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Two Difficulties in Interpreting
Vector A utoregressions

by Lars Peter HANSEN and Thomas J. SARGENT

Introduction

The equilibrium of a typical dynamic rational expectations model,
is a covariance stationary (n x 1) vector stochastic process z(t). This
stochastic process determines the manner in which random shocks to
the environment impinge over time on -agents' decisions and ultimately
upon market prices and quantities. Surprises, Le., random shocks to
agents' information sets, prompt revisions in their contingency plans,
thereby impinging on equilibrium prices and quantities.

Every (n x 1) covariance stationary stochastic process z(t) can be
represented in the form of a vector autoregression (of any finite order).
Consequently, it is natural to represent the equilibrium of a dynamic ra-
tional expectations model in terms of its vector autoregression. A vector
autoregression induces a vector of innovations which yields characteri-
zations of the vector stochastic process via the "innovation accounting"
techniques invented by Sims (1980).

In interpreting these innovation accountings, it is useful to under-
stand the connections between the innovations recovered by vector au-
toregressions, on the one hand, and the random shocks to agents' in-
formation sets, on the other hand. From the viewpoint of interpreting
vector autoregressions that are estimated without imposing restrictions
from formal economic theories, it would be desirable if the innovations
recovered by a vector autoregression could generally be expected to
equal either the random shocks to agents' information sets, or else some
simply interpretable functions of these random shocks. This paper de-
scribes two important settings in which no such simple connections
exist. In these settings, without explicitly imposing the restrictions im-
plied by the economic theory, it is impossible to make correct inferences
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78 Two Difficulties in Interpreting Vector Autoregressions

about the shocks impinging on agents' information sets. In addition to
describing these situations, we briefly indicate in each case how the
economic theory can be used to deduce correct inferences about the
shocks impinging on agents' information sets.

Let z(t) be an (n X 1) vector, covariance stationary stochastic pro-
cess. Imagine that z(t) is observed at discrete points in time separated
by the sampling interval .6.. A vector autoregression is defined by the
projection equation

(1)
00

z(t) =L Atz(t - .6.j)+ a(t),
j=1

t = 0, :1:.6.,:1:2.6.,...

where a(t) is an (nx 1) vector of population residuals from the regression
with Ea(t)a(t)T = V, and where the At's are (n X n) matrices that,
in general, are uniquely determined by the orthogonality conditions (or
normal equations)

(2) E z(t - .6.j)a(t)T = 0, j?1.

The At's in general are "square summable," that is, they satisfy

(3)
00

~ trace A~ A~T < +00L..t 1 1
j=1

where the superscript T denotes matrix transposition. Equations (1)-
(3) imply two important properties of a(t). First, (1) and (2) imply
that

E a(t)a(t - D.jf = 0, j ~ 0 ,

so that a(t) is a vector white noise. Second, (1) and (3) imply that a(t)
is in the closed linear space spanned by {z(t), z(t-.6.), z(t-2.6.), .. .}.
Further, by successivelyeliminating all lagged z(t)'s from (1), we obtain
the vector moving-averagerepresentation

(4)
00

z(t) = L ef a(t - D.j)
j=O

where the ef's are n X n matrices that satisfy

00 A A -
{

I s=o
- L ej As-j - 0 s ~ 0j=O

t

!

r

I
i

l
f
~
I

f

Two Difficulties in Interpreting Vector Autoregressions 79

where A~ ==-1. The ef's in (4) satisfy

(5)
00

L trace ef efT < +00 .
j=O

Equations (4) and (5) imply that z(t) is in the closed linear space
spanned by (a(t), a(t-.6.), a(t-2D.), .. .). Thus, the closed linear space
spanned by (z(t), z(t - .6.), ...) equals the closed linear space spanned
by (a(t), a(t-.6.), .. .). In effect, a(t) is a stochastic process that forms
an orthogonal basis for the stochastic process z(t), and which can be
constructed from z(t) via a Gram-Schmidt process. The property of the
vector white noise a(t) that it is contained in the linear space spanned
by current and lagged z(t)'s is said to mean that "a(t) is a fundamental
white noise for the z(t) process."

It is a moving-average representation for z(t) in terms of a funda-
mental white noise that is automatically recovered by vector

autoregression. I However, there are in addition a variety of other moving-
average representations for z(t) of the form

(6)

00

z(t) = L af a(t- D.j)
j=O

where a(t) is an (n X 1) vector white noise in which the linear space
spanned by (a(t), a(t - .6.), ...) is strictly larger than the linear space
spanned by current and lagged z(t)'s. Current and lagged z(t)'s fail to
be "fully revealing" about the a(t)'s in such representations.

Representation (4) induces the following decomposition of j -step
ahead prediction errors2

. . T
E(z(t) - Et-jz(t)) (z(t) - Et-jz(t))

j-I

= L ef V efT.
k=O

By studying versions3 of decomposition (7), Sims has shown how the
j-step ahead prediction error variance can be decomposed into parts
attributable to innovations in particular components of the vector z(t).

Sims has described methods for estimating vector autoregressions
and for obtaining alternative fundamental moving-average representa-
tions. He has also created a useful method known as "innovation ac-
counting" that is based on decomposition (7). In the hands of Sims

(7)
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and other skilled analysts, these methods have been used successfully
to detect interesting patterns in data, and to suggest possible inter-
pretations of them in terms of the responses of systems of people to
surprise events.

This paper focuses on the question of whether dynamic economic
theories readily appear in the form of a fundamental moving-average
representation (4), so that the vector white noises a(t) recovered by vec-
tor autoregressions are potentially interpretable in terms of the white
noise impinging on the information sets of the agents imagined to pop-
ulate the economic model. This question is important because it influ-
ences the ease with which one can interpret the variance decompositions
(or innovation accounts) and the responses to innovations a(t) that are
associated with the fundamental moving average (4).

This paper is organized as follows. Section 1 describes a class of
discrete-time models whose-equilibria can be represented in the form

(8)
00

Zt = :L Dj ct-j
j=O

where ct is an (n X 1) vector white noise; Dj is an (n x n) matrix for
each jj and L:~o trace DjD; < 00. Here ct represents a set of shocks
to agents' information sets. We study how the ct of representation (8)
are related to the a(t) of the (Wold) representation (4), and how the
Dj's of (8) are related to the af's of (4). We describe contexts in
which a(t) fails to match up with ct and af fails to match up with
Dj because z(t) fails to be fully revealing about ct. Such examples
were encountered earlier by Hansen and Sargent (1980a), Futia (1981),
and Townsend (1983). The discussion in Section 1 assumes that the
sampling interval 6. equals the sampling interval in terms of which the
economic model is correctly specified.

Section 2 describes a class of continuous time models whose equi-
libria are represented in the form

(9)
Zt = lX) p(r)w(t - r)dr

where w(t) is an m-dimensional continuous time white noise and p(r)
is an (n x m) function satisfying Iooo trace p(r)p(rl dr < +00. In (9),
w(t) represents shocks to agents' information set. It is supposed that
economic decisions occur in continuous time according to (9), but that
the econometrician possesses data only at discrete intervals of time.
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Section 2 studies the relationship between the w(t) of (9) and the a(t)
of (4), and also the relationship between p(r) of (9) and the af of (4).
In general, these pairs of objects do not match up in ways that can
be determined without the imposition of restrictions from a dynamic
economic theory. 4

1. Unrevealing Stochastic Processes

We consider a class of discrete time linear rational expectations
models that can be represented as the solution of the following pair of
stochastic difference equations

(1.1)
H(L)Yt = Et J(L-1)-lpXt

Xt = K(L) ct

where

H(L) = Ho + HIL +... + HmlLml
J(L) = Jo + ltL +... + Jm2Lm2

00

K(L) = :L KjLj, Ko = I
j=O

ct = Xt - E(Xt IXt-l, Xt-2, ...)

In (1.1), Yt is an nl x 1 vector, while Xt is an n2 X 1 vector. In (1.2), Jj
and Hj are (nl xnt) matrices, while Kj is an (n2 xn2) matrix. In (1.1),
p is an (nl X n2) matrix. We assume that the zeroes of det H(z) lie
outside the unit circle, that those of det J(z) lie inside the unit circle,
and that those of det K (z) do not lie outside the unit circle.

Many discrete time linear rational expectations models are spe-
cial cases of (1.1). For example, interrelated factor demand versions
of Lucas-Prescott equilibrium models are special cases with J(L -1) =
H(L-1)T and with H(L-1l H(L) being the matrix factorization of
the Euler equation that is solved by the fictitious social planner (see
Hansen and Sargent (1981a) and Eichenbaum (1983) for some exam-
ples). Kydland-Prescott equilibria with feedback from market-wIde
variables to forcing variables that individual agents face parametrically
form a class of examples with H(L-1l =f. J(L-1) (see Sargent 1981).
Other examples with H(L-1)T =f.J(L-1) arise in the context of var-
ious dominant player equilibria of linear quadratic differential games
(see Hansen, Epple, and Roberds 1985). Finally, market equilibrium
models of the Kennan (1988)-Sargent (1987b) variety, an example of

(1.2)
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which is studied below, solve a version of (1.1) with H(L-1)T ::J J(L).
Models of this general class are studied by Whiteman (1983).

Hansen and Sargent (1981a) displayed a convenient representa-
tion of the solution of models related but not identical to (1.1). To
adapt their results, first obtain the partial fractions representation of
J(z-l )-1. We have J(z-l )-1 = adj J(z-l)/ det J(z-l). Let

det J(z-l) = Ao(l - A1Z-1) ... (1 - AkZ-1)

where k = mz . n1 and IAjl < 1 for j = 1, ..., k. The Ai'S are the
zeroes of det J(z-l) which are assumed to be distinct. Then we have

(1.3)
k Mj

J(z-l)-l = L
(1- A.z-1)j=l 1

where

(1.4) Mj = lim J(z-l )-1 (1 - AjZ-1) .
Z-Aj

Substitute (1.3) into (1.1) to obtain

k M.
H(L)Yt = Et L:, \ } r_1 pXt

j=l

(1.5)

Hansen and Sargent (1980a) establish that

E Mj - M. (LK(L) - AjK(Aj))t. 'T - 1 P Xt - } P L - Aj £t .(1.6)

Define the operator M by

M(K(L)) = t Mj p (LK(Ll-=- ;.K(Aj)) .
}=1 }

Then, using (1.5), (1.6), and (1.7) we have the representation of the
solution

(1.7)

(1.8)
H(L) Vt = M(K(L)) £t

Xt = K (L) £t

A vector stochastic process (yT, xi) governed by (1.~ generally has
a singular spectral density at all frequencies because (Yt , xf) consists
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of n1 +nz variables being driven by only nz white noises. Such a model
implies that various of the first n1 equations of the following model,
which is equivalent to (1.8),5

H(L) Yt = M(K(L)) K(L)-l Xt

Xt = K(L) £t

will fit perfectly (i.e., possess sample hZ's of 1).
To avoid this implication of no errors in various of the equations

of the model, while still retaining the model, one path that has been
suggested is to assume that the econometrician seeks to estimate (1.8),
but that he possesses data only on a subset of the variables in (Yt, Xt).
(See Hansen and Sargent 1980a). One common procedure, but not the
only one possible, is the following one described by Hansen and Sargent
(1980a). Assume that (1.8) holds, but that the econometrician only has
data on a subset of observations XZt of Xt. Further suppose that the
second equation of (1.1) can be partitioned and restricted as

(1.9) Xt = (Xlt ) = (Kl(L) 0 ) (
£It

) .
XZt 0 Kz(L) £Zt

Then (1.8) assumes a special form which can be represented as

(1.10) (H(L) 0) ( Yt ) = (M(K1(L)) M(Kz(L)) ) (
£It )0 I XZt 0 Kz(L) £Zt

The idea is to imagine that the econometrician is short of observations
on a sufficient number of series, those forming Xlt, to make the (yr, xIt)
process described by (1.10) have a nonsingular spectral density matrix
at all frequencies. To accomplish this, it will generally be sufficient
that the dimension of the vector of variables of (yr, xft) be less than
or equal to the dimension of (£ft, eft). For the argument below, we
will consider the case often encountered in practice in which (yr, xIt)
and (eft, eft) have equal dimensions. Thus we assume that Xlt is an
(nl X 1) vector, so that £It is an (n1 x 1) vector of white noises.6

Equation (1.10) implies the moving-average representation for (Yt,
XZt)

(1.11) (Yt )= (H(L)-lM(1(l(L)) H(L)-lM(Kz(L)) ) (
£It ) .

X2t 0 Kz(L) £Zt

Equation (1.11) is a moving average that expresses (Yt, X2t) in terms
of current and lagged values of the white noises (£It, £2d that are the
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innovations in the information sets (XIt, xu) of the agents in the model.
Equivalently, (cIt, cu) are fundamental for XIt, X2t, the one step-ahead
errors in predicting XIt, X2t from their own pasts being expressible as
linear combinations of CIt, cu.

Granted that the linear space spanned by current and lagged (cIt,
c2t) equals that spanned by current and lagged values of the agents' in-
formation (XIt, xu), there remains the question of whether this space
equals that spanned by current and lagged values of the econometri-
cian's information (Yt, X2t). As is evident from the construction of
(1.11), the latter space is included in the former. The question is
whether they are equal. This question is an important one from the
viewpoint of interpreting vector autoregressions because a vector au-
toregression by construction would recover a vector moving average for
(Yt, X2t) that is driven by a vector white noise at that is fundamental
for (Yt, X2t), i.e., one that is in the linear space spanned by current and
lagged values of (Yt, xu). If this space is smaller than the one spanned
by current and lagged values of agents' information (cIt, cu), then the
moving-average representation recovered by the vector autoregression
will in general give a distorted impression of the response of the system
to surprises from agents' viewpoint.

The vector white noise (cIt, c2t) is fundamental for (Yt, xu) if and
only if the zeroes of

det (H(z)-l M(KI(Z)) H(z)-l M(K2(Z)) )0 !<2(Z)

= detH(z)-1 . det M(K1(z)) . detK2(z)

do not lie inside the unit circle. The zeroes of det K2(Z) do not lie
inside the unit circle by assumption, and det H(z)-l = 1/ det H(z)
is a function with all its poles outside the unit circle. Therefore, the
necessary and sufficient condition that (cIt, cu) be fundamental for
(Yt, xu) is that

(1.12) det M(I<I(Z)) = 0 * Izi 2:1 ,

or equivalently, using (1.7),

det t Mjp (zKI(Z) - AjKI(Aj) ) = 0 * Izl2:1.
j=l Z - Aj

In general, condition (1.12) is not satisfied. For some specifications
of KI(L) and J(L-I), which determines the (Mj, Aj) via (1.3)-(1.4),

(1.12')
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condition (1.12) is met, while for others, it is not met. Hansen and
Sargent (1980a) encountered a class of examples where (1.12) is not met.
Furthermore, the class of cases for which (1.12) fails to be met is not
thin in any natural sense. Our conclusion is that for the class of models
defined by (1.1)-(1.2), the moving-average representation (1.11) that is
expressed in terms of the white noises that are fundamental for agents'
information sets in general cannot be expected to be fundamental for
the econometrician's data set (Yt, xu). Equivalently, current and lagged
values of (Yt, X2t) fail to be fully revealing of current and lagged values
of (cIt, c2t).

For convenience, let us rewrite (1.10) as

The condition that ct be fundamental for Zt is then expressible as the
condition that the zeroes of det R(z) not lie inside the unit circle. If this
condition is violated, then a Wold representation for Zt, which is what
is recovered via vector autoregression, will be related to representation
(1.13) as follows. It is possible to show7 that there exists a matrix
polynomial G(L)T = 2::~oG'f Lj with the following properties:

(i) G(L-l) G(Lf = I
(ii) G(Lf is one-sided in nonnegative powers of L.

(iii) R(z) G(z-l) has a power series expansion with square summable
coefficients and the zeroes of det (R(z) G(z-l)) are not inside
the unit circle of the complex plane.

Evidently, we can represent R( L) €t as

R(L)ct = R(L) G(L-1) G(Lf €t

or

(1.14) R(L)€t = R*(L)c; ,

where

(1.15) R*(L) = R(L)G(L-1)

(1.13) 8(L) Zt = R(L) ct

where

8(L) - (H(L) 0) R(L) - (M(KI(L)) M(K2(L)))- 0 !' - 0 K2(L)

ct = (CIt) , Zt = ( Yt ) .C2t Xu
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and

(1.16) Ct = G(L)T ct .

Then a Wold representation for Zt corresponding to (1.13) is

(1.17) S(L)Zt = R*(L)ct .

By construction, the Ct process defined in (1.16) is a vector white noise
that lies in the space spanned by current and past values of the process
Zt, in other words ci is fundamental for Zt. It is property (iii) which
assures that the spanning condition is satisfied. If, in addition, R*(L)
has an inverse that is one-sided in nonnegative powers of L, we can
obtain a representation for ct in terms of current and past Zt's:

(1.18) Ct' = R*(L)-1 S(L) Zt .

In general, R*(L) given by (1.15) can be very different from R(L),
so that the impulse response of the system to ct (which are the in-
novations to agents' information set) can look very different from the
impulse response to ci (which are the innovations to the econometri-
cian's information set). Equation (1.16) and property (ii) above shows
that ci is a one-sided distributed lag of current and past ct'S so that the
innovation ci reflects information that is old news to the agents in the
model at t. Only in the special case that none of the zeros of det R( z)
are inside the unit circle, so that G(L)T can be taken to be the identity
operator, does ei given by (1.16) only respond to contemporary news
ct possessed by the agents. In the case that G(L f i= I, it is generally
true that8

(1.19) E(Roct) (ROCt)T > E(Roct) (Roctl .

This statement that the contemporaneous covariance matrix of Ro Ct
is larger than that of Ro ct concisely summarizes how Ct contains less
information about the Zt process than does ct.

We now describe a concrete hypothetical numerical example, one
in which the econometrician observes no x's, only y's, so that (1.10)
takes the special form

(1.20) H(L) Yt = M(Cl(L)) e1t .

The model is one of the dynamics of price and quantity in a single
market, and is related to ones studied by Sargent (1987b) and Kennan

\
~
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(1988). Behavior by agents on the two sides of the market, supply
and demand, are each described by linear Euler equations. The Euler
equation for suppliers is

(1.21) -Et{[hs + gs(1 - /3L-l) (1- L)]qt} + Pt = St

where Pt is price at time t, qt is quantity supplied at time t, St is a
supply stock at t, fJ is a discount factor between zero and one, and
hs and gs are parameters of the suppliers' cost function. Equation
(1.21) is typical of the kind of Euler equation that characterizes the
optimum problem of a competitive firm facing 1!.djustment costs that
are quadratic in (1 - L) qt.

The Euler equation for demanders is

(1.22) -Et {hd + gd[a(fJL -1) a(L)J} qt - pt = dt

where a(L) = ao + al L + a2L2 + a3L3 + a4L4. In (1.22), hd and
gd are preference parameters, while the parameters lao, aI, a2, a3, a4]
characterize a technology by which purchases of qt at t give rise to
utility-generating services to the demander in subsequent periods. In
(1.22), dt is a stochastic process of disturbances to demand.

To complete the model, we specify the stochastic law of motion for
the forcing processes, i.e., the demand and supply shocks. These shocks
are assumed to satisfy

St =Bs(L)wst

dt = Bd(L)Wdt

where Bs(z) and Bd(Z) are scalar polynomials with zeros that are out-
side the unit circle. The Wst and Wdt processes are mutually uncotre-
lated white noises so that Wst is the innovation in the supply shock, $t,
and Wdt is the innovation in the demand shock, dt. Economic agents are
assumed to observe current and past values of both shocks and hence
also the innovations in both shocks.

The typical supplier and demander are both assumed to view the
stochastic processes Pt, dt, St as beyond their control and to choose
a stochastic process for qt. At time t, both suppliers and demanders
have the common information set of {Pr, dr, Sr, qr-l j r :s: t}. Both
suppliers and demanders choose contingency plans for qt as a function
of this information set. As discussed in Kennan (1988) and Sargent
(1987b), an equilibrium is a stationary stochastic process for {qt, pe}
that solves the pair of difference equations (1.21)-(1.22).9

(1.23)



88 Two Difficultie$ in Interpreting Vector Autoregre$$ion$

This model fits into our general set up (1.1) as follows. Let

Yt = (::), (Wst )ct = Wdt

I<2(L) = 0,

I<l(L)= (Bs~L)

Define a matrix polynomial

Xu ==0 .

Bd~L)) .

E(L) = (
-(hs + gs(l - L) (1 - j3L-1))
-(hd + gda (L)a (j3L-1))

1
)

,

-1 .

Then polynomial matrices H(L) and J(L) that are one-sided in non-
negative powers of L can be found such that

J(L-1) H(L) = E(L)

and such that the zeroes of det J(z) lie inside the unit circle, while
the zeroes of det H(z) lie outside the unit circle. (See Whiteman 1983,
and Gohberg, Lancaster, and Rodman 1982 for proofs of the existence
of such a matrix factorization, and for descriptions of algorithms for
achieving the factorization.) 10

In this model, it is possible for the demand and supply shocks to
generate an information set that is strictly larger than that generated
by current and past quantities and prices. So an econometrician us-
ing innovation accounts derived from observations on quantities and
prices may not obtain innovations that are linear combinations of the
contemporaneous innovations to the demand and supply shocks.

The equilibrium of the model has representation

(1.24) S(L) (qt ) = R(L) (Wdt )Pt Wst

I
I

where S(L) = H(L) and R(L) = M(C1(L)), and where S(L) is a
(2 X 2) fourth-order matrix polynomial in L, with the zeroes of det S(z)
outside the unit circle. The zeroes of det R( z) can be on either side
of the unit circle in this example. Only when the zeroes of det R(z)
are not inside the unit circle can the one-step ahead forecast errors
from the vector autoregression of prices and quantities be expressed as
linear combinations of the contemporaneous demand and supply shock
innovations (wst, Wdt).
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We have computed a numerical example that illustrates the ideas
discussed above.ll We set the parameters of the model as follows:12

. hs =hd = 1, 9s = 10,9d= .1
a(L) = 1 + .8L + .6L2 + AL3 + .2L4

Bd(L) = (1 + .6L) (1 + AL) (1 + .2L)

Bs(L) = (1 - .8L) (1 + AL) (1 + .2L)

j3= 1/1.05 .

E W;t = .5, E w3t = 4, E WstWdt= 0

O.S

0.4

.

1\

\
0.3

0.2

0.1

0

qUUltilY

\..:=:="'-"""-'-- -

-0.1
0 16 182 4 6 8 10 12 14

Figure la. Impulse response Cunctions to first innovation in S(L) [::]=
R(L)~I'
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0.2

0.15

(""""" .
I '" pnce, "
i """
f """
: '...,.-..--.--------

-0.05

.0.25
0 12 16 182 4 6 10 14

Figure lb. Impulse response functions to second innovation in S(L) [::]=
R(L)~t.

Figure 1 displays response functions of (qt, pt) to an impulse in the
innovation (WdtJWst) to agents' information set, This corresponds to
representation (1.13) or (1.24). Figure 2 displays the response function
of (qt, pt) to a fundamental (Wold) innovation c; which corresponds to
representation (1.17) or

(1.25)
8(L) [;:]= R* (L) c; .
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0.25

0.2f.\ quantity

0

.""

\
\~:~~._.__._--_._..__._-------

.0.05
0 4 6 12 14 16 182 10

Figure 2a. Impulse response functions to first innovation in S(L) [::]=
R' (L )~:. Quantity is 'first' in the orthogonalization.

0.6

0.5b'- \
0.4~ \ price

0.3~ \
0.2~ \
0.1~ ....

0

\ """"-"-'-~O=

-0.1
0 62 4 10 12 14 16 18

Figure 2b. Impulse response functions to second innovation in S(L) [;:]=
R' (L )~:. Quantity is 'first' in the orthogo\)alization.

In Figure 2, we have followedSims (1980) in normalizing R'Oand c; by
selectinga versionof c; which has diagonal contemporaneous covariance
matrix, and for which the variance of cit is maximal. This amounts to
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"letting qt go first" in a Gram-Schmidt procedure that orthogonalizes
the contemporaneous covariance matrix.13 Figure 3 shows the impulse
response functions in the Wold representation for which "Pt goes first"
in the orthogonalization procedure.

0.25
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0.3 Figure 3b. Impulse response functions for

0.2
S(L) [::]= R'(LJUU'e;,

0.1,

,.,., , quantity
O~' \ -------------------------

UU' = I. Price is 'first' in the orthogonalization.

-0.1
0

The representation in Figure 3 is related to that in Figure 2 via the
equation

2 4 6 10 12 14 16 18

8(L)
[

qt
]

= (R*(L) U) (UT c:;) ,
, Pt

Figure 3a. Impulse response functions for

S(L) [::]= R'(L)UU',,;,

where U is an orthogonal matrix that implements the Gram-Schmidt
procedure that puts Pt first in the orthogonalization process.

That Figures 2 and 3 are very similar is a reflection of the fact that
the contemporaneous covariance matrix of Roc; is nearly diagonal:

UU' = I. Price is 'first' in the orthogonalization.

E (Ro c:;) (Ro c:*f = [

.0517
t -.0337

-.0332
].2354

From representation (1.24) corresponding to Figure 1, we computed

T
[

.0374
E (Ro ct) (Ro ct) = -.0149

-.0149
].2121
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Thus, inequality (1.19) holds strictly for our example.

-0.05
0 2 4 6 10 12 14 16 18

rise almost entirely to a contemporary response in both the innovation
in p and the innovation in q, with the numerically much larger response
being in the innovation to p. However, the supply innovation Wat gives
rise to distributed responses in the innovations both to p and to q,
with numerically the larger one being in the q innovation. Figure 4 is
consistent with the approximation that the innovation in p from repre-
sentation (1.24) reflects the innovation to demand in a timely manner,
but that the innovation to q is a distributed lag mainly of the innovation
in supply.

These interpretations bear up when we compare Figures 1 and 2.
Notice how much Figure la resembles Figure 2b, which is consistent
with the interpretation of the innovation in p as an innovation in the
demand shock. However, Figure 1b does not very much resemble Figure
2a. Indeed, Figure 1b more closely resembles Figure 4b, which depicts
the response of et to the supply innovation. This is understandable in
view of the nearly entirely contemporaneous response of q to its own
innovation depicted in Figure 2a.

la. Remedies in Discrete Time

The preceding difficulty can be circumvented if a sufficiently restric-
tive dynamic economic theory is imposed during estimation. Hansen
and Sargent (1980a) describe methods for estimating S(L) and R(L)
subject to extensive cross-equation restrictions of the rational expecta-
tions variety. The approach is to use the method of maximum likelihood
to estimate free parameters of preferences and constraint sets, of which
the parameters of S(L) and R(L) are in turn functions. These methods
do not require that the zeroes of det R(z) be restricted, and in partic-
ular are capable of recovering good estimates of R( z) even when some
of the zeroes of det R( z) are inside the unit circle.

Simply take representation (1.13) and operate on both sides by the
two-sided inverse R(L )-1 to obtain

0.1

0.05~, tovmqo~"'. _U_-_Uh-__Unh.- -

Figure 4a. hnpulse response functions for ~~ = G(L)'~,. Response of ~~ to
a demand innovation.
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-0.15

-0.2 (1.26) et = R(L)-l S(L) Zt .
-0.25

0 2 4 6 10 12 14 16 18 When some of the zeros of detR(z) are inside the unit circle, R(L)-l
is two-sided, so that (1.26) expresses ct as a linear function of past,
present, and future Zt's. By using this equation together with estimates
of the model's parameters, it would be possible to construct estimates
of ct as functions of an observed record on {Zt}. Equation (1.26) once
again illustrates how ct fails to lie in the linear space spanned by current
and lagged z's.

Figure 4b. Impulse response functions for ~~ = G(L)'e,. Response of e~ to
a supply innovation.

Figure 4 depicts the response of et to the innovations (Wdt, wad
in agents' information sets, which corresponds to representation (1.16),
namely c; = G(L)T ct. Notice that the demand innovation Wdt gives
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2. Time Aggregation

Consider a linear economic model that is formulated in continuous
time, and which can be represented as

(2.1) z(t) = 100p(r)w(t - r)dr

where z(t) is an (n X 1) vector stochastic process, w(t) is an (m x 1)
vector white noise with Ew(t)w(t - sl = Ii(t - s)I, Ii is the Dirac
delta generalized function, and p(r) is an (n X m) matrix function that
satisfies Jooo trace p(r )p(r)T dr < +00. Welet P(s) = JOO e-sr p(r )dr,
i.e., P(s) is the Laplace transform of p(r). Sometimes we shall find it
convenient to write (2.1) in operator notation

(2.2) z(t) =P(D)w(t)

where D is the derivative operator. We shall assume that det P(s) has
no zeroes in the right half of the complex plane. This guarantees that
square integrable functionals of (z(t-s), s ~ 0) and of (w(t-s), s ~ 0)
span the same linear space, and is equivalent to specifying that (2.1) is
a Wold representation for z(t).

A variety of continuous time stochastic linear rational expectations
models have equilibria that assume the form of the representations (2.1)
or (2.2). Hansen and Sargent (1981d) provide some examples. In these
examples, the continuous time white noises w(t) often have interpre-
tations as innovations in the uncontrollable processes that agents care
about forecasting, and which stochastically drive the model. These in-
dude processes that are imagined to be observable to both the econo-
metrician and the private agent (e.g., various relative prices and quan-
tities) and also those which are observable to private agents but are
hidden from the econometrician (e.g., random disturbances to tech-
nologies, preferences, and maybe even particular factors of production
such as effort or capital of specific kinds). The w(t) process is eco-
nomically interpretable as the continuous time innovation to private
agents, because a forecast error of the variables in the model over any
horizon t + r which the private agents are assumed to make at t can be
expressed as a weighted sum of w(s), t < s ~ t + r. Thus, to private
agents the w(t) process represents news or surprises.

In rational expectations models, typically there are extensive re-
strictions across the rows of P(D). In general these restrictions leave
open the possibility that the current and lagged values of the w(t) pro-
cess span a larger linear space than do current and lagged values of the
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z(t) process. This outcome can possibly occur even if the dimension
m of the w( t) process is less than or equal to the dimension n of the
z( t) process. This is the continuous time version of the phenomenon
that we treated for discrete time in the previous section. In the present
section, we ignore this phenomenon, by assuming that det P( s) has no
zeroes in the right half of the complex plane.

For this continuous time specification, there exists a discrete time
moving-average representation

(2.3) Zt = C(L)at

I
I

t
j

I

where C(L) is an infinite order, (n x n) polynomial in the lag operator
L, where at is a vector white noise with Eat aT = W, and whereat =
Zt - E[Ztl, Zt-l, .. .J.The operator C(L) and the positive semi-definite
matrix W solve the following equation, subject to the side condition
that the zeroes of det C(z) do not lie inside the unit circle:14

(2.4)
+00

C(e-i"')W C(ei"')T = E P(iw + 27rij)P( -iw - 27rij)T .
j=-oo

When Zt has a discrete time autoregressive representation, the dis-
crete time innovations at are related to the w( t) process by the formula

at = C(L)-l P(D) w(t)

or

(2.5) at = V(L) P(D) w(t) = V(L) 100p(r) w(t - r)dr

I
I
I
I
I

I
!
I
t
I
!
I
!
I
.I

where we have defined V(L) = C(L)-l = 2:~o VjLi, YO= I. Here
- Vj is the n x n matrix of coefficients on the lh lag in the vector
autoregression for z. It followsdirectly upon writing out (2.5) that

(2.6) at = 100 j(r)w(t - r)dr

where15

(2.7)

00

f(r) = E \tjp(r - j)
j=O
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It also follows from (2.6) and the identity for integer t, C(L) at =
P(D) Wt, that

(2.8)
00

p(r) = L Cj f(r - j) .
j=O

Equations (2.6) and (2.7) show how the discrete time innovation at in
general reflects all past values of the continuous time innovation w(t).

Analyses of vector autoregressions often proceed by summarizing
the shape of C(L) in various ways, and attempting to interpret that
shape. The innovation accounting methods of Sims, based on decompo-
sition (7), are good example;; of procedures that summarize the shape of
C(L). From the viewpoint of interpreting discrete time vector autore-
gressions in terms of the economic forces acting on individual agents,
it would be desirable if the discrete time and continuous time moving-
average representations were to match up in some simple and inter-
pretable ways. In particular, the following two distinct but related
features would be desirable. First, it would be desirable if the dis-
crete time innovations at closely reflected the behavior of w( s) near t.
Probably the most desirable outcome would be if at could be expressed
as

(2.9)
at =101 J(r)w(t-r)dr,

so that in (2.6), f( r) = 0 for r > 1. In that case, at would be a weighted
sum of the continuous time innovations over the unit forecast interval.

It would be even more desirable if (2.9) were to hold with f(r) =p(r),
for then at would equal the one step ahead forecast error from the
continuous time system. Second, assuming a smooth p( r) function,
it would be desirable if the discrete ,time moving-average coefficients
{Co, Cl, C2, ...} resemble a sampled version of the continuous time
moving average kernel {p( r), r 2: OJ. This is desirable because the
pattern of the Cj's would then faithfully reflect the response of the
system to innovations in continuous time. We shall consider each of
these desiderata in turn.

We first study conditions under which f( r) = 0 for r > 1. Consider

i

!

I
!

I
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the decomposition

at = z(t) - E [z(t) Iw(t - s), s 2: 1]

+ E [z(t)lw(t - s), s 2: 1]- E [ZtIZt-l, .. .]

= 101p(r)w(t - r)dr + 100 p(r)w(t- r)dr

- E[100 p(r)w(t - r)drIZt-l, ...] .
This last equality implies that if (2.9) is to hold it must be the case
that

(2.10) E[z(t)lw(t - s), s 2: 1]= E[ZtIZt-l' ...] ,

which in turn implies that p( T) = f( r) for 0 ~ r ~ 1. The interpre-
tation of requirement (2.10) is that the discrete time and continuous
time forecasts of z(t) over a unit time interval coincide.

When condition (2.9) is met, the link between P(D) and C(L) is
particularly simple. Using f(r) = 0 forr > 1, equation (2.8) becomes

(2.11) p(r) = Cj/(r - j) for j ~ r < j + 1 .

Equation (2.11) implies that for the particular class of continuous time
processes for which f( r) = 0 for r > 1, the continuous time moving-
average coefficients are completely determined by the discrete time
moving-average coefficients and the function f( r) defined on the unit
interval. The aliasing problem is manifested in this relationship be-I

cause f( r) cannot be inferred from discrete time data. In the absence
of additional restrictions, all functions f( r) that satisfy

101 f(r)f(r? dr = W

are observationally equivalent. Relation (2.11) also implies that in gen-
eral, without some more restrictions on p(r), condition (2.9) does not
place any restrictions on the discrete time moving-average coefficients.

However, in many (if not most) applications, it is usual to impose
the additional requirement that the continuous time moving-average
coefficients be a continuous function of r .16 This requirement together
with (2.11) then imposes a very stringent restriction on the discrete
time moving-average representation. In particular, (2.11) then implies
that

(2.12) Cj f(O) = Cj-l f(1)
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where f( 7) is now a continuous function on the unit interval. When
w(t) and z(t) have the same dimension (m = n) and f(O) is nonsingular,
relation (2.12) implies that

Cj = [J(1)f(0)-I]j

and

C(L) = [I - f(1)f(0)-1 Lr1 .

This implies that if (2.9) is to hold, the discrete time process must
have a first order autoregressive representation. We have therefore es-
tablished that condition (2.9) and the continuity requirement on p( 7)
substantially restrict not only the admissible continuous time moving-
average coefficients but the admissible discrete time moving-average
coefficients as well.

Thus, with a continuous p( 7) function, in general, relation (2.9)
does not hold. Instead, at given by (2.6) is a function of all current and
past w(t)'s, a function whose nature can pose problems in several inter-
related ways for interpreting at in terms of the continuous time noises
w(t) that are imagined to impinge on agents in the model. First, as in
the discrete time case, the process w(t) need not be fundamental for
z( t) in continuous time. Second, the matrix function f( 7) in (2.6) is not
usually diagonal, so that each component of at in general is a function of
all of the components of w(t). This is a version of what Geweke (1978)
has characterized as "contamination," which occurs in the context of
the aggregation over time of several interrelated distributed lags. It is
also related to the well-known phenomenon that aggregation over time
generally leads to Granger-causality of discrete sampled y to x even
when y fails to Granger-cause x in continuous time. Third, the matrix
function f(7) in (2.5) in general is nonzero for all values of 7 > 0, so
that at in general depends on values of w( t - 7) in the remote past.

We now turn to our second desideratum, namely that the sequence
{Cj }~o resemble a sampled version of the function p( 7). For study-
ing this matter, we set m = n, because we are interested in studying
circumstances under which {Cj} fails to reflect p( 7) even when the
number of white noises n in at equals the number m in w(t). We can
represent most of the issues here with a univariate example, and so set
m = n = 1 in most of our discussion. It is also convenient to study
the case in which Zt has a rational spectral density in continuous time.
Thus we assume that

(2.13) O(D)Zt = 1/J(D) w(t)
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where Zt is a scalar stochastic process, and 0(8) = (s - AI) (8 -
A2) ... (8 - Ar), 1/J(8) = 1/Jo + 1/Jl 8 + .. . + 1/Jr-l 8r-l. We assume
that the real parts of AI, ..., Ar, which are the zeroes of B(s), are less
than zero, but that the real parts of the zeroes of 1/J(8) are unrestrkted.
Only if the real parts of the zeroes of 1/J(8) are less than zero do current
and past values of z(t) and w(t) span the same linear space. If any z'e-
roes of 1/J(8) have real parts that exceed zero, then current and lagged
w(t) span a larger space than do current and lagged z(t). The above
equation can be expressed as

(2.14) Zt = P(D) w(t)

where P(D) = 1/J(D)jO(D). A partial fraction representation of P(D)
IS

(2.15) P(D) = t lij
j=1

where

(2.16) lij = lim P(8) (8 - Aj) .
a--Aj

We therefore have

(2.17)
r

p( 7) = L lij eAj T .
j=1

Thus, the weighting function p( 7) in the continuous time moving-average
representation is a sum of r exponentially decaying functions. Our ob-
ject will now be to get an analogous expression to (2.17) for the discrete
time coefficients Bk'

It is known that the discrete time process Zt implied by (2.13) is
an rth order autoregressive, (r - 1) order moving average process. Let

this be Zt = ~m at where c(L) = Lj:~ CjLj, d(L) = L1=0 dj Lj. To
find this representation, we must use (2.4). A.W. Phillips (1959) and
Hansen and Sargent (1983b) show that for the process (2.13), the term
on the right side of (2.4) can be represented

A' +i",

]

00 r W' Wj e 1 e

L P(iw+27rij) P( -iw-27rij) = ?= [(1 - eA:Ci",) + (1 - eAj e+i"'). )=1)=-00
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where

Wj:::;:lim P(s)P(-s) (S-Aj).
S-+Aj

Letting z :::;:e-iw, to find the required mixed moving-average autore-
gressive representation we must solve

C(Z)C(Z-l):::;: r
[

Wj + wjeAjz-l
]?:

1 1 - eAjz 1 - eAj z-lJ=

subject to the condition that the zeroes of c(z) and d(z) all lie outside
the unit circle. The term on the right side of (2.18) can be expressed
as

(2.18)

(2.19)

L:j=l Wj ilk;6/1 - ak z) ilk=l (1 - ak z-l)

ilj=l (1 -.aj z) ilk=l (1 - ak z-l) +

L:j=l Wj aj ilk=l (1 - ak z) ilk;6j (1 - ak z-l) z-l

ilj=l (1 - aj z) ilk=l (1 - ap-l)

where aj ==eAj. Note that lajl < 1 by virtue of the assumption that
real (Aj) < O. Thus, the denominator is already factored as required,
so that

(2.20) d(z) :::;:ilj=l (1 - ajz) .

The numerator must be factored to find c(z). Standard procedures
to find the zeroes of scalar polynomials can be used to achieve this
factorization, as described by Hansen and Sargent (1981a).

Thus we have that

(2.21) Zt :::;: c(L)
d( L) at ==C (L ) at .

Proceeding in a similar fashion as we did for the continuous time
moving-average representation, we can find a partial fraction repre-
sentation for C(L), namely

(2.22)
r Ij

C(L) :::;: L 1 - ajLj=l

where

(2.23) . Ij:::;: lim C(z) (1 - ajz) .-1
Z-+OIj
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Recalling that aj :::;: eAj, equation (2.22) implies that

(2.24)
r

Ck:::;: L Ij eAjk.
j=l

Collecting and comparing the key results, we have that

(2.17)
r

p(r) :::;: L lij eAjT
j=1

r E [0, 00) .

(2.24)
r

Ck :::;: E Ij eAjk
j=1

k ==0, 1, 2, ...

Equations (2.17) and (2.24) imply that Ck will be (proportional to) a
sampled version of p(r) if and only if Ij / lij :::;:11/81for all j == 2, ..., r.
It can be shown directly by using (2.17) and (2.24) in (2.7) and (2.8)
that this condition will not be met for any r ~ 2. Thus, only if z(t) is
a first-order autoregressive process does Ck turn out to be a sampfed
version of p( r).

4 ~ r"""" Cj

/ \
i \

2t/ ,\
1

18 206 10 12 14 16

Figure 5. Continuous time (p(j))and discrete time (Cj) moving average
kernels.
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Figure 6. The function I(s).

Table 1 and Figure 5 present a numerical example that illustrates
the preceeding ideas. For the univariate process (D3 + .6D2 + AD +
.2) z(t) = wet), we have calculated per), fer), eeL),
deL), B(L) = e(L)jd(L), 8j, ,j for j = 1, 2, 3. In this example,
we have that ,jITI -=f.8jj81 for j ?: 2, so that the shapes of the moving
averages in continuous and discrete time, p( r) and Gk, respectively, are
different. We plot Ck and p(r) for integer values of r in Figure 5. We
also plot fer) in Figure 6. Notice that fer) -=f.0 for some r's greater
than 1. In particular, notice that f( r) is larger in absolute value over
most of the interval [1,2] than it is over the interval [0, 1]. The failure
of fer) to be concentrated on [0, 1] and the failure of Bk to resemble a
sampled version of p( r) are both consequences of the fact that this is
a third order autoregressive system in continuous time, rather than a
first order one.

The preceding results and the example generalize readily to the case
of a vector stochastic process Zt. Matrix versions of (2.17) and (2.24)
hold, where the Aj's are the zeroes of det B(s) and the Iii's and the Ij'S .

are (n X n) matrices given by (2.16) and (2.23). .
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Table 1

An Example of Aggregation Over Time

1jJ(D)= 1

B(D) = .2 + .4D + .6D2+ D3

Aj (zeroes of B(s)): -.5424, -.0288 :!: .6066

Iii in Partial Fraction Representation of w (D)/B(D):

Zeroes of Spectral Factorization of Numerator Polynomial (e( L) ):

Imaginary
Real Part of Zero Part of Zero Modulus

1
2

-.0441
- .4359

0
0

.044

.436

Ij in Partial Fraction Representation of G(L):

I

1
2 ,
3

Real bj)

1.7984
-.3992
-.3992

Imaginary (Ij)

0
2.0310

-2.0310

~
Real Imaginary

1.000
-.222
-.222

0
1.129
1.129

Discrete Time Mixed Moving-Average, Autoregressive Representation:

!

1

deL) = 1 - 2.1779L + 1.8722L2 - .5485L3

eeL)= 1+ .4800L+ .0192L2

1 Real (lij) Imaginary (lij) Real Imaginary

1 1.5831 0 1.00 0

2 -.7915 .6701 -.50 .423

3 -.7915 .6701 -.50 -.423
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2a. Locally Unpredictable Processes and
Linear Quadratic Models

The stochastic process z( t) in Table 1 is mean square differentiable,17
as evidenced by the fact that p(O) = O. A stochastic process of the
form (2.1) can be shown to be j times mean square differentiable if
p(O) = p'(O) = p"(O) = ... = pU-1)(0) = 0 (see Sargent (1983) for a
proof). Consequently, the process (D3 + .6D2 + AD + .2)z(t) = w(t)
can be verified to be twice (but not three times) mean square differen-
tiable. It is the smoothness and proximity to zero near 7 = 0 of p( 7)
that makes it difficult for Cj to resemble a sampled version of p( 7), and
that makes a( t) a poor estimator of Il p(7 )w( t - 7 )d7.

Sims (1984) argued that there is a class of economic variables that
are best modeled as failing to be mean square differentiable. For these
processes, p(O)=J O. Processes of the form (2.1) in which p(O) =J0 are
said to be locallyunpredictable because if p(O)=J0, then

(2.25) lim E(x(t + 8) - Etx(t + 8))2 = 1.
6-0 E(x(t + 8)- x(t))2

Here Et is the linear least squares projection operator, conditioned on
{x(t - s),s 2': OJ. Now condition (2.25) can readily be shown to imply
that

(2.26)

lim AE(x(t + 8) - Etx(t + 8))2 = 1
6-0 E(x(t + 8)- E(x(t + 8)lx(t),x(t - 8),x(t - 28),.. .))2

In (2.26), Et x(t + 8) is the linear least squares projection of x(t + 8)
conditioned on (x(t - s), s 2':0), while E(x(t + 8)lx(t), x(t - 8), ...) is
the projection of x(t+8) on the discrete time sample x(t), x(t-8), ....
Condition (2.2ti) holds for any locally unpredictable process, and states
that for small enough sampling interval 8, the b-ahead projection error
from the continuous time process is close in the mean square error
sense to the 8-ahead projection error from the b-discrete time data.
Thus, when p(O) =J 0, for small enough b, the innovation at in the
8-counterpart to (2.21) is arbitrarily close to Itp(s)w(t - s)ds in the
mean square sense.

Now suppose that z(t) is given by (2.1), with p(O) = 0, so that

z(t) is mean square differentiable. Following Sims (1984), suppose that
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Table 1 (continued)

7 f(7) p(7) Ck

0 0 0 1.000000
.100 .004900 .004900
.200 .019198 .010108
.300 .042288 .042288
.400 .073563 .073563
.500 .112414 .112414
.600 .158231 .153231
.700 .210404 .210404
.800 .268324 .268324
.900 .331386 .331386

1.000 .398987 .398987 2.657971
1.100 .457506 .470529
1.200 .494395 .545421
1.300 .510679 .623079
1.400 .507397 .702926
1.500 .485602 .784396
1.600 .446360 .866935
1.700 .390751 .949999
1.800 .319860 1.033059
1.900 .234786 1.115601
2.000 .136629 1.197125 3.935901
3.000 - .073263 1.860267 4.144677
4.000 .032542 2.029242 3.116763
5.000 -.014212 1.593759 1.188521
6.000 .006197 .692895 -.972014
7.000 -.002701 -.361072 -2.631591
8.000 .001178 -1.208944 -3.259333
9.000 -.000513 -1.576723 -2.705194

10.000 .000224 -1.368770 -1.233866
11.000 -.000098 -.692635 .588609
12.000 .000043 .188765 2.107332
13.000 -.000019 .956663 2.810459
14.000 .000008 1.350008 2.498675
15.000 -.000004 1.252755 1.336741
16.000 .000002 .725963 - .224260
17.000 -.000001 -.020340 -1.619749
18.000 .000000 -.722582 -2.374213
19.000 - .000000 -1.131496 -2.261452
20.000 .000000 -1.124345 -1.369232
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the economist is interested in studying the expectational variable x*(t)

given by

(2.27) x*(t) = E[1°O ePsz(t + s)dsl(z(t - 1'), t ~ 0)]

where p < O. Hansen and Sargent (1981d) showed that

x*(t) = [-P(D) + P(-p) ] wet) ==G(D)w(t)
D+p

= 100 g(s)w(t - s)ds ,

where pes) = I~ e-TSp(r)dr is the Laplace transform of per). Now if
G(s) is the Laplace transform of g(r), with support [0,00), the init.ial
value theorem for Laplace transforms states that

(2.28)

g(O) = lim s G(s) .s-oo

Using the initial value theorem together with (2.28), we find that

.
[-pes) + P(-p)] = P(-p) # O.g(O)= }2..~ s s + p

(We know that P( - p) # 0 because P( s) is assumed to have no zeroes
in the right half of the complex plane by the assumption that p( 1') is
the kernel associated with a Wold representation for z(t).) Therefore,
even if p(O) = 0, g(O)# 0, so that the geometric expectational variable

x*(t) fails to be mean square differentiable and therefore is locally un-
predictable. For such expectational variables, (2.26) holds. Therefore,
for such variables, for small enough sampling interval 8, the discrete
time innovation a( t) corresponding to (2.21) is close to Itp(s)w(t - s)ds
in the mean squared sense.

These results imply that for a variable x*(t) and sufficiently small
sampling interval 8, the situation is not as bad as is depicted by the
example in Table 1. As Sims has pointed out, there are theories of
consumption and asset pricing which imply that consumption or asset.
prices behave like x*(t) and are governed by a version of (2.27). For
example, with x*(t) being consumption and z(t) income, (2.27) is a
version of the permanent income theory. Alternatively, with x*(t) being
a stock price and z( t) being the dividend process, (2.27) is a simple
version of an asset-pricing formula.

i
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However, there is a wide class of generalized adjustment cost models
discussed by Hansen and Sargent (1981a, 1981d) in which observable
variables are such smoothed versions of x* (t) that they are mean square
continuous. In adjustment cost models, decisions are driven by convo-
lutions of x*(t), not by x*(t) alone. For example, the stochastic Euler
equation for a typical quadratic adjustment cost problem is

t
I
r.

I

I

I
I
L

I

\

I

1
(D - p)k(t) = Et (-D )z(t)

+p

where p > 0, or

(D - p) k(t) = x*(t).

Herek(t) is capital. The solution for capital is then

1
k(t) =-D x*(t)

-p

or

k(t) = (~) [-P(D) + P(-p)
] wet)

D-p D+p

where z(t) = Iooopes)wet - s). Let

k(t) = 100 h(r)w(t - r)dr

and

H(s) = 1000e-TSh(r)dr .
Then

H(s) = (~) (-P(s) + P(-p) ) .
s-p s+p

Using the initial value theorem to calculate h(O), we have

h(O) = lim sHes) =0 .s-oo

Thus, k(t) is mean square differentiable and so is locally predictable.
(The convolution integration required to transform x*(t) to k(t) smooths
k(t) relative to x*(t).)

More generally, the endogenous dynamics of adjustment cost mod-
els typically lead to mean square differentiable endogenous variables,
provided that the agent is posited to be facing mean square differen-
tiable forcing processes (z(t)). This means that for such models, the
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difficulties of interpretation that are illustrated in Table 1 cannot be
eluded by appealing to an approximation based on the limit (2.26).

2b. Remedies in Continuous Time Analyses

The preceding problems of interpretation are results of estimating
vector autoregressions while foregoing the imposition of any explicit
economic theory in estimation. These problems can be completelyover-
come if a sufficiently restrictive and reliable dynamic model economy is
available to be imposed during estimation. For example, Hansen and
Sargent (1980b, 1981d) have described how the function p(r) can be
identified and estimated from observations on discrete time data in the
context of a wide class of linear rational expectations models. The basic
idea is that the rich body of cross-equation restrictions that character-
ize dynamic linear rational expectations models can be used to identify
a unique continuous time model from discrete time data.

If an estimate of p( r) is available, then by using only discrete time
data on {zd, it is even possible to recover an estimate of the one-
step prediction error that agents are making in continuous time. This
is accomplished by treating the continuous time forecast error as a
hidden variable whose covariances with the discrete time process {Zt}
are known. Thus, given estimates of p( r), let us define the one-step
ahead prediction error from continuous time data as ei = fl p(r) w(t-
r) dT. Then it is straightforward to calculate the following second
moments:

f'XJ 00

E(ztz[j) = Jo p(r + j)p(r)Tdr = E Ck+jWCl,j ~ 00 k=o

E ( * zT .) =
{

f~p(r)p(r +j)Tdr j ~ 0
et t+1 0 j < 0 .

We can estimate the projection E'j';-ml Dj Zt-j in the projection
equation

m2

e; = L Dj Zt- j + Ut
j=-ml

where Ut is orthogonal to Zt-j for all j = -mI..., m2. The Di's can
be computed from the normal equations

m2

E (e; Z4k) = L Dj E Zt-j Z4k, k = -m2, ..., ml .
j=ml

~

l
f
I
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These calculations could be of use if one's aim were truly to extract and
to interpret estimates of the forecast errors made by agents. In con-
tinuous time versions of various models, such as those of Lucas (1973)
or Barro (1977), agents' forecasting errors are an important source of
impulses, so that it is of interest to have this method for characterizing
their stochastic properties and estimating them.

3. Concluding Remarks

Subsequent chapters will treat aspects of the issues that we have
studied in this chapter. The next chapter by Hansen, Roberds, and
Sargent describes some discrete time tax and consumption models in
which the history of innovations in a vector autoregression fails to equal
the history of information possessed by agents. This poses problems in
testing a key feature of the models, namely, a form of present value
budget balance. For these particular models, the paper describes and
iIIiplements a testing strategy that is an alternative to the remedy in
discrete time described above.

Analysis of the issues raised in Section 2 on continuous time model
is taken up and extended in Chapter 10 by Marcet, who relaxes our
assumption that the continuous time spectral density is rational. This
lets him study continuous time processes that have Wold representa-
tions with discontinuous moving average kernels. The remaining Chap-
ters 7, 8, and 9 contain a variety of technical results that would be
useful in implementing the remedy in continuous time described above.

Appendix

This appendix describes the recursive methods by which Figures
1-4 were computed.

We computed the objects described in Section 1 by mapping the
model into the olass of economies described by Hansen and Sargent
(1990), and by using the computer programs that they describe. Hansen
and Sargent (1990) describe a class of economies whose equilibrium al-
locations solve the social planning problem: choose stochastic processes
{Ct, St, it, gt, kt, hd~o to maximize

(AI) -(~) Eo f: (3t [(st-bt) . (St-bt) + if)t=O
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subject to

(A2)

<PcCt+ <Piit + <Pggt= rkt-1 + dt

gt . gt = £;

kt = tlk kt-1 + 0k it

ht = tlh ht-l + 0h Ct

St = ASt-1 + n Ct

Zt+1 = A22 Zt + C2 Wt+1

bt = Ub Zt , dt = Ud Zt .

In (A 1), St is a vector of consumption service flows, bt is a vector of
preference shocks, £t is labor supply, Ct is a vector of consumption rates,
it is a vector of investment rates, 9t is a vector of "intermediate goods,"
kt-1 is a vector of capital stocks, dt is a vector of "endowment shocks,"
ht is a vector of consumer durables, {Wt+d is a vector white noise with
E WH1wT+1 = I, and Zt is an exogenous state vector of information.
The planner maximizes Al subject to A2 by choosing contingency plans
for {Ct, it, it, 9t, kt, hd as functions of information known at t, namely

T - [h
T kT T

]Xt = t-1, t-1' Zt .
There is a potential source of notational confusion because several

sets of notations in (Al)-(A2) were used to denote different objects in
the model of Section 1. To avoid confusion, in this appendix we simply
place a n above any variable in the model of Section 1 that might be
confused with a similarly named variable in (Al)-(A2).

We begin by eliminating Pt from equations (1.21) and (1.22) to
obtain a single Euler equation in qt:

(A3) Et {[hd + 9da((3L-1) a(L) + ha + 9a(1 - (3L-1) (1 - L)]qt}
+ dt + St = 0

To obtain a version of the social planning problem (Al)-(A2) whose
quantities (and shadow prices) solve the model of Section 1, our strategy
is to choose the objects in (A2) so that the Euler equations for problem
(Al)-(A2) match up with (A3).

Let ft, 12, !4, !5, !6, h be undetermined scalars which we shall
eventually set in order to match (A3) with the Euler equation for prob-
lem (A1)-( A2). Then we propose the following settings for the objects
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in (A2):
(qt = Ct)SIt = 12 qt .

S2t = ft [a(L)qt]

[

qt_1

]

=ft ao qt + ft [a1 a2 a3 a4] qt-2
qt-3
qt-4

b2t = 0

bIt = h dt

Thus, we set

+
[

h
]

q
ft ao ~

CI
II

[

q;~l

]
qt-2
qt-3

~
h,

[

0 0
1 0

- 0 1
0 0,

0 0

] [

qt_1

]

0 0 qt-2
0 0 qt-3
1 0 qt-4

,~
hj-l

m'-v-"
6h

qt+

'"
t::.h

As for the technology, we specify

9It - !5 qt = !6 St

92t - h it = 0
Ct=kt

kt = kt-1 + it

To implement these specifications, we set

[ -t'] " + [~},~ ~
o)c 0);

+ [[ ~]---------
0)9

[~:] = m
'-v-"

r
k'-1 + [10:"]

[ q'-1 ]
[ SIt] =ft[O

0 0
J

qt-2
S2t a1 a2 a3 qt-3' -
a, A qt-4

h,-l
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where kt = 1 . kt-I + 1 . it, so that f).k = 0k = 1. We set d2t = f6 St.
With these settings, we have that

- 2 2
(St - bd . (St- bt)= (12qt - f4dt) + (fI a(L)qt)

2 2 2-2 - 2 2= f2 qt + f4 dt - 21214qtdt + fi [a(L) qtJ .

We also have that

gt .gt = (fSqt+ f6St)2+ If i;

= flq; + fis; + 2fsf6qtSt+ ff (kt - kt-I)2 .

Thus, the social planning criterion (AI) can be expressed as

i
I

00

-.5E E (3tJt
t=o

(A4)

where

{
2 2 2 -2 - 2 2

Jt = f2 qt + f4 dt - 2f2f4dt + fi [a(L) qt]

+ fl q; + fis; + 2fsf6 qtSt+ If (kt - kt-I)2}

Applying techniques described in Sargent (1987b, ch. IX and XVI), the
Euler equation for (A4) is evidently

(A5)
{

2 - 2 1
Et f2 qt - 12f4qtdt + fi [a((3L- ) a(L)] qt

+ fl qt + fsf6St + ff (1 - (3L-1) (1 - L) qt} = 0 .

To make (A5) match (A3), it suffices to use the following settings for
the fj's: .

fI = (9d)I/2

12 = (hd)I/2

f4 = -(hd)-I/2

fs = (ha)I/2

f6 = (ha)-I/2

h = (ga)I/2.

As for the information specification, we set

zT = [Wat, Wat-I, Wat-2, Wat-3, Wdt, Wdt-b Wdt-2, Wdt-3]

!
I' [

C4 04

]

T

[

1 0 0 0 0 0 0 0
]A22 = 04 C4 ' C2 = 0 0 0 0 1 0 0 0
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where C4 is the (4 x 4) companion matrix of [0 0 0 0], and 04 is the
(4 x 4) zero matrix. We set

Ub = fiI
[

bs OIX4
]01x8 '

[

01X8

]
Ud = fiI 01x4 bd

01X8

where
bs = [Bao, Bal, Ba2, Ba3]

bd = [Bd!> Bd2, Bd3, Bd4]

where the Baj and Bdj are defined in (1.23). Vje set Ub and Ud as
above, because we want to implement bit = 14 dt and d2t = f6 St or

equivalently, dt = fiI bit and St = fil d2t.
A solution of the social planning problem is computed by map-

ping Al - A2 into a discounted dynamic programming problem. The
solution is represented in the form of the stochastic difference equation

(A6) Xt+l = AOXt + CWt+I ,

where

[

ht-I

]Xt = k:~1 .
Hansen-Sargent (1990) show how to decentralize the social planning
problem via a competitive equilibrium. It turns out that the spot price
of consumption in the general equilibrium model of Hansen-Sargent
equals Pt of the model of Section 1.18 It .also turns out that Pt is sim-
ply a linear function of the state Xt, as is qt. The marginal utility of
consumption (qt = cd for this model can be shown to be given by

1 -
-Edhd + gd a((3L- ) a(L)} qt - dt ,

which equals Pt by virtue of equation (1.22). Hansen and Sargent (1990)
compute the marginal utility of consumption in the form Me Xt, where
Me is a matrix comformable to Xt. Thus, we compute the price for our
model simply as Pt = Me Xt. Similarly, the level of consumption, qt, is
represented as qt = BeXt, where Hansen and Sargent (1990) describe
how to compute Be.

Hansen-Sargent's computations can be used to represent the solu-
tions of the model in the state space form

Xt+I = AOXt + C Wt+l

Zt = G Xt
(A7)
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where Zt = [;:]and where G = [~]. Representation A 7 is a state-
space version of representation (1.13). We computed the impulse re-
sponse function from (A7) to create Figure 1, which gives the impulse
response of S(L)zt = R(L)et.

Using the Kalman filter, we obtained the following innovations rep-
resentation associated with (A7):

(AS)
Xt+1 = AO Xt + Kat

Zt = GXt+ at

where at = Zt - E [Zt I Zt-I, Zt-2, .. .J,Xt = E[Xtlzt-l, Zt-2, .. .J, and
K is the Kalman gain. Representation (A8) corresponds to the Wold
(fundamental) moving average representation for Zt given by represen-
tation (1.17). The innovati"onat in (A8) equals ROe; of (1.17). We
created Figures 2 and 3 by computing impulse response functions from
(A8).

To create Figure 4, we used (A7)-(A8) as a coupled system. First,
we turned around A8 to achieve the whitener .

(A9) Xt+1 = (AO - KG) Xt + K Zt

at = -GXt + Zt .

Then we created the coupled system formed by taking the output Zt of
(A 7) as the input of system (A9). We then used the coupled system to
compute the impulse response functions of at (i.e., R; et) with respect
to Wt (i.e., et) that are reported in Figure 4.

Notes

1. This is, after all, the construction used in Wold's decomposition
theorem.

2. Throughout this paper, we use E to denote the linear least squares
projection operator.

3. Representations of the moving average in (1) are not in general
unique once one relaxes the restriction in (1) that A~ = -I, which
in turn implies that Cf = I. If this restriction is relaxed, then any
representation generated by slipping a UUT in between ct and

."
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"

a(t - t:.j) in (4), where U is a unitary matrix (UUT = 1), is also a
fundamental moving-average representation. That is,

00

z(t) = L (CfU) (UTa(t -llj))
j=O

;1.

is also a fundamental moving-average representation, since UT a(t)
spans the same linear space as a(t). In terms of such a representa-
tion, the decomposition of prediction error covariance becomes

II

~
~ ~ T

E(z(t) - Et-jz(t)) (z(t) - Et-jz(t))
j-I

=L Cf u V UTCfT,"=0

which is altered by alternative choices of U. Sims' choice of orthog-
onalization order amounts to a choice of U.

4. An earlier version of this paper considered four classes of examples,
the other two being nonlinearities and aggregation across agents.
Due to length constraints, we decided to restrict this paper to the
two classes of examples studied here.

5. Danny Quah has conveyed to us the viewpoint that implicit in the
desire to match the {ct} process of the economic model (1.8) with
the {at} process of the vector autoregression (1) must be a decision
problem that concerns the data analyst. For example, on the basis
of variance decompositions based on (7), the analyst might want to
predict the consequences of interventions in the form of alterations
in various diagonal elements of the innovation covariance matrix V,
interpreting these alterations, e.g., as changes in the predictability
by agents of various economic process, such as the money supply.

6. This assumption is made in the interest of providing the best pos-
sible chance that the processes {at} and {ct} match up. If clt is
a vector of dimension greater than nl, then in general current and
lagged values of (clt, e2t) span a larger linear space than do current
and lagged values of (Yt, X2t). .

7. See Rozanov (1967).

8. This inequality means that E(Roct)(Roct)T - E(Roct)(Roct)T is a
positive definite matrix.
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I I

9. The appendix maps the current model into a social planning prob-
lem that is a special case of the one studied by Hansen and Sargent
(1990). By using Hansen and Sargent's interpretation of their setup
as a general competitive equilibrium, it is possible to produce a gen-
eral equilibrium interpretation of the model in the text.

10. It is interesting to note that although this system is one in which
there are not strictly econometrically exogenous variables, or even
any variables that are not Granger-caused by any others, its param-
ete.rs are in principle identifiable. Identification is achieved through
the cross-equation restrictions. Even when (wst, Wdt) lie in the
space spanned by the one-step ahead errors in predicting (qt, Pt)
from their own pasts, it is necessary to know the structural param-
eters of the model in order to deduce the former from the latter
innovations.

11. The computational methods are described in the appendix. Briefly,
we proceeded by mapping the problem into the general setup of
Hansen and Sargent (1990), and using their computer programs.

12. By increasing the absolute values of the zeros of the polynomi-
als Bd(L) and Bs(L) we were able to generate more "spectacular"
examples of the phenomenon under discussion, in the sense that
the discrepancy between the two covariance matrices in inequality
(1.19) was even larger. .

13. See Sims (1980) for a treatment of orthogonalization orders. Dif-
ferent "orthogonalization orders" in the sense of Sims amount to
different triangular choices of the orthogonal matrix U that appears
in footnote 3. If UT is chosen to be upper triangular, then the first
component of at corresponds to the first component of the new (ba-
sis) fundamental noise UTat. On the other hand, if UT is chosen
to be lower triangular, the last component of at gets to go first in
the Gram-Schmidt process that is used to create UTat.

14. Practical methods for solving this equation for the case in which
P(s) is rational are discussed by Phillips (1959), Hansen and Sar-
gent (1980b), and Christiano (1980).

15. An alternative derivation of (2.7) uses operational calculus. Setting
L = e-D, express (2.5) as at = V(e-D) P(D) w(t) ==f(D) w(t).
Here the function f( r) is the inverse Fourier transform of F( ilJJ),
which is defined by

F(iw) = C(e-i"')-l P(iw) .

,

I fI
i'
I'

~

.~

~
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Equation (2.7) follows from the above equation by the convolution
property of Fourier transforms.

16. For example, the function p(r) will be continuous whenever P(D)
is rational, a common specification in applied work. The functions
p( r) and f( r) are only defined up to an L2 equivalence. Conse-
quently, we can only impose continuity on one version of the con-
tinuous time moving average coefficients.

17. See Sargent (1983) for definitions of mean square continuity and
mean square differentiability.

18. The spot price of consumption is P: in the language of Hansen-
Sargent.


