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1. The uniqueness of this decomposition requires some qualification.
Elements of L2 are only defined up to an equivalence of functions
that are equal almost everywhere. Hence from the vantage pohit of
L2, the construction of </>+and </>-at a particular point, say t =0,
is inconsequential.

I!'

2. We take the right side of equation (3.1) as the definition of x(t),
Alternatively, for particular classes of I we could define x(t) using
finite sum approximations for the middle integral.

3. In Examples 1 and 3 it is also possible to allow for exponential
growth in the second moments of y as long as t/Jexp( -O't) is in
L~ for some 0' satisfying 0 < 0' < 8. The transform analysis now
applies to the narrower strip C6"n C;.
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Identification of Continuous Time
Rational Expectations Models
from Discrete Time Data

by Lars Peter HANSEN and Thomas J. SARGENT

1. Introduction

III'

This paper proves two propositions about identification in a con-
tinuous time version of a linear stochastic rational expectations model.
The model is a continuous time version of Lucas and Prescott (1971), in
which'the equilibrium can be interpreted.~ the solution of a 'stochastic
control problem, either of a collection of private agents or of a fictitious
"socialplanner. Estimation is directed toward isolating the parameters
of the agent's objective function and of the stochastic processes of the
forcing functions that the agent faces. This approach has been advo-
cated by Lucas (1967, 1976), Lucas and Prescott (1971), and Lucas
a.nd Sargent (1981) as offering the potential to analyze an interesting
class of policy interventions promised by structural models, while meet-
ing the criticisms of most econometric policy evaluation methods that
were made by Lucas (1976). At the same time, inspired by the work
of Sims (1971), Geweke (1978), and P.C.B. Phillips (1972, 1973, 1974),
we want to estimate models in which optimizing economic agents make
decisions at finer time intervals than the interval of time between the
observations used by the econometrician. We adopt a continuous time
theoretical framework both because it is an interesting limiting case,
aJ;ld.because it has received extensive attention in the theoretical and
the econometric literatures.

Identification of the parameters of a continuous time model from
discrete time data must confront the aliasing problem (see, e.g., Phillips
1973). In general, there is an uncountable infinity of continuous time
models that are consistent with a collection of discrete time observa-
tions. However, with finite parameter continuous time models, the
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220 Identification in Continuous Time

aliasing problem, while still present, is less severe. The dimensions of
the aliasing identification problem for the particular class of finite pa-
rameter models treated in this paper have been studied in earlier papers
by Phillips (1973) and Hansen and Sargent (1983b). In these finite pa-
rameter models, there is a finite number of observationally equivalent
continuous time models that are consistent with the discrete time ob-
servations. To achieve identification of the continuous time model, an
additional source of prior restrictions is needed. This paper shows how
the non-linear cross-equation restrictions implied by rational expecta-
tions achieve identification of the continuous time model.

We consider a linear rational expectations model that gives rise to
systems of stochastic differential and difference equations that resemble
the forms of Phillips' (1973) systems. However, we analyze identifying
restrictions of a different variety than those studied by Phillips. As Lu-
cas (1976), Lucas and Sargent (1981), and Hansen and Sargent (1980a,
1981a, 1981d) have pointed out in several related contexts, even ratio-
nal expectations models that are linear in the variables typically are
characterized by sets of highly nonlinear cross-equation restrictions,
which to a large extent replace the linear (usually exclusion, usually
within-equation) restrictions used to identify many existing time series
models.

The intuition underlying our results is as follows. In dynamic ra-
tional expectations models, agents' decisions partly depend on their
expectations of all future values of other variables in the model. When
agents are acting in continuous time, a discrete time record of agents'
decisions contains information about their forecasts of other variables
in the model for all instants in the future. Under rational expectations,
the hints about agents' views of the future contained in their decisions
at discrete points in time restrict the actual behavior of these other
variables as stochastic processes in continuous time. These hints are
the source of identification that we propose to utilize.

We prove identification propositions under two alternative sets of
conditions. The first set of conditions severely restricts the serial cor-
relations of the unobservable disturbance term, although it does not
require that the right-hand-side observables be strictly exogenous. The.
second set of conditions leaves the serial correlations of the disturbance
unrestricted but imposes that the right-hand-side variables must be
strictly exogenous in continuous time and that they have a rational
spectral density matrix. Identification is then achieved from the re-
strictions that the theory imposes between the projections of the en-
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" dogenous on the exogenous variables, on the one hand, and the spectral
density matrix of the exogenous variables, on the other hand. This sec-
ond set of conditions thus uses an approach to identification in the spirit
of that used by Hatanaka (1975) in the context of discrete time models.
Our results exhibit a tradeoff between the strength of strict exogeneity
and serial correlation assumptions that are sufficient for identification.
A similar tradeoff occurs in discrete time series models.

~
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2. The Continuous Time Model

.1,r

The model studied is a continuous time, linear-quadratic version of
a Lucas-Prescott model of investment under uncertainty. This model
has a variety of possible interpretations, applications, and extensions
(for example, see Hansen and Sargent 1981a, Eckstein 1984, and Eichen-
baum 1983). For the identification propositions proved here, a single
factor model involving a single dynamic decision variable is used. In
the appendix, we briefly indicate how the results might be extended to
prove identification of continuous time, interrelated factor models from
discrete time data.1

Consider a firm or fictitious social planner that maximizes over
strategies for K(t) the criterion.
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(I)
Eo 1000J[K(t), DK{t), t, Z1{t), y{t)]dt

where

l'

J[K{t), DK{t), t, Z1(t), y(t)]

= {y(t)K(t) - (3I«t? - z1{t)DI«t) - a[DI«t)]2 }e-rt ,

where D is the time derivative operator, and where Et is the expec-
tations operator conditioned on information available at time period
t. Here J( (t) is the capital stock, Z1(t) is the relative price of invest-
ment goods, y(t) is a random shock to productivity, all at time period
t, a and (3 are positive constants, and r is a fixed discount rate. The
variables Zl(t) and y(t) are elements in a vector stochastic process of
forcing variables. Using results from Hansen and Sargent (1981d) and
Chapter 7, the Euler equation for the certainty equivalent version of
the firm's maximization problem is

(2) - aD2 I<{t) + raDI<{t) + (3I<{t)

= -(1/2) [rz1(t)- y{t) - Dz1(t)]

~ - --



222 Identification in Continuous Time

For simplicity, we assume that the discount rate is zero.2 The charac-
teristic polynomial for the Euler equation (2) can be factored

-as2 + {3= (p - s) (p + s )a

where

p={1.
The solution to the Euler equation (2) that maximizes (1) is

(3) DK(t) = -pK(t) - (1/2a)Et 10')0e-pr[DZl(t + r) + y(t + r)]dr .
We seek to identify p, a, and the parameters of the stochastic processes
of the forcing variables from discrete time data.3 To provide an inter-
pretation of the error term- in equations fit by an econometrician, we
assume that y(t) is observed by private agents but not by the econo-
metrician. Let z(t)' = [ZI(t), Z2(t)'], where Z2(t) is a list of additional
variables which are seen by both private agents and the econometri-
cian and which help predict future ZI's. The econometrician knows the
discrete time covariogram and cross-covariogram of the (K, z) process
and from these moments seeks to identify the parameters p and a that
characterize the continuous time objective function (1) and the param-
eters of the continuous time stochastic process governing (z, y). We
study this identification problem using two alternative specifications of
the continuous time stochastic process (z, y).

3. Identification Where ([(, z) Is a First-Order
Markov Process

In this section we make a special assumption about the forcing
variables that is sufficient to imply that ([(, z) is a covariance stationary,
first-order Markov process. Specifically,

Assumption 1: The forcing variables y(t) and ZI(t) are governed by4

y(t) = Dei(t)

and

(4) Dz(t) = A22Z(t) + ci(t)

where ZI(t) is the first element in the n -1 dimensional vector z(t), the

eigenvalues of A22 have negative real parts, and e*' = [ei, ei'] is an n
dimensional vector white noise with intensity matrix yo*.
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Note that Assumption 1 allows ei and ei to be correlated contempora-
neously.

Using (4) and the results from Hansen and Sargent (1981d) and
Chapter 8 to solve the prediction problem on the right side of (3), weobtain

(5) DK(t) = -pK(t) - (1/2a)uA22[A22- pIt1z(t) - (1/2a)ei(t)I
1
1
~, where u is the n - 1 dimensional unit row vector given by u = [1,0].

We let e' = [(-1/2a)ej, ei], and we stack equations (4) and (5) into
the vector first order differentialequation system:,

t

[

DK(t)
]

=
[

All A12

]Dz(t) A21 A22 [
K(t)

]
+

[
el(t)

]z(t) e2(t)
or

Dx(t) = Aox(t) + e(t) .

The partitions of the Ao matrix satisfy the restrictions

(6)
All = -p
A21 = 0

A12 = (-1/2a)uA22 [A22- pIt1 .

f'.

While the restriction on A21 is a zero restriction, the restrictions linking
All, A12, and A22 are highly nonlinear. Phillips (1973) considered the
impact on identification of the zero restriction on A21.6 It happens that
this exclusion restriction by itself is not sufficient to identify the pa-
rameters of A22 and A12. However, we shall show that once we add the
nonlinear cross-equation restrictions implied by rational expectations,
it is possible to identify p, a, A22, and, consequently, A12 and All.

It was shown by Phillips (1973) that the discrete time process X
obtained by sampling x at the integers has a first order autoregressive
representation,7

(if

II'

" I!'

~

X(t) = BoX(t -1) + 17(t)
where

Bo =exp Ao

17(t)= 101 exp (Aor) e(t - r)dr .
By virtue of the fact that e is a continuous time white noise, it follows
that TJis a discrete time white noise. The parameters of Bo are identified

!
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224 Identification in Continuous Time

from knowledge of the discrete time matrix covariogram of the X =
(I<, z) process.

We pose the following identification question: given the matrix Bo,
is it possible uniquely to determine the free parameters of the matrix
Ao18 That is, does the matrix equation

(7) exp A* == Bo = expAo

imply that A * = Ao1 We shall prove that the answer is yes. To proceed,
we make the additional assumption:

Assumption 2: The eigenvalues of Ao are distinct.

Write the spectral decomposition of Ao as

Ao = TAoT-1

where Ao is a diagonal matrix of eigenvalues of Ao and T is the matrix
whose columns are eigenvectors of Ao. Partition the matrices T and Ao
in the eigenvalue decomposition of Ao comformably with Ao so that

[

Tn TI2
]

,T = 0 T22 [

AI 0
]

.
Ao= 0 A2

It is readily verified that -p = Al and A22 = T22A2T221,so that A2
is the diagonal matrix of the eigenvalues of A22. Now let the first
n - 1 - 2m eigenvalues of A22 be real and the remainder occur in
complex conjugate pairs as An-Tn = Xn-2m, ..., An-l = Xn-I-m. For
analytical convenience, we require

Assumption 3: The eigenvalues of Ao do not differ by integer multiples
of 211"i.

Then if a matrix A* is to satisfy (7), it must be related to Ao by9

(8)
[

0 0 0

]
A * = Ao+ 211"iT 0 P 0 T-I

0 0 -P

where P is any m dimensional diagonal matrix whose diagonal elements
are arbitrary integers. In effect, (8) displays the class of perturbations
of the complex eigenvalues of Ao which leave the relation Bo = exp A*
satisfied.

To show that the restrictions imposed on the model by rational
expectations can be used to identify Ao from Bo, we shall use the
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special nature of the perturbations of Ao which are admissible under
(8). Notice that all A*'s that satisfy (8) must have identical matrices of
eigenvectors-that is, T matrices-and can differ only in the imaginary
parts of their complex eigenvalues. So the T matrix is identified, as
are the real parts of the eigenvalues. Since p is a real eigenvalue, it
is automatically identified. We shall indicate how the cross-equation
restrictions imposed by rational expectations, in effect, link T, p, and
the eigenvalues A2. This will serve to establish the existence of a unique
inverse of B = exp A *.

Using the partitioned inverseformula

T-I =
[

Tiil -TiiITI2T22I
]0 r.-I ,22

we obtain the version of the eigenvalue decomposition appropriate for
our problem

A -
[

TllAITiil Tl2A2T221 - Tll AITiil T12Ti21

]
0 - I'

0 T22A2T22

It follows that

(9) Al2 = [T12A2T221+ pT12T221] .
We use (6) and (9) to express the cross-equation restrictions implied
by the model in the form

(-1/2cr)uA22 [A22 - pI]-1 = [T12A2 + pT12] T221

or

(-1/2cr)uT22A2 [A2- pI]-1 = Tl2 [A2 + pI] .
Solving for T12, we obtain

(-1/2cr)uT22A2 [A2- pItl [A2+ pI]-1 = TI2

or

iii -UT22 .

[
Aj

]TI2 = ~ dJag (A; - p2)cr .

Since Tl2 and T22 are identified because the eigenvectors of Ao are
identified, equation (10) implies that the quantities

(10)

(11) Aj

dj = (>'J - p2)cr

~
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can be inferred from the discrete time statistics. The question which
remains is whether, given knowledge of dj, p, and the real part of >'j,
we can infer 0: and the imaginary part of >'j. To find the answer, first
suppose >'1is real. Then it follows that 0: can be inferred from (11) for
j = 1. Let j be some other index such that >'j is complex and suppose
that >.;= >'j+ 27rip for some integer p that satisfies (11). Then we
know that

(12) >.j(>.j2 - p2) = >'j(>';- p2) .

The value of>'; distinct from Aj that satisfies (12) is

. _p2
>'j= T .J

(13)

Write Aj = (h + 02i where 01 and 02 are real with 01 less than zero.
Equation (13) implies that

. _p2
01 + (02 + 27rp)i = 01 + 02i

or

0102 + 7rp01 = 0

oi - O~- 27rp02= _p2 .

However, there are no values of {OI, (h, p} with 01 < 0 that satisfy both
equations in (14). It follows that all of the parameters of the model are
identifiable from discrete time data whenever there is at least one real
eigenvalue of A22.

Thus we have the following:

Proposition 1: Suppose Assumptions 1-3 are satisfied. If A22 has at
least one real eigenvalue, then the parameters 0:and f3 (or, equivalently,
0: and p) and the parameters of A22 are identifiable from discrete time
observations.

(14)

If there are only complex eigenvalues of A22, then it can be proved,
except for singular cases, that the free parameters of the continuous
time model are identifiable.10
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4. Identification with z Strictly Exogenous with Respect
to [( in Continuous Time

In the preceding section, the unobservable forcing variable yet) was
allowed to be correlated contemporaneously with the observable forcing
variables in z(t). However, identification of the feedback parameter p
used the fact that the disturbance term to the decision rule was known
to be a white noise. We now wish to relax this assumption together with
the assumption that the observable forcing variables can be represented
as a first-order Markov process. We relax these assumptions at the cost
of imposinga stronger condition about the covarianceof y and z. 11

Assumption 4: The joint process (y, z) is covariance stationary, linearly
regular and satisfies the extensive orthogonality conditions Ey(t)z(t-
T) =0 for all T.12

A fundamental moving average representation for (y, z) can be
written in partitioned form

[

yet)
]

-
[

C1(D) 0
]

,

[
C1(t)

]z(t) - 0 C2(D) cz(t)'

1 where Cj(s) is the Laplace transform of a square integrable matrix
function that is concentrated on the nonnegative numbers, and where
[cI, c~]' is a vector white noise with intensity matrix I. For the repre-
sentation to be fundamental, we must require that [c1(t), c2(t)']' lie in
the space spanned by linear combinations of {y( T), z( T)j T ~ t},13

In order to use convenient results from linear prediction theory
for continuous time processes, we assume that best linear predictions
and conditional expectations coincide. The forecasting problem on the
right side of equation (3) can be solved using techniques developed in
Chapter 8 to obtain,

~ .

t
!'

'*
1
!
t:

~

~ DK(t) =- pK(t) - ~
[

DCz(D) - PC2(P)

]20: D - P cz(t)

- ~
[

C1(D) - Cl(P)
]20: D - p c1(t) .

!

~
Iii

11<

t
IN Next we solve for I«t) and determine that14

(16) .

K(t) = -u[DCz(D) - pCz(p)] cz(t) _..!..
[

C1(D) - C1(P)

]
cl(t) .

20:(D+ p)(D - p) 20: (D + p)(D - p)'"
!:

Ii

I :
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(20) QA . - -UAjQj
C?(s) -I' ) -

W - (S-AI)(S-AZ) ... (S-Aq)]' 2a().j-p
TII . .

I
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Since e:l(t) is orthogonal to e:z(s) for all t and s, equations (15) and (16)
can readily be used to calculate the projection of K(t) onto current,
past, and future z's. This projection is given by

-u[DCz(D) - pCz(p)] CZ(D)-lz(t) + ~(t)
K(t) = 2a(D+ p)(D- p)

-u[DI - pCz(p)CZ(D)-l] z(t) + ~(t)= 2a(D + p)(D - p)

wherelS

Ez(t)~(t - T) = 0 for all T .
It is instructive to calculate the discrete time cross spectral density of
K and z:

Fl(W) = "f {-'::u
[

i(W+ 21rj)Cz(iw + 21rij) - PC2(P)

]j=-oo 2a[-(w + 21rj)2 - p2]

Cz(-iw - 21rij)'} .

From discrete time data we can identify the function Fl together with
the discrete spectral density of z which is given by

(17)

(18)
+00

Fz(w) = L Cz(iw+ 21rij)Cz(-iw - 21rij)'.
)=-00

The cross-equation rational expectations restrictions are apparent in
that the parameterization Cz occurs in both the spectral density ma-
trix Fz and in the cross spectral density Fl. The identification question
is whether the function Cz and the parameters p and a can be inferred
from Fl and Fz using relations (17) and (18). Without imposing addi-
tional restrictions on Cz, the answer to this question would appear to
be no. However, once we restrict the admissible parameterizations of
Cz to be rational in the way described by Hansen and Sargent (1983b),
we can achieve identification.

To achieve identification, we impose the following additional as-
sumption. Define .Ao= -po

Assumption 5: Cz(s) is of the form

""'P-""

I
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where Go, Gl, '" Gq-l are (n - 1) X (n - 1) real matrices. The zeros
of det G(s) have negative real parts and G(p) + G( -p),is nonsingular
where G(s) = Go+Gls+.. .+Gq-lsq-l. 16In addition, we assume that
G(Aj) ::/:0 and the real part of Aj is strictly negative for j = 1, 2, ..., q.
Finally, for each j (including j = 0), Aj = '\k for some index k, and
any two A'S with the same real part do not have imaginary parts that
differ by integer multiples of 21ri.

The A'S (for j = 1, 2, ..., q) are called the poles of Cz(s).

With this specification for Cz(s), the spectral density of z is known
to have the form

(19)
q

[

Q .
Q
'

]
h(w) =L . ) + . j

j=l zw- Aj -ZW-.Aj

where

l'
i

j

Qj = lim (s - Aj)CZ(S)C2(-s)' ,s->'j

12 is the spectral density matrix of z, and the prime denotes transpo-
sition but not conjugation. See Hansen and Sargent (1983b) or A.W.
Phillips (1959) for the details of this construction. From (16) we can de-
duce that the cross spectral density matrix is rational.17 In particular,let

h ( ) - -U[SC2(S)- pCZ(p)]C2(-S)'
1 s - 2a(s2- p2). .

Then the cross spectral density of z and K is given by f1 (w) = hI (itA).
We form a partial fractions representation of hI to obtain

t hl(s) =t
[
~ + CJi

]j=O s - Aj -s - Aj

where

CJi = lim (s - Aj)hl(s)
s->'j

and

CJi =- lim
s-->'j

Note that for j = 1, 2, ..., q

(s+Aj)hl(s) .
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and

Qo = U[-pC2( -p) - pC2(p)] C2(P)' .
4ap

Since Qo is different from zero, p can be identified from the discrete-
time cross spectral density Fl, To identify a and the imaginary parts
of the poles of C2(S), we make use of the fact that Qj, Qj, and the
real parts of the poles of C2(s) are identifiable from discrete time data
and that (20) holds. The matrices Qj and Qj can be inferred from the
discrete-time spectral density of Z and the cross spectral density of K
and z, respectively. The real parts of the poles of C2(S) can be inferred
from the discrete time spectral density F2 of Z (see Phillips 1959 and
Hansen and Sargent 1983b). Equation (20) is a restriction across the
spectral density of Z and th~ cross spectral density of K and z. Using
(19) and (20) we see that the quantities

(21)

(22)
>..)

dj = a(>.; - p2)

are identified from discrete time statistics. Equation (21) is identical
with equation (11) derived for the first-order Markov case. We summa-
rize these results in

Proposition 2: Suppose Assumptions 4 and 5 are satisfied. If there
is at least one real pole of C2(S), then the parameters a and f3 (or,
equivalently, a and p) and the continuous time spectral density matrix
of z are identifiable from discrete time observations.

If there fail to be any real poles of C2, then all of the parameters
can still be identified except possibly for some singular cases.
5. Conclusions

The two propositions proved in this paper indicate how the cross-
equation restrictions of rational expectations models can serve to iden-
tify the parameters of a continuous time model from discrete time ob-
servations. The basic idea is that where decisions reflect forecasting in
continuous time, the discrete time data on the decision variable and
the forcing variables contain adequate clues to permit us to infer the
parameters of the joint continuous time process of decision and forcing
variables.

The basic identification mechanism promises to carryover to more
complicated specifications than the two that are formally analyzed in

T

a

I
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this paper. Extensions to our two specifications can be imagined in a
var~ety of directions. These include

. Higher order Markov schemes for the Jorcing process z(t) in our
first setup.

. Higher order processes for the unobservable yet) in our first
setup.

. Multiple interrelated decision variables.

. Higher order adjustment costs.

A formula expressing the cross-equation restrictions for a multiple deci-
sion variable problem that is highly suggestive of identification, though
falling short of providing a formal proof, is reported in the appendix.

This paper is intended as a prologue to Hansen and Sargent (1980b)
that describes methods for estimating continuous time linear rational
expectations models that generalize the models analyzed in this present
paper. While formal identification theorems are not yet available for
those more general models, a method of checking for the presence of
an aliasing identification problem is readily available in any particular.
application. IS

Appendix

In this appendix we consider a multiple decision variable version
of the quadratic optimization problem considered in Section 2. We let
K(t) be a p dimensional decision vector, Zl(t) be a p dimensional vector
of forcing variables that are observed by the econometrician, and yet)
be a p dimensional vector of forcing variables that are not observed by
the econometrician. We consider a firm that maximizes over strategies
for K(t) the criterion

EoloooJ[K(t),DK(t),t,ZI(t),y(t)]dt

where
J[K(t), DK(t), t, Zl(t), yet)]

= {y(t)'K(t) - K(t)'f3K(t) - zl(t)'DK(t)
- [DK(t)]'a[DK(t)]}e-rt .

Here a and f3are p XP positive definite matrices. We assume that

yet) = Dci(t)

and

(23) Dz(t) = A22Z(t)+ ci(t)

I .:
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where Zl(t) is a p dimensional subvector of the n - p dimensional vector
z(t), the eigenvalues of A22 have negative real parts, and c., = [ci', c~']
is an n dimensional vector white noise with intensity matrix Vo'. We
factor the characteristic polynomial of the Euler equation

As in the third section, we ask whether the matrix equation

exp A. = Eo = exp Ao

-as2 + (r2/4)a + {3= [a - bs]'[a+ bs]

implies that A. = Ao. Assume that the eigenvalues of Ao are distinct
and that they do not differ by integer multiples of 2?ri. Write the spec-
tral decomposition of Ao as T AoT-l where Ao is the diagonal matrix
of eigenvalues and T is a matrix whose columns are eigenvectors of Ao.
Partition the matrices T and Ao conformably with Ao so that

where a and b are each p X P matrices such that the zeros of det (a - bs)

lie in the right-half plane while the zeros of det (a + bs) lie in the left-
half plane. This factorization is unique up to a premultiplication of a
and b by a common orthogonal matrix.

Using results in Hansen and Sargent (1981d) and in Chapter 7, we
find that the solution to the maximization problem of the firm is'

rIP
{DK(t) = -[b-1a -'2"I]K(t) + 2"?: Nju[A22- rI]3=1

[A22- (Sj + i)It1z(t)} - ~ t Njci(t)3=1

T =
[

Tll T12

]0 T22 [

AI 0
]

.
Ao = 0 A2

It follows that

A12 = T12A2T221 - AllT12T221 .
Restriction (25) implies that

(24)

det [a'b- sb'b]= so(s - sI) ... (s - sm) ,

N . - adj [a'b- b'bsj])- ,
SOni~j(Si - Sj)

and u is a p X (n - p) matrix of the form U = [1,0].We can write (23)
and (24) as the joint first-order differential equation

1 P r

(26) T12A2 - AllT12 = 2"?: Nju[A22- rI] [A22- (Sj + 2")I]-lT22.3=1

Let vec(.) represent the vector formed by taking the direct sums of the
rows of a matrix, and let 0 denote the Kronecker product. We solve
(26) for T12 to obtain

where

(27) vec T12 = [(-All 01)+ (I0 A2)r1 vec c

where

Dx(t) = Aox(t) + c(t)
c = ~ t Nju[A22 - rI] [A22- (Sj+ i)Ir1T22 .3=1

From our discussion in the third section, we know that the eigen-
vector matrix T and the real parts of the eigenvalues in Ao can be
inferred from discrete time data. The imaginary parts of the complex
eigenvalues can be perturbed by adding integer multiples of 2?ri such
that the complex conjugate pairs remain intact to generate alternative
choices of A. that satisfy

where

(25)

Ao =
[

All Al2

]A21 A22

[
-1 r

]All = - b .a - 2"I

A12 = ~ t Nju[A22 - rI] [A22- (Sj + i)Ir1)=1
A21 = 0

d

x(t) =
[

K(t)
]z(t)

c(t) =
[
-~ L:~=1Njci(t)

]C2(t) .

exp A. = Eo .

However, (27) restricts the class of admissible perturbations of the eigen-
. values further so that it appears that in most circumstances Ao is iden-

tifiable from discrete time data as are a and /3.
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Notes

1. This class of models includes continuous time, linear stochastic
versions of the models discussed by Gould (1968), Lucas (1967),
Mortensen (1973), and Treadway (1969). Geweke (1977a) used a
model of this kind to motivate interpretations of some discrete time
regressions.

2. Our discussion could be modified in a straightforward way to ac-
commodate situations in which r is specified a priori but is different
from zero. When r is set to zero, we have to interpret the decision
rule we investigate as a limit of decisions rules as r declines to zero.

3. Given that p and a are identified, j3can be inferred from the relation
j3= p2Ja.

4. The assumption that y is the derivative of the white noise ei is
contrived to imply that the decision rule has a white noise distur-
bance. In our discussion, the means of all of the random variables
have been implicitly set to zero.

5. For an introduction to continuous time, linear stochastic processes,
see Kwakernaak and Sivan (1972). A continuous time vector white
noise c(t) is said to have intensity matrix V if Ee(t)e(t-r) = 6'(r)V
where 6' is the Dirac delta generalized function.

6. Phillips (1973) has also studied cross-equation linear restrictions.

7. See Kwakernaak and Sivan (1972), Coddington and Levinson (1955),
and Gantmacher (1959) for the definition and properties of the ma-
trix exponential function exp (A).

8. Hansen and Sargent (1983b) showed that there is extra identifying
information about Ao contained in the expression linking the co-
variance matrix of ." to the intensity matrix of e. In our discussion
below, we supply sufficient conditions for identification that do not
exploit this extra information.

9. See Coddington and Levinson (1955) or Gantmacher (1959).
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by an integer multiple of 211",identification of the continuous time
parameters is achieved. Thus, identification will only be a problem
in singular cases. The existence of multiple pairs of complex con-
jugate eigenvalues of A22 will make identification even less likely to
be a problem.

11. For discrete time models, Hatanaka (1975) treated the identification
of structural parameters from the projections of the endogenous on
the exogenous variables without using prior information about the
orders of serial correlation of disturbance processes.

i

12. See Rozanov (1967) for a definition of the term linearly regular.

13. See Hansen and Sargent (1983b), for a fuller technical description
of the setup being used here.

14. Here we have implicitly assumed that the decision rule of the firm
has been employed forever.

~
i
t*.

15. Here we have implicitly assumed that z has a continuous time au-
toregressive representation. We do not need to make this assump-
tion in what follows. . .

16. This is one of the setups used by Hansen and Sargent (1983b). They
provide more technical details.

II;
I

h
;
;

17. Although the spectral density of z and the cross spectral density of
]{ and z are rational, the spectral density' of J( is not necessarily
rational and is not necessarily identifiable from discrete time data.

18. The method involves calculating the poles of the estimated stochas-
tic process of the forcing variables and constructing an observation-
ally equivalent continuous time model by perturbing the complex
eigenvalues by integer multiples of 211"i.It can then be checked
whether the implied continuous time model for the joint process of
decision variables and forcing variables is observation ally equivalent
with the estimated model.

,.

I

I
~
\
,

10. For example, if there is only one complex conjugate pair of eigen-
values of A22 and no real eigenvalues, then it can be shown that
the imaginary part of one of these eigenvalues has to satisfy a cu-
bic equation. Unless the cubic equation has solutions that differ J

'!II
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