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Faster Methods for Solving
Continuous Time Recursive Linear
Models of Dynamic Economies

by Lars Peter HANSEN, John HEATON and Thomas J. SARGENT

Introduction

This paper describes calculations that are useful for computing
equilibria of recursive linear models of general competitive equilibrium
in continuous time. The calculations are designed to make it possible
to implement continuous time reformulations of a class of models whose
discrete time versions are analyzed by Hansen and Sargent (1990). As
in Hansen and Sargent’s discrete time setting, the basic idea is to for-
mulate a fictitious social planning problem whose solution equals the
allocation that would be associated with the competitive equilibrium
of a decentralized version of the economy. The social planning problem
has a quadratic objective function and linear constraints. Some of the
constraints are represented as non-autonomous differential equations,
which means that we permit the endowment and preference shocks to
be relatively general functions of time. In particular, the preference and
endowment shocks need not be restricted to be themselves the outputs
of a system of differentiable equations (this is what we mean by saying
that the constraints may take the form of nonautonomous differential
equations). Permitting the preference and endowment shocks to have
this general structure is designed eventually to facilitate a number of ap-
plications that we have in'mind. The intention is to formulate the social
planning problem with ample generality by allowing room to include a
variety of setups with potentially large numbers of capital stocks and
informational state variables. As in Hansen and Sargent (1990), forcing
the planning problem into the form of a linear-quadratic optimization
problem yields substantial computational benefits: the equilibrium allo-
cations can be computed by solving that optimization problem (which
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178 Faster Methods for Solving Models

is often called an optimal linear regulator problem), and the Arrow-
Debreu prices that support those allocations as competitive equilibria
can be computed from information contained in the value function for
that optimization problem.

There are standard methods available for solving a class of problems
similar to ours known as optimal linear regulator problems (see Kwak-
ernaak and Sivan 1972 and Anderson 1978). However, these algorithms
require that we can represent the constraints as systems of autonomous
differential equations. This paper shows how those standard methods
can be adapted to handle problems in which some of the constraints
take the form of nonautonomous differential equations. We proceed
recursively, first solving a reduced system whose constraints are repre-
sented as an autonomous system of differential equations. In solving
this reduced problem, we use fast algorithms to compute the feedback
part of the solution of the original problem. Second, we compute an
additional part of the solution, called the feedforward part, which in-
corporates the effect of the nonautonomous parts of the differential
equations describing the constraints. Fast algorithms for implementing
both parts of these calculations are described in this paper.

This paper can be viewed as an extended technical prolegomenon
to future work that will describe a continuous-time version of Hansen-
Sargent (1990). In effect, we describe continuous time versions of an
array of computational tricks that have discrete time analogues that
are studied by Hansen and Sargent (1990). We concentrate our atten-
tion on solving the social planning problem, and do not lay out the
connection of the social planning problem to a continuous time version
of a competitive equilibrium. However, it is important to note that the
connection to a competitive equilibrium is there, and that it can be
spelled out by mimicking in continuous time versions of the arguments
that Hansen and Sargent utilize in discrete time.

This paper studies a nonstochastic version of the model. However,
just as in Hansen-Sargent (1990), once the solution of the planning
problem under certainty is obtained, it is a simple matter to compute
the equilibrium of corresponding stochastic economies. This is a stan-
dard feature of economies whose planning problems are optimal linear
regulators. In the next paper in this volume, a set of continuous time
prediction formulas that have been devised to compute the feedforward
parts of a stochastic version of our models. As emphasized by Lucas
and Sargent (1981) a convenient feature of linear quadratic models is
the manner in which their solution separates into a control part and a
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predition part. This paper and the next one correspond to this separa-
tion.

This paper is organized as follows. Section 1 sets forth the social
planning or optimal resource allocation problem. The planning prob-
lem assumes the form of an optimal linear regulation problem. Section
2 defines several linear operators that are useful in deriving and repre-
senting a solution. Section 3 uses some of these operators to represent
the constraints impinging on the planning problem in a way that fa-
cilitates computing a solution. Section 4 solves our particular optimal
linear regulator problem in a way that exploits its special structure.
Section 5 describes how a matriz sign algorithm can be applied to sim-
plify and speed aspects of the computations. Sections 6 and 7 are
devoted to studying two special cases of our model. A class of con-
tinuous time models of costly adjustment of capital are described in
Section 6, while Section 7 studies a version of Heaton’s (1989) model
of consumer durables.

1. Optimal Resource Allocation Problem

We are interested in computing solutions to an optimal resource al-
location problem that is the continuous-time counterpart to a discrete-
time problem studied extensively by Hansen and Sargent (1990). The
solution to this optimization problem can be decentralized and inter-
preted as the time path for the equilibrium quantities of an intertem-
poral competitive equilibrium.

Consider the following general setup. A household has time sepa-
rable preferences defined over an n, -dimensional vector s(t) of services
at time ¢. The preferences are given by:

Q) =(1/2) [ exp(=pt) s(t) - b [s(t) — b(e)}e

where b(t) is an exogenous ns -dimensional vector function of time and
p > 0 is the subjective rate of discount. Services at time ¢ are generated
according to:

(1.2) s(t) = Ah(t) + Ie(2)

where h(t) is a ny, -dimensional vector of household capital stocks at
time ¢, ¢(t) is an n. -dimensional vector of consumption goods at time
t, A is an ng X nj, matrix and Il is an ng X 1, matrix.

The household capital stock evolves according to the following sys-
tem of linear differential equations:

(1.3) Dh(t) = Ay h(t) + O c(t), for ¢ >0, h(0) = py
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where Ay is an ny X np matrix, @ is an np X ne matrix and g is
an ny X 1 vector of initial conditions. The matrix A, governs the
depreciation of the household capital stock.

Taken together, (1.2) and (1.3) induce intertemporal nonsepara-
bilities into the indirect preference ordering for consumption. Among
other things, the matrices A and II determine the extent to which the
consumption goods are substitutes or complements over time.

To allow the transfer of output over time, there is an nj vector k(t)
consisting of physical capital stocks at time t. Capital is assumed to
evolve over time according to:

(14)  Dk(t) = Apk(t) + Oxi(t), for t>0, k(0) = p

where ¢(t) is an n; vector of investment goods at time ¢, Ay is an ng X ny
matrix, O is an nj x n; matrix and p; is an ng x 1 vector of initial
conditions. The matrix Aj determines the depreciation of the physical
capital stocks.

Qutput is produced using the current capital stock and an endow-

ment f(t). This output is then divided between consumption and in-

vestment goods according to:
(1.5) Qo c(t) + ii(t) =T k(t) + f(2)

where @, is an n, -dimensional nonsingular matrix, ®; is an n, X n;
matrix and I' is an n, X n; matrix.

The functions f(t) and b(t) are driven by an n, -dimensional vector
of forcing functions of time denoted z(t):

(1.6) f(t) =Z72(t) and b(t) = Zp 2(2)

where Z¢ is an n. by n, matrix and Zj is an ns by n, matrix.

Suppose now that we define a composite state vector &(t)' = [h(t)’
k(t)'] and a control vector @(t) = ¢(t). Using the resource constraint
(1.5) and the differential equation systems (1.3) and (1.4), we get the
following system of differential equations governing &(t):

(1.7)  Di(t) = Az(t) + By a(t) + B:3(t)  subject to #(0) = u

ol s S LA G;,(@c)_ll"] = [—95(‘1":)_1@:‘
where A = [ 0 A , Bu = oy

Gt =)
[Oh(¢6) uf] and ' = (4}, ). Notice that

],.B,s

(1.8) s(t) — b(t) = By B(t) + So2(t) + S3(t)
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where T, = —II(®.)'®;, =, = [A ; I(®:)"'T] and =, = I[(D,)?
Zf — Zp. We can now write the objective function (1.1) in terms of
u(t), &(t) and 2(t):

(19)  =(1/2) [ exp(~pt) [a(t) 2(t) 2(2)]9

| T |
>
—_

u(t)
.%(t)] dt

z(t)
nﬂﬂ QI&I Quz
where Q= | Q), Qu; Qg |. The partitions of Q are given by (2, =
Q:.r.z Q’L‘z sz

284, Quz = £L%;, and so on. Notice that ) is positive semidefinite.
We assume that the capital stocks and forcing functions satisfy:

/ﬂwexp(_pt) | h(2) |? dt < oo, fomexp(—pt) | E(t) 2 dt < oo
»/[‘I exp(—pt) | 2(t) |* dt < oo .

These constraints limit growth in the respective functions of time. In
the case of the capital stocks, these constraints are used instead of
nonnegativity constraints because they are easier to impose. The plau-
sibility of the resulting solutions can be checked in practice by solving
the problem numerically subject to these constraints and checking that
the resulting time paths for the capital stocks are nonnegative.

Prior to solving the model, it is convenient to transform the opti-
mization problem to remove the discounting. This is done as follows.
Let € = p/2 and define

z(t) = exp(—et)i(t), =z(t) = exp(—et)2(t)
and u(t) = exp(—et)i(t) .

(1.10)

(1.11)

In terms of the transformed vector (), the restrictions in (1.10) imply

(1.10") jom | 2(2) | dt < +o0.

Notice that

(1.12) Dz(t) = —ex(t) + exp(—et)Di(t) .

As a consequence x(t) satisfies the following system of differential equa-
tions:

(1.13)  Dz(t) = Az(t) + Byu(t) + B,z(t), for t>0, z(0) =p
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where A = A —el. Also the objective function (1.9) can be written as:
u(t)

@)1 Q |=z(@) ]| dt
z(t)

Our problem now is to maximize (1.14) subject to (1.10') and (1.13)
by choosing {u(t)}2,.

(1.14) —(1/2)f [u(t)

2. Important Linear Operators

Let C denote the space of complex numbers and R the space of
real numbers. Also, let L; denote the collection of Borel measurable
functions ¢ mapping R into the space of complex numbers C such that

(2.1) ]R | 2(t) | dt < oo

and let Ly denote the collection of Borel measurable functions z such
that

(2.2) /R | 2(t) | dt < oo .

Let LT and L% be the spaces of all n-dimensional vectors of functions
with components in L and L respectively. In light of (1.10'), the
vector of functions z given in (1.11) can be restricted to be elements of
L% where n = ny, + ny.

It is convenient to analyze four operators that map L3 into itself
using Fourier methods. Among other things, these operators will be
useful in characterizing a particular solution to the differential equa-
tion system (1.13). Our strategy for constructing these operators is
as follows. First, we display the operators evaluated at functions in
L} N LE. Second, we verify that the operators map L} N L% into Lj.
Consequently, we can compute Fourier transforms of the resulting func-
tions. The Fourier transforms of the operators, i.e., the composition of
the Fourier transform operator with the original operators, have simple
extensions to all of LY. The original operators can then be extended
to all of L} by taking inverse Fourier transforms. These steps will be
made clear in our examples.

The first operator is an aggregation over time operator. It aggre-
gates z over v time units. It is defined on L} N L§ via

(2.3) U, (z) (t) = ]: a(t + 7)dr

(2.5)
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where x is in LT N L3. It is straightforward to show that U,(z) is in
LY. For any function z in L} we define the Fourier transform operator
T evaluated at & to be:

(2.4) T(z)(8) = [Q exp(—i0t) z(t)dt

We evaluate the Fourier transform of U,(z) by changing orders of inte-
gration. This gives:

(U, (2)](9) =j exp(—i0t) [/ o(t + 7)dr]dt

= A exp(ir) [ fR exp[—ib(t + 7)|z(t + 7)di)dr
= {[exp(ify) — 1]/(i0)}T'()(0) .

The function @, where ¢(0) = [exp(i6+) — 1]/(i8), is continuous in # on
R including zero. In a.dd;tlon, #(0) goes to zero as | # | goes to infinity.
Therefore, ¢ is bounded in 6. It follows from a multidimensional analog
to the Parseval formula that Uy(x) isin L} N L} (e.g. see Rudin 1974,
Chapter 9).

Notice that the operator obtained by multiplying z in L} by ¢ maps
L% into L. We extend the construction of U, to all of L" by letting
Uy(z) be the element of L} that has ¢T'(z) as its Fourier transform.
In Appendix A we establish that this construction of U, is consistent
with (2.3) and (2.5) for all z in L3.

The second operator we consider is the shift operator. For any z
in L} N Ly we define

(2.6) Sy(z)(t) ==z(t+7) .

Taking Fourier transforms of both sides of (2.6) gives

T[Sy(@)(0) = [ exp(—ibt)a(t +7)dt

= exp(ity) [ expl=if(t +7)Ja(t +v)dt
= exp(:0y)T'(z)(0) .

These calculations can be extended from L} N L} to L? just as in the
previous case except that now ¢(8) = exp(i0y). Note that | ¢(0) | =
for all 8. In Appendix A we show that this extension is compatible with
(2.6).

(2.7)
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The third operator is a matriz backward convolution operator. Again
let 2 be in L} N L%, and let A be an n X n matrix of real numbers with
eigenvalues that have strictly negative real parts. The backward con-
volution operator is then given by:

(2.8) Cle)t) = [ * exp(Ar)(t — 7)dr
where
(2.9) exp(A) = B2y A/ !

The components of C(z) are in Ly since the eigenvalues of A have
strictly negative real parts and

]310{1)(0&&_gj:qjowmp(mn |o(t — )| drdt
=]0 | exp(At)| dt fﬂl:c(t){dt.

Hence formula (2.4) implies that
(2.11)

T[C(2))(8) = /R exp(—i0t)| /ﬂ * exp(Ar)z(t — 7)dr]dt

= [ = explilr)explAs) ] [ expl=io(t - r)a(t - r)dt}dr
= (101 — A)~1 T(z)(9) .

(2.10)

Notice that {01 — A is nonsingular for all # in R because the eigenvalues
of A have strictly negative real parts. Consequently,

(2.12) 6= sup trace {(—i0I — A2 (i0I — A)™'} < 0.
e
Applying the Cauchy-Schwarz Inequality gives
=\ zle 2a0 <3 [ -
@)  [TITC@OIPd<E [ T(=)0) .

Thus T[C(2)] has components in L%, and we extend C to all of L} so
that (2.11) is satisfied. In Appendix A we show that this extension is
compatible with (2.8).

Using the same logic, we can define a forward convolution operator
C' such that for any z in L},

(2.14) T[C'(2))(0) = (=0 — A'YT(z)(6) .

i
.
i
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When z is also in LY, the transform operator has a time domain rep-
resentation:

(2.15) C'@)t) = [ " oAl )i

Thus the transform operator is a forward convolution operator. The
operator C'(z) can also be extended to all of L} in a manner that
preserves (2.15).

3. Linear Constraints

In Section 1, we described an optimization problem that is subject
to a linear constraint that can be represented as a system of differential
equations:

(3.1) Dz(t) = Az(t) + Bv(t) for t >0, z(0) = p

where B = [By B;] and v(t)’ = [u(t) z(t)']. We refer to equation
(3.1) as the state equation. In this section we describe how to solve
the state equation and obtain a frequency domain representation of the
constraints. As in Section 2, we restrict the eigenvalues of A:

Assumption 3.1: The eigenvalues of the matrix A have real parts that
are strictly negative.

If the matrices Ay and A} discussed in Section 1 all have eigenvalues
with real parts that are strictly less than ¢, then the model of Section
1 will satisfy Assumption 3.1.

We restrict v to be in LY where N = n; 4+ n,. For convenience,
we set v(t) to zero for strictly negative values of ¢. The space of all
elements of LY that are zero for negative t will be denoted LY. We
now consider solving (3.1) for z in terms of v in LY. We deduce a
particular solution to (3.1) that applies for all time periods but the
solution will not necessarily satisfy (0) = p. The particular solution
will be denoted z?.

For equation (3.1) to be satisfied for all ¢, z” must satisfy:

(3.2) zP(t+v)—2P(t) = A ]:-H z?(s)ds + B /:-H v(s)ds

for all t and all strictly positive values of 4. Expressing (3.2) in operator
notation gives

(3.3) Sy(z?) - a? = AU,(z") + BU,(v) .
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Taking Fourier transforms gives

[exp(ifr) — 1]T(a”) (0)
= {lexp(ir) — 1)/(i0)} [AT(2) (6) + BT (v) (6)] -

Solving (3.4) for T'(z?) gives

(3.4)

(3.5) T(a?)(0) = (401 — A)"1BT(v) (0) .

From the analysis in Section 2, we know that z? = C'(Bv), or
o0
(3.6) zP(t) = /0 exp(A7)Bu(t — 7)dr |

[see (2.11)]. Equations (3.1) and (3.5) suggest a convenient notation for
the convolution operator that is analogous to the notation used for lag
operators in discrete time. The backward convolution operator applied
to an n-dimensional vector of functions, z, will be written as:

(3.7) C(z)(t) = (DI — A)lz(t) .

where we have replaced 10 by D.
Using this new notation, we represent a? as:

(3.8) z?(t) = (DI — A)~'Bu(t).

Since v(t) is zero for strictly negative values of ¢, it follows that z? is
in L% and that for ¢ > 0

(3.9) zP(t) = f; exp(A7r)Buv(t — 7)dr .

The process {2?(t) : —oo < t < 400} given by (3.9) does not, in
general, satisfy the initial condition because (3.9) implies that z?(0) is
zero. The homogeneous differential equation

(3.10) Dz"(t) = Az"(t) for t >0, 2(0) = p
has as its solution
(3.11) zM(t) = exp(At)p .

This can be verified by differentiating the power series expansion for
exp(At) with respect to t.
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Adding together z” to 2" gives a solution to the original differential
equation (3.1). Hence

(3.12) 2(t) = exp(At)pu + /0‘ exp(Ar)Bu(t — 7)dr for t >0 .

Equality (3.12) will be taken as the constraint for the optimization
problem we study in Section 4.

There is a differential equation system that is closely related to
equation system (3.1). Let  and A be processes in L} such that

(3.13) Dz(t) = —A'z(t) — A(t) .

Notice that the eigenvalues of —A' have real parts that are strictly
positive, The function A will be a Lagrange multiplier in our analysis
in Section 4.

We proceed as before by using Fourier transform methods to solve
(3.13) for z in terms of A. Expressed in terms of transforms, this gives

(3.14) T(z) (8) = (—i01 — A)IT()) () .

It follows from the analysis in Section 2 that:
(3.15) o(t) = C'() () = f:’ exp(A'T)A(t + 7)dr .

Just as in the case of the backward convolution operator, (3.13) and
(3.15) suggest a convenient notation for the forward convolution oper-
ator:

(3.16) C'(A)(t) = (-DI - A)\(1) .
Hence we write a solution to equation (3.13) as:
(3.17) z(t) = (-DI — AY"IA(@) .

When (3.15) is only required to hold for ¢ > 0, one may consider
adding a term exp(—A't)n to solution (3.15) for z. In this case, however,
any nonzero value of 7 results in a function z that is not in L} no matter

‘how this function is extended to the entire real line. Therefore, (3.15)

gives the entire class of solutions in L}.

4. Optimal Linear Regulator Problem

In this section we solve the following optimal linear regulator (OLR)
problem.
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oo u(t)
OLR Problem:  _ max . —(1/2) fo [u(t) z(t) 2(t))Q [:gﬂ dt

subject to z(t) = exp(At)p + f.;f exp(At) [Byu(t —7) + B z(t — 7)]dt
for t = 0.

Our formulation of the OLR problem differs from the standard formu-
lation found, say, in Kwakernaak and Sivan (1972), in two ways. First,
we allow z to be any element of L%?, not necessarily the solution to a
linear differential equation system. Second, for systems in which it is
not optimal to stabilize the state (i.e., for = to be in L% ), we impose
stability as an extra constraint.

Without further restrictions, the OLR does not always have a solu-
tion. The following restriction on A, By and §) guarantees the existence
of a solution. §

Assumption 4.1: The matrix ¥y, (i) is Hermitian, and there exists a
strictly positive real number § such that Wy, (:0) > é1 for all ¢ in R,
where

(41) wuu(C) = {Ir B;(_CI e A!)_l]nll [(C[ —_ ,‘2)_13“]
and
(42) o = [ o] -

Note that for each 6 in R, ¥, (i) is a positive semidefinite matrix.
Assumption 4.1 puts a lower bound on the eigenvalues of ¥(if) for all
0. The inequality restriction must apply to the limit as # goes to infinity
as well. Evaluating this limit, we see that Assumption 4.1 implies that

(4.3) im0y, (i0) = Quu = 61

6] o0
Therefore . is nonsingular. In Appendix B we verify that when
Assumptions 3.1 and 4.1 are satisfied, there exists a solution to the
OLR problem for any initial condition p.

We solve the OLR problem using Lagrange multipliers. Since L7
is a Hilbert space, continuous linear functionals on this space are rep-
resentable as inner products with elements of L%}. Consequently, the
Lagrange multiplier A associated with constraint (3.12) is an element
of L%} and the Lagrangean is given by:
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(4.4)

u(t)

L=- fow {1/2[u(t)' z(t)' 2(t)]0 [xétd —A(t)-[z(t)—2?(t) —:ch(t)]}dt
z(t
It follows from the Parseval formula that
4.5
A A(t) - () dt = (1/2n) fR T(A)(0)"T(2") (8) d
= (1/2n) fR T()) (0)*(i6I — A)™* BT (v) (9) d6
= (1/27) [ {(=i01 = A)T0) O)} [BT(u)(0)
+ B.T(z)(0)]d6
= [TUBL(=DI - 4)\®)} - ()it
+ [TABLU-DI — #) A} - x(t)at .

The.ﬁrst.-order conditions for Problem 1 are obtained by differentiating
L with respect to u and z, giving

(4.6)  Quuts(t) + Quz 25(t) + Qus 2(t) + By (=DI — A')™ Ay(t) = 0

4.7 Qo tg(t) + Qo T6() + Qs 2(2) = As(2) .

The subscripts s are included on z, u, and ) to denote the solution.
We solve equation (4.6) for u,(t) giving

(4.8) us(t) = = (Qua) ™ By(=DI = A') 7  A(t) — (Qun) ™ Qs z4(2)
— (D)™ Qe 2(t) .

‘Substituting (4.8) into (4.7) yields

As(t) = = Qzu (Quu) ™! B, (—=DI — A')~1 A, (2)
(4.9) + [z = Qau (Vun) 7 Quz]zs(2)
+ {sz — Oy (Quu)ulnszlz(t) .
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For each time t > 0, define a co-state vector c(t) via

(4.10) z,(t) = (=DI = AL A(L) -

Then the analysis in Section 3 implies that the co-state equation
(4.11) Dz(t) = —A'zc(t) — As(t)

is satisfied [see (3.13) - (3.17)]. Substituting (4.9) and (4.10) into (4.11)

gives

(4.12) ;
DIc(t) = 19111 (Qui;)_l Quz — szlxs(t) - [A - Bu(Q,m )_lﬂu;]’zc(t)

+ [Qzu (Quu)—ltﬂuz = szlz(t) *
Substituting (4.8) and (4.10) into the state equation (1.13) yields

Dz4(1) = [A — By(Quu) " Quz)zs(t) — Bu(Quu) " Byze(t)

(4.13) + Bz — Bu(Qu) ! Qusle(2) .

To solve for z,(t) and z.(t), we combine equations (4.12) and (4.13)
into a single system:

o () - ]+ meo
where
N

Hll =A- Bu(Quu)_lﬂuz; Hypp = "Bu(ﬂuu)_l B:“ Hy = —Qze +
qu(ﬂuu)_lﬂu: and lq22 = “[A i Bu(guu)ﬁiﬂux],: I{I = Bz_
Bu(Quu) ™ 1Qy; and Ky = Qou(Quu) 1 Quz — Qzz. The matrix H is
referred to as a Hamiltonian matrix and satisfies two properties that
are important for our purposes. First Hyy = —H],;; and second, Hiz
and Hy; are symmetric.

Consider first the case in which z(t) is zero for all ¢. In this case
we solve the homogeneous differential equation system:

- 1 [20]

- e
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We follow Vaughan (1969) and solve (4.16) by taking the Jordan de-
composition of H:

(4.17) H=EJ(E)™

where J is a matrix containing the eigenvalues of H on the diagonal.
Some of the entries of J immediately to the right of the eigenvalues
that occur more than once are one, and the remaining entries of J are
zero. For notational convenience, we place the eigenvalues with strictly
negative real parts in the upper left block of J.

The eigenvalues of H occur in symmetric pairs vis-a-vis the imag-
inary axis of the complex plane. To see this, let { be any eigenvalue
of H, and let [¢}, €})' be the corresponding column eigenvector of H.
Then [e}, —e€}] is a row eigenvector of H with eigenvalue —(. As a
consequence of this symmetry, there can only be at most n eigenvalues
of H with strictly negative real parts. We will show, in fact, that there
are exactly n such eigenvalues.

It is convenient to transform the equation system (4.14). Define

w e )

Then z*(t) satisfies
(4.19) Dz*() = F2t(1) .

The advantage of working with differential equation system (4.19) is
the dynamics are uncoupled according to the distinct eigenvalues.

We partition z*(t)' = [z(t)', z(t)'] where the number of entries
of z}(t) is equal to the number of eigenvalues of H with strictly negative
real parts. Since the remaining eigenvalues have nonnegative real parts,
the function z; will not be stable (have entries in LY) unless z;}(0) is
zero. Thus we have two initial conditions: z,(0) = g and z; (0) = 0.

It follows from (4.18) that

o s[4 [28].

Partition E as

Lo [ B E12]
2l s [EZI Egpl”
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Then for ¢t = 0, (4.20) can be expressed as
(4.22) Eqn :c,'i' (0) =p and FEg 2;1' (0) = z.(0)

Since a solution is known to exist (see Appendix B), for any p there
must exist a vector z;7(0) such that (4.22) is satisfied. Consequently,
Ej; must have n columns (H must have n eigenvalues with strictly
negative real parts) and Ej; must be nonsingular. Solving (4.22) for
z (0) gives

(1.23) U
where M; = E5) (E11)~! and solving (4.20) for z.(t) gives
(4.20) Py

It is of interest to obtain recursive solutions for Dz4(t) and Dz(t).
Substituting (4.24) into (4.18) gives

a2 5] = [ Diad] 0

The eigenvalues of Hyj + H12M; are the same as the stable eigenvalues
of H. It follows from (4.24) that Dz.(t) = MyDz,(t) and from (4.25)
that

(4.26) —M.Hyy — M Hy oM, + Hoy — HilMg; =)

An equivalent statement of (4.26) is

(4.27) M0 H [ ]=0.
In Appendix C we show that the matrix M turns out to be symmetric
and positive semidefinite. Furthermore, the time zero value function,
or equivalently the optimal value of the criterion function as a function
of the initial condition for z(t), is given by (—1/2)p' My p.

We now consider the general case in which z(t) is allowed to be
different from zero. In this case it is convenient to use a somewhat
different transformation than (4.18). Define a matrix M

(4.28) e |
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and transform the composite state-costate function:

(4.29) x’(‘)] =M [“(”] .

w(t) zc(t)

Then
(4.30) [ | = mEM [T + MK
Since M; is symmetric and (4.27) is satisfied,

-1 _ [(Hn + HioMyz) Hy, ]
£40) MEN = [ 0 —(Hu + Hiz M)
and

g K ]

(4.32) MK = [q o

It is possible to solve the second block of equations in (4.30) separately
because the matrix M H(M)~! is upper triangular. The eigenvalues of
the matrix —(Hy1 + Hi2M;)' have strictly positive real parts: therefore,
the stable solution for w(t) is given by the following forward convolu-
tion:

w(t) = [-DI — (Hu + HiaMz)' )™ (Kz — MoK )(2)

4.33
G = '/:o exp[(Hyy + HioM;)'7) (K2 — My Ky)z(t + 7)dT

It follows from (4.30) that
(4.34) Dx,[t) = (Hy + Hip M;)x,(t) + Hys w(t) + K, z(t) »

We refer to (Hi1 + Hiz My)xzs(t) as the feedback part and Hiz w(t) +
K z(t) as the feedforward part of the decision rule for Dz,(t). Notice
that the transpose of the feedback matrix (Hy1 4+ Hia M;) enters the
exponential in the feedforward integral.

5. Recursive Solution Methods

In this section we describe recursive methods for computing two
objects. First we show how to calculate the matrix M, used in the
feedback and feedforward portions of the decision rule for Dz,(t). Then
we show how to calculate a solution for w(t) as a function of 2(t) in
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the special case in which z(t) is the solution to a first-order differential
equation system.

Consider first the matrix M;. When z(t) is set to zero for all {,
the constraints are autonomous differential equations. Roberts (1971)
and Denman and Beavers (1976) proposed a matrix sign algorithm for
solving the resulting optimization problem and in particular for com-
puting M. An attractive feature of the matrix sign algorithm is that it
avoids computing the Jordan Decomposition of the Hamiltonian matrix
H. Instead the matrix M, is computed by calculating successively the
average of a matrix and its inverse. The algorithm is initialized at the
matrix /. More precisely, for any nonsingular matrix G, define R(G)
vias

(5.1) R(G) = (1/2) [G+(&)7].

Consider the sequence {’Rj (H)} where R? denotes the mapping R ap-
plied j times in succession. Using the Jordan decomposition for H, it
follows that

(5.2) RI(H) = ER(J)E™! .

Recall that J is a matrix with the eigenvalues of H on the diagonal. The
first n diagonal entries contain the eigenvalues with strictly negative
real parts and the remaining n diagonal entries contain the eigenvalues
with strictly positive real parts. Some of the entries of J immediately
to the right of eigenvalues that occur more than once are one and the
remaining entries of J are zero. As a result, the sequence {R?(J)}
converges to a diagonal matrix with minus ones for the first n entries
and ones for the second n entries. :

Let H*™ denote the limit point of {R’(H)} and partition this ma-
trix:

HOO HOO
5.3 HOG = 11 12 -
Gl -
Recall that E is partitioned as

En En]

y E = 4
) [Eﬂ Ez
Similarly, partition (E)™" as

- EH E12
(5.5) (B)™ [En Ezz]
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Then
(5.6) HR = —-EnEVM + B2 E® = 2En EM +1,
and
(5.7) HE = —Ey EM + Ep E¥ = —2Ey EM .

As long as E'! is nonsingular,
(5.8) M; = HE (HR -1

Hence M, can be approximated by computing R?(H) for a sufficiently
large value of j and then applying formula (5.8).

The restriction that E!! be nonsingular is not satisfied for some
interesting parameter conﬁgurahions of our model. For instance, E
can be singular when it is not optimal for the state function = to be in
L} . When EM is singular, we add a qua.dra.tlc penalty 81 to €, in the
cnterion for the OLR problem where & is strictly positive. This ensures
that it is optimal for x to be in L%}. By selecting & to be sufficiently
small, we can approximate the matnx M, with arbitrary accuracy.

Anderson (1978) showed how to exploit the structure of the Hamil-
tonian matrix to simplify the iterations in the matrix sign algorithm.
Let G be any Hamiltonian matrix. Anderson (1978) suggested the fol-
lowing partitioning:

(5.9) R(G)u =(1/2) {Gu + [Gu1 + G12(G1)"'Gu] ™'}
R(G)12 = (1/2) {G11 + [G11 + G12(GY;) 1G] G2
(5.10) (Gi1)™"}
R(G)a1 = (1/2) {Gaz2 + (Gly)~1Ga1[G11 + G12(Gly) ™
(5.11) Ga]™'}

where R(G);; is the upper right n by n block of R(G), and so on. This
partitioning exploits the fact that the (2,2) block of the Hamiltonian
matrix is the negative transpose of the (1,1) block. The matrix sign
algorithm preserves this relation among the partitions of a matrix.

Consider next the computation of w(t). For general specifications
of 2(t), it is not possible to simplify further (4.33). We now impose
some additional structure on z(t). Suppose that z(t) is the solution to
the differential equation system:

(5.12) Dz(t) = A., 2(t)
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where the eigenvalues of A;; have real parts that are strictly negative.
In this case, z(t + 7) is exp(A;; 7)z(t) implying that

(5.13) w(t) = M, 2(t)
where

(5.14) M, = fo " expl(Hiz My+ Hy1)'r] (Kz — My K1) exp(Ay; 7)dr |

There are two alternative ways of computing M. Using integration-
by-parts, it can be shown that M, satisfies:

(5.15) (le M +H11]' M.+ M, A, = Ko — M; K3

This equation is linear in the entries of the matrix M,. Furthermore,
since the eigenvalues of (Hy2 M + Hy11)' and A, have strictly negative
real parts, it can be shown that M, is the unique solution to (5.15).
Therefore, one way to compute M, is to write (5.15) as a system of
linear equations in the entries of M, and solve that system of equations.

Following Denman and Beavers (1976), a second approach is to note
that w(t) and z(t) satisfy the composite first-order differential equation
system:

510 oan ] = & [ %]

where
(5.17) fl = [—(leMz+H11)' (Kz—-M,Kl)]

0 Azz

and to apply the matrix sign algorithm to find the stable solution to
the composite system. Since H is upper triangular, the collection of
eigenvalues of [ are given by the union of the collection of eigenvalues
of —(Hiz Mz + H11)' and the collection of eigenvalues of A,,. The
matrix M, is found by mimicking the approach used to solve differential
equation system (4.16). In particular, we deduce the limit point to the
sequence {R7(H)} and use the analog to formula (5.8) to compute M,.

The matrix H is upper block triangular, and the matrix sign al-
gorithm preserves this triangularity. These features can be exploited
by partitioning the algorithm. Let G be an upper triangular matrix
partitioned as

Gn (}'12]
0 Gal

(5.18) G = {
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Then the matrix sign algorithm can be partitioned as:

(5.19) R(G)n = (1/2) [Gn + (Gu) ™)
(5.20) R(G)1z = (1/2) [G1z — (G11) 7! G12 (G22) 7Y
(5.21) R(G)22 = (1/2) [Go2 + (G22) ]

with ‘R(G)zl = 0. Finally, since the upper left block of H has eigen-
values with strictly positive real parts and the lower right block has
eigenvalues with strictly negative real parts, it is straightforward to
show that R*®°(H)11 = I and that R®(H)22 = —I. The analog to
(5.8) is simply

(5.22) M, = (-1/2)R* (H)1z .

When z(t) satisfies (5.12), it is possible to augment the state vector
z(t) to include z(t). An alternative solution approach is to form the
Hamiltonian matrix for this augmented system and to initialize the
matrix sign algorithm at this matrix. Although the approach suggested
in this section requires two applications of the matrix sign algorithm, in
each stage the algorithm is applied to matrices with smaller dimensions.
As a consequence, the dual applications of the matrix sign algorithm
typically will be faster than the single application to the augmented
Hamiltonian matrix. This two-stage algorithm is the continuous time
counterpart to a two-stage algorithm for solving discrete time quadratic
control problems suggested by Hansen and Sargent (1981a).

6. Adjustment Cost Model of Investment

In this section we investigate the solution to the OLR problem in a
special set of circumstances. We focus on competitive equilibrium mod-
els of investment under rational expectations as in Lucas (1981), Lucas
and Prescott (1971) and Brock and MaGill (1979). The technologies
we consider are the continuous time counterparts to technologies stud-
ied in Hansen and Sargent (1981a). There is a vector of capital stocks
and there are costs to adjusting these stocks as in Lucas (1967), Gould
(1968), Treadway (1969) and Mortenson (1973). The adjustment costs
may be of higher order than one, which in the context of continuous
time models may apply to higher derivatives of the capital stocks. The
economic environment is described in Subsection 6.A. In Subsection
6.B we derive an alternative representation of the first-order conditions
that can be interpreted as Euler equations. In Subsection 6.C we de-
scribe an alternative approach to solving the OLR problem and relate
this approach to the one described in Section 5.
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6a. Setup

Consider a special case of the general model presented in Section
1. Suppose there is no household capital so that (1.2) is replaced by

(6.1) s(t) = Ilc(t) .

Let §(¢) be an m-dimensional vector of productive capital stocks at
time ¢, and define 2(t)' = k(t) = [D*1§(t)', DE2§(t),...,5(t)] and
#(t) = D4(t). In this case,

(6.2) Di(t) = Az(t) + B, i(t)
where
00 00 I
(63) gl B O )
0.0 .. 10 0

Resource constraint (1.5) is imposed as before with @(t) = i(¢).
Notice that depreciation in capital is not reflected in specification of A.
This is because we have let the control be a measure of net investment.
Suppose instead that i(¢) denotes a measure of gross investment and

that
(6.4) i(t) = T k(t) + ()

where I'*k(t) measures the investment required to replace any depreci-
ated capital stock. Then (1.5) and (6.4) imply that

(6.5) D c(t) + i a(t) = (T — B;T*)k(t) + f(2) -

Hence our use of net investment instead of gross investment as the
control function requires that we replace I' by (I' — ®; I'*) in constraint
(1.5).

6b. Euler Equations .

Let y(t) = exp(—et)j(t). It is convenient to represent z(t) in terms
of y(t) and its derivatives. Note that

(6.6) Dy(t) = —ey(t) + exp(—et) Dj(t) .
In operator notation we have that
(6.7) (D + y(t) = exp(—et) Di({) -
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Similarly,
(6.8) (D + ¢)’y(t) = exp(—et) D7j(2)

where the operator raised to a power denotes sequential application of
the operator. Hence we can represent z(t) as:

(D +e)*11

(6.9) e et e

: y(t) .
I
We use this structure to obtain an alternative representation of the

first-order conditions (4.6) and (4.7). Define a matrix function P of a
complex variable:

C+eoi
(6.10) p() = |+

I
First-order condition (4.6) can be expressed as
(6.11)  [Quu Quz] P(D)y(t) + Qe 2(t) = —Bl(=DI — A')"1 ), (t) .
Equations of system (4.7) can be expressed as
(6.12) [Qzu Qzz] P(D)y(2) + Dz 2(t) = As(2) .
Recall that A’ is given by '

e e
L G e
0 =0 o

and that By, = [/ 0]. The matrix operator B(—(I — A')~! consists of
the first m rows of the operator (—¢I — A’)~!. Then

(6.14)
L -Bu—(I-A) = —[(~(+ 7 L (¢ + 72 (—C+ )7
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Substituting into (6.11) we obtain
(e Que] PDYY(E) + Qs 2(2)+
(6.15) [(-D+e7 ;5 (-D+97 15 ... (=D +e~¢1]
{ [Q2u Qzz] P(D)y(t) + Q22 2(1)} =0 .
Define a matrix function @ of a complex variable (:
Q) =I5 (~C+7 5 (=¢+972 5 .. (—¢+970
= (=¢+97P(=0)'.
Then (6.15) can be expressed as
(6.17) QD)1 P(D))y(t) = —Q(D)hz 2(1)

(6.16)

Q
where 111 = [‘Q““ Q“I] and 2 = [Q::]

ﬂ:ﬁu T

In (6.17) Q(D) is a forward convolution operator and P(D) a backwards
derivative operator.

Finally, it is of interest to disentangle the effect of scaling by exp(—e€t).

Hence we deduce a corresponding equation for §(t) in terms of 2(t). It
follows from (6.6) that

(6.18) Dy(t) = exp(—et) [(D = }§(D)] -

To undo the scaling in (6.17), we simply substitute (D — ¢) for D and
multiply by exp(et):

(6.19) [Q(D — &)1 P(D — )]§(t) = —Q(D — ) Dz 2(1) -
These are the Euler equations for the optimization problem.

6c. Solution
We now describe an alternative Euler equation approach to solving
equations (6.19). In light of (6.16)

(6.20) Q(O) 1 P(¢) = P(—0) Qa1 P(O)/(—¢ + &) .
Divide both sides of (6.20) by (¢ + €)1 (=( + ¢) and evaluate the

resulting function at ¢ = 1f:
F(0) = P(—i0) Q11 P(:0)/[(—6 + €) (i0 +¢€)
= Wyu(i0)/[(~i0 + €) (10 + €)]

]l+1
(6.21)
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By virtue of Assumption 3.1, F'() is a positive definite matrix for all
6 in R. In addition, F is a rational function of 8, F(—0) = F(6)" and

(6.22) lim F(0)=0.
§—o0

As a consequence, I is the spectral density function for a linearly regu-
lar, stochastically nonsingular continuous time stochastic process. Since
the spectral density function is rational, with common denominator
[(—10 + €) (40 + €)]¢t1, it can be factored:

(6.23) F(0) = P(~i0)'VP(i0)/[(=i0 + €) (0 + ¢)]

where V is a nonsingular symmetric matrix, P(¢) is a polynomial of
degree £ that is nonsingular in the left-half plane of C' and

(6.24) Jim. Pt =1

(e.g. see Rozanov 1967). As a consequence, the composite operator
[Q(D)Q41P(D))] used in Euler equation (6.16) can be factored

(6.25) QD)1 P(D) = [P(=D)/(-D + )] V2(D) .-

The operator P(D) is a backwards derivative operator and the operator
[P(=D)/(—D + €)Y is a forward convolution that can be expressed as
the matrix linear combination of the identity operator and the forward
convolution operators 1/(—D +¢), 1/(=D + €)%,...1/(=D + ¢).

The factorization given in (6.25) is of interest because the rational
function [P(—(¢)/(—¢ +¢)?] is nonsingular in the left-half plane of C. As
a consequence the forward operator [P(—D)/(—D+¢€)‘] has a one-sided

fo:wa.rd inverse that can be characterized by inverting [P(—()/(—( +
€)‘]. Let

(6.26) Q) =V =C+ &) P(=0) Q(¢) 2 -

Then the entries of Q(C) are rational functions of ( with numerator
orders that do not exceed the denominator orders. In addition, the
poles of Q(¢) reside in the left-half plane of C'. As a consequence Q(D)
can be expressed as a matrix linear combination of the identity operator
. and convolution operators. The terms of this matrix linear combination
can be deduced by computing a matrix partial fractions decomposition

of Q(¢).
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When II is strictly positive, the original formulation of the model
still applies. In this case current consumption and the household cap-
ital stock are substitutes in the production of consumption services.
Although the consumption good is durable, additional services are gen-
erated by new acquisitions of the goods.

Habit persistence in preferences over consumption as examined for
example by Pollak (1970), Ryder and Heal (1973), Sundaresan (1989),
Constantinides (1990) and Heaton (1989) can be accommodated by
assuming that A = —1, II > 1. In this case consumption and capital
are complements in the production of consumption services.!

When A = 0 and II = 1, the induced preferences for consumptions
are time separable. The solution method described in Section 6 can be
applied to characterize the optimal law of motion for capital. In this
case, we can drop the household capital stock, and the productive capi-
tal stock becomes the only component of the endogenous state variable.
The restriction that k(t) discounted by exp(—et) be in L} is important
in obtaining a solution that is of interest. Without this restriction, ¢(t)
is set to b(¢) which in turn is supported by an unstable time path for
the discounted capital stock.

To solve this model we let z(t)' = [b(t), f(¢)]. The matrices 11 and
{212 of Section 6 are given by:

L= -1
(7.3 Oy = [ ] and {3 = [ ] -1,1}.
) v 1
The composite operator Q(D)Q;; P(D) in this case is given by:
(1.4

[(11/(-D+é) [_lp ;2’"] (P19] = (-D+9 D+a/(-D+9).

Hence the operator P(D) of equation (6.23) is (D + €) and V is equal
to 1. The operator —Q(D);2 is given by:

-Q(D)e = -(11/(-D+4) [ 11,1
=[1-pf(—D +¢€)][-1,1].

(7.5)

The operator Q(D) of equation (6.26) is

QD)= (=D +¢) [l =p/(=D+¢)] [-1,1]/(~D +¢)

{£0) = (L= p/(=D+ )] [-1,1]
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It follows from (6.28) that the capital stock satisfies:

(1.7)
Dk(t) = [ — p/(~D + 9] [-1, 1] =(t)
= (L= p/(=D + ] [(2) - b(1)]

= [/(t) — b0 = p [ exp(=pr) = [f(t +7) = blt + 7)ldr .

In other words, investment is calculated by comparing the current level
of the endowment relative to the satiation point to a weighted average of
future endowments relative to satiation points. Heaton (1989) displays
solutions to the model for other settings for A and II.

Appendix A

In this appendix we verify that formulas (2.3), (2.6), (2.8), and
(2.15) apply to all of L}. Let 1, denote the indicator function of the
set [—7, 7], and let 2 denote any member of Lj. Then 1,z is in LT N
L% for each t and {1,z : t > 1} converges in L} to z. Since T is

" continuous, {T(1,x) : t > 1} converges in L} to T'(z). Let O be

any of the four operators introduced in Section 2, and let ¢ be the
corresponding function such that ¢7T'(z) = T[O(z)]. The function ¢ is
bounded in all four cases. Therefore, {T[O(1rz)] : T > 1} converges in
L? to T[O(z)]. The Parseval formula implies that {O(1,z) : 7 > 1}
converges in L to O(z). A subsequence {O[l,(j)z] : j > 1} converges
pointwise to O{z) except on a set of measure zero. Formulas (2.3),
(2.6), (2.8) and (2.15) involve integral representations. In this case,
O(1rz) has an integral representation. Since z can be expressed as a
linear combination of nonnegative, vectors of real-valued functions, it
follows from the Monotone Convergence Theorem that O(z) has the
same integral representation.

Appendix B

In this appendix we establish that there exists a solution to the
OLR problem when Assumption 4.1 is satisfied. Since the matrix (2 is
positive semidefinite, the criterion function is always less than or equal
to zero. Define

o u(t)
(B.1) JU T Efﬂ [u(t) z(t) 2(t)]Q lzg%] dt,

and put
(B.2) é=inf{T(u,z):u€ L}, z€Lf, (u,z) satisfies (1.13)} .
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Notes

1. For some values of II < 1, the household technology generates ratio-
nal addiction as suggested by Stigler and Becker (1977) and Becker
and Murphy (1988).

8

Prediction Formulas
for Continuous Time
Linear Rational Expectations Models

- by Lars Peter HANSEN and Thomas J. SARGENT

In this note we derive optimal prediction formulas to be used in
solving continuous time rational expectations models. In these deriva-
tions we employ Laplace transforms in a manner analogous to the use
of z transforms for solving discrete time optimal prediction problems in
Hansen and Sargent (1980a, Appendix A). The formulas are intended
to play the same role for continuous time models that the discrete time
formulas for optimal predictions of geometric distributed leads did in
Hansen and Sargent (1980a).

1. Convolutions and Prediction

Let L! and L? denote the spaces of all real-valued Borel measurable
functions ¢ on R that are absolutely integrable and square integrable,
respectively. Let W denote a random measure defined on R with in-
crements that are orthogonal and second-moment stationary. In other
words,

(1.1) E[W{[tg, tl)}zl =ty—t for ta>1,
and

(12)  E[W{lts, ta)}W{[tz, t1)}] =0 for ty>ts>t2>1;.

Using functions in L? and the random measure W, we construct second-
moment stationary processes as convolutions:

(1.3) 2(t) = j_ J: H(r)dW(t - 7).
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