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Time Series Implications of Present
Value Budget Balance and of Martingale
Models of Consumption and Taxes

by Lars Peter HANSEN, William ROBERDS and Thomas J. SARGENT

1. Introduction

Let {(r, pi)} be a covariance stationary process where r; — p; is the
net surplus at time ¢, k; a level of assets (or debts) carried into period
t, and (1 + 6;) the gross rate of return on those assets between ¢t and
t+ 1. Assume that there is a sequence of budget constraints

(1.1} kg+1=(1+5t)k:+?"i—pg, =0, 1,0

with ko given. This paper studies the observable implications of some
models which impose a terminal condition on assets {k;} which has the
effect of converting (1.1) into an intertemporal budget constraint, one
that asserts that for each t > 0, k; equals present value of current and
future surpluses, discounted at rates generated by the process {6;}.
We study the implications of imposing two alternative assumptions
on &;. For most of the paper, we focus on the first assumption, which
is that 6; = é for all ¢t > 0. In Section 7, we briefly study a second
assumption, that Ey_, §; = 6 for all £ > 0. We characterize the restric-
tions on the bivariate process {(r¢, p1)} under both assumptions and
characterize the restrictions on the trivariate process {(ki41, r, pt)}
under the second assumption on é;. Presumably, an econometrician
who possesses data on {(r¢, p)}, but not on {ki+1}, would want to use
the restrictions imposed on the bivariate process to arrive at a judgment
of whether the data are consistent with present value budget balance.
We are motivated to obtain these characterizations because of our
interest in two types of models, each of which incorporates a version
of the intertemporal budget constraint induced by (1.1) and the ter-
minal condition on {k;}. The first type of model consists only of the
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122 Present Value Budget Balance

intertemporal budget constraint, and seeks to test whether observations
on the joint process {(r¢, pt)} or on the joint process {(kt41, Tes P2}
satisfy the budget constraint. In this literature, represented by contri-
butions by Hamilton and Flavin (1986), Hakkio and Rush (1986), Shim
(1984), and Sargent (1987b), r¢ has been interpreted as government ex-
penditures, p; as taxes and k; as government debt. This literature can
be interpreted as getting at the question either of whether the terminal
constraint is operative (e.g., Hamilton and Flavin 1986), or whether the
series on government expenditures 7 and tax collections p; are mea-
sured in the way that is required to make the present value constraint
implied by (1.1) hold (e.g., Shim 1984).! This literature also seeks to
determine what time invariance and finite dimensional state restrictions
on the joint stochastic process {(pt, 1)} and the interest rate process
6; must be imposed in order to give observable content to the present
value budget constraint.

Under the assumption that § = 6 for all ¢, it was shown by Sargent
~ (1987b) that the present value restriction induces the restriction on a
particular moving-average representation for {(r¢, pt)} that for each in-
novation, the present value of the response of {(r¢ — pt)} is zero. But
even if the budget restriction is true, it is possible to specify many other
moving-average representations for {(rt, pt)} that violate this restric-
tion. Indeed, as we remark below, any vector autoregressive representa-
tion for {(r¢, pt)} must correspond to a moving-average representation
that violates this restriction. However, moving-average representations
are not unique. It turns out that for any jointly covariance stationary
process {(r¢, pi)}, there exist moving-average representations that do
satisfy the restriction. These results characterize the sense in which
even with ample time-invariance imposed, the present value restriction
by itself is observationally empty and are described in Section 2.

The second type of model which includes a version of our present
value budget constraint is a linear quadratic version of Hall’s (1978)
martingale model of consumption. In that model, é; is constant over
time, p; is consumption, r¢ is labor income or an endowment shock, and
k; is the level of household nonhuman assets or the capital stock. A

linear version of Barro’s (1979) model of tax smoothing is isomorphic to

Hall’s, with é again constant, pt being tax collections, r¢ being govern-
ment expenditures, and k; being government debt at time . Present
value budget balance is among the restrictions imposed by Hall and
Barro’s model. In Section 3, we characterize what, if anything, the
present value budget balance restriction adds to the martingale restric-
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tion. We show that the conjunction of the martingale hypothesis with
the present value hypothesis gives added content to the latter. In effect
the martingale restriction allows the econometrician to pin down ont;
oox'{lponent of the information set of private agents, isolating an inno-
vation to which the present value budget restriction on moving average
responses does apply.

Section 4 extends the results of Section 3 by considering a richer
class of models that, for the consumption interpretation of the mod-
els,. assume a type of nonseparable preferences for consumption goods.
This class of models permits aggregate consumption to be broken into
several components, each of which is of different durability in the sense
that it gives rise to a different time profile of service flows. We show
that even in this richer framework, present value budget balance contin-
ues t'o impose an additional restriction over and above the martingale
restrictions imposed by the Euler equations associated with the opti-
mum problem. Section 5 focuses on a consumption interpretation of
the. model, though presumably there is also a taz smoothing interpre-
tation, with different components of consumption being reinterpreted
a la Barro, as different components of government revenues. ;

) Section 5 implements the Section 4 tests for U.S. data on consump-
tion and income. The tests turn up no evidence against the present
value budget balance restriction. It would be useful to perform such
tests for data on U.S. government expenditures and tax receipts, but
we do not execute those tests here. :

Section 6 briefly uses a version of ideas introduced by Sims (1972a)
to study how issues of approximation bear on the interpretation of tests
o'f our Section 4 restrictions. We show that even though those restric-
tions have content, they are very tenuous because of the existence of a
sequence of false models that satisfy the restriction, and that approx-
imates arbitrarily well a process that is known to violate the restric-
tions. This means that in practice rejections of the restrictions hinge
on adopting sufficiently parsimonious specifications for the observable
stochastic processes.

Section 7 focuses on the restrictions imposed by present value bud-
get balance on the joint processes {(ki+1, ¢, pt)} and {(r, p¢)} under
the assumption that &; is stochastic but satisfies E;_;6; = 6 for all
t. The specification E;_y 8; = & does not restrict {(rs, p;)} but does
result in an ezact linear rational expectations model for the joint pro-
cess {(ki+1, 7, pt)}. We briefly compare these latter restrictions with
those proposed by Hamilton and Flavin (1986). In the next paper in
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this volume (Chapter 6), Roberds uses data on the U.S. Federal budget
to test present value budget balance by using an exact linear rational
expectations model for the process {k¢+1, rt — pt}.

2. Implications of Present-Value Budget Balance

Let s; = r — pi. Depending in the particular model at hand,
{st} is a stochastic process either of receipts minus expenditures or of
expenditures minus receipts. There is a sequence of budget constraints:

(21) kH-l =(1+5)k1+31 forit =0,1, ..

where kg is an initial condition, k¢ is a measure of an asset or debt stock
at time ¢, and (1+6) is the gross rate of return between time ¢ and time
t + 1. This return is assumed to be constant. In a permanent income
model for consumption, let k; be a consumer’s assets at the beginning of
period ¢, r; exogenous labor income, and p; consumption. In a model
of the government budget, we let k; be the stock of goverment debt
~at the beginning of ¢, r; the level of government expenditures, and p;
the level of government tax collections. When the initial condition kg
is observed by an econometrician, {k;} can be generated using (2.1).
However, we assume that this initial level is not observed, so that {k;}
is not observed by the econometrician.

Without constraining the process {k;}, (2.1) is evidently not re-
strictive. In fact, we can just use (2.1) to define ki4; recursively as a
function of k; and s; for any initial condition kg and any process {s¢}.
We are interested, however, in situations in which there is a terminal
constraint imposed on asset holdings that, in effect, converts (2.1) into
a discounted present-value budget constraint. For example, suppose
that (2.1) holds for ¢ = 0, 1, ... T' and that kr4; is constrained to be
zero. Then we can write

2
(2.2) k==Y Atlg,
: t=0
where A = 1/(1 + §). Taking limits as T' goes to infinity gives
(2.3) ko=—3 Mtls,
=0

where the infinite series on the right side is assumed to be mean-square
convergent. We view (2.3) as the infinite horizon counterpart to the
terminal condition that kp4, be zero. :
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Let L? be the space of all scalar stochastic processes {1} such that
o0
(2.4) EY" A(z4)? < o0.
t=0

Throughout all of our analysis, we maintain that {s;} is in L?. This
restriction is sufficient for the right side of (2.3) to be a well-defined
mean-square limit. It can accommodate growth in {s;} as long as
the growth is dominated appropriately by the discount factor A. For
example, let 4 be a common growth factor for {s;}. Multiply both sides
by p~*, which gives

(2.5) p ke = (14 8)/plu™ ke + p s

Let variables with * superscripts be scaled by u~* to remove the effect
of the geometric growth, and let é* be constructed so as to satisfy
(146*) =[(14é)/u). Then (2.4) can be expressed as

(2.6) kipy = (1 +68%)ki + 57,

which is a version of (2.1). Our subsequent analysis can be thought
of as applying to the * variables, although for notational simplicity we
will omit the *’s.

Alternatively, we can accommodate other forms of stochastic growth
that can be eliminated by taking appropriate quasi-differences. Let
a(L) be a quasi-differencing filter with a finite order £. Apply a(L) to
both sides of equation (2.1). In this case, let * variables denote variables
to which a(L) has been applied. Then

(2.7) k=1 +6k +s for t=£ £+1,...

For convenience, we shift the starting point back from £ to zero, and
again we omit the *’s.

Replicating the analysis leading up to (2.3) for any initial period ¢
gives

=)
(28) k; = — E Ar+1 St4r -

=0

where the sequence {k;} is in L?. In the remainder of this section,
we focus on the following question: given a process {y;} that includes
{s¢} as one of its components, under what set of circumstances can we



126 Present Value Budget Balance

construct a process {ki} that satisfies (2.8) and that is predetermined
in the sense that k; depends only on random variables realized at time
t — 1 and earlier.

Consider an environment in which there is a covariance stationary,
n-dimensional vector martingale difference sequence {w¢} used to gen-
erate information in the economy. The time i information set J is
generated by wi, Wi-1,--- for each t.2 We let H be a subspace of /it
containing processes {z;} that are adapted to {Ji} in the sense that
is in J; for each t. The restriction that k¢ be predetermined is formalized
as the restriction that {ke+1} be in H.

For convenience, we suppose that E (wyw}) = I. The net surplus
process {s;} (or some geometrically scaled or quasi-differenced version
of this process) is the first component of an m-dimensional vector pro-
cess {y;} that is assumed to be a time invariant, linear function of this

martingale difference sequence:

Assumption Al: y; = C(L)w; for t = 0, 1, ... where C(z) =
TRoci?’ and Lo lej|? < oo
One possibility is that s¢ is the only component of y¢, in which case m
is one. More generally, y; can contain other variables that are useful in
forecasting future values of s; and are observed by an econometrician.
It is straightforward to show that when Al is satisfied, {s:} is in H.
We shall use the idea that the stochastic process {4} is stochasti-
cally nonsingular from the perspective of linear prediction theory. In-
formally, stochastic nonsingularity requires that no component of y; can
be expressed as a possibly infinite linear combination of current, past
and future values of the other components. Formally, this requirement
is stated in terms of the spectral density matrix of {y:}. Assumption
A1l implies that the following radial limit

(2.9) Cc(0) = H]l;]il Cnexp(i0))

7
exists for almost all 8 in (=, x]. Then the spectral density matrix for
frequency 0 is

(2.10) 5(6) = Clexp (~i8)] Clexp (i0)]

!

In terms of the spectral density matrix, stochastic nonsingularity amounts

to:
Assumption A2: S(0) has rank m for almost all 0 in (—m, =].
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We now deduce the restrictions on {y;} implied by the fact k; as given

by (2.8) i i
Ty]'lén 8) is predetermined. Let the first row of C(z) be denoted o(z).

(2:11) st = o(L)w; .

It can be verified by substitution i
: into (2.8
satisfies (2.8) is given by:? 0 (2.8) that a process {k;} that

ki = k(L)w,
where (z) =~ Ao (2)/(1 = Az7Y) = =Xz0(2)/(z — A) .

Howev?r, in general, the function x(z) has a two-sided Laurent series
expansion about z = 0 implying that k; depends on current and future
va.lIues of wy. For this reason, k¢ given by (2.12) may not be predeter-
mlped. 'The problem is that the function x(z) may have a pole (diverge
to infinity) at z = A. In the special case in which o(\) = 0, x(2) ceasis
to h«?ve a pole at A and, in fact, k(2) has a one-sided pm:rer series ex-
pansion. In addition, £(0) = 0 which guarantees that k; depends onl

on past information. Thus, a necessary and sufficient condition for ky
!;0 be predetermined relative to the sequence of information sets {J }t
is that (1) = 0, which we summarize as: :

estriction R1: o(A) =0
We have thus established

(2.12)

Proposition 1: Suppose Al is maintained and that economic agents have

access to Jy at ti i is i i
. R;shocludsf at time ¢. Then {k:41} given by (2.8) is in H if and only

A version of this result was derived previously and inter

geélot. (1987b, pages 381-385).* Note that a(}:\) =0 (ofr:;z?v];fejsg
=0 9j A = 0) states the present value of the moving average coefﬁ—)
cients of the surplus equals zero for each innovation in w;.

In genelral, R1 rules out the possibility that the moving-average
representation in Al is a Wold representation of {y;}. Recall that in a
Wold representation the Hilbert spaces generated by {yi, yi~1, ...} and
{w¢, wi—1, ...} must be identical. When Assumption AQ is s’a.ti's;‘ied a
necessary and sufficient condition for these two spaces to be the sa.r,ne
is given by the following condition:

Restriction R2: The rank of C(z) is n for all |z| < 1.

Under A2, restrictions R1 and R2 cannot b i
Unde ; 2 oth be satisfied because R1
implies that C'(A) can have at most rank m — 1. Hence for R1 anc(le R2
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to be compatible, n must be less than m. If n is less than m, A2 is
violated and the process {y:} is stochastically singular. We summarize
this finding in the following:

Proposition 2: Suppose Al and A2 are maintained. Then R1 cannot
hold for any C satisfying R2.

This finding has the practical implication that one ought not to test
R1 by estimating versions of Wold representations as is done, for exam-
ple, when estimating vector autoregressions. This is true even though
we have assumed that {y;} is covariance stationary and so possesses a
Wold representation. Restriction R1 applies to a moving-average rep-
resentation that is necessarily distinct from the Wold representation.
It follows that one cannot test R1 by examining directly the impulse
response functions from a vector autoregression.

Is there any way that R1 can be tested? We now show that without
additional restrictions the answer is no. Suppose that {y;} satisfies A1
and A2. We know from the Wold Decomposition Theorem for covari-
ance stationary processes that there exists a moving-average represen-
tation that satisfies rank condition R2. Hence it is an implication of

Al and A2 that
(2.13) ye = C*(L)wy

where C'*(z) satisfies assumption A2 and {w}} is an m-dimensional, co-
variance stationary white noise process with contemporaneous covari-
ance matrix 1.5 In light of Proposition 2, C* does not satisfy restriction
RI.

To show that Restriction R1 is not testable, we demonstrate that it
is always possible to build another moving-average representation, dis-
tinct from (2.13), that satisfies R1. Given {wf}, first construct another
m-dimensional serially uncorrelated process, say {w;}, that depends
on current and future values of {w;} and for which Ewyw} = I. The
process w; satisfies:

) : 00
(2.14)  w; = D(L7')'w} where D(2) =Y d;j2?, Y |dj|* <o
=0 j=0
and
(2.15) Dlexp (i0)] Dlexp (—i0)) = I for almost all 6.
Notice that Dlexp (i0)] is a unitary matrix for almost all 8, and
(2.16) wy = D(L)w,
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so that wy depends only on current and past values of w;. Consequently,
the Hilbert space generated by wy, w;—1, ... is no smaller than the space
generated by wy, wj_;, ... and in fact is often strictly larger. We can
represent y; in terms of wy via:

(2.17) yt = C(L)wy where C(z) = C*(z)D(z).

In light of (2.17), we can show that Restriction R1 is not testable
by establishing the existence of a function D(z) satisfying (2.15) such
that the first row of C*(A\)D(]) is zero. We now propose two alternative
ways in which this can be accomplished. One possibility is to construct
D(z) so that D(]) is a matrix of zeros. An example of such a D(z) is

(2.18) D(z) = [(z= \)/(1 = A2)]| I .

This choice of D(z) satisfies (2.15) because

[exp (i6) — ] [exp (=i6) — A

(2.19) [T = X exp (i0)] [1 — X exp (—i6)]

= 1 for all 6.

A second possibility is to form an orthogonal matrix Q, the first
column of which is a vector that is proportional to the first row of
C*()) and has norm one. The remaining columns of @ are a set of
m—1 orthonormal vectors that are orthogonal to the first row of C*(\).
Therefore all entries in the first row of C*(\)Q are zeroes except for
the first entry. The matrix Q is then used to build D(z) as follows:

(2.20) D(z)=0Q [ e Hilh=da) 2]

where the matrix I has m — 1 rows and columns. Using (2.19), it is
straightforward to show that D(z) satisfies (2.15). Notice that the first
row and column of C*(A)D()) contain all zeroes.

An equivalent way to construct C(z) is as follows. Form the process
{kt} using equation (2.8) and a composite process {z;} where Ty =
[y, ki). This composite process is stochastically singular because k;
is an infinite linear combination of current and future values of s;.
Nevertheless, it possess a Wold moving-average representation in terms
of an m-dimensional vector white noise {wj}:

(2.21) yi=CH(L)w! , ki =xT(L)w;,
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where linear combinations of z¢, z¢—1, ... generate the same Hilbert
space as linear combinations of w;, w},, .... Let oF(z) be the first
row of C*(z). Since k; satisfies (2.8),

(2.22) k¥ (z) = —zda¥(2)/(z = N) .

Note that k; depends only on current and past values of w}" because
(2.21) is a Wold representation for {z;}. Therefore, o+ (z) must satisfy
Restriction R1. In Appendix A we show that C*(z) = C*(2)D(2)
where D(z) is given by (2.20) can be used in (2.21) in forming a Wold
representation for {z;}.

Summarizing these results we have established:

Proposition 3: Suppose Al and A2 are maintained. It is always possible
to find a moving-average representation y; = C*(L)w} that satisfies
R18

Thus, Proposition 3 shows that R1 is not testable without additional re-
strictions to aid in the identification of wy. Proposition 2 demonstrates
that one commonly used device for identifying w; is inappropriate when
{y¢} has full rank. In the next two sections we consider alternative ways
to identify components of moving-average representations that can be
used in testing R1.

3. The Martingale Model

In this section we impose considerably more structure on the prob-
lem. First, we decompose the surplus process {s;} into two components,
payouts and receipts. The receipt process is specified exogeneously, but
the payout process is modeled as the optimal decision process from a
quadratic optimization problem subject to constraint (2.3).” The ob-
jective function for this optimization problem is designed to imply a
martingale model for the payout process. This leads to a version of
Hall’s (1978) model of consumption or Barro’s (1979) model of taxa-
tion. We show that beyond the martingale characterization for payouts,
present-value budget balance delivers an additional restriction that is
testable so long as the discount factor is known a priori.

Let 4(L) be a stationarity inducing transformation for a receipt
process {r;}. In our analysis we take y(z) to be either 1 or 1 — z in
cases in which the stochastic process for receipts has a unit root. Other
specifications of y(z) can be explored by mimicking the analysis in this
section.

Assumption A3: y(L)re = p(L)wy where p(z) = 152, pj 2,
520 l0j]? < 0.
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We l-et {pt} denote the payout process. The net surplus process {st} of
Section 2 is given by

(3.1) St=ri—pp.

: T%xe payout process {p;} is determined as the solution to an opti-
mization problem with the objective being to maximize:

(3.2) —E [i A (pe — b)?]

where b > 0 subject to constraint (2.1) with ko given. The processes
{p:} and {kiy1} are restricted to be in H. The solution to this prob-
lem is described in Sargent (1987b) and Hansen (1987). The optimal
decision processes for p; and k41 satisfy:

Dt = 6kg -+ (1 - /\)E (E /\j?‘g.h?' IJg)
bty =kt re— (1= E (X Nry; |J)
=0

It can be verified that constraint (2.1) is satisfied adding the two equa-
tions in (3.3) together and rearranging terms.

To deduce implications for {p;}, take the first equation in (3.3) at
time ¢ + 1, subtract the same equation at time ¢ and then substitute
for k141 — k¢ from the second equation. This yields the following result

of Flavin (1981):
(34)

o0 . oo .
Pr1=pr = (1=X) E (3 Nrgjpr [Jig1)—(1-A) E (32 NMrigj | J0) -
7=0 7=0

Using a formula reported in Hansen and Sargent (1980a, 1981b), it
follows that

(3.5) pe=pi-1=[(1 = N)p(A)/v(N]wr t=1, 2, ...

We now investigate implications of (3.5) for the process {s;}. Sta-
tionarity in {s;} is induced by taking first-differences:

(3.6) St — 841 =Ty —Ti—1 — pt + pt—1
= o(L)wy
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where

(3.7) a(2) = (1 — 2)p(2)/1(2) = (1 = Vp(N)/1(}).

To relate the present analysis to the analysis in Section 2, we assume
that {y;} contains at least two components (m 2> 2), with the first
component being (1 — L)s; and the second component being y(L)r.
Notice that (1 — z)/7(z) is either (1 — z) or 1. Evaluating o(2) at
z = ), it is evident that o(z) satisfies R1. Finally, consider the special
case in which p(}) is zero. In this case py —pi—1 =0 which implies that
{y:} is stochastically singular. Therefore, this case is eliminated from

consideration by A3.
More generally, we consider a payout process that satisfies:

(3.8) Pt — Pt-1 = TW
for some 7 # 0. Then {p;} is a martingale adapted to {Ji}. In this
case, o(z) satisfies:

Restriction R3: o(z) = (1 — 2)p(2)/¥(z) — = for some row vector m.

" Restriction R3 is the focus of Hall (1978) and Flavin (1981). Note
that R1 and R3 imply (3.8) for = = (1 — A)p(A)/7(}). The question of
interest in this section is whether R1 imposes any additional restrictions
once R3 is satisfied. In other words, is the restriction

(3.9) m=(1=A)p(A)/7(})
testable?

To answer this question, we construct an orthogonal matrix @ as
follows. Since A2 is satisfied, 7 cannot be zero. The first column of @
is 7'/|r| and the remaining columns contain n-1 orthonormal vectors
that are orthogonal to 7'. Then 7@ is row vector with |x| in the first
position and zeros elsewhere. Define

(3.10) e
ot (z) = 0(2)Q, pt(2) = p(2)Q, st =7Q, and wi =Qw: .

The @ transformation is introduced so that the first entry of wy is
proportional to 7w;. Hence p; —pt-1 depends only on the first entry of

wf. Partition o*(z) = [o7 (2), o7 (2)], #*(2) = [ (=), 3 (2)], wi' =

[wi;, w3] where oi(z), pf(z) and w{; each have one entry. Write
8t — St—1 = U?'(L)wi{; + 05"(5)%‘&'}
(3.11) Y(Lyre = p} (L)wf, + pF (L)w3y

pt — pr1 = |l
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An equivalent representation of (3.9) is

(3.12) (1= N)pFN)/7() = |x]
and
(3.13) pF () =0.

First, we investigate whether (3.12) is testable. We use (3.11)
to compute the regression of 4(L)ry onto current and past values of

Pt — pt—1 or equivalently onto current and past values of w?‘. These
regressions are: i

Y(L)re = pi (L)wf, + e
=B(L)(pt — pi-1) + et
where 8(z) = p{ (z)/|r| and the regression error e, is given by

(1) et = pf (L)w.

(3.14)

~ The function B(z) is identifiable for |z| < 1.8 Consequently, (3.12)
is a testable restriction given knowledge of the discount factor A.°

Restriction R4: (1 — A)B(A)/v(A) = 1.

_Proposition 4: Suppose A1-A3 are maintained. If R1 and R3 are sat-
isfied for 7 # 0, then R4 is also satisfied.

. In Section 2 we showed that, by itself, present-value budget balance
imposes no testable restrictions on {y;}, essentially because pertinent
innovations to agent’s information sets could not be identified. How
then does it occur that, in conjunction with the martingale restriction
(R3), the present-value budget balance restriction acquires the content
sur.nrr.larized in R4? This content emerges because the martingale re-
stri'ctlon allows us to deduce one component of the new information that
arrives at time ¢ to economic agents, namely, p; — p;—1. The present-
value budget balance restriction then applies to this component.!? In
t?le analysis in Section 2, none of the components of the new informa-
tion was identified. As a consequence, the derived restrictions were not
testable.

The presence of an additional implication implied by present-value
budg(::t balance also has been noted by West (1988).1! West derived
a variance inequality that is robust to the misspecification of the in-
formation set of economic agents used to forecast future values of ry.
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Restriction R4 shares this robustness and in fact implies West’s vari-
ance inequality. The converse is not true, however. West’s variance
inequality does not imply R4 so that, in principle, R4 can be used to
construct a statistical test with additional power.!?

Finally, we investigate whether R4 exhausts the testable implica-
tions of R1 when {p;} is a martingale (i.e., when R3 is satisfied). This
amounts to assessing the empirical content of (3.13) [p3(\) = 0]. Re-
lation (3.13), however, is not testable for the same reasons discussed in
Section 2 that o(A) = 0 is not testable. To see this, form an m-1 dimen-
sional vector ij; by taking the least squares regression error of y; on the
Hilbert space generated by current and past values of p; — p;—1. Since
the first entry of y; is a linear combination of r; — r;—1 and p; — pi—1,
its forecast error is a linear combination of current and past values of
~v(L)ry. Hence the m-dimensional vector stochastic process of regres-
sion errors is stochastically singular. We simply eliminate the first entry
when forming §; which means that e; is now the first entry of §;. The
analysis in Section 2 applies to the (m—1)-dimensional process {§:}

~ with e; playing the role of s;. We thus have:

Proposition 5: Suppose A1-A3 are maintained. If R3 and R4 are satis-
fied, then it is always possible to find a moving-average representation

yy = C(L)dy that satisfies R1.

Proposition 5 offers a word of caution for statistical tests of the
restrictions implied by R1 and R3. For a given parameterization of p™,
one might consider testing whether p3 (\) = 0. Holding fixed the par-
ticular finite-dimensional parameterization of pj, this restriction can
be tested using, say, a likelihood ratio test. The message from Propo-
sition 5 is that such a test is not particularly interesting because there
will always exist an alternative, observationally equivalent parameteri-
zation of pj that satisfies the restriction by construction. Restriction
R4, however, is not subject to this same criticism.

4. Nonseparable Preferences

A potentially important defect of the model used in Section 3 is that
preferences for the payout are assumed to be time separable. While this
may not be a bad model when the payout consists only of consumption
goods that are nondurable, there is no natural measure of receipts (or
say labor income) that is matched to nondurable consumption in the
manner assumed in Section 3. In this section we extend the martin-
gale model described in Section 3 to allow for the possibility that the
payout can be divided into a vector of consumption goods, and that
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p'references for these consumption goods are not necessarily separable
either across goods or over time. We then show that the present-value
budget balance restriction R1 still has a testable implication. -
In their analyses of permanent income models, Campbell (1987)
and West (1988) assume, in effect, that nondurable consumption is a
ﬁxed .fra.ction of total consumption. We adopt a different approach
in which tl?e total payout is divided and invested in one of £ possible
ways. For instance, the alternative investments might entail expendi-
tures on alternative consumption goods such as durables, nondurables
and services. Hence ‘ :

(4.1) pe=ple

where u is an (-dimensional vector of positive numbers. Bernanke
(1985) used this strategy in modeling simultaneously two consumption
goods classifications, durables and nondurables.

Following Telser and Graves (1972), Hansen (1987) and Eichen-
ba:um anfi Hansen (1990), we model each of these investments as gener-
ating an intertemporal bundle of ¢ different services. The bundling is a
device for modeling intertemporal nonseparabilities in preferences, such
as consumption durability and habit persistence, and nonsepara.b;lities
across the different goods classifications. More precisely, a vector of
c'onsumption goods ¢; generates a corresponding service vector b, c; at
time ¢ + 7 for 7 > 0 where:

Assumptipn A4: B(z) = Y22, b, 2" is continuous and nonsingular on
the domain {|z] < 1}.13

At time ¢ the total quantity of consumption services is given by

(4.2) hf_ = § b,- Cir = B(L)C;

=0

wh.ere investments prior to time zero are taken as initial conditions.
This specification accommodates the linear-quadratic durable goods
consumption models of Mankiw (1982) and Bernanke (1985) as special
cases, as well as linear-quadratic versions of the habit persistence model
of Ryder and Heal (1973).

: The preferences used to induce the optimal payout process are spec-
ified as follows in terms of the ¢-dimensional service process:

(4.3) —(DE T M (b=} (=g
=0



136 Present Value Budget Balance

Here g is an ¢-dimensional vector of satiation points. As in the Sections
2 and 3, we impose (2.1) and require {k¢4+1} to be in H. In addition,
{p¢} and the entries of the processes {c;} and {h;} are restricted to be
in H. Finally, the receipt process {r¢} is assumed to satisfy A3.

We solve this optimization problem using the method of Lagrange
multipliers. Let mk; be the Lagrange multiplier associated with (2.1),
mp; be the multiplier associated with (4.1) and mh; the multiplier
associated with (4.2) at time ¢. The multiplier processes {mk;}, {mp:},
and the components of the process {mh;} are restricted to be in H. The
Lagrangean is

(14)
L=B 3 N {-(1/2) (ki —9) - (b= )+ mpi(u'es = p1)
t=0

+ mhy [k — B(L)cy] + mke[—kip1 + (1 + 8) ke + ¢ — Pd} :

. The first-order conditions for py, k¢, ¢; and hy are:

(4.5) —mpy + mk; =0

(4.6) — mky + E(mki4q | Ji)=10

(4.7) — E[BO\L™)'mhy | Ji] + pmpy =0
(4.8) mhy— (g —he) =0.

The multiplier mk; can be interpreted as the shadow valuation of the
capital stock at the end of time ¢, while the multiplier mp; is the (in-
direct) marginal utility of the payout at time ¢. First-order condition
(4.5) indicates that these two multipliers should be equal. First-order
condition (4.6) restricts the shadow valuation process for the capital
stock to be a martingale. In light of (4.5) and (4.6), the marginal util-
ity process for the total payout should be a martingale as in the model
investigated in Section 3.

The multiplier mhy is the time ¢ marginal utility vector for services.
First-order condition (4.7) relates the current (indirect) marginal util-
ity for the payout to the current and expected future values of the
marginal utility vector for services. This link reflects the technology
for converting a payout today into services in current and future time
periods.

We now use the connection between the marginal utilities to deduce
the optimal process for {c;}. First solve (4.7) for mh; as a function of
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-:urrent' and expected future values of mpe. In light of A4, B(AL™!) has
a one-sided forward inverse. Consequently,

(4.9) mhe = E{[BOL™)™ (ump,) | n} .
Since {mp;} is a martingale,
(4.10) mhy = B(/\)_!' pmpy

implyir.lg that“that th'e vector of marginal utilities for services is also
a martingale.'* Substituting for mh; from (4.8) and for k; from (4.2)

gives
(4.11) B(L)et + BOA) ™Y ympy — g =0 .
We compute c;, ki1, and mpy by solving the three equation system:
B(L)er+ BO)™ pmp, — g = 0
(4.12) E(mpiy1|Ji) — mp, =0
kt+] — (]. + 5)&: - +,u"c; =0.
Taking a linear combination of these three equations,
(1= N BO)[B(L)er + BAY™ pmpy — g]
(4.13) + AW BT B ] B[(~L7 + 1)mpy|Jy]
= (I == )\) [(1 — /\—1 L)kt+] -1+ ,ujct] =10
Rearranging terms gives

(4.14)
(1= V' [BO)'B(L) - e
+ W B)T'BOA)™Y ] E[(1 = ALV )mpy|Jy]
—(1=NA=AD) kya + (1= A)re = (1 = A)W'B(V)1g =0.
Note that (1 — A\)u'[B()\)~1B(z) — I] can be factored
(4.15) (1 =N [BQ)B(z) - 1] = (z — \)x(2)

wher.e x(z) ha§ a power series expansion for [z| < 1, because B(A\)™1B(z)
—1Iis a._lma}'.rtx of zeros when z = ). Applying the forward operator
(1=AL=1)~1 to (4.14) and taking expectations conditioned on Ji gives

X(L)er-1 + (W' B BO) ™Y ulmpy + 6k,

+(L=NE(Y Nryj | ) - W' BO)g=0.
j=0

(4.16)
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Since A4 is satisfied, [p’B(,\)_lB(A)_l’p] is strictly positive. Solving
for mpe,

mpy = — ex(L)er-1
(4.17) = f[ﬁk: +(1 - NE(

+ex' B(A) g

i M Tt4j |Jg)]

j=0

where
(4.18) e=1/[W' BBV 4] -

We can obtain recursive representations for ¢; and ki41 by substituting
(4.17) into the first and third equations in (4.12). It can be verified by
the reader that these recursive representations are the same as those
reported in (3.3) for the special case in which B(z) is 1.

What is of interest to us is the implied moving-average representa-
tion for p; — pr—1 in terms of current and past values of w. To deduce
this representation, note from (4.17) that the one-step-ahead forecast
error in mpy is given by

(4.19) mpe — mpr—1 = —€(1 — A) [p(A)/v(M)]wr ,
because ¢;—; and k¢ are in J;. Differencing (4.11), we have that
(420)  B(L)[et— etm1) = [e(1 = VBV up(N)/7 (V)] -

We derive a moving-average representation for ¢; — c;l_q in a stochastic
steady state by applying the inverse operator B(L)™*:

(421) 1= BL) el = VB mp(N)/A(W]we -

Therefore, in a stochastic steady state {c: — ct—1} depends only on
the scalar noise p(A)w;. While the consumption goods are not pro-
portional, the stochastic process {ci — ci—1} is stochastically singular.
Premultiplying both sides of (4.21) by u' gives:

(4.22) pt — pi—1 = Y(L)rw

where

¥(z) = 1 B(z2) " BOY™Y p/l BOY B 4]

(4.23) sk e (T <A
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Notice that #(A) = 1 and that = is the same as in martingale
model of Section 3. The scalar lag polynomial (L) occurs in (4.23)
because of the nonseparabilities over time in the induced preferences
for the payout. In contrast to Section 3, {p;} will not be a martingale
unless 1(z) = 1 for all z. Since A3 is maintained, p()A) and hence =
is different from zero. This eliminates the possibility that the payout
process is deterministic. As in Section 3, {p: — pi—1} depends only on
current and past values of a scalar noise Tw;.

To relate this model to the analysis in Section 2, we assume that
an econometrician observes a process {y;} that satisfies A1 and A2.
As in Section 3, the first component of y; is s — s;—1 and the second
component is y(L)r;. While the econometrician is assumed to observe
the payout process {p;}, observations on the vector process {c;} of
components are not used in the analysis.!® As in Section 3, we let

(424) 84 — St—1 = O‘(L)wg E

In light of (4.22) and (4.23), we impose the following restriction on o:

Restriction R5: o(2) = (1 — z)p(2)/7(2) — ¥(z)7 for some scalar ¥(z)
satisfying ¥(z) = 72 ¥zt VB [¥|* < oo and ¥(A) = 1 and for

some row vector w.

Notice that R5 is weaker than R3 used in Section 3. Restricti_ons R1
[e(A) = 0] and R5 together imply that

(4.25) r = (1= )N/ .

We now investigate whether (4.25) is a testable restriction. To
address this question, it is convenient to use the transformations given
in (3.10) and to partition ¢* and p* in the same manner. This results
in

st = st-1 = of (L)wf; + o7 (L)ws;
(4.26) ¥(L)re = pf (L)wiy + p3 (L)w3

bt —pi-1 = f7"|¢'(L)wf; .
Restriction (4.25) implies that

(4.27) (1 =XpF N/ = In|
and, by construction,
(4.28) pF(A)=0.
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First, we investigate whether (4.27) is testable. To address this
question we decompose y¢ as

(4.29) Yt = Y1t + Yot
where
(4.30) Y1t = Ci"(L)w'ﬂ and yx = C;(L)w;} .

This decomposition can be constructed as follows. the that linear
combinations of current, past and future values of wy; generate the
same Hilbert space as linear combinations of current, past :a.nd f}'_xt.ure
values of py—pi—1. Also note that since wi": is uncorrelated with wi}, y1t
is the least squares regression of y; onto current, past and future values
of wf; and hence onto current, past and fu.ture values of pt — Pt-1.
This means that yg: is the vector of regression errors. The funlcﬁtlon
(z) may have zeros ‘nside the unit circle of the complex plane. A.f
a consequence, linear combinations of current a.nd'pa.st va.lue§ of wiy
" may generate a strictly larger Hilbert space than linear cox'nbmat.lons
of current and past values of pt — pt—1. As such, the recelp.t process
may Granger-cause the payout process in this model. For thlE? 1'(3::\.‘.;011‘:,l
it is potentially important that future values of p; — pt—1 be include

in the regression when forming y1t. : ' ‘ :
In contrast to Section 3, the scalar noise wy; is not identifiable.

Instead, we form a Wold representation of the stochastically singular

(rank one) process {y1t},
(4.31) yit = Ci(L)wyy

where {w?};} is scalar white noise with a unit variance, and where lin-
ear combinations of current and past values of wj; generate the same
Hilbert space as linear combinations of current and past va.luei of yi1t.

As in the analysis in Section 2, we know that {w},} and {w(;} must

be related via

(4.32) . L
Uh = Dy(L~1)w}; where Dy(2) = Z di(z) , E |d_,.‘|2 < 00

and

(4.33) D1 lexp (i0)]D:[exp (—i0)] = 1 for almost all 0 .
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Therefore,
(434 Ci () = C1(2)D1(2)

The function D;(z) can have zeros inside the unit circle but it cannot
have a zero at A, because under A3, |r| is different from zero and ()
is one. Hence it is not possible for the first two entries of C;"(\) both to
be zero under R5. The same must be true for C{(z). Let o7 (2) denote
the first row of C}(z). An implication of (4.27) and (4.34) is

Restriction R6: of(A) = 0.

Since oj(z) is identifiable up to a sign, R5 is testable given knowledge
of the discount factor A.

Proposition 6: Suppose that A1-A4 are maintained. Then R1 and R5
imply R6.

While R6 is designed to accommodate nonseparabilities in prefer-
ences, in general, neither B(z) nor 1/(z) can be identified. In contrast
to Section 3, the noise wy; is not necessarily identified. Nevertheless the
theoretical model imposes enough structure via R5 to guarantee that
R1 is testable.

Finally, we investigate whether R6 exhausts all of the testable im-
plications. This amounts to assessing the empirical content of (4.28)
[p3 (X) = 0]. Here we simply mimic the logic of Section 3 to conclude:

Proposition 7: Suppose that A1-Ab are maintained. If R5 and R6 are
satisfied, then it is always possible to find a moving-average represen-
tation y; = C(L)w; that satisfies R1.

The first entry of @y can be chosen to be w], and the remaining com-
ponents constructed as described in Sections 2 and 3.

Recall from (4.21) that the theoretical model studied in this section
implies that the consumption goods all depend on a scalar noise process
{mw:}. In the analysis so far, we have assumed that the econometrician
uses data only on total consumption {p; — pi-1}. An alternative ap-
proach is to assume that the components of consumption are measured
with error and to model the observed income and consumption compo-
nents as a dynamic factor model of the sort studied by Geweke (1977b),
Sargent and Sims (1977), Geweke and Singleton (1981a, 1981b), Engle
and Watson (1981) and Watson and Engle (1983) with a single factor.
The present-value budget balance restriction would then apply to the
single factor. The analysis in this section can be modified appropriately
to apply to such a model.!”



142 Present Value Budget Balance

5. An Empirical Example

In this section we test R6 using aggregate post war US time series
on consumption and labor income. We describe in turn the data, the
parameterization for the underlying time series, the estimation method,
and the empirical results.

5a. Data

We used aggregate data on total consumption and labor income
from 1953:2 - 1984:4 supplied to us by Kenneth West. The original
source for the labor income series is Blinder and Deaton (1985). West
(1988) used consumption of nondurables and services excluding clothing
and services. For this series to be comparable to the labor income series,
West scaled the consumption series to reflect the fact that his measure
of nondurable consumption is only a portion of total consumption. An
advantage of proceeding in this fashion would be that preferences for
this nondurable consumption good may be modeled plausibly as time

- separable. The analysis in Section 3 could then be exploited in study-
ing present-value budget balance. We adopted a somewhat different
approach. We used data on total consumption and tested restriction
R6 derived in Section 4. Recall that the economic model proposed
in Section 4 permits the indirect preferences for total consumption to
be nonseparable over time. For this reason we were not compelled to
remove the consumption of durable goods from total consumption.

5b. Parameterization

We modeled the bivariate consumption and income process using
a two-factor specification. These factors are identified by assuming
that the factors are mutually uncorrelated and that the second factor
has no impact on consumption. In Section 4, we showed that a factor
decomposition can always be obtained by representing the rank one
process {y1¢} in (4.29) and (4.30) in terms of a scalar time series, say
{Fue)- |

For convenience, we model each factor as having an N*"-order uni-
variate autoregressive representation:

(5.1) it = bj(L) fit-1 + vje
where [1 — zb;(z)] is an (N + 1)t"-degree polynomial with zeros that are

outside the unit circle of the complex plane. Total consumption is then
modeled as a distributed lag of {f1;} and labor income as distributed
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lags of both {f1:} and {fa}:

e L Ll e S

where a;;(z) is a N*"-degree polynomial. The shock process {v} is
serially uncorrelated with E(vev}) = I.

To relate this setup to the analysis in Section 4, it is convenient to
deduce the implied moving-average average representation for {yt} in
terms of {v¢}. It follows from (5.1) and (5.2) that

(5.3)
Pt = pi1 = {an(L)/[1 - Lby(L)]Jors

re = rie1 = {an(L)/[1 = Lby(L)]ore + {aza(L)/(1 = Loy(L)Jvn .

Subtracting the first equation in (5.3) from the second gives:

(5.4)
St—81.1 = {[au (L)—azl(L)I/[I—Lbl(L)]}Ult'l‘{ﬂ!zz(L)/[I—ng(L)]}vzt.

The moving-average representation given by (5.3) and (5.4) coincides
with (4.26) when vj; = w}. In this case

it
of (2) = [an(2) — an(2))/[1 - zba(2)]
(5.5) Pi (2) = an(2)/[1 - 2by(2)]
of (2) = 53 (2) = an(2)/[1 - zby(2)]
Also 1(z) is proportional to aij(z)[l — zb;(z)]. Recall that the time
nonseparabilities in the induced preference ordering for {p;} are re-

flected in 1)(z). Present-value budget balance implies that o-_;-"(/\) =0
for j = 1,2 which, in this case, is equivalent to

(5.6) a11(A) = az21(A)
and
(5.7) az(A)=0.

For the reasons given in Section 4, it is not necessarily true that

Vi = w;';. Furthermore, the shocks w;-‘; are not identifiable without
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further restrictions. Recall from Section 4 that the inability to identify
wy; makes a test based on (5.7) uninteresting. Relation (5.6) is, how-
ever, potentially testable because the fundamental shock process {wf;}
for {y1:} is identifiable. Furthermore, as long as a;1(2) and a2;(2) do
not have common zeros, wj, is equal to vi¢ up to a sign convention. In
this case (5.6) is equivalent to the Restriction R6. Thus we make (5.6)
the focus point of our empirical analysis.

5c. Estimation Method

We tested (5.6) using the method of maximum likelihood assuming
a Gaussian likelihood function. In evaluating the likelihood function,
the time ¢ components of both series were scaled by u~! where the
growth rate log(u) was estimated. First-differences of the resulting se-
ries were taken and sample means removed. The scaled series were
modeled as stationary processes using the two factor specification just
described. We used a transformation suggested by Monahan (1984)
to ensure that b;(z) has zeros outside the unit circle of the complex
plane for : = 1,2. The likelihood for the stationary model was eval-
uated using recursive state-space methods as described in Chapter 3.
An extra (Jacobian) factor was included in the likelihood function to
accommodate the scaling of the original time series.

5d. Empirical Results

The unrestricted model was fit for N = 1,2,3. The log-likelihood
values for these cases are reported in Table 1.

Table 1: Log-Likelihood Values for
the Unrestricted Parameterization

N log-likelihood value

1 —897.21
2 —888.58
3 —878.92

Increasing N by one introduces five new parameters into the model.
As seen in Table 1, the changes in the values of log-likelihood function
are substantial from the vantage point of the likelihood ratio statis-
tic. On the other hand, from the vantage point of the Schwarz (1978)
criterion for model selection, these changes are not substantial. The
Schwarz criterion was developed for a different estimation environment
and is known to be conservative. Under a nonparameteric perspec-
tive in which a finite-dimensional parameterization is viewed as an ap-
proximation to an infinite parameter model, it is not apparent that
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model selection based on either classical likelihood ratio inference or
the Schwarz criterion can be justified. We did not explore larger values
of N for reasons of numerical tractability and also because the analysis
in the next section suggests that restriction (5.6) has very little content
for generous parameterizations.

For each N, Table 2 gives the fraction of variation of each series

that is explained by the first factor. Recall that, by construction, this
fraction is one for consumption.

Table 2: Fraction of Variation Explained by the First Factor
for the Unrestricted Parameterization

N net surplus labor income
1 : b AT
2 22 .53
3 .25 .51

Notice that for each of the parameterizations, about half of the variation
in labor income can be attributed to the first factor. It is this variation
that forms the basis for our test of present-value budget balance.

o

0 5 W W A E M N
Figure 1. Impulse Responses of Net Surplus in the Unrestricted Models, N

=123

: Figure 1 gives the estimated impulse response function for the first
difference of the net surplus process to a surprise movement in vi;
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for each of the three specifications of N. In other words, thi.s fig-
ure reports the estimated coefficients of the power series expansion of
[@11(z) — a21(2)]/[1 — zbi(2)]. The pattern of the response }s'sn'm'lar
across the three different specifications. In all cases the ongmall in-
crease in the net surplus is more than offset after one time period.
Figure 2 gives the estimated impulse response function for the first-
difference in consumption and labor income separately for the N = 3
run. The peak responses for consumption and labor income i:.’oth occur
after one time period. The nontrival response of consumption to t.he
first shock suggests that it is important to allow for gonseparal')htles
in preferences. In fact, the coefficients of the power series expansion of
¥(z) are proportional to the impulse response functlo'n for {p: —'pt._]}.
The similar response patterns of consumption and income might be
taken to suggest a trivial model in which consumption and income are
the same. Such an interpretation would be misleading, however, Pe—
cause the first shock accounts for all of the variability in consumption
but only half of the variability in income.

|| consumpTION

.. LABOR INCOME

Figure 2. Impulse Response of Consumption and Labor Income in the Un-
restricted N = 3 Model.

Restricted versions of the model were also estimated lfor N=123.
For these versions, the aj1(z) polynomial was parameterized as follows.

First we constructed the function

(5.8) $(2) = ¢(2)/[1 — 2b1(2)]
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where ¢(z) is an N'-degree polynomial. In order that P(A) = 1, we
required that

(5.9) $(A) =1—Aby()) .

The polynomial ¢ was parameterized as

N :
(5.10) 6(z) =3 ¢;¢ ,
o
where the ¢;’s were treated as free parameters for j = 1,2,..., N and

¢o was chosen so as to satisfy (5.9). Finally, the polynomial ai1(z) was
constructed as

(5.11) au(z) =an (/\)tﬁ(z)/[l — Ab](r\)} -

Note that (5.6) is satisfied by construction, and that there are only N
underlying parameters of a;; (z), whereas in the unrestricted estimation
there were NV + 1 such parameters.

We estimated the restricted model for five different values of log(\)

ranging from —.005 to —.025.!% The values of these likelihoods are
reported in Table 3:

Table 3: Log-Likelihood Values for the Restricted Parameterization

—log A
N .005 .010 015 .020 .025
1 —-897.76 —897.73 -—897.72 —897.71 —897.69
2 —889.69 —889.69 -—889.69 —889.68 —889.68
3 —879.02 -879.02 -—879.02 —879.02 —879.02

As is evident from Table 3, the restricted log-likelihood function is not
very sensitive to the pre-specified choice of log()). Comparing the re-
stricted likelihood values in Table 3 to the unrestricted likelihood values
in Table 4, the evidence against the present-value-budget-balance re-
striction is very weak. In estimating the unconstrained (N = 3) model
we were unable to find likelihood values that showed any appreciable
improvement over the constrained value. Notice that for N = 3 the
unconstrained likelihood value is only .10 higher than the constrained
value. Thus we find that evidence against permanent-income-type mod-
els cannot be attributed to violation of present value budget balance.
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Table 4 reports the fraction of variance explained by the first factor.
Since these numbers are insensitive to the choice of log()), only numbers

for log(\) = —.015 are reported.

Table 4: Fraction of Variation Explained by the First Factor
for the Restricted Parameterization (N = 3)

N net surplus labor income
1 16 .52
2 22 .53
3 19 .51

Not surprisingly these results are very similar to those reported in Table

2.

N=1 W s s

“0 5 s S a0 TS A

Figure 3. Impulse Responses of Net Surplus in the Restricted Models, N =

1,2, 3.
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CONSUMPTION

Figure 4. Impulse Responses of Consumption and Labor Income in the
Restricted N = 3 Model.

Figure 3 gives the impulse response functions for net surplus and
Figure 4 gives the impulse response functions for consumption and labor
income for the restricted [log(A) = —.015] version of the model with
N = 3. These figures are the restricted counterparts to Figures 1 and
2 respectively. Figures 2 and 4 are remarkably similar for the reasons
described previously.

6. Approximation Error

In this section we investigate the effect of model approximation
error when testing restriction R6. For simplicity, we focus on the case
in which {y;} is two-dimensional. Recall that the payout series is a
linear combination of the net surplus series and the receipt series. In
this section, we find it convenient to make (1— L)p; rather than (1—L)s;
the first component of y;. The moving-average representation for {y:}
is denoted:

(6.1) i = [p’ "P‘-"] = C(Lywf

e = Ti-1
Consistent with A3 and RS for 7(z) = 1 — z, we assume that C(z) is

lower triangular:

_Imlz) 0
(6.2) C(z)—[p:(Z) .02(3)} :
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We impose an additional assumption that accommodates a rich collec-
tion of moving-average representations:

Assumption A5: (1/2?1')]_:{|p1 [exp(—z'f})]|2/|p2[exp(-—£9)]|2} df < 0.

In contrast to the previous sections, we assume that present-value bud-
get balance is violated for the first component of the shock process

{wf}:

Assumption A6: m1(A) # p1(A).

Our goal is to construct a sequence of approximating models that
converge, in some precise sense, to the true model such that each ap-
proximating model satisfies R6. If we can construct such an approxi-
mating sequence, it will seriously undermine the testability of R6 when
(even small) approximation errors are present.

The approximating models we consider all have the following struc-
ture. The C(z) matrix function is replaced by an approximating func-
tion that is also lower triangular:

_[m(2bkz) 0

(6.3) C%(2) = [ p1(2)b*(2) pz(z)]

where
(6.4) b(z)=(z—=()/(1=2¢) and b*(z)=(z—¢")/(1—2C")

for real numbers ¢ and ¢* in the interval (0,1). Consistent with the
approximation criterion that is implicit in maximum likelihood esti-
mation, we use an information measure of the magnitude of the ap-
proximation error. Let S be the spectral density of the approximating
model and let S be the spectral density of the true model. Qur measure
of approximation error uses the population counterpart to the Gaussian
log-likelihood function and has a frequency domain representation:

n(S%, §) = (1/2r) f {log det [S(6)] - log det [S*(0)]}do

(6.5) e

+(1/27) / trace [I — S(0)S®(8)~"]df .

Notice that 7(S,.S) is zero. In addition, it can be shown that 5(S5¢,5)
is strictly positive unless S¢(0) is equal to S(f) for almost all 6.
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Given an approximating model satisfying (6.3), representation (6.5)
simplifies considerably. Recall that

S(6) = Clexp(~i0)] Clexp(i0)]
(6:5) _[ e men)
pi(2)m(z7)  p(2)? + |p2(2))?
for z = exp(—10). Similarly,
(6.7)
5%(6) = C*[exp(—i0)] C*[exp(if)]
s [ |71 (2)|? Pl(z'l)ﬂl(z)b*(z_l)b(Z)]
pi(z)my(z71)b*(2)b(z ) p1(2)1? + |p2(2)[?

since [b(z)|> = |b*(z)|? = 1 for all |z] = 1. Note that the matrices S(8)
and S%(0) have the same determinants and that

trace [I — 5(8)S5%(8)~'] = .
lp1(2)mi(z71)[* [L - 6 (2)b(27")]/ det[S(9)] +
lp1(2)m1(z71)? [L - 6 (271)b(2)]/ det[S(0)]
=1 =b*(2)b(z") |pr(2)]/|o2(2)?

for z = exp(—10). Substituting into (6.5), it follows that the magnitude
of the approximation error is

(s §) =
6oy W) [ (1t {vlexp(-ib) texp(it)]}

Iprlexp(=i))* /| palexp(~ib))* ) do .

(6.8)

Formula (6.9) is very similar in structure to one derived in Sims (1972a)
for least squares estimation with strictly exogenous regressors. Notice
that the magnitude of the approximation error is a weighted integral
of the squared error in approximating 1 by the product b* [exp (—i0))
blexp (:6)]. In light of Assumption A5, the density that weights this
squared error induces a finite measure on (—=, ). Among other things,
this assumption guarantees that the approximation error is finite for
members of our class of approximating models.
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We now construct a sequence of approximating mode.ls {C;} for
which {n(C;, C)} converges to zero. The matrix Cj is given by the
right side of (6.3) with b; replacing b and b} replacing b* where

(6.10)  bj(z) = (z — ¢;)/(1 — 2¢;) and bj(2) = (2 = )/ (1 = 2(5)

for sequences of real numbers {¢;} and {¢} in the interval (0, 1). For
each j the pair ((j, ¢}) is chosen so that tfle present-value budget b.al~
ance restriction R6 is satisfied. We focus on the special case in which
71()\) and p1()) are both different from zero. Arguments for the other
cases proceed in a similar but slightly more complicated fashion.!?

Let {(;} be a sequence of real numbers in the interval (0,1) that
are distinct from A but that converge to A. Note that m1(A)b;(}) is
different from zero but that the sequence {m1(})bj(A)} converges to
zero. Next choose (; so that

(6.11) ()b = ) B ()

It follows from the analysis in Section 4 that (6.11) implies tl}at re-
striction R6 is satisfied for each of the approximating models. Viewing
(6.11) as an equation in (}, it follows that (F must satisfy

(6.12) P ()5 (1= AG) = M (A=) -

For sufficiently large j, equation (6.12) determines ¢ uniquely because
{b;(\)} converges to zero and p1(}) is different from zero. Solving for
¢j gives

(6.13) ¢ = [r1(X) 5;(A) = (N1 (N) 5 (X) = ()]

Since {b;(\)} converges to zero, {(]} converges to A. By omitting some
- *
of the initial entries of the sequence of {¢;} and hence also of {(}}, we
can guarantee that all entries of both sequences are in the interval (0, 1).
It remains to show that the approximation error n(Cj, C) can
be made arbitrarily small. Since {¢;} and {(;} both converge to A,
{b%(2) bj(z~")} converges to one for all |z| = 1. Furthermore,

|63(2)] 16;(="1)I <
[(1+¢) A+ NI = GYA=¢)] for [z =1.
The inequality permits us to apply the Dominated Convergence The-

orem and conclude that {5(S,S;)} converges to zero. We have estab-

lished:

(6.14)
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Proposition 8: Suppose Assumptions A1-A6 are satisfied. Then there
exists a sequence {S;} of spectral density functions satisfying R6 such
that {n(S;,S)} converges to zero.

In light of Proposition 8, the empirical content of Restriction R6
is tenuous. Even when the restriction is not satisfied, it is possible
to construct a sequence of models, each of which satisfies R6, that

- approximate the original model arbitrarily well. These approximating

models have the feature that the corresponding sequences {p}} and
{71} have zeros that are arbitrarily close to A. To avoid the negative
implications of Proposition 8, one must be able to rule out zeros of these
functions in a neighborhood of A.2° Recall that in Section 5 we assumed
that p;(z) and 71(z) are ratios of finite-order polynomials. If the orders
of these polynomials are chosen to be too large, then a finite-parameter
version of Proposition 7 holds. Of course it is very difficult in practice to
determine the precise order of numerator and denominator polynomials.
Furthermore, it is often the case that the parameterizations used in
estimation are best thought of as approximations to models with more
complicated time series correlation structure. Hence, it seems hard to
circumvent the negative conclusion of Proposition 8.

7. Variable Real Interest Rates

In this section, we permit uncertainty in the real interest rate ¢ of
(2.1). We rewrite (2.1) as
(7.1) kiy1=(1+6)ki+s for t=0,1,2,....

Let J;—; denote information available to agents at time ¢t — 1. Through-
out this section, we require

(7.2) E(6 | Jei) =6,

so that the conditional expectation of interest rates is constant over
time. Since {&} is no longer deterministic, the martingale implications
described in Sections 2 and 3 may no longer be applicable.

To deduce testable restrictions, we take expectations of (7.1) con-
ditioned on time ¢ — 1 information. This yields

(7.3)  E(keta | Jic1) = 1+ 8) ki + E(st | Jim1), 1 =0, 1,... ,

with kg given, since k; is determined at time ¢ — 1. We impose assump-
tion Al and terminal condition

(=2
E S M(k)? <400,
t=0
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where A = 1/(1 + §). Solving (7.3) forward gives

o0 +
(74) k; = — Z )\J.H’ E(Sg+j | Jg_l) 3 b= 0, l1I e
=0

For reasons similar to those given in Section 2, (7.4) imposes no testable
restrictions on the joint process {(ry, p;)} beyond those described in
Section 2. However, (7.4) does have interesting implications for the
question studied by Hamilton and Flavin (1986), namely the restric-
tions imposed by present value budget balance on the joint process
{(ki41, 1, pt)}. In fact (7.4) is a version of the class of present value
models investigated by Campbell and Shiller (1987).

We continue to assume that information available to agents has
the structure described in Section 2. In particular, recall that s; is
the first component of an m-dimensional vector process y; that has
representation

y=C(L)w,

where w; is the vector of innovations to agents’ information. The first
row of the above system of equations is

51 = U(L) wy .

Using the above formula together with results of Hansen and Sargent
(1980a), permits (7.4) to be represented as

Ao(z) — Aa(,\)] :

(7.5) kg1 = k(L)w, where *‘(z)=‘[ (z—N)

Equation (7.5) translates directly into a restriction on the moving-
average representation for {(ki41, y})} in terms of {w;}.

So long as the dimension n of wy is greater than the dimension m
of yi, a composite process {(ki+1, y;)} satisfying (7.5) can be stochas-
tically nonsingular. Stochastic nonsingularity can emerge when ki41
cannot be expressed as a linear function of current, past and future
values of ;. In this circumstance, k41 can reveal additional informa-
tion about wy. Indeed, {(ki+1, vj), (kt, yi_y) ...} could well generate
a smaller information set than does {wy, wy_1, ...}.2

Hamilton and Flavin (1986) formulated and tested a version of (7.5)
that emerges under the special assumption that s; is a univariate pro-
cess with an innovation that reveals wy, so that s; is Granger caused
by no other variables in {(k¢+1, y;)}. Under this special assumption,
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restriction (7.5) implies that the {(ki+1, y;)} process is stochastically
singular and that the regression of k;4; on current and lagged s; fit
by Hamilton and Flavin will have an R? of unity. If one were to drop
the assumption that s; is Granger caused by no other components of
{(kt41, yi)}, a serially correlated Shiller error would emerge in the re-
lation fit by Hamilton and Flavin. The presence of that error would
require resorting to estimators of the class described by Hansen and
Sargent (1982) and Hayashi and Sims (1983) in order to obtain consis-
tent parameter estimates and valid test statistics.

Further insights about efficient estimation and about the structure
of the restrictions are gained by noting that the model for {(ki+1, y1)}
induced by (7.5) is a member of a class of ezact linear rational ezpecta-
tions models studied by Hansen and Sargent in Chapter 3. The results
in Chapter 3 imply that the restrictions given by (7.5) always apply to
a Wold moving-average representation for {(k¢+1, y;)}.2* Furthermore,
even if the moving-average representation in terms of w; turns out to be
a Wold representation, it is always possible to find some other moving-
average representation with the same number of noises that satisfies
the restrictions and is not a Wold representation. Thus, unlike the
restrictions studied in Section 2, the restrictions given in (7.5) apply
to both the Wold moving-average representation and to some other
moving-average representations. Evidently, the restrictions (7.5) have
a different structure from those studied in Section 2.

Finally, it is straightforward to extend the analysis in this section
to accommodate unit roots in the payoff and receipt processes along
the lines described in Section 2. The asset process {k; :t =0, 1, ...}
will inherit the nonstationarity; however, (7.5) implies that the process
{kt41, ¢, pt) : t =0, 1, ...} will be co-integrated in the sense of Engle
and Granger (1987) (e.g. see Chapter 3 and Campbell and Shiller 1987).

8. Conclusions

In Section 2, we supplemented the hypothesis of present-value bud-
get balance with two more hypotheses, the existence of a time invariant
moving-average representation for the process {(r¢, p;)} and constancy
of the net rate of interest. We found that present-value budget balance
is so weak an hypothesis that it imposes literally no observable restric-
tions on the process {(r¢, p;)}. This weakness illustrates how difficult
it is to verify a present-value budget constraint that restricts the entire
(infinite-dimensional) future of the {(r, p:)} process. The restriction
acquires content only if the hypothesis of a time-invariant linear repre-
sentation is supplemented with additional hypotheses that reduce the
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parameter space in ways that render inadmissible the transformations
that we exhibited in Section 2. We showed that the present-value bud-
get balance restriction is delicate in the sense that it cannot hold for a
Wold moving-average representation, which is the representation that
is typically recovered using vector autoregression methods.

In Sections 3 and 4, we showed that the present value budget bal-
ance restriction acquires additional content when it is part of a class
of linear-quadratic models of optimal consumption (or optimal tax col-
lections). In those models, present value budget balance imposes an
additional restriction on the {(r¢, p:)} process above and beyond those
imposed by martingale characterizations stemming from Euler equa-
tions. A sense in which even these restrictions are tenuous was de-
scribed in Section 6.

Section 7 described the restrictions on the joint {(ki+1, pt, r¢)} pro-
cess imposed by the assumption that E;_16; = 6 for all t. It turns
out that those restrictions deliver an ezact linear rational expectations
model. In the next paper in this volume (Chapter 6) Roberds esti-
mates such a model for post war U.S. time series on government debt
and deficits.

Appendix A

In this appendix we show that D(z) given in (2.20) can be used to
build a Wold representation for the composite process {z:}. Use the
Wold representation for {y;}, namely,

(A1) ye = C*(L)w]

to form a two-sided moving-average representation for {z;} by adding
a row

(A.2) ke = *(L)wy where  &*(z) = —Aza*(2)/(2 = )) ,

and o*(z) is the first row of C*(2). Use D(z) given in (2.20) to form
an alternative moving-average representation for {z¢}:

(A.3) =CH*(Lyw§ , ki =«*(L)wf

where

(A4) Ct(z) = C*(2)D(z) and xt(z) =«*(2)D(2) .
Note that

k¥(z) = =Az0*(2)D(2) /(2 — A)

(A.5) Nt [1/ - Az)

I

=]
[1/(z= M)~
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Since o*(A)Q has zeroes in all entries except the first, x¥(z) has a re-

movable singularity at z = A, implying that s*(L) is one-sided. There-

fore, (A.3) gives a one-sided moving-average representation for {z¢}.
It remains to show that representation (A.3) is a Wold represen-

c+(,\)]

tation. Suppose to the contrary that the rank of the matrix [m"'(,\)

is m-1. In this case there exists an orthogonal matrix Q% such that

C*())

the first column of [K+(/\) ] Q™ contains all zeroes. Hence the matrix

function

ao  [53] = (Gl (¢ )

has a removable singularity at z = A, and the composite process {z}
has a one-sided moving-average representation:

(A.7) ye = C(L)ivy , ky = k(L)

for some vector white noise {;}. Consequently, the first row of C(\)
satisfies R1. However,
(A.8)
= " —A)/(1=2A 0 1-2A —-A) 0
C(z)=C (z)Q[(z )/0( z) I]Q+[( 3)0/(2 ) I]

implying that det[C*(z)] = det[C(z)]. Thus C(z) also satisfies R2
which contradicts Proposition 2. This proves that (A.3) is a Wold
representation for {z;}.



158 Present Value Budget Balance
Notes

1. The recent paper of Trehan and Walsh (1988) studied these ques-
tions as well as tax smoothing.

2. More formally, the notation J; will be used both to denote the
sigma algebra generated by wi, wi-1, ... and the space of all ran-
dom variables with finite second moments that are measurable with
respect to this sigma algebra.

3. For definitions of concepts from the theory of complex variables
such as Laurent series, Taylor series, poles and removable singular-
ities see Churchill, Brown and Verhey (1974). For applications of
these concepts in macroeconomics, see Hansen and Sargent (1980a),
Whiteman (1983) and Sargent (1987b).

4. Sargent (1987a) did not show the sense in which the restriction is
vacuous and did not fully explore the implication that the restric-
tion does not apply to a Wold representation.

5. Recall that the white noise sequence in a Wold representation is
not necessarily a martingale difference sequence but instead satis-
fies the weaker requirement of being serially uncorrelated. We do
not investigate the implications of the stronger restriction that the
vector white noise be a martingale difference sequence.

6. While A2 is essential to the proof of Proposition 2, it is adopted
only as a matter of convenience for Proposition 3. We leave it
to the reader to show that Proposition 3 holds when only Al is
maintained. Also, several examples in Sargent (1987b, Ch. XIII)
purport to show instances in which restriction R1 is testable. These
examples all hinge on maintaining a low-dimensional parameteri-
zation of C. The reader can verify that these restrictions vanish
when the dimensionality of the parameterizations is expanded.

7. The language receipt and payouts is inspired by the permanent
income model of consumption, but is perverse when applied to
Barro’s tax smoothing model. (See (3.1)(3.2) in the text.) In
Barro’s model, what we call receipts corresponds to government
expenditures, while what we call payouts corresponds to total tax
collections.
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8. In the spirit of this paper, issues that occur when f3(z) is approxi-
mated by ratios of polynomials potentially are relevant to our analy-
sis. lSims (1972a) demonstrated that objects such as sums of lag co-
efficients are particularly sensitive to errors in approximating f(z).
The same observation, however, does not apply to approximating

B(z) for |z| < 1.

9. As pointed out to us by Chi Wa Yuen, if A is not known, then
R4 can be used to help identify A. In general, R4 can only be
used to identify A locally and not globally because the function
(1 = 2z) B(z) — v(z) can have multiple zeros in (0,1). A finding of
no zeroes in this region constitutes evidence against R4. However
the testable implications of R4 are considerably weaker and the’

resulting statistical tests harder to implement when A is not known
a priort.

10. In Barro’s (1979) model, the martingale implication might be con-
strued as applying to tax rates instead of taxes. Let 7y denote the
tax rate. In this case the present value budget balance restriction
could be tested by regressing the surplus process onto the current

and past values of (1y —7—1)/7t—1 and checking the discounted sum
of coefficients.

11. Restriction R4 is absent in the permanent income model studied by
Camplbell (1987) because k¢ in Campbell’s model is not restricted
to be in J;. Instead k4 also depends on a shock labeled unantic-

ipated capital gains that is only observed by economic agents as of
time ¢ + 1.

12. West (1988) correctly pointed out that obtaining a more power-
ful test may not be essential in the case of the permanent income
model of consumption because evidence using his test is sufficient
to challenge the validity of the model.

13. Ha.n:sen (1987) showed that specifications in which there are more
services than goods can often be converted into specifications in
which the number of goods and services are the same without
changing the optimal decision rules for consumption. Hence the
restriction in A4 that B(z) be a square matrix can often be relaxed.
The further restriction that B(z) be nonsingular rules out cases in
which stable service processes may require unstable consumption
processes as in, for example, the rational addiction model of Becker
and Murphy (1988).
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14.

15.

16.

1lje
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Heaton (1989) deduced a continuous time counterpart in a model
with a single consumption good but a general specification of the
temporal nonseparabilities in preferences.

Wilcox (1989) noted that one of the difficulties in NIPA measures
of consumption is splitting retail sales into durable and nondurable
components. Our model avoids having to make this split.

To illustrate that ¥(z) can be zero inside the unit circle of the
complex plane, consider the following setup. Suppose that

- [} %]

for b> 0 and p' = [1,1]. Then
B(z)=[1+ 1 —bz)(1=0N)/1+ (- bA)?] .

It is easy to verify that b can be chosen so that ¥(z) is zero for
some |z| < 1. For instance, note that

B(=A) = [2 = (BN/[L+ (1 =50 .

Then (—A) =0 for b= V/2/A. An objection to this specification
is that in a deterministic steady state, the marginal utility for the
first service is negative. This defect can be overcome by premul-
tiplying B(z) by an appropriately chosen orthogonal matrix. This
transformation of B(z) does not alter the indirect preferences for
consumption goods. In addition, there are initial conditions for the
capital stock and a constant endowment sequence for which both
consumption goods are strictly positive in a steady state. Such a
specification should tolerate at least small amounts of uncertain-
ity in the endowment process and still have the vector of services,
consumption goods, and marginal utilities be positive with high

probability.

An alternative approach suggested by Andy Atkeson is to assume
that the indirect preferences for consumption are separable in the
first good. This is equivalent to restricting B(z) to have all zeros
in the first row and column except for the (1,1) entry. If the first
consumption good is measured without error, then no other pro-
cesses adapted to the information sets of economic agents should
Granger-cause the process for the first consumption good. Fur-
thermore, the univariate innovation in this process should reveal

18.

19.

20.

21.

22.
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a component of the information set of economic agents to which
the Prgsent value budget balance restriction applies. To test this
restriction still requires that the surplus process also be measured
without error. However, it is important to remember that if other
consumption goods are also measured without error, the model de-
siz:rlbed in Section 4 implies a stochastic singularity for the observed
time series tht is likely to be counter-factual.

Recall that the time series are scaled by an estimated growth factor
as part of the estimation. The discount factor A applies to the scaled

time series. The estimates of the growth rate lo tvpi
around .0075. £ g(n) were typically

For instance, if m1(\) has single zero at A, then the function b;(z)
should have an additional factor of the form [(z — A;) (1——/\2:)]/[61 -
)\J'.z) (2 — A)] where {A;} converges to A. Among other things
this extra factor is designed so that m1(2)bj(z) has a removabl;
singularity at z = A

F or the (low order) parameterizations adopted in Section 5, approx-
imation error does not seem to be the source of our nonrejection
because 7 (A) and p; (A) both seem not to be zero. For both the
unrestricted and the restricted estimates, we computed the zeros of
a11(z) and a21(z). The only zeros that were similar in magnitude
for ay1(z) and az»(z) were complex and had absolute values exceed-

ing unity. There were no common zeros in the vicinity of plausible
values of \.

This point is related to those that we discuss under the topic of
the first of the two difficulties in our paper “Two Difficulties in In-
terpreting Vector Autoregressions” (Chapter 4). That paper treats
a class of examples related to (7.5) in which it can be taken that
n = m, and in which current and lagged values of the process
(ki41, ye) spans a smaller information set than does {w¢, we-1, ...}

Among other things, Campbell and Shiller (1987) exploit this ob-
servation and derive the restrictions implied on a finite-order vector
autoregression.



