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Abstract

For a Markov decision problem in which unknown transition probabilities
serve as hidden state variables, we study the quality of two approximations to
the decision rule of a Bayesian who each period updates his subjective distribu-
tion over the transition probabilities by Bayes’ law. The first is the usual ratio-
nal expectations approximation that assumes that the decision maker knows the
transition probabilities. The second approximation is a version of Kreps’ (1998)
anticipated utility model in which decision makers update using Bayes’ law but
optimize in a way that is myopic with respect to their updating of probabili-
ties. For a range of consumption smoothing examples, the anticipated utility
approximation outperforms the rational expectations approximation. The an-
ticipated utility and Bayesian models augment market prices of risk relative to
the rational expectations approximation.

Key words: Rational expectations, Bayes’ Law, anticipated utility, market price of
risk.

1 Introduction

A standard model of intertemporal choice involves dynamic programming with
time-invariant beliefs. Let st, ut, and εt represent vectors of state variables, controls,
and shocks, respectively, and suppose an agent maximizes a discounted sum of returns

E0

∞
∑

t=0

βtr(st, ut), (1)
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subject to a transition equation

st+1 = g(st, ut, εt+1). (2)

The return function is assumed to be concave, the constraint set is convex and com-
pact, and the decision maker knows all the parameters of the model. With these
assumptions, the maximization problem can be cast as a dynamic program. The
Bellman equation is

V (s) = max
u

{r(s, u) + βE(V [g(s, u, ε)|s])} (3)

and the optimal decision rule is
u = h(s). (4)

The assumption that agents know the parameters of the model means that learning
has been completed. Accordingly, the standard model is most useful for studying
mature economies in which agents have already acquired enough experience that new
observations have a negligible effect on their beliefs. The no-learning assumption is a
convenient simplification in cases like this. In other circumstances, however, learning
is a more prominent feature of the problem. Examples include transition economies in
which equilibria are punctuated by big changes in economic or political institutions,
as well as economies in which government policy makers adapt their policy rules as
their understanding of the structure evolves. Changing beliefs are likely to be more
important in cases like these, and their effect on outcomes would be lost if learning
were neglected.

One way to model learning and dynamic choice is to withdraw knowledge of the
transition equation (2) and replace it with an estimated transition equation

st+1 = g(st, ut, εt+1, θ̂t), (5)

where θ̂t represents estimates of the parameters governing (2) conditional on data
through date t, updated by recursive least squares or the application of Bayes’s the-
orem. Then one could solve the dynamic program as before using the estimated
transition equation (5) instead of (2). This delivers a time-varying decision rule

ut = h(st, θ̂t), (6)

that depends on date-t beliefs about how the state vector evolves. As beliefs are
updated, so too are decision rules. Kreps (1998) recommends this approach and
refers to it as an ‘anticipated-utility’ model. This modeling strategy forms the basis
of much of the macroeconomics literature on learning (e.g., see Sargent 1993, 1999
and Evans and Honkopohja 2001).

This approach is mildly schizophrenic, however, in the way it treats θ̂t. Parame-
ters are treated as random variables when agents learn but as constants when they
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formulate decisions. Looking backward, agents can see how their beliefs have evolved
in the past, but looking forward they act as if future beliefs will remain unchanged
forever. Agents are eager to learn at the beginning of each period, but their decisions
reflect a pretence that this is the last time they will update beliefs, a pretence that
is falsified at the beginning of every subsequent period.

A Bayesian decision maker does not behave this way. A Bayesian would treat θ
as a random variable both for learning and decision making and so would recognize
that beliefs will continue to evolve going forward in time. He would recognize this
source of uncertainty when formulating decision rules.

This is easier said than done. In many interesting applications, especially those
in macroeconomics, a full Bayesian procedure is too complicated to be implemented.
Macroeconomists might justify anticipated-utility models an approximation to a cor-
rectly formulated Bayesian decision problem. The computational cost of the full
Bayesian calculation makes anticipated utility approximation appealing, but the ap-
peal would be more compelling if one could also show that anticipated-utility deci-
sions well approximate Bayesian decisions. As far as we know, no one has assessed the
quality of the approximation, mainly because one has to calculate Bayesian choices
in order to make the comparison, and that is hard to do.

In this paper, we develop a laboratory for exploring Bayesian and anticipated-
utility choices. Our objectives are to study how to implement the Bayesian procedure
and to examine how well anticipated-utility choices approximate Bayesian decisions.
We show how to find the exact Bayesian solution in a few simple examples rigged
for maximum tractability, and then we compare Bayesian and anticipated-utility
choices. The Bayesian approach turns out to be simpler than we first imagined,
making us hopeful about extensions to more realistic problems. We also find that the
anticipated-utility model often provides an excellent approximation, which makes us
more confident about its application as well.

The remainder of the discussion is organized as follows. Section 2 discusses a key
step in the Bayesian treatment, namely, how to expand the state vector to encompass
learning and how to derive the transition equation for the expanded state. Sections
3-5 study a trio of simple examples, solve for the Bayesian equilibrium in each case,
and compare the outcomes with those of two approximations, based on anticipated
utility and complete-information rational expectations, respectively. We conclude
with an assessment of anticipated utility as an approximation strategy.

2 The State Vector and Transition Equation for a

Bayesian Model

As before, let st represent the ‘natural’ state vector. We assume it is observable,
exogenous, and that it evolves according to the transition density

f(st+1|st, θ). (7)
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Agents know the functional form of f(·), but they do not know θ. They learn about
θ by applying Bayes’s theorem to observations on st.

We make two other assumptions for tractability. First, we limit attention to
probability models in which the information in the history st can be summarized
by a finite-dimensional vector of sufficient statistics ζt. These statistics encode the
information relevant for the learning problem. A big class of probability models
satisfies this condition; for example, all members of the exponential family possess
a finite-dimensional vector of sufficient statistics. Second, we also limit attention
to models in which the learning problem can be cast in terms of a conjugate prior
and likelihood, so that posterior distributions can be expressed analytically. This
limitation is more restrictive than the first, but many interesting models can be set
up in this way.

Our strategy is to append the vector of sufficient statistics ζt to the natural state
vector st,

St = [s′t, ζ
′
t]
′, (8)

and then to derive a transition density for the expanded state vector St,

f(St+1|St). (9)

If (9) can be expressed as a time-invariant function of the augmented state vector,
then decision rules can be derived by dynamic programming. We first consider a
general form for (9) and then give an example to show how it works.

2.1 A General Form of the Transition Density

To begin, factor (9) as

f(St+1|St) = f(st+1, ζt+1|st, ζt), (10)

= f(ζt+1|st+1, st, ζt)f(st+1|st, ζt).

The first term on the right side, f(ζt+1|st+1, st, ζt), is the density for the learning
statistics ζt+1 conditional on their previous values along with realizations of the nat-
ural states. This term describes how the sufficient statistics are updated in light of
observations on st+1 and st. The updating rules are deterministic given the condition-
ing information, so we can express the updated value as a function ζ(st+1, St). That
ζt+1 is a deterministic function of (st+1, St) means that this term is a delta function
assigning unit probability mass to the updated value,

f(ζt+1|st+1, st, ζt) = δ(ζ(st+1, St)). (11)

The particular form of the updating rule ζ(st+1, St) follows from Bayes’s theorem and
depends on how the agent’s priors and the conditional likelihood for (7) are specified.
Analytical expressions for the updating formulas are available as long as we work
within a conjugate family.
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The second term on the right side of (10) can be regarded as a posterior predictive
density. This term can be expanded as

f(st+1|st, ζt) =

∫

f(st+1, θ|st, ζt)dθ, (12)

=

∫

f(st+1|st, ζt, θ)f(θ|st, ζt)dθ,

=

∫

f(st+1|st, θ)f(θ|st, ζt)dθ.

On the bottom line, the first term in the integrand, f(st+1|st, θ), is the natural tran-
sition equation with which we started. Here it is conditioned on a particular value of
θ, which makes the learning statistics redundant as conditioning variables. This is a
conditional likelihood function for st+1.

Of course, θ is unknown, and the second term in the integrand summarizes be-
liefs about it. The term f(θ|st, ζt) is the posterior for θ conditioned on information
available through date t. Since the vector ζt is a sufficient statistic for the history st,
this can also be expressed as f(θ|st, ζt) = f(θ|st). Again, as long as we work within
a conjugate family, expressions for f(θ|st, ζt) will be available in closed form.

Equation (12) represents beliefs about st+1 conditioned on information available
through date t. Analytically solving this integral is often hard, but there are a number
of cases in which it can be done. Two examples are given below. In other cases, the
integral can be solved numerically, e.g. as described by Gelman, et. al. (1995, p.
301),1 but we do not pursue numerical strategies here.

Equation (12) is the second piece needed for (9). Combining this with the deter-
ministic updating relation (11) produces an expression for (9),

f(St+1|St) = δ(ζ(st+1, St))

∫

f(st+1|st, θ)f(θ|st, ζt)dθ. (13)

As promised, this is a time-invariant function of St, suitable for dynamic programs.

2.2 An Example: A Beta-Binomial Model for a Two-State

Markov Process

Suppose the exogenous state st takes two values, 0 and 1, and that the transition
probabilities are governed by a Markov transition matrix,

Π =

[

p 1 − p
1 − q q

]

, (14)

1This involves drawing a θ from its posterior, plugging the draw into the conditional model
f(st+1|st, θ), and then simulating st+1 from that model. A sample generated in this way approxi-
mates a sample from the posterior predictive density (12). For an application, see Cogley, Morozov,
and Sargent (2003).
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where

pr(st+1 = 1|st = 1) = p, (15)

pr(st+1 = 0|st = 1) = 1 − p,

pr(st+1 = 0|st = 0) = q,

pr(st+1 = 1|st = 0) = 1 − q.

The states are assumed to be observable, but the transition probabilities are unknown.
Our agent learns about them using Bayes’s theorem. Because the states are discrete
and take on two values, a beta-binomial probability model is convenient. We assume
the agent has independent beta priors over (p, q),

f(p, q) = f(p)f(q), (16)

where

f(p) ∝ pn11
0
−1(1 − p)n10

0
−1, (17)

f(q) ∝ qn00
0
−1(1 − q)n01

0
−1.

The variable nij
t represents a counter that records the number of transitions from state

i to j through date t. The parameters nij
0 represent prior beliefs about the frequency

of transitions, which may for example come from a training sample. The likelihood
function for a batch of data st is proportional to the product of binomial densities,

f(st|p, q) ∝ p(n11
t −n11

0
)(1 − p)(n01

t −n01
0

)q(n00
t −n00

0
)(1 − q)(n01

t −n01
0

),

where (nij
t − nij

0 ) are the number of transitions from state i to j observed in the
sample.2 Multiplying the likelihood by the prior delivers the posterior kernel,

f(p, q|st) ∝ pn11
t −1(1 − p)n10

t −1qn00
t −1(1 − q)n01

t −1, (18)

∝ f(p|st)f(q|st),

where

f(p|st) = beta(n11
t , n10

t ), (19)

f(q|st) = beta(n00
t , n01

t ).

Given independent beta priors over p and q and a likelihood function that is a product
of binomials, it follows that the posteriors are also independent and have the beta
form.

In terms of the notation of the last subsection, equation (14) summarizes the
natural transition density for this problem, and θ refers to the transition probabilities

2According to this notation, n
ij
t represents the sum of prior plus observed counters.
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(p, q). The vector of counters is a sufficient statistic for learning about the transition
probabilities, so nt takes the place of ζt. Thus the expanded state St consists of the
two Markov states st along with the counters nt,

St = [s′t, n
′
t]
′. (20)

For finite-horizon economies, this is a finite-state process, because there are only
two values for st at any date plus a finite number of permutations of nt. The nodes
for this state are every possible permutation of counters that can be attained along
paths of st, combined with both elements of st. This transforms the two-state process
into a large multi-state process. Also notice that the dimension of St grows with t,
because the number of possible permutations of nt increases.

Our goal is to derive a matrix of transition probabilities that maps the probability
of moving from any element of St to any element of St+1,

P lm
t,t+1 = pr[St+1 = m|St = l], (21)

for l = 1, ..., dim(St) and m = 1, ..., dim(St+1). The expanded state is a Markov
random variable because the probability that St+1 = m conditional on the past
history St depends on a single lag St. But the process is not homogenous because
of the expansion of the dimension of the state. The matrix Pt,t+1 is rectangular,
not square, and the dimensions of Pt,t+1 change from date to date. It follows that
the transition probabilities cannot be independent of t. The elements of Pt,t+1 are,
however, time-invariant functions of St.

To derive P lm
t,t+1, we first deduce the posterior predictive density, f(st+1|st, nt),

and then incorporate how the counters are updated conditional on the passage from
st to st+1. For a given st and nt, there are two possible outcomes for st+1, and
the posterior predictive density assigns probabilities to them. In other words, the
posterior predictive density consists of two numbers, pr(st+1 = 1|st, nt) and pr(st+1 =
0|st, nt), which of course must sum to one. The first of these can be calculated as

pr(st+1 = 1|st, nt) =

∫∫

[pst + (1 − q)(1 − st)]f(p, q|st, nt)dpdq, (22)

= st

∫

pf(p|st, nt)dp + (1 − st)

∫

(1 − q)f(q|st, nt)dq.

This is just the posterior mean of p if st = 1 and one minus the posterior mean of q
if st = 0. To evaluate the posterior mean, we integrate with respect to the posterior
beta density,
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Ep =
Γ(n11

t + n10
t )

Γ(n11
t )Γ(n10

t )

∫

p · pn11
t −1(1 − p)n10

t −1dp, (23)

=
Γ(n11

t + n10
t )

Γ(n11
t )Γ(n10

t )

∫

pn11
t (1 − p)n10

t −1dp,

=
Γ(n11

t + n10
t )

Γ(n11
t )Γ(n10

t )

Γ(1 + n11
t )Γ(n10

t )

Γ(1 + n11
t + n10

t )
,

=
Γ(n11

t + n10
t )

Γ(1 + n11
t + n10

t )

Γ(1 + n11
t )

Γ(n11
t )

,

Ep =
Γ(n11

t + n10
t )

(n11
t + n10

t )Γ(n11
t + n10

t )

(n11
t )Γ(n11

t )

Γ(n11
t )

,

=
n11

t

n11
t + n10

t

≡ p̂t.

The third equality expresses the integral of a beta density in terms of gamma func-
tions, and the fifth equality follows from a recursive property of the gamma function,
viz. that Γ(n + 1) = nΓ(n). The bottom line states the intuitive result that the
posterior mean of p is just the fraction of times the system stays in state 1 when it
begins there, counting both prior and observed transitions. Similarly, by following
the same steps, one can show that

Eq =
n00

t

n00
t + n01

t

≡ q̂t, (24)

the fraction of times the system remains in state 0 when starting there.
These depend on the counters through date t, so we label them p̂t and q̂t, re-

spectively. The posterior predictive probability for state 1 can therefore be expressed
as

pr(st+1 = 1|st, nt) = p̂tst + (1 − q̂t)(1 − st). (25)

In the same way, the predictive probability for state 0 is

pr(st+1 = 0|st, nt) = (1 − p̂t)st + q̂t(1 − st). (26)

To represent the joint transition density for st+1 and nt+1, we need to combine
these marginal predictive probabilities with the deterministic conditional relationship
that governs how the counters are updated in light of the news in st+1. For each of
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the four possible s-transitions, one element of nt is incremented by 1, and the others
remain constant. The first element n11

t+1 increases by 1 when passing from st = 1
to st+1 = 1, the second element n10

t+1 increases by 1 when passing from st = 1 to
st+1 = 0, and so on. One can enumerate the probabilities associated with the four
possible joint transitions:

pr(st+1 = 1, nt+1 = nt + [1 0 0 0]′|st = 1, nt) = p̂t, (27)

pr(st+1 = 1, nt+1 = nt + [0 1 0 0]′|st = 0, nt) = 1 − q̂t,

pr(st+1 = 0, nt+1 = nt + [0 0 1 0]′|st = 1, nt) = 1 − p̂t,

pr(st+1 = 0, nt+1 = nt + [0 0 0 1]′|st = 0, nt) = q̂t.

The matrix Pt,t+1 is formed from these outcomes. Imagine iterating through the
rows of St and St+1, matching each element of the former with each element of
the latter. There are two kinds of matches, admissible and inadmissible. A match
is admissible if the updating of nt+1 is consistent with the movement from st to
st+1. Otherwise it is inadmissible. The four admissible matches are as follows. For
l = 1, ..., dim(St) and m = 1, ..., dim(St+1),

• if sl
t = 1, sm

t+1 = 1, n11
mt+1 increases by one, and the other counters remain

unchanged, set P lm
t,t+1 = n11

lt /(n11
lt + n10

lt );

• if sl
t = 1, sm

t+1 = 0, n10
m,t+1 increases by one, and the other counters remain

unchanged, set P lm
t,t+1 = n10

lt /(n11
lt + n10

lt );

• if sl
t = 0, sm

t+1 = 1, n01
m,t+1 increases by one, and the other counters remain

unchanged, set P lm
t,t+1 = n01

lt /(n01
lt + n00

lt ).

• If sl
t = 0, sm

t+1 = 0, n00
m,t+1 increases by one, and the other counters remain

unchanged, set P lm
t,t+1 = n00

lt /(n01
lt + n00

lt ).

All other matches correspond to pairs in which the change in st+1 is inconsistent with
the change in the counters. Accordingly, their transition probabilities are zero.

This delivers one-step transition matrices for the expanded state. As promised, the
conditional transition probabilities depend on a single lag of St, and the elements of
Pt,t+1 are time-invariant functions of the state. Armed with these transition matrices,
one can solve finite-horizon dynamic programs in the usual way. The main challenge
involves coping with the curse of dimensionality.

This example can be extended without too much trouble to a Markov process with
more than two states by adopting a Dirichlet-multinomial probability model. The
logic of the argument is the same, only the details differ. This extension is presented
in appendix A.

Infinite-horizon problems are more difficult because the counters are unbounded,
violating the assumption that the state space is compact. In this example, however,
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the Bayesian consistency theorem holds, so eventually p̂t and q̂t converge in probability
to p and q. In other words, learning is relevant only in finite samples in any case.
One way to approximate the solution of an infinite-horizon model is to choose a
horizon large enough that further learning can be neglected. Then adopt the finite-
horizon approach to approximate outcomes until that date and a no-learning model
for outcomes thereafter. Terminal conditions for the finite-horizon calculation can be
derived from the value function and decision rules for the no-learning model. Thus, at
least in principle, one can approximate an infinite-horizon problem by decomposing
it into two segments, a finite-horizon problem in which learning matters plus an
infinite-horizon remainder in which beliefs have settled down.3

3 Three Experiments

Having cast the Bayesian problem in a form suitable for dynamic programming,
we can proceed to compare anticipated-utility and Bayesian choices. As a laboratory
for this comparison, we adopt a finite-horizon version of a permanent income model.
We chose the permanent income model because it is a canonical example of dynamic
choice, and we assume a finite horizon because this keeps the state space compact.
We examine three versions to explore how the quality of the approximation depends
on various features of the environment.

3.1 A Finite-Horizon Version of Hall’s Model

We begin with a finite-horizon version of Hall’s (1978) consumption model. We
start here because Hall’s model assumes certainty equivalence, which is a common
assumption in macroeconomics,4 and because certainty equivalence helps us cope
with the curse of dimensionality. For Hall’s model, consumption decision rules can
be expressed in terms of wealth and expectations of future labor income, and the
Bayesian dynamic program reduces to a forecasting problem. This is easily solved if
labor income evolves exogenously as a finite-state Markov process.

Imagine an economy that operates for T periods. Aggregate income is exogenous
and follows a two-state Markov process to be described below. The economy is
inhabited by a representative consumer who wants to smooth fluctuations in income.
He formulates a consumption plan to maximize lifetime utility,

V = E0

∑T

t=0
βtu(ct) (28)

3We do not pursue this idea further. The calculations reported below focus on finite-horizon
economies.

4In some cases, certainty equivalence follows from assumptions about preferences; in others, it is
invoked as part of an approximation strategy.
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where u(ct) = −1/2(ct − c0)
2. In the simulations conducted below, the bliss point c0

is set equal to 5, which corresponds to 5 times mean income in one case and 5 times
initial income in another.

Three assets are available for smoothing consumption. One is a linear storage
technology,

At+1 = R(At + it), (29)

where At represents the amount already in storage at the beginning of period t and
it is the net amount added to or subtracted from it. There are no shocks here, so
storage is a risk-free investment paying a constant gross return R, which we assume
is the inverse of the subjective discount factor, R = β−1.

Two Arrow securities also trade at each date. Each pays one unit of consumption
at t + 1 in the event that a particular income state is realized. They are purely
inside assets, however, and are in zero net supply, so they do not alter the aggregate
resource constraint. After substituting it = yt − ct, we can re-write the aggregate
resource constraint as

At+1 = R(At + yt − ct). (30)

To find the equilibrium for this economy, we first solve a planning problem for the
consumption allocation and then calculate the Arrow prices that are implied by that
allocation. Assuming absence of arbitrage, returns for all investment opportunities
must satisfy

EtβRt+1
u′(ct+1)

u′(ct)
= 1. (31)

When applied to the storage technology, this condition can be solved along with the
aggregate resource constraint to obtain decision rules for consumption. When applied
to the Arrow securities, (31) pins down asset prices as a function of consumption.

The consumption allocation can be solved by backward induction. Because this
is a finite-horizon economy, it is optimal to set AT+1 = 0. This makes the terminal
decision rule

cT = AT + yT . (32)

The maximization for the penultimate period then becomes

max
cT−1

u(cT−1) + βET−1u(cT ), (33)

subject to

cT = AT + yT ,

AT = R(AT−1 + yT−1 − cT−1).

The first-order condition is

u′(cT−1) = βRET−1u
′(cT ), (34)

11



which simplifies to
cT−1 = ET−1cT , (35)

when βR = 1 and preferences are quadratic. We substitute the terminal decision rule
(32) into (35) to express cT in terms of AT and yT , and then use the aggregate resource
constraint (30) to express future wealth in terms of current variables. Eventually we
find

cT−1 =
1

1 + R−1

[

AT−1 + yT−1 + R−1ET−1yT

]

. (36)

Next, we go back to period T − 2 and do the same thing. Continuing backward in
this fashion, the consumption decision rule for period T − h can be expressed as

cT−h = γT−h

[

AT−h + ET−h

∑h

j=0
R−jyT−h+j

]

, (37)

where

γT−h ≡
[

∑h

j=0
R−j

]−1

. (38)

This converges to the infinite-horizon decision rule as h grows large. In the infinite-
horizon version of the model, consumption equals the annuity value of wealth. In the
finite-horizon version, consumption equals the annuity value plus a fraction of the
principal. That fraction grows as the end draws near, so γT−h increases as h falls.

The decision rule for consumption depends on wealth plus the expected present
value of future labor income. To solve for consumption, we just need to calculate
those present values. How that is done depends on how agents form expectations.

With the consumption allocation in hand, we go on to calculate prices of Arrow
securities. The no-arbitrage condition for an Arrow security promising to pay one
unit of consumption in state 1 is,

1 = EtβR1
t+1

u′(ct+1)

u′(ct)
, (39)

= β
∑2

j=1
R1

t+1(st+1 = j)
u′[ct+1(st+1 = j)]

u′[ct(st = i)]
pr(st+1 = j|st = i).

If state 1 occurs, the return is the inverse of the price, 1/Q1t; otherwise it is zero.
After substituting the return into the no-arbitrage condition, we find that the price
is

Q(st+1 = 1|st = i) = β
u′[ct+1(st+1 = 1)]

u′[ct(st = i)]
pr(st+1 = 1|st = i). (40)

The price of the other Arrow security is found in the same way. Finally, notice that
a portfolio consisting of one share of both Arrow securities replicates the risk-free
investment, so Arrow prices must also satisfy

∑2

j=1
Q(st+1 = j|st) = R−1. (41)
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In a certainty-equivalent setting such as this, differences between anticipated-
utility and Bayesian models boil down to how expectations are formed. Bayesians
use the appropriate expectations operator; anticipated-utility consumers take a short
cut.

3.1.1 Bayesian Forecasts

Suppose that labor income is exogenous and follows a two-state Markov process.
Consumers know the number of states and also the value of income in each state,
but they do not know the transition probabilities. They use the beta-binomial model
of section 2 for learning and forecasting. The natural state is labor income, and the
expanded state adds counters that track its transitions.

Consumption decisions involve multi-step forecasts, so we need the m-step tran-
sition matrix P ij

t,t+m = pr[St+m = j|St = i]. We can express Pt,t+m in terms of the
one-step transition matrices defined above using the Chapman-Kolmogorov equation,

Pt,t+m = Pt,t+1Pt+1,t+2...Pt+m−1,t+m. (42)

This relationship is derived in appendix B. Armed with this formula, multi-step
forecasts of labor income can be calculated as

E(yt+m|St = i) =
∑

j
Pt,t+m(i, j)St+m(j, 1), (43)

with the convention that labor income is recorded in the first column of St+m.5

At each date t, we forecast labor income over horizons h = t + 1, ..., T , discount
the forecasts at rate R−(h−t), and then sum to find the expected present value of labor
income. Adding this to the predetermined value of assets At gives us total wealth.
To determine consumption, we multiply by γt, the date t marginal propensity to
consume out of wealth. Finally, we update next period’s assets At+1 by substitut-
ing consumption into the aggregate resource constraint. In this way, we recursively
compute Bayesian consumption choices.

3.1.2 Anticipated Utility Forecasts

Now consider how an anticipated-utility consumer makes forecasts. In each period,
he updates estimates of the transition probabilities for st by plugging in the current
counters, arriving at an estimate Πt of the transition matrix Π. Looking forward in
time, he simplifies by disregarding how future realizations of labor income will alter
the counters and future one-step transition probabilities. In other words, he pretends
the chain is homogenous, with constant transition probabilities going forward in time.
If the chain were homogenous, the m-step transition density would simplify to

Πt,t+m = ΠtΠt...Πt = Πm
t . (44)

5The other columns store the counters.
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Forecasts of labor income are now given by

E(yt+m|st = i) =
∑

j
Πt,t+m(i, j)st+m(j, 1), (45)

Optimal consumption is calculated in the same way as before, but with a different
expectations operator.

Thus the differences between the two models reduce to how the m-step transition
matrix is specified. A Bayesian consumer recognizes that the chain is not homogenous
and alters the transition matrix according to date and horizon. An anticipated-
utility consumer updates his beliefs each period, but then uses a homogenous-chain
approximation for long-horizon forecasts.

3.1.3 Rational Expectations

As a benchmark, we also consider a rational expectations consumer, who is as-
sumed to know the true transition probabilities, Π. In this case, the counters are
redundant, and st is the full state vector. This evolves according to a homogenous
Markov chain, so multi-step transition probabilities are just

Πt,t+m = Πm, (46)

for all t. An anticipated-utility consumer behaves like a Bayesian when updating
estimates but acts like a rational-expectations consumer when making forecasts.

3.1.4 A Business-Cycle Experiment

Next we study how much this matters in particular cases. The first example is
calibrated to mimic a business cycle. The time period is a year, we set R = β−1 =
1.04, and we study a consumer who lives 50 years. To represent a business cycle, we
assume that labor income switches between two values

yh = 1.1, yl = 0.9,

with true but unknown transition probabilities

Π =

[

0.75 0.25
0.25 0.75

]

. (47)

Because of the symmetry of y and Π, the economy spends half its time in each state,
and average income is 1. Income is 10 percent above average in a boom and 10 percent
below in a recession, so these are big business cycles. That the diagonal elements are
greater than 0.5 means labor income is persistent. If income is high this year, the
odds are 3 to 1 that it will be high again next year, and similarly for low-income
states. The mean time until the next switch is 4 years.

14



Appendix C describes an algorithm for constructing the state space for this prob-
lem. Its chief virtue is that it finds a parsimonious representation for {St}

T
t=1. This

is helpful for managing the curse of dimensionality.
Each of our simulations starts with 1000 draws of {yt}

50
t=1 from this process. We

initialize wealth at A0 = 0 and allow households to borrow or lend as much as they
want at interest rate R, subject to paying off their debts before they die. Then
we compare the consumption choices of Bayesian, anticipated-utility, and rational-
expectations consumers who face identical income paths, as well as the Arrow security
prices that decentralize those allocations.

For the Bayesian and anticipated-utility consumers, we simulate the model for
4 sets of priors that represent various kinds and degrees of disagreement with the
true transition probabilities. We want the priors to disagree with the true transition
probabilities so that consumers are actually learning (altering their beliefs) as time
passes. The experiment would not be challenging enough for the anticipated-utility
approximation if experience merely confirmed correct priors.

The prior counters for each case are displayed in table 1.

Table 1: Prior Counters for the Business Cycle Example

nhh
0 nhl

0 nlh
0 nll

0

Case 1: Excess Sensitivity 9 1 1 9
Case 2: Excess Smoothness 5 5 5 5
Case 3: Irrational exuberance 9 1 1 1
Case 4: Depression Generation 1 1 1 9

In the first two cases, consumers begin with mistaken beliefs about the persistence of
business cycles. This is important for consumption smoothing because the persistence
of labor income determines how much of an innovation is consumed and how much is
saved. In case 1, consumers initially over-estimate business-cycle persistence. While
the true odds of remaining in the current state are 3 to 1, consumers think they are
9 to 1. Because they over-estimate income persistence, their consumption choices are
initially too sensitive to movements in labor income, at least relative to consumers
who know the true transition probabilities. Accordingly, case 1 is labeled ‘excess
sensitivity.’

Case 2 represents the opposite belief. Here we assume a prior that labor income
is distributed identically and independently, so that this year’s realization has no
predictive power for next year’s value. Because consumers initially under-estimate
income persistence, their consumption choices early in life are too smooth relative to
consumers who know the true transition probabilities. Accordingly, case 2 is labeled
‘excess smoothness.’

In cases 3 and 4, consumers hold mistaken priors not only about the persistence
of states but also about their relative frequencies. The consumers of case 3 are ‘irra-
tionally exuberant.’ Their prior is that good times are the norm and that recessions
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are rare events which terminate quickly when they do occur. They initially save too
little for rainy days because they under-estimate how many rainy days they will en-
counter. The consumers of case 4 are more pessimistic, believing that bad times are
the norm and that good times occur infrequently and do not last. Because they begin
life with a grim prior, we label them the ‘depression generation.’

3.1.5 A Unit-Root Experiment

Our second example involves more persistent movements in income. The time
period is still one year, R = 1.04, and the consumer lives 50 years. But instead of
transient movements between high and low levels of income, we introduce persistent
movements in increments to income. We assume that income evolves as

yt+1 − yt = µt, (48)

where µt is a two-state Markov process that switches between

µh = 0.025, µl = −0.025. (49)

Income is initialized at y0 = 1, so these values for µ represent increments of roughly
2.5 percent per year. Not only does labor income have a unit root, but we also assume
that the Markov states are more persistent than in the last example. Here we set the
true transition probabilities to

Π =

[

0.95 0.05
0.05 0.95

]

. (50)

The economy still spends half its time in each state, but the expected time between
switches is 20 years. Thus, the states represent periods of sustained growth and
contraction, respectively. Although we abstract from a deterministic trend in yt, one
can interpret the two states as ‘new economies’ and ‘productivity slowdowns.’ The
magnitude of the shifts is probably larger than in actual data, but the duration is
about right.

In this example, the natural state variable is µt, and the learning statistics are the
counters that track its transitions. After some algebra, consumption decision rules
can be expressed in terms of current income, financial wealth, and forecasts of µt,

cT−s = yT−s +
1 − R−1

1 − R−s−1
AT−s + ET−s

∑s

j=1

R−j − R−s−1

1 − R−s−1
µT−s+j. (51)

This follows from the generic form of the decision rule (equation 37) along with
the specific form of expectations implied by the unit-root specification for income
(equation 48). As before, the differences between anticipated-utility and Bayesian
choices involve how multi-step forecasts of the Markov variate µt are formed.
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The priors for this example are listed in table 2. In the first two scenarios, con-
sumers recognize that the chain is symmetric and that the states occur equally often
in the long run, but they are initially mistaken about the degree of persistence. Their
priors involve too much persistence in one case and too little in the other. The true
mean time between switches is 20 years. In the first scenario, consumers thinks the
current situation is much more durable than it really is, with a prior mean time of 40
years. In the second, they think that states represent business cycles, with a mean
switching time of 5 years, when in fact they are much longer lasting.

Table 2: Prior Counters for Unit-Root Example

nhh
0 nhl

0 nlh
0 nll

0

Case 1: Too Persistent 39 1 1 39
Case 2: Not Persistent Enough 8 2 2 8
Case 3: Over-Estimate Positive 19 1 1 1
Case 4: Over-Estimate Negative 1 1 1 19

In scenarios 3 and 4, consumers focus too much on one state and are hardly aware
of the other. In this instance, they underestimate how often the other state occurs
and how long it will last when it does occur. In case 4, a ‘new economy’ really is
new, and in case 3 a productivity slowdown takes consumers by surprise. Experience
gradually teaches them about the properties of these ‘hidden’ states.

Once again, we simulate 1000 trajectories for yt and calculate Bayesian, anticipated-
utility, and rational-expectations choices for each. We set initial wealth at zero and
allow households to borrow or lend as much as they want subject to the constraint
that debts are repaid before they die. The state space and transition matrices for µt

are constructed in the same way as before; only the details differ.

3.2 Departures from Certainty Equivalence: A CRRA Ex-

periment

Many macroeconomic models exploit certainty equivalence – either by specifying
quadratic preferences or by adopting a certainty-equivalent solution algorithm – but
some do not. Departures from certainty equivalence are especially important for asset
pricing and welfare comparisons. Accordingly, we also consider an example in which
consumption depends on higher-order moments of future labor income.

This example has the same structure as the previous ones, except that we replace
quadratic preferences with a period utility function that has constant relative risk
aversion,

u(ct) =
c1−α
t

1 − α
. (52)
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The parameter α is the coefficient of relative risk aversion; in the simulations reported
below, we set α equal to 2, 5, 10, or 20. Values around 2 are probably most relevant
for macroeconomics, but higher values are sometimes adopted in asset-pricing models.

With CRRA preferences, the model becomes computationally more demanding
because decision rules cannot be derived analytically. We compensate by altering the
length of the decision period. Here we set β = 1.043, so that each period corresponds
to 3 years, and T = 20, so that consumers live for 20 periods (60 years).

The primary difference between quadratic and CRRA utility is not that one in-
volves risk aversion and the other does not,6 but rather that CRRA preferences involve
precautionary motives while quadratic utility does not. To give consumers ample rea-
son to take precautions, we recalibrate the income process to introduce a large but
rare ‘crash state.’ Here we assume that labor income switches between two values

yh = 1, yl = 0.75, (53)

with transition probabilities,

Π =

[

0.95 0.05
0.5 0.5

]

. (54)

The high-income state represents ‘normal times.’ It occurs about 91 percent of the
time and is persistent. The low-income state represents a sharp but infrequent drop
in income, and it is not persistent. Conditional on being in the high-income state, the
mean switching time is 20 periods, which means that a consumer might go a whole
lifetime without experiencing a crash. Nevertheless, the presence of a low-income
state activates a motive for precautionary saving.

To activate learning, we once again endow agents with a prior that differs from
the true transition probabilities. Here we assume that consumers are pessimistic, as
in Cecchetti, Lam, and Mark (2000) and Abel (2002). The prior shown in table 3
exaggerates the frequency and persistence of the crash state and underestimates the
frequency and persistence of the normal state. Thus, consumers initially believe that
crashes occur too often and last too long when they do occur. This magnifies their
interest in precautionary saving.

Table 3: Prior Counters for the CRRA Example

nhh
0 nhl

0 nlh
0 nll

0

Pessimism 3 1 1 3

The Bayesian consumption allocation is found by dynamic programming. Once
again, it is optimal to consume all of one’s resources at the terminal date, implying a

6Consumers with quadratic preferences are also risk averse.
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terminal value function VT+1 = 0 and decision rule AT+1 = 0. For t ≤ T , the Bellman
equation takes the form

V B
t (yt, At, nt) = max

At+1

[u(At + yt − R−1At+1) + βEB
t V B

t+1(yt+1, At+1, nt+1)]. (55)

The Bayesian expectations operator has the same form as in the earlier examples,
but now it applies to continuation values rather than future labor income. The
state variables yt and nt are already discrete, and it is convenient to approximate the
solution by discretizing At as well. Accordingly, we specify a grid for At in increments
of 0.01 and set a range that is broad enough so that the end points are never reached
in the simulations.7 Then value functions and decision rules are calculated by solving
the finite-horizon, finite-state dynamic program, using backward-induction methods
described in Judd (1998).

The anticipated-utility allocation is also found by backward induction, but the
problem and solution algorithm differ in two respects. First, an anticipated-utility
planner neglects to take into account how future counters influence continuation val-
ues, so his value function depends only on yt and At,

V AU
t (yt, At) = max

At+1

[u(At + yt − R−1At+1) + βEAU
t V AU

t+1 (yt+1, At+1)]. (56)

To compensate, an anticipated-utility planner re-optimizes each period rather than
once and for all, revising value functions and decision rules in accordance with updates
of the transition probabilities. Like the Bayesian planner, he solves the problem
by backward induction, using finite-horizon, finite-state methods, but he does so
repeatedly.

A rational-expectations planner knows the true transition probabilities and need
not keep track of the counters. Thus, the rational-expectations state vector is (yt, At),
and the Bellman equation is

V RE
t (yt, At) = max

At+1

[u(At + yt − R−1At+1) + βERE
t V RE

t+1 (yt+1, At+1)]. (57)

But because there is no news about transition probabilities, there is no need to update
decision rules, so a rational-expectations planner solves the dynamic program only
once.

For this example, our simulations work as follows. First, we solve for the Bayesian
and rational-expectations decisions rules and store them. Then we simulate 1000
paths for the exogenous income process. Having stored the decision rules, we can
simply read off the associated Bayesian and RE consumption paths for each income
path. Solving for anticipated-utility consumption involves an extra step because
consumers must also re-optimize at each date. So at each date on each path, they
re-solve the AU dynamic program using updated transition probabilities, then read
off the consumption choice from the revised decision rule. Finally, with consumption
allocations in hand, Arrow security prices are calculated from the Euler equations.

7The range is case specific and depends on α, which controls the strength of the precautionary
motive.
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4 Anticipated Utility v. Bayesian Outcomes

The first set of results compares Bayesian and anticipated-utility outcomes. Fig-
ures 1-3 portray consumption in the middle year of each simulation.8 Each panel
represents a cross section of consumption choices over 1000 draws for labor income,
with the Bayesian choice shown on the horizontal axis and the anticipated-utility
choice on the vertical. Because the two decision makers face identical income streams
within each experiment, a good approximation should result in a tight scatterplot
along the 45 degree line. The figures confirm that Bayesian and anticipated-utility
consumption choices are highly correlated and tightly arrayed along the 45 degree
line.
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Figure 1: Consumption in Period 25 of the Business-Cycle Simulation
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Figure 2: Consumption in Period 25 of the Unit-Root Simulation

8The middle year was chosen to avoid end-point problems; apart from that, the results are typical
of those in other years.
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Figure 3: Consumption in Period 10 of the CRRA Simulation

The next two tables provide more detail about the quality of the approximation,
reporting the relative mean square approximation error (RMSAE) for various years.9

If we regard the anticipated-utility model as an approximation to the more complex
Bayesian decision problem, the approximation error is u = cB − cAU . The RMSAE is
defined as the ratio of mean-square error of u to the variance of cB, and it is analogous
to 1 − R2 in a regression. Thus, a small number signifies a good approximation.

Table 4: RMSAE for Consumption in the Certainty-Equivalent Examples

Period 5 15 25 35 45
Business-Cycle Example

Excess Sensitivity 0.0063 0.0044 0.0015 0.0010 0.0006
Excess Smoothness 0.0002 0.0001 0.0001 0.0001 0.0001

Irrational Exuberance 0.0182 0.0046 0.0056 0.0067 0.0054
Depression Generation 0.0196 0.0042 0.0060 0.0066 0.0051

Unit-Root Example

Too Persistent 0.0011 0.0004 0.0005 0.0005 0.0005
Not Persistent Enough 0.0005 0.0005 0.0002 0.0002 0.0004

Over-Estimate Positive State 0.0240 0.0027 0.0055 0.0081 0.0100
Over-Estimate Negative State 0.0213 0.0025 0.0051 0.0074 0.0098

Note: RMSAE = MSE(cB-cAU )/var(cB).

9Watson (1993) used a measure like this to assess approximation errors in DSGE models.
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Table 5: RMSAE for Consumption in the CRRA Example

Period 5 10 15
α = 2 0.0395 0.0064 0.0101
α = 5 0.0197 0.0109 0.0402
α = 10 0.0085 0.0261 0.0706
α = 20 0.0933 0.0601 0.1235

Note: RMSAE = MSE(cB-cAU )/var(cB).

Measured on this scale, the approximation errors are often quite small, confirming
the visual impression made by figures 1-3. In the certainty-equivalent simulations,
all of the entries are less than 2.5 percent, and many are less than 1 percent. In
the CRRA example, the quality of the approximation is also quite good when α is
small, but it deteriorates a bit as α increases. For α equal to 2 or 5, the RMSAE is
around 1 to 4 percent, but it increases to 6 to 12 percent when α = 20. Even so, the
bottom right panel of figure 3 suggests that a 6 percent RMSAE is still a pretty good
approximation. These numbers suggest that an anticipated-utility approximation for
consumption is excellent for typical calibrations in macroeconomics.

Not only is Bayesian consumption well approximated by anticipated-utility mod-
els, so too are security prices, provided that consumers are not too risk averse. Figures
4-6 depict outcomes for the Arrow security that pays off in the high-income state. In
both of the certainty-equivalent simulations, the scatterplots indicate that Bayesian
and anticipated-utility prices are tightly arrayed along the 45 degree line. Pricing
errors are also quite small in the CRRA example when α is 2 or 5, but they grow in
magnitude as α increases. Notice in particular that when α = 20 the scatterplot is
steeper than the 45 degree line, which means that the mean pricing error is negative.
In this instance, an anticipated-utility model systematically overstates the price of
an Arrow security in a Bayesian economy.
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Figure 4: Arrow Prices in Period 25 of the Business-Cycle Example
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Figure 5: Arrow Prices in Period 25 of the Unit-Root Example
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Figure 6: Arrow Prices in Period 10 of the CRRA Example

Tables 6 and 7 record the RMSAE for prices in various years. As before, the
quality of the approximation is excellent for the certainty-equivalent simulations,
indeed the RMSAEs for security prices are even lower than those for consumption.
In these examples, the mean-square approximation error amounts to less than one-
twentieth of one percent of the variance of Bayesian prices. Pricing errors are also
quite small in CRRA simulations with small α. When α is 2 or 5, the RMSAEs are
only slightly larger than in the certainty equivalent examples, but the quality of the
approximation deteriorates as α increases. The RMSAEs grow as α increases to 10,
and they become very large – sometimes more than 100 percent – when α = 20. The
large RMSAEs that occur in this case reflect the upward bias in AU prices that was
mentioned above.
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Table 6: RMSAE for Prices in the Certainty-Equivalent Examples

Period 5 15 25 35 45
Business-Cycle Example

Excess Sensitivity 0.0003 0.0004 0.0004 0.0003 0.0001
Excess Smoothness 0.0001 0.0002 0.0002 0.0003 0.0001

Irrational Exuberance 0.0001 0.0002 0.0002 0.0002 0.0001
Depression Generation 0.0005 0.0005 0.0005 0.0004 0.0001

Unit-Root Example

Too Persistent <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Not Persistent Enough <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Over-Estimate Positive State 0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Over-Estimate Negative State 0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Note: RMSAE = MSE(QB-QAU )/var(QB).

Table 7: RMSAE for Prices in the CRRA Example

Period 5 10 15
α = 2 0.0013 0.0020 0.0029
α = 5 0.0126 0.0215 0.0332
α = 10 0.0641 0.1818 0.3248
α = 20 0.4038 1.0787 2.9262

Note: RMSAE = MSE(QB-QAU )/var(QB).

The close correspondence of anticipated-utility and Bayesian prices in the certainty-
equivalent and small-α cases follows from two facts, that consumption allocations are
very similar across models and that one-step-ahead transition probabilities are iden-
tical. In each case, there are two possible outcomes for st+1 given (st, nt), and along
every sample path the one-step-ahead transition probabilities to these outcomes de-
pend on the same counters nt in the same way. Thus, the one-step-ahead transition
probabilities always agree. Multi-step transition probabilities differ because Bayesian
consumers update counters across potential future paths, while anticipated-utility
consumers do not, but multi-step transition probabilities matter only indirectly for
Arrow prices, affecting Q(st+1, st) only through ct+1. In the certainty-equivalent and
small-α examples, the disparities in consumption are negligible, so Arrow prices are
also in close agreement.

The consumption disparities are a bit larger in the large-α simulations, however,
and they are magnified because inverse-consumption growth is raised to a large ex-
ponent when calculating security prices. Thus, seemingly minor discrepancies in
approximating consumption can matter a lot for asset prices when consumers are
highly risk averse.
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Once again, the lesson seems to be that an anticipated-utility approximation is
fine as long as consumers are not too risk averse. But it can be problematic for models
with high degrees of risk aversion, especially when modeling security prices.

5 Rational Expectations v. Bayesian Outcomes

For the sake of comparison, we also consider a rational-expectations approximation
to the Bayesian economy. In a rational-expectations approximating model, consumers
are endowed with knowledge of the true transition probabilities from the outset, so a
rational-expectations approximation abstracts from learning.

Results for consumption are reported in figures 7-9 and in tables 8 and 9. In many
cases, the quality of the approximation is still quite good. RE consumption is still
highly correlated with outcomes in the Bayesian economies, and in many instances the
RMSAEs are also quite low, sometimes around 15 percent or less. But, not surpris-
ingly, the correspondence is not as close as for the anticipated-utility approximation.
In addition, the rational-expectations approximation is not uniformly reliable. Some-
times there are substantial approximation errors, accounting for as much as three-
quarters of the total variation in Bayesian consumption in the certainty-equivalent
and small-α simulations and for more than 100 percent of the variance when α is
larger.
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Figure 7: Consumption in Period 25 of the Business-Cycle Simulation
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Figure 8: Consumption in Period 25 of the Unit-Root Simulation
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Figure 9: Consumption in Period 10 of the CRRA Simulation

Table 8: RMSAE for Consumption in the Certainty-Equivalent Examples

Period 5 15 25 35 45
Business-Cycle Example

Excess Sensitivity 0.4179 0.1876 0.1194 0.1643 0.2232
Excess Smoothness 0.1423 0.0673 0.0368 0.0794 0.1770

Irrational Exuberance 0.8388 0.1474 0.2365 0.5363 0.7287
Depression Generation 0.8266 0.1508 0.2748 0.5452 0.7786

Unit-Root Example

Too Persistent 0.0780 0.0333 0.0391 0.0671 0.1015
Not Persistent Enough 0.0272 0.0261 0.0116 0.0099 0.0206

Over-Estimate Positive State 0.2608 0.0296 0.0668 0.1598 0.2720
Over-Estimate Negative State 0.2557 0.0266 0.0639 0.1541 0.2763

Note: RMSAE = MSE(cB-cRE)/var(cB).
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Table 9: RMSAE for Consumption in the CRRA Example

Period 5 10 15
α = 2 0.3051 0.7271 2.2731
α = 5 0.2742 0.7891 2.6728
α = 10 0.2949 1.0671 3.1396
α = 20 0.7945 1.0179 3.3879

Note: RMSAE = MSE(cB-cRE)/var(cB).

The reason why the RMSAE can be so high despite the high correlation is that
the scatterplots are not always arrayed along the 45 degree line. This means that
there are systematic discrepancies between RE and Bayesian outcomes. For example,
in two of the business cycle cases (Irrational Exuberance and Depression Generation),
the RMSAE of consumption exceeds 50 percent in years 35 and 45. This reflects the
consequences for wealth of expectations errors made early in life by Bayesian agents.
Those who were irrationally exuberant saved too little early on and had to cut back
later when their hopes were not realized. In the rational expectations model, con-
sumers were more realistic and saved more early in life, so they could consume more
later on. If we regard the Bayesian model as true and the rational expectations model
as an approximation to it, this means the rational expectations model systematically
overstates consumption later in life. Rational expectations outcomes are still highly
correlated with Bayesian outcomes, but the mean approximation error contributes
to a higher RMSAE. The same phenomenon occurs in the Depression-Generation
example, except that Bayesian agents are too pessimistic in that case, and the mean
approximation error has the opposite sign.

This bias is especially pronounced in the CRRA simulation because of how model
uncertainty and pessimism affect the slope of the life-cycle consumption path. In
the Bayesian economy, three factors contribute to precautionary saving, viz. CRRA

preferences, model uncertainty, and initial pessimism. Consumers in the rational-
expectations approximating model have the same preference, but they are neither
pessimistic nor uncertain about the transition probabilities, so they engage in less
precautionary saving. Figure 10 illustrates the magnitude of the problem. Solid lines
portray Bayesian outcomes, and dashed lines illustrate the rational-expectations ap-
proximation. Because the rational-expectations approximation abstracts from model
uncertainty and pessimism, it understates the amount of precautionary savings early
in life and therefore also understates the amount of consumption later on. This flat-
tens the life-cycle consumption profile relative to that of Bayesian consumers and
biases the approximation to consumption, first upward and then downward. These
biases contribute to the high RMSAEs recorded in table 9. The anticipated-utility ap-
proximation – depicted by solid-dotted lines – does a better job fitting these features
of the Bayesian economy.
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Figure 10: Average Life-Cycle Consumption Profile in the CRRA Simulation

The RE approximation also gives a somewhat misleading impression about Arrow
security prices. Figures 11-13 compare Arrow prices from Bayesian economies with
simulations of RE approximating models. Bayesian and RE outcomes are highly
correlated (i.e., RE prices are systematically above average when Bayesian prices
are), but notice how the RE models predict essentially only two values for prices,
while the Bayesian economy predicts many. This feature is especially sharp in the
certainty-equivalent and small-α simulations, though somewhat more diffuse in the
large-α case.
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Figure 11: Arrow Prices in Period 25 of the Business-Cycle Simulation
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Figure 12: Arrow Prices in Period 25 of the Unit-Root Simulation
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Figure 13: Arrow Prices in Period 10 of the CRRA Simulation

In the certainty-equivalent and small-α cases, the existence of essentially two
prices under rational expectations follows from three facts, that labor income evolves
as a two-state process, that the true transition probabilities are known, and that
consumers’ intertemporal marginal rate of substitution does not vary much. Consider
the Arrow security that pays off in the high-income state. The upper and lower
branches in the scatterplots represent Q(st+1 = sh, st = sh) and Q(st+1 = sh, st = sl),
respectively. From the household’s first-order condition, these prices are given by

Q(st+1 = sh, st = i) = β
u′[ct+1(st+1 = sh)]

u′[(ct(st+1 = i)]
pr(st+1 = sh|st = i). (58)

The linear storage technology provides a powerful tool for consumption smoothing,
so the IMRS does not vary much across states, always staying fairly close to 1/R = β
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in the certainty-equivalent models and not straying too far from there in the small-α
case. It follows that Arrow prices are well approximated by

Q(st+1 = sh, st = i)
.
= βpr(st+1 = sh|st = i). (59)

Because the two transition probabilities are constant under rational expectations, it
follows that there are essentially just two prices. The price is higher when st = sh,
reflecting a high probability that st+1 = sh when it starts there, and the price is lower
when st = sl, reflecting a low probability of making a transition to the high-income
state.

This two-value representation mirrors in a rough way what goes on in a Bayesian
economy. There it is also the case that Q(st+1 = sh, st) tends to be higher when
st = sh, again reflecting that prices are higher for securities promising a payoff with
higher probability. Much of the variation in prices in the Bayesian economy represents
movements across branches, and the rational expectations model captures this fea-
ture of the data. Cross-branch movements in prices account for the high correlation
between the Bayesian and rational-expectations economies.

But there is an additional source of variation in the Bayesian economy that the
rational expectations model neglects. In addition to variation across branches, there
is also price variation within branches arising from the updating of transition prob-
abilities. A version of equation (59) holds for the Bayesian economy as well,10 but
there are many more nodes in the expanded Bayesian state space, hence many more
possible values for the transition probabilities. Accordingly, there is price uncertainty
in the Bayesian model even conditional on knowing the state of income today and
tomorrow; prices depend on the counters as well. Because the rational expectations
approximation abstracts from this source of uncertainty, the RMSAE for within-
branch variation exceeds 100 percent.11

This two-value characterization of prices begins to break down as α increases
because higher α magnifies variation in the IMRS. In that case, we get many values for
prices under rational expectations as well, and two clouds emerge in the scatterplots
instead of two branches. But it remains true that within each cloud there is more
variation in Bayesian prices than in RE prices, again reflecting that variation in
transitions probabilities in Bayesian economies magnifies asset price volatility.

Whether abstracting from learning is critical for modeling security prices depends
on the relative importance of variation within and across branches in the Bayesian
economy. In many instances, the overall quality of the rational-expectations approx-
imation is not too bad. For example, many of the RMSAEs reported in tables 10
and 11 are 15 percent or less, including all of those in the unit-root example. But
the neglected source of variation contributes to higher values of the RMSAE, and in

10The IMRS varies more in the Bayesian economies, but not a lot more.
11The RMSAE equals 1 if mean Bayesian prices within each branch are the same as the rational

expectations value, and it exceeds 1 if the mean error is nonzero.
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a few cases the RMSAE is more than 100 percent. Thus, the quality of the rational-
expectations approximation for prices is mixed: often it is quite good, but sometimes
it is very wide of the mark.

Table 10: RMSAE for Prices in the Certainty-Equivalent Examples

Period 5 15 25 35 45
Business-Cycle Example

Excess Sensitivity 0.1426 0.1018 0.0807 0.0681 0.0602
Excess Smoothness 3.4148 1.1667 0.7040 0.4218 0.3022

Irrational Exuberance 0.2808 0.1734 0.1432 0.1126 0.0933
Depression Generation 0.2660 0.2114 0.1378 0.1223 0.0889

Unit-Root Example

Too Persistent 0.0033 0.0035 0.0033 0.0031 0.0029
Not Persistent Enough 0.0723 0.0368 0.0275 0.0260 0.0242

Over-Estimate Positive State 0.0786 0.0481 0.0308 0.0233 0.0155
Over-Estimate Negative State 0.0890 0.0497 0.0418 0.0261 0.0237

Note: RMSAE = MSE(QB-QRE)/var(QB).

Table 11: RMSAE for Prices in the CRRA Example

Period 5 10 15
α = 2 0.5875 0.3621 0.2774
α = 5 0.8297 0.4661 0.3027
α = 10 1.2778 0.7602 0.4253
α = 20 8.5083 1.5293 1.0708

Note: RMSAE = MSE(QB-QRE)/var(QB).

5.1 The market price of risk

The rational expectations approximation is also problematic for evaluating the market
price of risk, at least if the estimates are interpreted narrowly as signifying risk
aversion per se. Following Hansen and Jagannathan (1991 and 1997), we define the
conditional price of risk as

ρt(mt+1) =
σt(mt+1)

µt(mt+1)
, (60)

where mt+1 represents a stochastic discount factor, µt(·) is a conditional mean, and
σt(·) is a conditional standard deviation. Thus the market price of risk is the condi-
tional coefficient of variation of the stochastic discount factor.
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At least three prices of risk are relevant for our economies. If one were to survey
the agents in our model and ask them about the price of risk, they would report cal-
culations based on their own preferences and beliefs. Within a Bayesian equilibrium,
asset returns and consumption satisfy

EB
t (mt+1Rt+1) = 1, (61)

where EB
t (·) represents an expectation taken with respect to Bayesian transition prob-

abilities, prB(st+1 = j|St), and mt+1 = u′(ct+1)/u
′(ct) is the consumers’ intertemporal

marginal rate of substitution. Their subjective price of risk is accordingly

ρB
t (mt+1) =

σB
t (mt+1)

µB
t (mt+1)

, (62)

where a superscript B indicates that conditional moments are evaluated with respect
to Bayesian transition probabilities. In a Markov economy such as ours, the subjec-
tive price of risk can be expressed in terms of Arrow security prices and Bayesian
probabilities. Appendix D shows how to do this and displays a formula for ρB

t (mt+1).
Now imagine a rational-expectations modeler confronting data on prices and con-

sumption from the Bayesian equilibrium. He has a model discount factor mt+1, which
in this case happens to be correctly specified, but he follows the precept of equating
the perceived and actual laws of motion, and so he tries to make sense of observed
prices in terms of the actual transition probabilities prA(st+1 = j|st).

12 This combi-
nation will not correctly price securities, for his model implies an Euler equation

EA
t (mt+1Rt+1) = 1 (63)

that involves expectations with respect to different probabilities than those used by
consumers. Since EA

t (·) 6= EB
t (·), it follows that equilibrium consumption and asset

returns will not conform to (63).
Following Hansen and Jagannathan (1991 and 1997), a rational-expectations mod-

eler might summarize the discrepancy by calculating two other prices of risk, one
associated with his model stochastic discount factor and another that characterizes
the properties a stochastic discount factor must have in order to rationalize observed
security prices with his probability model. We label the first ρA

t (mt+1) and the second
ρA

t (m̃t+1). Both are calculated with respect to the rational-expectations probabilities
prA(st+1 = j|st), hence the A superscript.

The RE model price of risk, ρA
t (mt+1), is easy to calculate. One just substi-

tutes observations on consumption into the model discount factor and then computes
conditional moments under the assumed probability law. Appendix D displays an
alternative calculation that is less straightforward but easier to implement using our
simulation output.

12A rational expectations modeler can consistently estimate these transition probabilities ex post.

32



The RE required price of risk, ρA
t (m̃t+1), is calculated from securities market data

alone, without reference to consumption data or a model discount factor. Assuming
absence of arbitrage opportunities, in a Markov economy with transition probabilities
prA(st+1 = j|st), Arrow security prices must satisfy

Qt(st+1 = j|st) = m̃t+1(st+1 = j|st)prA(st+1 = j|st), (64)

for some discount factor m̃t+1. Conditional moments for the unknown discount fac-
tor m̃t+1 can therefore be calculated from deflated security prices Qt(·)/prA(·). The
prices Qt(·) are observed in our economies, and the modeler specifies the probabilities
prA(st+1 = j|st), so the properties of m̃t+1 can indeed be inferred from security market
data. Once again, see appendix D for the details and a formula for ρA

t (m̃t+1).
13

The literature typically finds that the model price of risk ρA
t (mt+1) is small if

consumers are not too risk averse and that the required price of risk ρA
t (m̃t+1) is

larger. This is also what we find in our Bayesian economies. For example, figures 14-
16 portray RE prices of risk for the middle periods of our simulations. The required
price of risk ρA

t (m̃t+1) is shown on the horizontal axis, and the model price of risk
ρA

t (mt+1) is on the vertical. The scatterplots are always far from the 45 degree line,
and the required price of risk is almost always larger than the model price of risk.
Differences between the two are especially pronounced in the certainty-equivalent
and small-α simulations. In those cases, the required price of risk is often one or two
orders of magnitude larger than the model price of risk. In the CRRA example, the
model price of risk grows as α increases, but almost all the points remain below the
45 degree line, so the model price of risk still falls short of the required price of risk.

This is usually interpreted as a sign that the model discount factor is misspecified,
but it could also signify that the transition probabilities are off the mark. Indeed, in
this instance, we know that the model discount factor is correctly specified, so the
discrepancies must be due to how the transition probabilities are modeled.

13Hansen and Jagannathan actually estimate a lower bound on the market price of risk. In our
economies we can do a little better and estimate the price of risk itself. But this is just a detail.
Following their example, we still compare a model price of risk with a required price of risk estimated
from security market data alone.

33



0 0.5 1 1.5
0

0.5

1

1.5

R
E 

M
od

el
 P

ric
e 

of
 R

is
k

Excess Sensitivity

0 0.5 1 1.5
0

0.5

1

1.5
Excess Smoothness

0 0.5 1 1.5
0

0.5

1

1.5

R
E 

M
od

el
 P

ric
e 

of
 R

is
k

RE Required Price of Risk

Irrational Exuberance

0 0.5 1 1.5
0

0.5

1

1.5

RE Required Price of Risk

Depression Generation

Figure 14: RE Prices of Risk in Period 25 of the Business-Cycle Example
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Figure 15: RE Prices of Risk in Period 25 of the Unit-Root Example
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Figure 16: RE Prices of Risk in Period 10 of the CRRA Example
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The next set of figures compares the RE required price of risk with the subjec-
tive measure ρB

t (mt+1) that appraises the price of risk from the vantage of Bayesian
consumers. The RE required price of risk ρA

t (m̃t+1) is again plotted on the horizontal
axis, and the consumers’ price of risk ρB

t (mt+1) is now shown on the vertical. Once
again, the RE required price of risk is often higher by one or two orders of magnitude.
If one regards the consumers’ price of risk as the true value and the RE calculation
as an estimate of it, then the figures can be interpreted as an assessment of the RE
approximation. Many of the RMSAE statistics for this comparison are off the chart,
on the order of 1.0E+02 to 1.0E+06. Notice also that the RE model price of risk,
shown in the previous figures, is actually closer to subjective evaluations. The irony
in this example is that the RE model price of risk, which is usually judged to be too
low, is nearer to the truth. It is the required price of risk that is exaggerated.
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Figure 17: Consumers’ and RE Prices of Risk in Period 25 of the Business-Cycle
Example
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Figure 18: Consumers’ and RE Prices of Risk in Period 25 of the Unit-Root
Example
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Figure 19: Consumers’ and RE Prices of Risk in Period 10 of the CRRA Example

The reason why the RE estimate ρA
t (m̃t+1) is so much larger is that it encompasses

both risk aversion per se and model uncertainty. To see why, re-write the Bayesian
first-order condition (61) in terms of rational-expectations probabilities,

1 = EB
t (mt+1Rt+1), (65)

=
∑

j
mt+1(st+1 = j|St)Rt+1(st+1 = j|St)prB(st+1 = j|St),

=
∑

j

[

mt+1(st+1 = j|St)
prB(st+1 = j|St)

prA(st+1 = j|st)

]

Rt+1(st+1 = j|St)prA(st+1 = j|st).

The term in brackets is the modified discount factor m̃t+1 that reconciles Bayesian
prices with RE transition probabilities. It involves the consumers’ IMRS along with
the Radon-Nikodým derivative of the Bayesian transition density with respect to the
actual transition density. Variation in the IMRS reflects how averse consumers are
to risk, while variation in the Radon-Nikodým derivative reflects their uncertainty
about the law of motion for income. If the perceived and actual laws of motion were
the same, the latter term would always equal 1, and its variance would be zero. But
because consumers are uncertain about the law of motion and try to learn about it,
their beliefs change over time, giving rise to variation in this probability ratio. Hence
variation in prB(·)/prA(·) reflects consumers’ uncertainty about the right model for
income.

Risk aversion and model uncertainty are both in play in the Bayesian economy,
but our consumers are actually very risk tolerant. Their IMRS varies, but unless α
is large it varies only a little. It follows that most of the variation in m̃t+1 recorded
in ρA

t (m̃t+1) arises from variation in the Radon-Nikodým derivative. Thus, the high
price of risk required under rational expectations mostly reflects model uncertainty
and changing beliefs; risk aversion makes only a small contribution.

Finally, notice that an anticipated-utility modeler trying to rationalize prices and
quantities would draw the same conclusions about the conditional market price of
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risk as a Bayesian modeler. This follows from the fact that one-step ahead transition
probabilities in the anticipated-utility model coincide with those of a Bayesian model.
Transition probabilities disagree over longer horizons but are the same for one-period
forecasts. Since the one-step transition probabilities agree, the implicit stochastic
discount factor m̃AU

t+1 is the same as the Bayesian discount factor mt+1. In addition,
conditional moments evaluated with respect to one set of probabilities are equivalent
to those evaluated with respect to the other, so ρB

t (·) = ρ̃AU
t (·). It follows that the

AU price of risk is identical to Bayesian price of risk,14

ρB
t (mt+1) = ρAU

t (m̃AU
t+1). (66)

The AU approximation is a shortcut for calculating multi-step transition proba-
bilities. Since multi-step transitions are not in play for calculating the conditional
market price of risk, the AU approximation coincides with Bayesian calculations.

6 Conclusion

This paper represents a progress report on our research on anticipated utility. Our
results are encouraging in three respects. First, the anticipated-utility approximation
is excellent provided that precautionary motives are not too strong. This can be
understood in terms of how an anticipated-utility model approximates a Bayesian
predictive density. In our examples, the anticipated-utility model well-approximates
the mean of the predictive density, but it neglects parameter uncertainty and there-
fore has tails that are too thin. Whether the quality of the approximation in the tails
matters for decisions depends on the strength of precautionary motives. When deci-
sions depend mostly on the mean, as in certainty-equivalent or small-α models, errors
in approximating the tails matter hardly at all for decisions. The range of α over
which we obtain good results covers values typically used in macroeconomics, so the
approximation is likely to be very reliable for macroeconomic applications. The qual-
ity of the approximation deteriorates as α increases, however, so anticipated-utility
modeling may be problematic for applications in finance when high risk aversion is
assumed. But the full Bayesian analysis also turns out to be more tractable than we
expected, making us optimistic that the methods can be generalized to more realistic
applications when one has doubts about the anticipated-utility approach. Finally,
the results on market prices of risk are tantalizing. In Cogley and Sargent (2004), we
explore further how learning drives a wedge between subjective and RE prices of risk
in the context of a more realistic asset pricing model.

14One can confirm this by inspecting the formulas in Appendix D. Re-interpret prA(·) as an
anticipated-utility transition probability and then equate prB(·) = prA(·). The equality of the prices
of risk follows directly.
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A A Dirichlet-Multinomial Model for a Multi-State

Markov Process

In this example, we suppose that st can take on any of k distinct values. The
transition probabilities are governed by a Markov transition matrix,

Π =









p11 p12 ... p1k

p21 p22 ... p2k

... ... ... ...
pk1 pk2 ... pkk









, (67)

where pij = pr(st+1 = j|st = i), the probability of moving from state i to state j.
Once again, we assume the states are observable but that the transition probabilities
are unknown.

The multi-state extension of the beta-binomial model is a Dirichlet prior and a
multinomial likelihood. As before, we assume the agent has independent priors over
the rows of Π,

f(p1, p2, ..., pk) =
∏k

i=1
f(pi), (68)

where pi = [pi1, pi2, ..., pik]. The prior on each row is assumed to have the Dirichlet
form,

f(pi) ∝
∏k

j=1
p

nij
0
−1

ij , (69)

where nij
0 records the prior number of transitions from state i to state j. The likelihood

function for a batch of data st is proportional to the product of multinomial densities,

f(st|p1, ..., pk) ∝
∏k

i=1
p

(ni1
t −ni1

0
)

i1 p
(ni2

t −ni2
0

)
i2 ...p

(nik
t −nik

0
)

ik , (70)

where nij
t is the total number of transitions, prior plus observed, from state i to state

j through date t. Multiplying the likelihood by the prior delivers the posterior kernel,

f(p1, ..., pk|s
t) =

∏k

i=1
f(pi|s

t), (71)

where
f(pi|s

t) ∼ p
ni1

t −1
i1 p

ni2
t −1

i2 ...p
nik

t −1
ik . (72)

The expression on the right side is a Dirichlet kernel, and its normalizing constant
can be calculated as

∫

· · ·

∫

p
ni1

t −1
i1 p

ni2
t −1

i2 ...p
nik

t −1
ik dpi1...dpik =

∏k
j=1Γ(nij

t )

Γ(
∑k

j=1n
ij
t )

, (73)
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(see Sobel, et. al. 1977). Therefore, each term of the posterior density is

f(pi|s
t) =

Γ(
∑k

j=1n
ij
t )

∏k
j=1Γ(nij

t )

∏k

j=1
p

nij
t −1

i1 . (74)

A Dirichlet prior and a multinomial likelihood form a conjugate pair. With inde-
pendent Dirichlet priors over the rows of Π, Bayes’s law implies that the posterior is
also independent across the rows of Π and that each row is distributed as a Dirichlet
random vector.

Next we derive the posterior predictive density, f(st+1|st, nt). This function as-
signs a probability to each of the k possible values of st+1 for given values of st and
nt. There are k2 possibilities,

pr(st+1 = j|st = i, nt), i = 1, ..., k, j = 1, ..., k. (75)

As before, one can express each predictive probability by demarginalizing with respect
to the true but unknown transition probabilities and then integrating across plausible
values implied by the posteriors:

pr(st+1 = j|st = i, nt) =

∫

pr(st+1 = j, pij|st = i, nt)dpij, (76)

=

∫

pr(st+1 = j|st = i, nt, pij)f(pij|st, nt)dpij,

=

∫

pr(st+1 = j|st = i, pij)f(pij|st, nt)dpij,

=

∫

pijf(pij|st, nt)dpij.

The third equality follows from the fact that the counters are redundant given knowl-
edge of the true transition probability, and the fourth reflects the definition of pij, i.e.
pr(st+1 = j|st = i, pij) = pij.

Recall that each row of Π is a Dirichlet random vector. Here the relevant beliefs
concern the marginal distribution over a single element of row i, not the joint distrib-
ution over the entire row. But we can exploit the fact that the marginal distribution
over a single element of a Dirichlet vector is a beta random variable (e.g., see Gelman,
et. al. p. 482). Thus, the posterior for pij can be expressed as

f(pij|st = i, nt) =
Γ(

∑k
h=1n

ih
t )

Γ(nij
t )Γ(

∑

h 6=in
ih
t )

p
nij

t −1
ij (1 − pij)

(
∑

h 6=in
ih
t )−1

. (77)

The transition probability we are seeking can therefore be written as

pr(st+1 = j|st = i, nt) = (78)

Γ(
∑k

h=1n
ih
t )

Γ(nij
t )Γ(

∑

h 6=in
ih
t )

∫

pijp
nij

t −1
ij (1 − pij)

(
∑

h 6=in
ih
t )−1

dpij.
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This is the posterior mean of a beta density. By following the same steps as in
example 1, we can write this as

pr(st+1 = j|st = i, nt) =
nij

t
∑k

h=1n
ih
t

≡ p̂ij
t . (79)

The posterior predictive probability of moving from state i to state j is simply the
number of transitions from i to j divided by the total number of times the system
has visited state i.

This is the probability of moving across the natural states. We actually want the
transition probability for the expanded state, f(st+1, nt+1|st, nt), which also reflects
how the counters are updated. In each period, one element of nt increases by 1, the
others remaining constant. Which one is updated depends in a deterministic fashion
on the s-transition. It follows that

pr(st+1 = j, nt+1 = nt + ej|st = i, nt) =
nij

t
∑k

h=1n
ih
t

≡ p̂ij
t , (80)

where ej is a row vector with a 1 in column j and zeros everywhere else.
The complete list of p̂ij

t for i = 1, ..., k and j = 1, ..., k provides the building blocks
for the transition matrix Pt,t+1. Again, imagine iterating through the rows of St and
St+1. The transition probabilities can be found as follows.

• If sl
t+1 = i, sm

t+1 = j, and the n-update is consistent with the s-transition, set

P lm
t,t+1 = nij

lt/
∑k

h=1n
ih
lt ,

• Otherwise, set P lm
t,t+1 = 0.

Having computed the sequence of transition matrices {Pt,t+1}
T−1
t=1 in this way, one

can proceed to the dynamic program. The curse of dimensionality lurks here as well.

B Deriving the Chapman-Kolmogorov Equation

We want to express the m-step transition matrix

Pt,t+m(x, y) = pr[St+m = y|St = x]. (81)

in terms of one-step transition matrices. Define the joint transition density

P (x, x1, ..., xm−1, y) = pr[St+m = y, St+m−1 = xm−1, ..., St+1 = x1|St = x]. (82)

40



This density spells out all the intermediate steps that take us from St = x to St+m = y.
Next, factor this into a conditional density for St+m and a marginal density for all
the previous steps,

P (x, x1, ..., xm−1, y) = pr[St+m = y|St+m−1 = xm−1, ..., St+1 = x1, St = x] (83)

×pr[St+m−1 = xm−1, ..., St+1 = x1|St = x].

Because the states are Markov, the conditional density in the first line simplifies to

pr[St+m = y|St+m−1 = xm−1, ..., St+1 = x1, St = x] = pr[St+m = y|St+m−1 = xm−1],
(84)

so that the entire expression becomes

P (x, x1, ..., xm−1, y) = pr[St+m = y|St+m−1 = xm−1] (85)

×pr[St+m−1 = xm−1, ..., St+1 = x1|St = x].

Factor the joint density on the second line in the same way, and continue back to
period t + 1. Eventually we find that the joint transition density (equation (82)) is
the product of one-step transition densities,

P (x, x1, ..., xm−1, y) = pr[St+m = y|St+m−1 = xm−1]...pr[St+1 = x1|St = x]. (86)

The m-step transition density (equation 81) can be found by marginalizing with
respect to all the intermediate steps. Because this is a discrete-state model, mar-
ginalization is done by summation:

Pt,t+m(x, y) =
∑

x1

...
∑

xm−1

P (x, x1, ..., xm−1, y), (87)

=
∑

x1

...
∑

xm−1

pr[St+m = y|St+m−1 = xm−1]...pr[St+1 = x1|St = x],

=
∑

x1

...
∑

xm−1

Pt,t+1(x, x1)Pt+1,t+2(x1, x2)...Pt+m−1,t+m(xm, y).

The notation Ph,h+1(z1, z2) denotes the one-step transition probability associated with
moving from state z1 in period h to state z2 in period h+1. We need the h subscripts
because the Markov chain is not homogenous; the transition matrix changes from
period to period as the state space expands.

Pt,t+m(x, y) is a particular element of the m-step transition matrix. The full set
of transition probabilities can be expressed in matrix form as

Pt,t+m = Pt,t+1Pt+1,t+2...Pt+m−1,t+m, (88)

where Ph,h+1 are the one-step transition matrices derived above. The i, j element of
Pt,t+m is the probability of moving from state i at time t to state j at time t + m.
Equation (88) is known as the Chapman-Kolmogorov equation.
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C How the State Space is Constructed

For the two-state models used in the examples, there are 4 counters, one for each
possible transition of st. The expanded state space consists of all possible permuta-
tions of counters as well as the two possible values for the natural states. To construct
this state space, we start with a large k × 4 matrix in which each row represents a
potential configuration of the counters. Initially, we include all combinations of in-
tegers from 1 to T, the time horizon of the model. In T periods, the economy can
remain in the same state the entire time, so the counters for sh to sh and sl to sl

transitions can in principle reach T. But the state cannot switch from sh to sl or sl

to sh that many times. The maximum number of switches in T periods is (T + 1)/2,
so we prune the original matrix by eliminating rows in which the counters for sh to
sl or sl to sh exceed this limit. Call this matrix N0.

Next, we rearrange the rows of N0 so that counters are grouped by date. Ad-
missible counters for date t should sum to t, and the elements representing switches
should not exceed (t + 1)/2. Once again, we prune elements of N0 that violate this
constraint. We label the resulting matrices N1t.

Next we add the prior counters to N1t to get a new set of counters N2t. We also
append sh and sl to N2t, obtaining a state array

S0t =

[

sh · ι N2t

sl · ι N2t

]

, (89)

where ι is a column vector of ones conformable with N2t. Thus S0t consists of every
permutation of the counters and levels of income.

The matrix S0t is a profligate representation of the state, however, containing
many elements that the Markov process cannot actually reach. To identify redundant
elements, we compute transition probabilities

P 0
t,t+1(i, j) = pr(S0t+1 = xj|S0t = xi). (90)

This is done by iterating through the rows and columns of S0t and S0t+1 and looking
for admissible matches. For i = 1, 2 and j = 1, 2, a match is admissible if st = si,
yt+1 = sj, the counter for i to j transitions increases by one, and the other counters
remain unchanged. In that case, the transition probability is nij

t /(nii
t + nij

t ). All
other matches between S0t and S0t+1 correspond to pairs in which the change in s
is inconsistent with the change in n. Accordingly, their transition probabilities are
zero.

After cycling through all the rows and columns of S0t and S0t+1, we have a transi-
tion matrix P 0

t,t+1. We identify redundant elements of S0t+1 by inspecting the columns
of this matrix. If an element of S0t+1 cannot be reached from S0t, the corresponding
column of P 0

t,t+1 is zero. Accordingly, we eliminate rows of S0t+1 that correspond to
columns of P 0

t,t+1 that sum to zero. The reduced state array is denoted St+1, and
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the trimmed transition matrix connecting the reduced states St and St+1 is denoted
Pt,t+1.

These tree-trimming operations substantially reduce the dimension of the state
space. For example, for a 50-period economy the matrix N0 has more than 1.7 million
rows. We can eventually reduce the dimension of the state to approximately 44,200.

D Arrow Prices and the Market Price of Risk in

a Finite-State Markov Economy

The market price of risk is defined as the ratio of the conditional standard deviation
of a stochastic discount factor to its conditional mean. Here we show how to express
the market price of risk in terms of Arrow security prices.

Consider first the subjective market price of risk, which is associated with the
preferences and beliefs of the consumers who inhabit in the models. In our Markov
economies, the conditional mean is

µB
t (mt+1) =

∑k

j=1
mt+1(st+1 = j|St)prB(st+1 = j|St), (91)

=
∑k

j=1
Qt(st+1 = j|St) = β.

Similarly, the conditional second moment is

EB
t (m2

t+1) =
∑k

j=1
m2

t+1(st+1 = j|St)prB(st+1 = j|St), (92)

=
∑k

j=1

Q2
t (st+1 = j|St)

prB(st+1 = j|St)
.

It follows that the price of risk is

ρB
t (mt+1) =

[EB
t (m2

t+1) − µB
t (mt+1)

2]1/2

µB
t (mt+1)

, (93)

=

[

∑k
j=1

Q2
t (st+1=j|St)

prB(st+1=j|St)
−

(

∑k
j=1 Qt(st+1 = j|St)

)2
]1/2

∑k
j=1 Qt(st+1 = j|St)

.

Because the risk-free bond price is constant and equal to β in our models, this ex-
pression further simplifies to

ρB
t (mt+1) =

[

∑k

j=1

Q2
t (st+1 = j|St)

β2prB(st+1 = j|St)
− 1

]1/2

. (94)
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Next, consider the model price of risk under rational expectations, ρA
t (mt+1) =

σA
t (mt+1)/µ

A
t (mt+1). Under the actual transition law, the conditional first and second

moments are

µA
t (mt+1) =

∑k

j=1
mt+1(st+1 = j|St)prA(st+1 = j|st), (95)

=
∑k

j=1
mt+1(st+1 = j|St)

prA(st+1 = j|st)

prB(st+1 = j|St)
prB(st+1 = j|St)

=
∑k

j=1
Qt(st+1 = j|St)

prA(st+1 = j|st)

prB(st+1 = j|St)
,

and

EA
t (m2

t+1) =
∑k

j=1
m2

t+1(st+1 = j|St)prA(st+1 = j|st), (96)

=
∑k

j=1
[mt+1(st+1 = j|St)prB(st+1 = j|St)]

2 prA(st+1 = j|st)

pr2
B(st+1 = j|St)

,

=
∑k

j=1

Q2
t (st+1 = j|St)

prB(st+1 = j|St)

prA(st+1 = j|st)

prB(st+1 = j|St)
,

respectively. It follows that the RE model price of risk is

ρA
t (mt+1) =

[

∑k
j=1

Q2
t (st+1=j|St)

prB(st+1=j|St)
prA(st+1=j|st)
prB(st+1=j|St)

−
(

∑k
j=1 Qt(st+1 = j|St)

prA(st+1=j|st)
prB(st+1=j|St)

)2
]1/2

∑k
j=1 Qt(st+1 = j|St)

prA(st+1=j|st)
prB(st+1=j|St)

.

(97)
This is not the most straightforward way to calculate the model price of risk, and
a rational expectations modeler would not adopt it because he would not know
prB(st+1 = j|St). But we do know the Bayesian probabilities, and this formula hap-
pens to simplify our computations given what is available from our simulation output.

Finally, consider the rational-expectations calculation of the required price of risk,
ρA

t (m̃t+1) = σA
t (m̃t+1)/µ

A
t (m̃t+1). The conditional mean is

µA
t (m̃t+1) =

∑k

j=1

Qt(st+1 = j|St)

prA(st+1 = j|st)
prA(st+1 = j|st), (98)

=
∑k

j=1
Qt(st+1 = j|St) = β.

Similarly, the conditional second moment is

EA
t (m̃2

t+1) =
∑k

j=1

[

Qt(st+1 = j|St)

prA(st+1 = j|st)

]2

prA(st+1 = j|st), (99)

=
∑k

j=1

Q2
t (st+1 = j|St)

prA(st+1 = j|st)
,
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It follows that the market price of risk is

ρA
t (m̃t+1) =

[

∑k
j=1

Q2
t (st+1=j|St)

prA(st+1=j|st)
−

(

∑k
j=1 Qt(st+1 = j|St)

)2
]1/2

∑k
j=1 Qt(st+1 = j|St)

, (100)

=

[

∑k

j=1

Q2
t (st+1 = j|St)

β2prA(st+1 = j|st)
− 1

]1/2

.

This depends on Arrow security prices, which are observed, and on actual transition
probabilities, which a rational expectations modeler can consistently estimate. Hence
the RE required price of risk can be calculated from asset price data without making
assumptions about the form of the stochastic discount factor.
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