a, µ∗) /∂a = 0 implies

a
(
β̂
∗2

+ Eµ∗
(
θ2

1a

)
+ 2β̂

∗
Eµ∗ (θ1a) + 1

)
+ a∗

(
θ∗1aβ̂

∗
+ θ∗1aEµ∗ (θ1a)− Eµ∗ (θ1a) β̂

∗ − Eµ∗
(
θ2

1a

))
= −θ∗0

(
β̂
∗

+ Eµ∗ (θ1a)
)
.

Putting a = a∗ we get

a∗
(
β̂
∗2

+ β̂
∗
Eµ∗ (θ1a) + 1 + θ∗1aβ̂

∗
+ θ∗1aEµ∗ (θ1a)

)
= −θ∗0

(
β̂
∗

+ Eµ∗ (θ1a)
)

and so

a∗ =
−θ∗0

(
β̂
∗

+ Eµ∗ (θ1a)
)

β̂
∗2

+ β̂
∗
Eµ∗ (θ1a) + 1 + θ∗1aβ̂

∗
+ θ∗1aEµ∗ (θ1a)

= −
θ∗0

(
β̂
∗

+ Eµ∗ (θ1a)
)

1 +
(
β̂
∗

+ θ∗1a

)(
β̂
∗

+ Eµ∗ (θ1a)
) .

As a result, Σ̂a∗ (θ∗) is equal to(θ0, θ1a) ∈ R2 : θ0 = θ∗0 −
θ∗0

(
β̂
∗

+ Eµ∗ (θ1a)
)

1 +
(
β̂
∗

+ θ∗1a

)(
β̂
∗

+ Eµ∗ (θ1a)
) (θ∗1a − θ1a)

 ,

as desired. �
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Proof of Proposition 11 It holds

a∗ − ao =
θ∗0

(
β̂
∗

+ θ∗1a

)
1 +

(
β̂
∗

+ θ∗1a

)2 −
θ∗0

(
β̂
∗

+ Eµ∗ (θ1a)
)

1 +
(
β̂
∗

+ θ∗1a

)(
β̂
∗

+ Eµ∗ (θ1a)
)

=

θ∗0

((
β̂
∗

+ θ∗1a

)(
1 +

(
β̂
∗

+ θ∗1a

)(
β̂
∗

+ Eµ∗ (θ1a)
))
−
(
β̂
∗

+ Eµ∗ (θ1a)
)(

1 +
(
β̂
∗

+ θ∗1a

)2
))

(
1 +

(
β̂
∗

+ θ∗1a

)2
)(

1 +
(
β̂
∗

+ θ∗1a

)(
β̂
∗

+ Eµ∗ (θ1a)
))

=

θ∗0

(
θ∗1a +

(
β̂
∗

+ θ∗1a

)2 (
β̂
∗

+ Eµ∗ (θ1a)
)
− Eµ∗ (θ1a)−

(
β̂
∗

+ Eµ∗ (θ1a)
)(

β̂
∗

+ θ∗1a

)2
)

(
1 +

(
β̂
∗

+ θ∗1a

)2
)(

1 +
(
β̂
∗

+ θ∗1a

)(
β̂
∗

+ Eµ∗ (θ1a)
))

=
θ∗0 (θ∗1a − Eµ∗ (θ1a))(

1 +
(
β̂
∗

+ θ∗1a

)2
)(

1 +
(
β̂
∗

+ θ∗1a

)(
β̂
∗

+ Eµ∗ (θ1a)
)) .

Hence, if a∗ 6= 0, it holds

a∗ − ao = − a∗

1 +
(
β̂
∗

+ θ∗1a

)2

θ∗1a − Eµ∗ (θ1a)

β̂
∗

+ Eµ∗ (θ1a)

and so

a∗ ≷ ao ⇐⇒ a∗
θ∗1a − Eµ∗ (θ1a)

β̂
∗

+ Eµ∗ (θ1a)
≶ 0. (49)

Having established this relation, we can now prove points (i) and (iii) (points (ii) and
(iv) being obvious).

(i) Suppose a∗ > ao. By (28) Eµ∗ (θ1a) 6= −β̂
∗
and so Eµ∗ (θ1a) < −β̂∗. By (49),

(θ∗1a − Eµ∗ (θ1a)) /(β̂
∗

+ Eµ∗ (θ1a)) < 0, which in turn implies Eµ∗ (θ1a) < θ∗1a. Conversely,
suppose Eµ∗ (θ1a) < θ∗1a. Since Eµ∗ (θ1a) ≤ −β̂

∗
, by (28) it follows a∗ > 0. Moreover, being

(θ∗1a − Eµ∗ (θ1a)) /(β̂
∗

+ Eµ∗ (θ1a)) < 0, by (49) it holds a∗ > ao. (iii) Suppose 0 < a∗ < ao.
By (49), (θ∗1a − Eµ∗ (θ1a)) /(β̂

∗
+ Eµ∗ (θ1a)) > 0, that is, Eµ∗ (θ1a) ∈ (θ∗1a,−β̂

∗
). Conversely,

suppose Eµ∗ (θ1a) ∈ (θ∗1a,−β̂
∗
). By (28), a∗ > 0. Moreover, being (θ∗1a − Eµ∗ (θ1a)) /(β̂

∗
+

Eµ∗ (θ1a)) > 0, by (49) it holds a∗ < ao. �

The loss function can be defined in terms of beliefs by setting ` (µ, σ) = ` (B (µ) , σ). For
instance, next we show that for the Phillips curve example it holds

` (µ∗, θ∗) =
θ∗20 (θ∗1a − Eµ∗ (θ1a))

2(
1 +

(
β̂
∗

+ θ∗1a

)2
)(

1 +
(
β̂
∗

+ θ∗1a

)(
β̂
∗

+ Eµ∗ (θ1a)
))2

. (50)

There is a zero welfare loss if and only if Eµ∗ (θ1a) = θ∗1a, that is, if and only if the monetary
authority’s expected value of the coeffi cient θ1a is correct. Otherwise, the loss is nonzero, as
(50) shows.

55



Proof of Proposition 12 and eq. (50) First note that

R (ao, θ∗) = −θ∗20 −
(
β̂
∗

+ θ∗1a

)2
ao2 −

(
β̂
∗
θ∗3

)2
− θ∗22 − 2θ∗0

(
β̂
∗

+ θ∗1a

)
ao − ao2 − θ∗23 ,

and

R (a∗, θ∗) = −θ∗20 −
(
β̂
∗

+ θ∗1a

)2
(a∗)2 −

(
β̂
∗
θ∗3

)2
− θ∗22 − 2θ∗0

(
β̂
∗

+ θ∗1a

)
a∗ − (a∗)2 − θ∗23 .

Hence,

` (a∗, θ∗) = max
a∈A

R (a, θ∗)−R (a∗, θ∗) = R (ao, θ∗)−R (a∗, θ∗)

= −
(
β̂
∗

+ θ∗1a

)2 (
ao2 − a∗2

)
− 2θ∗0

(
β̂
∗

+ θ∗1a

)
(ao − a∗)−

(
ao2 − a∗2

)
.

Suppose ao = 0, that is, θ∗0
(
β̂
∗

+ θ∗1a

)
= 0. Then

` (a∗, θ∗) =

(
1 +

(
β̂
∗

+ θ∗1a

)2
)
a∗2 = −

(
1 +

(
β̂
∗

+ θ∗1a

)2
) θ∗20

(
β̂
∗

+ Eµ∗ (θ1a)
)2

(
1 +

(
β̂
∗

+ θ∗1a

)(
β̂
∗

+ Eµ∗ (θ1a)
))2 .

If θ∗0 6= 0, then β̂
∗

+ θ∗1a = 0, thus,

` (a∗, θ∗) = θ∗20

(
β̂
∗

+ Eµ∗ (θ1a)
)2

= θ∗20 (Eµ∗ (θ1a)− θ∗1a)
2 . (51)

If β̂
∗

+ θ∗1a 6= 0, then θ∗0 = 0, thus,
` (a∗, θ∗) = 0. (52)

Next suppose ao 6= 0. It holds −2ao
(

1 +
(
β̂
∗

+ θ∗1a

)2
)

= 2θ∗0

(
β̂
∗

+ θ∗1a

)
, thus,

1 +
(
β̂
∗

+ θ∗1a

)2
= −θ∗0

(
β̂
∗

+ θ∗1a

)
/ao. Hence,

` (a∗, θ∗) = −
(
β̂
∗

+ θ∗1a

)2 (
ao2 − a∗2

)
− 2θ∗0

(
β̂
∗

+ θ∗1a

)
(ao − a∗)−

(
ao2 − a∗2

)
= − (ao − a∗)

[(
β̂
∗

+ θ∗1a

)2
(ao + a∗) + 2θ∗0

(
β̂
∗

+ θ∗1a

)
+ ao + a∗

]
= − (ao − a∗)

[(
β̂
∗

+ θ∗1a

)2
(ao + a∗)− 2ao

(
1 +

(
β̂
∗

+ θ∗1a

)2
)

+ ao + a∗
]

= − (ao − a∗)
[(
β̂
∗

+ θ∗1a

)2
(a∗ − ao) + a∗ − ao

]
= − (ao − a∗)

[(
β̂
∗

+ θ∗1a

)2
+ 1

]
(a∗ − ao)

= (ao − a∗)2

[(
β̂
∗

+ θ∗1a

)2
+ 1

]
= (a∗ − ao)2

[(
β̂
∗

+ θ∗1a

)2
+ 1

]

= − (a∗ − ao)2
θ∗0

(
β̂
∗

+ θ∗1a

)
ao

= −θ∗0
(
β̂
∗

+ θ∗1a

) (a∗ − ao)2

ao

=

(
1 +

(
β̂
∗

+ θ∗1a

)2
)a∗ +

θ∗0

(
β̂
∗

+ θ∗1a

)
1 +

(
β̂
∗

+ θ∗1a

)2


2

.
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In the previous proof we showed that

a∗ − ao =
θ∗0 (θ∗1a − Eµ∗ (θ1a))(

1 +
(
β̂
∗

+ θ∗1a

)2
)(

1 +
(
β̂
∗

+ θ∗1a

)(
β̂
∗

+ Eµ∗ (θ1a)
)) .

Hence,

` (µ∗, θ∗) = −θ∗0
(
β̂
∗

+ θ∗1a

) (a∗ − ao)2

ao

= θ∗0

(
β̂
∗

+ θ∗1a

) θ∗20 (θ∗1a − Eµ∗ (θ1a))
2(

1 +
(
β̂
∗

+ θ∗1a

)2
)2 (

1 +
(
β̂
∗

+ θ∗1a

)(
β̂
∗

+ Eµ∗ (θ1a)
))2

1 +
(
β̂
∗

+ θ∗1a

)2

θ∗0

(
β̂
∗

+ θ∗1a

)
=

θ∗20 (θ∗1a − Eµ∗ (θ1a))
2(

1 +
(
β̂
∗

+ θ∗1a

)2
)(

1 +
(
β̂
∗

+ θ∗1a

)(
β̂
∗

+ Eµ∗ (θ1a)
))2

.

It is easy to check that, along with (51) and (52), this completes the proof. �

Proof of eq. (41) It holds

` (a∗, θ∗) =

(
1 +

(
β̂
∗

+ θ∗1a

)2
)− θ∗0β̂

∗
µ∗k

1 + β̂
∗
µ∗k

(
β̂
∗

+ θ∗1a

) +
θ∗0

(
β̂
∗

+ θ∗1a

)
1 +

(
β̂
∗

+ θ∗1a

)2


2

=

(
1 +

(
β̂
∗

+ θ∗1a

)2
)−θ

∗
0β̂
∗
µ∗k

(
1 +

(
β̂
∗

+ θ∗1a

)2
)

+ θ∗0

(
β̂
∗

+ θ∗1a

)(
1 + β̂

∗
µ∗k

(
β̂
∗

+ θ∗1a

))
(

1 + β̂
∗
µ∗k

(
β̂
∗

+ θ∗1a

))(
1 +

(
β̂
∗

+ θ∗1a

)2
)


2

=
θ∗20

(
β̂
∗
µ∗k + β̂

∗
+ θ∗1a

)2

(
1 + β̂

∗
µ∗k

(
β̂
∗

+ θ∗1a

))2
(

1 +
(
β̂
∗

+ θ∗1a

)2
) ,

as desired. �
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