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Notes

1. For some values of n < 1, the household technology generates ratio-
nal addiction as suggested by Stigler and Becker (1977) and Becker
and Murphy (1988).
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Prediction Formulas
for Continuous Time
Linear Rational Expectations Models

by Lars Peter HANSEN and Thomas J. SARGENT
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In this note we derive optimal prediction formulas to be used in
solving continuous time rational expectations models. In these deriva-
tions we employ Laplace transforms in a manner analogous to the use
of z transforms for solving discrete time optimal prediction problems in
Hansen and Sargent (1980a, Appendix A). The formulas are intended
to play the same role for continuous time models that the discrete time
formulas for optimal predictions of-geometric distributed leads did in
Hansen and Sargent (1980a).

1. Convolutions and Prediction

J,et L1 and L2 denote the spaces of all real-valued Borel measurable
functions 4>on R that are absolutely integrable and square integrable,
respectively. Let W denote a random measure defined on R with in-
crements that are orthogonal and second-moment stationary. In other
words,
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E[W{[t2' tI}}2] = t2 - t1 for t2 > t1 ,(1.1)

and

(1.2) E[W{[t4' ta)}W{[t2, tI}}] = 0 for t4 > ta > t2 > t1 .
S'
~ Using functions in L2 and the random measure W, we construct second-

moment stationary processes as convolutions:
~

(1.3) 1
+00

x(t) = -00 4>(r)dW(t - T) .
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210 Prediction Formulas for Continuous Time

The stochastic integral in (1.3) can be interpreted as the limit point
of a mean-square convergent sequence of random variables (e.g. see
Rozanov 1967). Relation (1.3) gives a convenient mapping between the
space L2 of functions and the space X of stochastic processes. It turns
out that inner products on these two spaces coincide. More precisely,
let </>1and </>2be any two functions in L2. An implication of (1.1) and
(1.2), is

(1.4) 1
+00

-00 </>1(T)</>2(T)dT = E[Xl(t) X2(t)]

where Xl and X2 are given by convolution (1.3) using </>1and </>2respec-
tively.

Let L~ denote the subspace of L2 consisting of all functions that are
zero on (-00, 0) and let L:. denote the subspace of all functions that are

zero on [0, (0). Clearly, L~ and L=-are orthogonal and L2 = L=-EI1L~.
Any </> in L2 can be decomposed uniquely into the sum of two functions
</>+ E L~ and </>-E L=-via:l

</>+(t) == {</>(t) t ~ 0
0 t < 0

(1.5)

{
o t~O

r (t) == </>(t) t < 0 .

To formulate the prediction problems of interest, we use the random
measure W to induce a family of information sets indexed by calendar
time. Let H(t) denote the space of random variables x(t) given by
(1.3) for </>'srestricted to be in L~. It follows from (1.4) that since
L~ is a Hilbert space, so is H(t). Furthermore, the family of Hilbert
spaces {H(t)} is increasing in the sense that if t2 > tl, then H(t2) =>
H(tl)' Since H(t) is constructed using the random measure W, the
least squares projection operator P[.jH(t)] onto the space H(t) is given
by

(1.6) ]
+00

]
+00

p[ -00 </>(r)dW(t- r) IH(t)] = -00 </>+(r)dW(t- r) .

Hence the prediction process obtained by taking a process X E X con-

structed as a convolution of </>and dW and projecting it onto H(t) for
each t is a convolutionof </>+ and dW for </>+ given in (1.5).
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2. 'n-ansforms

One convenient way to represent functions in L2 and characterize
mapping (1.5) involves the use of transforms. For instance, Fourier
transforms are valuable in characterizing the second moment properties
of processes in X. For any </>in L1 n L2, the Fourier transform of </>is
defined to be

(2.1) ]
+00

Ft (</»(B)== -00 exp( -iBt)</>(t)dt .

There is a well known extension of Ft from Ll n L2 to L2. Using this
extension, the spectral density function for x generated via (1.3) is just
1Ft (</>W.

To characterize the implied second moment properties of the solu-
tions to prediction problems of the form (1.6), we use Laplace trans-
forms. These transforms are defined as follows. For any </>in L2 and
any p in R we construct a new function exp( -pt)</>.This new function
mayor may not be in L2 depending on the value of p. Whenever it is
in L2, we define the Laplace transform to be:

(2.2) £p(</»(c) ==Ft [exp( -pt)</>](B)

where c ==p + iB.
The question of interest is the following. Given the Laplace trans-

form £p (</»of a function </>E L2, how can we compute or characterize
£p(</>+)where </>+is defined in (1.5)? To answer this question, we
first study Laplace transforms of functions </> E L~. For any such </>,

exp( -pt)</>is also in L~ as long as p > O. Hence the Laplace trans-
form £p (</» (c) is well defined on the closed right plane ct where

i, ct == {c E C : real( c) ~ 8}]. Moreover, £p (</»is analytic in the
interior of ct (relative to C). For Ii > 0 and c E ct,

(2.3)

l£p(</»(c)1 ~ looo I</>(t)I exp( -8t)dt

[
roo roo

]

1/2

~ Jo 1</>(t)12dtJo exp(-28t)dt

[roo
]

1/2

~ Jo 1</>(t)12dtj21i

where the second inequality is an application of the familiar Cauchy-
Schwarz Inequality. The right side of (2.3) gives a uniform bound (in
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c) on £p (4)) over the set ct. This bound becomes arbitrarily small as
fJtends to plus infinity.

Consider next functions 4>E L=-. For any such 4>,£p(4))(c) is always
well defined for c in left half plane Co =={c E C : real( c) S; O}, and
£p (4))is analytic in the interior of that domain. Define C6" =={c E C :
real(c) S; fJ}. Mimicking the previous argument, it can be shown that
for any fJ< 0, £p (4))is bounded on the domain C6"and that the bound
can be made arbitrarily small by driving fJtowards minus infinity.

For general functions 4>in L2, £p (4)) may only be defined on the
imaginary axis, i.e. for real (c) = O. We are interested in a smaller class
of functions, however. Let <J>be the set of all functions 4>E L2 such
that £p (4)-) is analytic in the interior of a region C6" for some fJ> O.

In this case £p (4)) is analytic in the interior of the strip C6"n ct.
Furthermore, for any closedinterval J C (0, fJ),£p (4» is bounded on
{c E C : real(c) E J}. D~fineA to be the collection of all Laplace
transforms of functions 4>E <J>.

The following result gives the decomposition for a E A correspond-
ing to the decomposition 4>= 4>+ + 4>-.

Lemma: For any a E A there is a unique decomposition a = a+ + a-
where .

(i) a- is analytic in the interior of Ci, uniformly bounded on any
closed half plane C; for p < fJand

lim max la-(c)1 = 0 ;
p--oo cEC;

(ii) a+ is analytic in the interior of ct, uniformly bounded on any
closed half plane ct for any p > 0 .

Proof: Functions a- and a+ satisfying (i) and (ii) are obtained by let-
ting a- = £p(4)-) and a+ = £p(4)+). To show that the decomposition
is unique, we let a = b+ + b- be any other decomposition where b-
satisfies (i) and b+ satisfies (ii). Note that

a+ - b+= b- - a-

at least in the interior of the strip Ci n ct. Sincea+- b+is analytic in
the interior of ct and b- - a- is analytic in the interior of Ci, b- - a-
can be extended to be analytic on all of C. Furthermore, the uniform
bounds on a+ - b+and b- - a- on overlappinghalf planes ensure that
the extension of b- - a- is bounded as well. The only functions that
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are bounded and analytic on C are constant. Since a- and b- satisfy
(i) and the extension of b- - a- to C is constant, a+ - b+ must be
identically zero. I

Decompositions like that gi-venin the Lemma apply to a much more
general collection of analytic functions than the Laplace transforms of
functions in L2. For instance, they also apply to Laplace transforms of
generalized functions (e.g. see Beltrami and Wohlers 1966). However,
these more general decompositions may not be unique. For instance,
suppose we ignore the requirement

lim max la-(c)1 = 0
p--oo cEC;

in (i) of the Lemma. Then one can always add complex numbers to a+
and subtract the same numbers from a to obtain other decompositions
of a. If in addition, we ignore the bound restrictions in (i) and (ii) of
the Lemma then one can add functions, such as polynomials, that are
analytic in the entire complex plane to a+ and subtract them from a-
to obtain other decompositions of a. Therefore in applying the Lemma
t9 compute £p (4)+), it is important to check whether the candidates
for £p(4)+) and £p(4)-) satisfy the bounds restrictions in (i) and (ii).

3. Examples

We now apply the Lemma to obtain frequency domain character-
izations of the solutions to prediction problems that occur in rational
expectations models. These problems all have the following structure.
Let 'IjJE L~, and define y(t) by the convolution:

[+00
y(t) = 10 'IjJ(7")dW(t- 7").

Construct a new process by forming a forward-looking convolution using
a function j E L~: 2

1
+00

1
+00

x(t) = -00 j(7")y(t - 7")d7" == -00 4>(7")dW(t - 7")

where 4>is given by the convolution:

}
+OO

4>(7") = -00 j(s)'IjJ(7"- s)ds .

Applying the well known product representation for Fourier transforms
of ~onvolutions, we have that

:Ft(4))= :Ft('IjJ):Ft(j) .
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214 Prediction Formulas for Continuous Time

This same result extends to Laplace transforms on the common domain
of .cp(rjJ)and .cp(-y). For the examples we consider, there will exist a
6 > 0 such that .cp (-y) is defined on the interior of C6". Hence on the
interior of the strip C6"n ct,

(3.2) .cp(rjJ) = .cp (1/J).cp(-y) .

We now investigate three related examples.

Example 1:

Suppose that -yis given by

(3.3) {
o t2::0

-yet)= exp(6t) t < 0 .

Then . '

.cp(-y)(c) = 1:00 exp[(6 - c)t]dt = l/(c -6)

for real(c)< 6. Thus

.cp(rjJ)(c) = .cp(1/J)(c)/(c - 8) .

Note that .cp (rjJ)is analytic on C except possibly at the point 6 where
it may have a pole. If.cp (1/J)(8) is zero, the singularity at 6 is remov-
able and .cp(rjJ+)= .cp(rjJ). Usually .cp(rjJ) will have a pole at 6, and
to compute £p (rjJ+)we must eliminate this pole. One candidate for
£p(rjJ+) is

a+(c) = [£p(1/J)(c) - £p(1/J)(6)]/(c- 6) .

Notice that the singularity of a+ at 6 is removable. The corresponding
choice of a- is

a-(c) = a(c) - a+(c) = £p(1/J)(6)/(c - 6) .

It is straightforward to show that a+ and a- satisfy the requirements
of the Lemma. Therefore,

(3.4) £p(rjJ+) = [£p(1/J)(c) - £p(1/J)(6)]/(c - 6) .

Formula (3.4) is the continuous time counterpart to formula (5) in
Hansen and Sargent (1980a).
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Example 2

More generally, suppose

.cp(-y)(c) =pn(C)/Pd(C)

where Pn and Pd are finite-order polynomials with real coefficients. To
ensure that Pn(C)/Pd(C) is the Laplace transform of a function in L:.,
we assume that the order of Pd exceeds the order of Pn and that the
zeros of Pd are in the interior of ct. In this case

.cp(rjJ)(c) = .cp(1/J)(C)Pn(C)/Pd(C) ,

which has poles in the interior of ct only at the zeros of Pd. Let aj
denote the principal part of the Laurent series expansion of .cp(4))(c)
at the jth zero of Pd. It follows from the partial fractions decomposition
of a meromorphic function that

a+ = .cp(rjJ) - :Eaj
j

is analytic in the interior of ct. F\lrthermore, the principal parts, aj,
are each sums of reciprocalsof first and higher-orderpolynomials and
hence satisfy

lim max laj(c)1 = 0 .
p-+--oo cEC;;

for each j. By construction,

a- = L:: aj
j

satisfies (i) of the Lemma where 6 is the real part of the zero of Pn
closest to the imaginary axis and is bounded on C; for any p < 6.
Therefore, we have the following generalization of (3.4):

£p(rjJ+) = £p(rjJ) - :Eaj .
j

Example3
Suppose that -yis given by (3.2), and .cp(1/J)is a rational function:

.cp(1/J)= qn/qd

where qn and qd are polynomials with real coefficients. To guarantee
that qn/qd is the Laplace transform of a function in L~, we assume that
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the order of qd exceeds the order of qn and that the zeros of qd are in
the interior of Co. Solution (3.4) now becomes

.cp(<p)(C) = qn(C)/[qd(C)(C - 8)] .

From Example 1, we know that

(3.5)
.cp(<p+)(C) = [qn(C)/qd(C) - qn(8)/qd(8)]/(c - 8)

= [qn(c)qd(8) - qn(8)qd(c)]/[qd(c)qd(8)(c - 8)] .

The right side of (3.5) has a removable singularity at 8 by construction.
This is evident because the polynomial [qn(c)qd(8) - qn(8)qd(C)] has a
zero at 8. Canceling the common factor (c - 8) in the numerator and
denominator results in

.cp(<p.+)(C) = q;i(c)/ql(c)
where

ql(C) = qd(c)qd(8)

and q;t satisfies

(3.6) q;i(c)(c - 8) = [qn(c)qd(8) - qn(8)qd(C)] .
By equating coefficients of the polynomials on both sides of (3.6), one
can construct a linear system of equations in the coefficients of q;t(c).
In fact there is a recursive structure to this equation system that can be
exploited as follows. Let 1]jdenote the coefficient on cj in [qn(c)qd(8)-
q<n(8)(]d{C)]and let Ej denote the corresponding coefficient in q;i(c).
Then

-8fo = 1/0

and
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and

E [w {[t4, t3)} W {[tz, tI)}'] = 0 for t4 > t3 > tz > tl

where h is a k-dimensional identity matrix. Processes in X are now
constructed using a k-dimensional vector <pof functions in LZ via:

1
+00

x(t) = -00 <p(t).dW(t - r) .

The analyses in Sections 2 and 3 extend by applying the decompositions
to each of the k Laplace transforms of entries in <p.In Example 1 for-
mula (3.4) still applies where .cp('ljJ)is the vector of Laplace transforms
of entries in 'ljJ.The recursions derived in Example 3 still apply where
qn is nowak-dimensional vector of polynomials, each with orders less
than the scalar polynomial qd.

5. Nonstationarities

In Section 3, the assumption that 'ljJE L~ guaranteed that process
y is second moment stationary. Our analysis can be extende.d to a more
general class of processes, however. To accommodate nonstationarities,
it is most convenient to think of the underlying information process as
starting at some initial time, say t = O. Hence we imagine (1.1) and
(1.2) holding for nonnegative values of tl, tz, t3 and t4, and we assume
that the random measure of any interval contained in (-00, 0) is zero.
This permits formula (3.1) to be well defined for a much larger class of
functions'ljJ. We might view the process y as being the deviation from
a path that is perfectly predictable from time zero forward. We impose
the weaker requirement that exp( -pt)'ljJ be in LZ for strictly positive
values of p which allows for polynomial growth in the second moment
of y.3 The calculations in Examples 1 through 3 still apply. In the case
of Example 3, to accommodate polynomial growth we now allow qd to
have zeros on the imaginary axis of the complex plane C.

fj-I - 8fj = 1]j for j ~ 1 ~t\

which can be solved recursively beginning with EO.The solution to this!
recursion gives a continuous time counterpart to formulas reported in ;
Hansen and Sargent (1980a, 1981b) for autoregressive and autoregres- !. . '
slve movmg-averageprocesses. j
4. Vector Information Structures ,t

Suppose that W is an k-dimensional vector random measure with ;

second moment stationary increments. We nowreplace (1.1) and (1.2) f
with ~

t

E[W(It" II))W(It" t,))'] = (t, - tI)I, for t, > t, , .1
I I==.: .' --- ~'~ -=-=- =- ~"""",,"---, - - ~-
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Notes

1. The uniqueness of this decomposition requires some qualification.
Elements of £2 are only defined up to an equivalence of functions
that are equal almost everywhere. Hence from the vantage point of
£2, the construction of 4>+and 4>- at a particular point, say t = 0,
is inconsequential.

2. We take the right side of equation (3.1) as the definition of x(t).
Alternatively, for particular classes of'Y we could define x(t) using
finite sum approximations for the middle integral.

3. In Examples 1 and 3 it is also possible to allow for exponential
growth in the second moments of y as long as t/Jexp( -O"t) is in
£~ for some 0"satisfyin,g 0 < 0"< 8. The transform analysis now
applies to the narrower strip C6"n Cj.
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Identification of Continuous Time
Rational Expectations Models
from Discrete Time Data

by Lars Peter HANSEN and Thomas J. SARGENT

1. Introduction

This paper proves two propositions about identification in a con-
tinuous time version of a linear stochastic rational expectations model.
The model is a continuous time version of Lucas and Prescott (1971), in
which the equilibrium can be interpreted as the solution of ~stochastic
control problem, either of a collection of private agents or of a fictitious
social planner. Estimation is directed toward isolating the parameters
of the agent's objective function and of the stochastic processes of the
forcing functions that the agent faces. This approach has been advo-
cated by Lucas (1967, 1976), Lucas and Prescott (1971), and Lucas
and Sargent (1981) as offering the potential to analyze an interesting
class of policy interventions promised by structural models, while meet-
ing the criticisms of most econometric policy evaluation methods that
were made by Lucas (1976). At the same time, inspired by the work
of Sims (1971), Geweke (1978), and p.e.B. Phillips (1972, 1973, 1974),
wewant to estimate models in which optimizing economic agents make
decisions at finer time intervals than the interval of time between the
observations used by the econometrician. We adopt a continuous time
theoretical framework both because it is an interesting limiting case,
a~d-because it has received extensive attention in the theoretical and
the econometric literatures.

Identification of the parameters of a continuous time model from
discrete time data must confront the aliasing problem (see, e.g., Phillips
1973). In general, there is an uncountable infinity of continuous time
models that are consistent with a collection of discrete time observa-
tions. However, with finite parameter continuous time models, the
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