
Lecture Notes on Least Squares Prediction Theory

1 a set of probability measure one. Thus, we have proved that {Ynk :
;:::I} converges to Yo in L2.

To complete this proof, we must show that {Yn : n ;:::1} converges
, Yo in L2. Given 8 > 0, there is k such that

L16)

r all m ;:::nk and

1

E[(Ym - Ynk)2J2 < 8/2

l.17)
1

E[(Ynk - Yo)2]! < 8/2 .
( the Triangle Inequality,

l.18)
1

E[(Ym - Yo)2p < 8 for m ;:::nk . I

Notes

We follow the usual convention of viewing the equivalence class of
random variables that are equal almost surely as a unique random
variable.

This notion of convergence is induced by the norm, lIylI= E(y2)!
on the linear space L2.

The definition of continuity given here only considers the behavior
of the function 7r in the neighborhood of zero. However, since c
is linear, continuity at a single point immediately translates into
continuity at all points.

This lemma is a special case of the Riesz Representation Theorem.

We take the notation E(zlx) to mean the expectation conditioned
on the sigma algebra generated by x. .

The unique extension of measures from algebras to sigma algebras
follows from the Caratheodory Theorem. See Halmos (1950) or
Royden (1968) for a discussion of this result.

Recall that a projection is defined only up to an equivalence class
of random variables that are almost surely equal. Some (but not
necessarily all) members of this equivalence class will be measurable
with respect to Bo.

By P[x(t)IH(t -1)] we mean the vector containing the projections
of components x(t) onto H(t - 1).

,;

~ 1

f
l'
11'

i
{-

I
I
t;
1
I.

(J

""

?,

I.

t
!

l

3

Exact Linear Rational Expectations
Models: Specification and Estimation

by La.rs Peter HANSEN and Thomas J" SARGENT

Introduction

A distinguishing characteristic of econometric models that incorpo-
rate rational expectations is the presence of restrictions across the pa-
rameters of different equations. These restrictions emerge because peo-
ple's decisions are supposed to depend on the stochastic environment
which they confront. Consequently, equations describing variables af-
fected by people's decisions inherit parameters from the equations that
describe the environment. As it turns out, even for models that are lin-
ear in the variables, these cross-equation restrictions on the parameters
can be complicated and often highly nonlinear.

This paper proposes a meth"odfor conveniently characterizing cross-
equation restrictions in a class of linear rational expectations models,
and also indicates how to estimate statistical representations satisfying
these restrictions. For most of the paper, we restrict ourselves to models
in which there is an exact linear relation across forecasts of future values
of one set of variables and current and past values of some other set of
variables. The key requirement is that all of the variables entering this
relation must be observed by the econometrician. While probably only
a minority of rational expectations models belong to this class, it does
contain interesting models that have been advanced to study the term
structure of interest rates, stock prices, consumption and permanent
income, the dynamic demand for factors of production, and many other
subjects. .

It is useful to compare the class of exact models with the class stud-
ied by Hansen and Sargent (1980a). The differences lie entirely in the
interpretations of the error terms in the equations that are permitted.
In Hansen and Sargent (1980a), random processes which the econome-
trician treats as disturbances in decision rules can have a variety of
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46 Exact Linear Rational Expectations Models

sources. Disturbance terms can be interpreted as reflecting shocks to
technologies or preferences observed by private agents but not by the
econometrician. Disturbances can also be interpreted as reflecting in-
teractions with hidden decision variables which are simultaneously cho-
sen by private agents but unobserved by the econometrician. Finally,
disturbances can be interpreted, along the lines of Shiller (1972), as re-
flecting the phenomenon that in forecasting the future, private agents
use larger information sets than the econometrician can consider be-
cause of data limitations. Of these alternative interpretations of error
terms, only the last one can be accommodated within the class of exact
models of the present paper. While this limitation on the permissi-
ble interpretations of error terms excludes many rational expectations
models, a variety of interesting examples still remains within the gen-
eral class of exact linear rational expectations models.

In linear rational expectations models, the cross-equation restric-
tions can be characterized very conveniently by working in terms of
a vector moving-average representation for the variables being mod-
eled. By straightforward applications of the Wiener-Kolmogorov least
squares prediction formulas, these restrictions can readily be deduced.
Once the restrictions are deduced, the parameters of the model can be
estimated by maximizing one of various approximations to the likeli-
hood function. The vector moving-average representation that incor-
porates the rational expectations restrictions is nested within less con-
strained vector moving-average representations, and a likelihood ratio
statistic can be computed to test the model.

The ease of characterizing the restrictions and calculating estimates
is a great virtue of specifying the model in vector moving-average form.
However, an identification question must be addressed before this strat-
egy can be implemented. Without a priori restrictions on their param-
eters, many vector moving-average representations are consistent with
a given set of second moments. A natural and practically important
question is whether the cross-equation rational expectations restrictions
provide enough prior information to identify a unique moving-average
representation. For the case of exact linear rational expectations mod-
els, Section 3 provides results that characterize identification. Insofar
as the identification question is concerned, there are substantial dif-
ferences between exact rational expectations models and models that
admit one or more of the additional interpretations of the error terms
described above. It is the special nature of the identification problem
in these exact models, and not anything special about the appropriate
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methods either of representing the models or of estimating them, that
causes us to restrict this paper mainly to analyzing exact linear ratio-
nal expectations models. In Section 6, we briefly indicate how both our
methods for model specification and estimation carryover to inexact
linear rational expectations models.

As Shiller (1979) and Hansen and Hodrick (1980) have indicated
for several special examples of our general model, it is possible to de-
vise powerful tests of such models without estimating the complete
vector process subject to the model's restrictions. However, for many
applications, the analyst wants more than just a test of the model,
and desires a complete representation of the vector process. Indeed,
our interest in the identification and estimation of constrained moving-
average models is not entirely motivated by the exact linear rational
expectations models that occupy most of our attention in the present
paper. As we indicate in Section 6, the restrictions that emerge in the
present models strongly resemble those that characterize rational ex-

, pectations models which can accommodate additional interpretations
of disturbance terms (e.g. Hansen and Sargent 1980a). This makes con-
strained moving-average estimation a more generally useful method for
estimating the parameters needed to overcome Lucas'~ (1976) critique
of econometric policy evaluation procedures.

I'
1. General Model

In this section we specify a general time series econometric model
and consider representations of solutions to that model. We begin by
specifying in turn the information of economic agents, the information
set of the econometrician, and the economic model.

Economic Agents' Information Set

Let J+ denote the set of nonnegative integers, J the set of all inte-
gers, and x =={Xt : t E J} be a p-dimensional, vector stochastic process
that is covariance stationary and has finite second moments. For sim-
plicity, we assume that EXt = O. The time t common information set
of economic agents, denoted nt, is the set of all random variables with
finite second moments that are (Borel measurable) functions of current
and past values of x. In making decisions at time t, economic agents
are assumed to forecast optimally conditioned on nt. Let p('lnt) de-
note the projection operator that maps random variables with finite
second moments into optimal forecasts based on nt. This operator can
be interpreted as an expectation operator conditioned on current and
past values of x. .

i
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48 Exact Linear Rational Expectations Models

Econometrician's Information Set

The econometrician is assumed to observe only the first q compo-
nents of the x process. We denote the resulting process Y =={Yt : t E J}.
Let Et denote the closed (in mean-square) information set generated
by taking linear combinations of current and past values of y. Instead
of forecasting using conditional expectations, the econometrician uses
the linear least squares projections onto Et. In general, forecast errors
using p(.,nt) will have smaller second moments than forecast errors
using P('IEt).

We assume that y is linearly regular and has full rank. These
assumptions are sufficient to guarantee that elements of Et can be rep-
resented as

(1.1)
00

.E OJ .Vt-j
j=O

where v =={Vt : t E J} is a serially uncorrelated q-dimensional process
satisfying EVt = 0, EVtv~= I where the entries of Vt are in Et. Also,
0 == {OJ: j E J} is a sequencein R9 satisfying

(1.2)
00

E OJ .OJ < 00 .
j=O

The v process is said to be fundamental for the y process and Vt is
the new uncorrelated information that is added to Et-l in forming Et.
Since P(vt+lIEt) = 0, it is more convenient to represent Et in terms of
current and past values of v instead of current and past values of y.

We assume that the econometrician uses a subset of the informa-
tion observed by economic agents and that he calculates linear least
squares projections in making these forecasts. These are convenient
assumptions for studying many dynamic economic models using time
series methods.

Economic Model

Our general model is of the form:

(1.3) P{[A(L) j B(L-l)]Ytlnt-l} =0

where

(1.4) A(z) = An(z)JAd(Z),
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(1.5) B(z) = Bn(z)JBd(Z) ,

i

An (z) is an (r X r) matrix polynomial with a determinant that has zeros
outside the unit circle of the complex plane, Bn(z) is an [r x (q - r)]
matrix polynomial, and Ad(Z) and Bd(Z) are scalar polynomials with
zeros outside the unit circle of the complex plane.

Solution

Let At be generated by current and past values of a serially un-
correlated, q-dimensional process W == {Wt : t E J} where EWt = 0
and EWtw~ = I. Clearly,P(wt+lIAt) = 0 and the entries of Wt are in
At. We assume that solutions to the model can be represented as time
invariant linear functions of current and past values of w:

(1.6) Yt = C(L)wt =
[

Cl{L)
]C2(L) Wt

where

'I
I
I

(1.7)
00 00

C(z) == E Cjzj and, E trace(cjcj) < 00 .
j=O j=O

:.
'I,
I

Partition Cl is (r x q) and partition C2 is [(q- r) x q].
One possible candidate for W is W = v, in whichcase Et = At for all

t. We do not restrict ourselves to this specification and instead allow
At to be strictly larger than Et. For the purposes of solving the model,
we take At to be a subset of nt. Since some of the components of nt
may not be observed by the econometrician, it is possible for At to be
strictly larger than Et. '

Applying the Law of Iterated Projections to (1.3) gives

(1.8) P{[A(L) j B(L'-l)]YtIAt-l} = 0

or equivalently

(1.9) P{[A(L) j B(L-l)]YtIAt} = Dl(L)wt

where Dl(Z) is an (r x q) matrix polynomial with degree l- 1. When
l = 0, Dl(Z) = O.Also,(1.6)impliesthat

(1.10) [0 j I] Yt = D2(L)wt
I
i
I

I
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(1.11) [DI (z)]D(z) = Dz(z)

of Bd(Z-I) are all inside the unit circle. Since Bd(Z) is a finite-order
polynomial, Bd(Z-I) has a finite number of zeros. Hence B(z-I)Dz(z)
is analytic everywhereinside the unit disk except at a finite number of
points. At each of the points for which it is not analytic, B( z-I )Dz(z)
has a finite-orderpole.

To compute [B(z-I)Dz(z)]+, we take a partial fractions decomposi- ,
tion whereby we form the principal parts of the Laurent series expansion
about each of the poles and subtract the sum of these principal parts
from B(z-I)Dz(z). Let Zk denote the kth pole and Gk (z-l) denote the
principal part of the Laurent seriesexpansionofB(z-I )Dz(z) about Zk.
Recall that the principal part, Gk (z-I), of a Laurent series expansion
about Zk consists only of the terms (z - Zk)j for strictly negative powers
of j. Since Zk is a finite-order pole, Gk(z-I) is the sum of only a finite
number of such terms. Then B(z-I)Dz(z) - G(z-I) is analytic inside
the unit circle of the complex plane where

where Dz(z) = Cz(z). Our goal is to solve for C(z) in terms of the
triple [A(z), B(z), D(z)] where

Relation (1.9) implies that

(1.12)
{[A(z) ; B(z-I)] [g~~:n} + = DI(Z) ,

or equivalently

(1.13 ) A(Z)CI(Z) + [B(z-I)CZ(z)]+ = DI(Z)

where [.]+ is the annihilatioJl operator that is defined as follows. The
matrix B(z-I)Cz(z) is welldefinedforp < Izi < 1 for somep < 1. In
particular, p can be chosen so that p-I is the modulus of the small-
est zero of Bd(Z). The matrix function B(z-I)CZ(z) has a two-sided
Laurent series expansion in the region {z : p < Izi < I}. Then
[B(z-l)CZ(z)]+ is the function defined by the power series expansion
where the negative powers of z are ignored. Negative powers of z cor-
respond to future values of w,. Hence, the projection of these terms
onto Et is zero. Solving for CI(Z) gives

(1.14) CI(Z) ~ A(z)-l{Dl(Z) - [B(z-I)Dz(z)]+}
Cz(z) = Dz(z) .

G(Z-l) ==L Gk(z-l) .
k

In other words, B(z-I)Dz(z) - G(z-I) has a power series expansion
that is convergent in the unit disk of the complex plane.

By construction, G(z) satisfies the following restriction:

Restriction Rl: G(z) is an (r x q) function that is analytic in an open
set containing {z : Izi ~ I} and G(O)= O.
For any function G that satisfies Rl, G has a power series expansion
with a leading coefficient zero and a radius of convergence that exceeds
one. Consequently, in a domain containing {z : Izi ~ I}, G(z-I) can
be represented as

(1.15)

Equation (1.14) can be viewed as linear transformations mapping
the matrix function D(z) into the matrix function C(z). Throughout
this paper we will think of alternative solutions to (1.8) as being indexed
by alternative choices of D(z). The only restriction we have placed on
D(z) is that Dl(Z) be a polynomial with degree i-I, and that Dz(z)
have a power seriesexpansion with square summable coefficients.

To obtain an alternative convenient representation of C(z), we fol-
low Hansen and Sargent (1980a) by characterizing the annihilation op-
erator as applied to the function B(z-I)Dz(z) in terms of properties
of this function inside the unit disk of the complex plane. The func-
tions Dl(Z) and Dz(z) are both analytic inside the unit disk, and the
function B(z-l) is analytic everywhere in this same region except at
the zeros of Bd(Z-I) and possibly at z =O. The zeros of Bd(Z) are all
outside the unit circle of the complex plane, implying that the zeros

00

G(z-l) = L gjZ-j .
j=1

Since B(z-I)Dz(z) - G(z-l) is analytic in the unit disk and G(z)
satisfies Rl,

(1.16)

(1.17) [B(z-l)Dz(z)]+ = B(z-I)Dz(z)- G(z-l) .
In summary, one convenient way to compute the left side of (1.14) is
first to compute G(z-l) and then subtract it from Dl(Z)-B(z-I)Dz(z).
Substituting into (1.14), we have that

Cl(Z) =A(z)-l[DI(Z)- B(z-l)Dz(z)+ G(z-l)]
Cz(z) = Dz(z) .(1.18)
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Equation (1.18) implies that

(1.19) [A(z)j B(Z-I)]C(Z) == zlH(z-l) ,

of a pure discount bond that pays one dollar n time periods into the
future satisfies:

where (2.1) exp(p~) =P [exp(mHn - mt)IOt]

(1.21 )
. l

Dl(Z) = E djzj ,
j=1

where exp (pf) is the bond price, exp (mt) is the indirect marginal utility
of money, and Ot is the information set available to economic agents, all
at date t. Following Hansen and Singleton (1983), Hansen and Hodrick
(1983), Campbell (1986), Harvey (1988), and Hansen and Singleton
(1990), suppose that mt - mt-l is one component of Xt where x is a
stationary Gaussian process.1 Then (2.1) implies that

p~ = P [(mt+n - m')IOt] + Cn

= P [(mHI - mt) + (mH2 - mt+!) +...
+ (mHn - mHn-I)IOt] + Cn

(2.2)

(1.20) H(Z-I) ==z-l [Dl(z) + G(z-I)] .
Then H(z) satisfies R1 by construction. Furthermore, for any C(z)
satisfying (1.19) for some H(z) that satisfies R1, there exists an ad-
missible D(z) such that (1.14) is satisfied where an admissible D(z) is
one with square summable coefficients and an upper (r x q) partition
that is a matrix polynomial with degree l - 1. In accordance with
relation (1.20),

(1.22) D2(Z) = C2(Z) .
\,

where Cn is equal to one-half the conditional variance of mHn - mt.
Abstracting fromthe constant term, relation (2.2)is a specialcaseofthe
general model described in section one with Yu =pfj the first entry of
Y2tequal to mt-mt-l and the remaining entries being variables that are
observed by the econometrician and are potentially useful in forecasting
future values of mt - mt-l; A(z) = 1, B(z) = (z + z2 +... + zn)[l; 0],
and l = O. Therefore, C(z) satisfies

and in accordance with (1.14),

Therefore, an equivalent characterization to C(z) satisfying (1.14) for
some admissible D(z) is that C(z) satisfies (1.19) for some H(z) satis-
fying R1. Characterization (1.14) has the advantage that the solution
is explicitly parameterized by D(z). However, characterization (1.19)
also will turn out to also be useful in Section 3 when we investigate
issues pertaining to identification of D(z) and hence C(z).

In checking (1.19), it suffices to verify that H(z) is analytic in the
region {z : Izi < I} rather than in an open set containing {z : Izi :SI}
because the left side of (1.19) is analytic in the region {z : p < Izi <
I}. Consequently, when H(z) is analytic inside the unit circle of the
complex plane, it is also analytic in the larger set {z: Izi < (lIp)}.

2. Examples

In this section we consider five illustrations of the general model
specified and solved in section one.

Example 1: Lognormal Model of Bond Pricing

An implication of the intertemporal asset pricing model as studied
by LeRoy (1973), Rubinstein (1976), Lucas (1978), Breeden (1979),
and Cox, Ingersoll and Ross (1985), among others, is that the price

(2.3)
Cl(Z) = -[1; 0] [(z-1 + z-2 +... + z-n) D2(Z)]+
C2(Z)=D2(Z) .

Next suppose that the indirect marginal utility for money is not
observable to an econometrician. Instead observations are available on

the price of a one-period discount bond. Setting n = 1 in (2.2) results
in

(2.4) pI = P [(mt+! - mt)IOt] + Cl .

I

I
I
I
i
\
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Applying the Law of Iterated Projections (see Lemma 3.5 in Chapter
2) to (2.2) and substituting from (2.4), it follows that

(2.5) p~ = P [(pI + pI+!+... + P:+n-l)lOt]+ Cn- nCI .

Again abstracting from the constant term, relation (2.5) is also in the
form of the general model presented in section one where now the first
entry of Y2t is pI and B(z) = (1 + z +... + zn-l) [1; 0].
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Finally, replacing -p~ /n in (2.5) by the one-period rate of return
on an n-period discount bond and pI by the one-period rate of return
on a one-period bond, one obtains Sargent's (1979) version of a rational
expectations model of the term structure of interest rates.

Example 2: Present- Value Model

Let dt denote the time t dividend or payout, and Pt the time t
value to owning a claim to this dividend process from time t forward.
Suppose these two variables are related via a present-value formula

(2.6)
00

Pt =P CE Ar dt+r I fit) ,
j=O

For this reason, instead of treating a, c and e as distinct processes, we
investigate implications for Ct- pat and et. Expressed in terms of these
transformed process, the model in equation (2.8) is essentially the same
as the present-value model.

The permanent income model is known to have the property that
CtH - Ct is uncorrelated with Yt-j for j E J+. To verify this property,
note that

Ct+l - Ct = (Ct+l - pat+l) - (Ct - pat) + p(atH - at)

= (CtH - patH) - (Ct - pat) - p(Ct - pat) + pet.

= (L-l - A-l)(Ct - pat) + pet.

= [A-l(A - L) Cl(L) + p[lj 0] LC2(L)]Wt+l

= .,..(1- A) [1; 0]D2(A)Wt+l .

(2.10)

where A is a constant discount factor.2 In LeRoy and Porter (1981)
and Shiller (1981), dt is the dividend paid to share-holders of a stock
and Pt is the price of the stock. In Hamilton and Flavin (1986) and
Roberds (Chapter 6), dt is the net surplus of a government (taxes minus
expenditures) and Pt is government debt.

As noted in Campbell and Shiller (1987), a present-value model of
the form (2.6) is a special case of an exact linear rational expectations
model as defined in section one. To see this, let Ylt = Pt, dt be the
first" entry of Y2t,A(z) = 1, B(z) = -1/(1 - Az)[l; 0] and l = O. The
solution to the model is

(2.7)
Cl(Z) = [1; 0] [ZD2(Z)- AD2(A)JI(Z- A)
C2(z) = D2(Z) .

The implications of (2.10) are investigated further in Chapter 5.

Example 4: Martingale Model with Temporal Aggregation

As noted in Hansen and Singleton (1983, 1990), Grossman, Melino
and Shiller (1987) and Hall (1988), several intertempqral asset pricing
models have the implication that some linear combination of a vector
of variables observed by an econometrician is a martingale difference
sequence. Denote this linear combination by { .Ytwhere {' = bl {~]is
a q-dimensional vector and {I is different from zero. Hence

(2.11) P ({' YtIOt-l) = 0 .

(2.8)
00

Ct - pat = (1 - A)P (E Ajet+j lOt)
j=o

This model becomes a special case of the general model presented in
section one by letting A(z) be a scalar given by the first entry of (,
B(z) be a (q-l)-dimensional row vector given by the remaining (q-l)-
dimensional subvector of (', and l be one.

Instead of observing Ytdirectly, suppose that an econometrician ob-
serves a temporally-aggregated version of Yt. As in Grossman, Melino
and Shiller (1987), Hall (1988), and Hansen and Singleton (1990), sup-
pose that

Example 3: Permanent Income Model 'of Consumption

Following Hall (1978), Flavin (1981), Hansen (1987) and Sargent
(1987b), we consider a rational expectations version of the permanent
income model of the form:

where at is the asset-holding, Ctis consumption and et is the endowment
or labor income of a consumer at time t. The parameters p and A
are related via A = 1/(1 + p). This model has a built-in stochastic
singularity because of the resource constraint:

(2.12) (. Yt= 101 a(r). dW(t - r)

(2.9) Ct+ atH - at =pat + et .

where W is a continuous-time, vector martingale with stationary incre-
ments, and a is vector-valued, continuous function on [0, 1]. Relation
(2.12) clearly implies that the discrete time process {.Yt is a martingale

}
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difference sequence. Let yf denote the temporally aggregated version
of Yt. Then

'Y' yf =11 [11 o{r)dW(t - r - s)] ds .
As emphasized by Hall (1988), it follows from (2.13) that

(2.13)

(2.14) P (-y. yf I Ot-2) = 0 .

In other words, temporal aggregation has the effect of shifting the in-
formation set back one additional time period so that l is set to two.
Thus C(z) for the model with temporal aggregation is given by

(2.15)
Cl(Z) = (')'1)-1 IDl(z) - 'Y~D2 (z)J

C2(Z) = D2(Z)

where D1(z) is a first-order polynomial.

Example 5: Dynamic Demand Function for a Factor of Production

Sargent (1978) and Kennan (1979) have studied linear demand
functions for factors of production that are derived from optimizing
a quadratic objective function subject to linear constraints. We fo-
cus on Sargent's version, though a reinterpretation of the variables will
yield Kennan's model as well. Assuming that there are no shocks to
the technology and a single factor of production, the demand function
turns out to be .

(2.16)
00

nt = 6nt-l- OP [1:({36)Tpt+jlOt]
j=O

where 0 < (3 < 1, 0 < 6 < 1, 0 > 0, nt is the amount of the factor
demanded at date t and Pt is the rental rate of the factor at date t.
This model is of the form described in section one with Ylt = nt, the
first entry of Y2t equal to Pt, A(z) = (1- 6z), B(z) = 1/(I-{36z) [OJOJ
and l = O. Then C(z) satisfies:

(2.17)
Cl(Z) = [-OJ 0] [ZD2(Z) - (36D2«(38)J/[(1- 8z) (z - (38)J;
C2(Z) = D2(Z) .

Multiple factor versions of this example can be constructed easily along
the lines of Hansen and Sargent (1981a) and Kollintzas (1985).
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The list of examples could be extended to incorporate linear ratio-
nal expectations models which have been used to study a wide variety
of macroeconomic and microeconomic phenomena. The preceding ex-
amples are sufficient to illustrate the variety of exact linear rational
expectations models.

3. Identification

As in section one, we study models with vector moving-average
representations

(3.1) Yt =C(L)Wt

where Y is a q-dimensional covariance stationary process and C(z) sat-
isfies (1.19) for some H(z) satisfying RI,. In other words, C(z) satis-
fies the cross-equation restrictions implied by the underlying economic
model. Since the coefficients of the power series expansion of C(z) are
square summable, C(z) can be extended from the interior of the unit
disk to the unit circle by letting

00

C[exp(-iO)J =1: Cj exp( -iOj)
j=O

be defined almost everywhere on [-11",1I"Jas a matrix of mean-square
limits.3 The spectral density of y is given by

(3.2)

(3.3) S( 0) ==C[exp( -iO)]C[exp( iO)]'

where the prime denotes transposition (but not complex conjugation).
The spectral density generates the autocovariances of y via the formula:

(3.4) E(Yt y~-r) = (1/211") [!fir exp(iOr)S(O)dO .

Taken together, formulas (3.3) and (3.4) give the autocovariances of
the process y as a function of C(z) used in representing y as a moving
average of a vector white noise.

Without constraining C, it is known that there are multiple choices
of C that imply the same spectral density and hence the same sequence
of autocovariances. Loosely put, there is an equivalence class of ma-
trix functions C which can be generated one from another by post-
multiplying an original C by functional counterparts to orthogonal ma-
trices. It is not possible to distinguish members of this equivalence
class on the basis of the implied autocovariances of the time series. In

.I!II.~' . " 1,1 . J',: " ,'~,"" I
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other words, there is an identification problem in representing y as a
one-sided moving-average of a vector white noise of disturbances.

In many circumstances, especially in problems involving prediction,
this identification problem is resolved in part by constructing a moving-
average representation in terms of a process v that is fundamental for
y:

(3.5) Yt = F(L)vt .

Consequently, it follows from (3.3) and (3.4) that the spectral den-
sity function and autocovariance sequence implied by C(z) is identical
to that implied by F(z). As a result, for a given fundamental rep-
resentation (3.5), we can construct alternative observationally equiva-
lent moving-average representations of the form (3.1) by selecting a q-
dimensional orthogonal matrix function U(z), forming C(z) as in (3.6),
and forming Wt via

We refer to (3.5) as a fundamental moving-average representation. Given
one fundamental moving-average representation characterized by a func-
tion F(z), all other fundamental representations are obtained by post-
multiplying F by orthogonal matrices U, i.e. by matrices of real num-
bers that satisfy UU' = J.

Once we relax the restriction that the moving-average represen-
tation be fundamental, there is a much larger class of observation-
ally equivalent moving-average representations. Again these moving-
average representations are obtained by post-multiplying F(z) by U(z)
except that now U(z) can be an orthogonal matrix function, an object
that we now define.

Definition: U(z) is said to be a q-dimensional orthogonal matrix func-
tion if U(z) is a (q X q) matrix function of a complex variable with a
power series expansion U(z) = Ei=oUj zj satisfying

(i) the entries of Uj are real numbers for j E J+j
(ii) Ei=o trace(ujuj) < ooj

(iii) U[exp(-iO)] U[exp(iO)]' = I almost everywhere.

(3.8) Wt = U(L-1)'vt

where

(3.9)
00

U(L-l)' = L: ujL-j .
j=O

(3.6) C(z) = F(z)U(z)

Note that (Hi) implies that U(L-l)' = U(L)-l. From (3.8) it follows
that Vt = U(L)Wt, so that Vt depends only on current and past values of
Wt. Therefore, the linear space At generated by current and past values
of Wt is at least as large as the linear space I:t generated by current and
past values of Vt. Whenever Uj is different from zeroJor some j ~ 1,
At is strictly larger than I:t.

Consider the class of C(z)'s constructed via (3.6) and indexed by
alternative q-dimensional orthogonal functions U(z). Suppose that at
least one member of this class, say C(z), satisfies (1.19) for some iI(z)
satisfying Ri. Not all of the remaining members of this class of C(z)'s
will necessarily satisfy the cross-equation restrictions. Hence the cross-
equation restrictions go at least part of the way in reducing the class
of observationally equivalent moving-average representations. The re-
mainder of this section studies the extent of this reduction.

Put somewhat differently, we are interested in characterizing the
class of observationally equivalent D(z)'s. Formula (1.14) describes
the mapping from admissible D(z)'s, i.e. D(z)'s for which Dl(Z) is a
polynomial with degree l- 1, to the class of C(z)'s that satisfy the
restrictions. Formulas (3.3) and (3.4) delineate the mapping from the
class of C(z)'s used in moving-average representations for y to the fam-
ily of spectral density functions and autocovariance sequences for y.
Taken together, these formulas give a mapping from the space of ad-
missible D(z)'s to the space of admissible autocovariances for y. The
identification question we analyze pertains to the inverse of this map-
ping. What is the class of admissible D(z)'s associated with a given
admissible autocovariance sequence?

Given a matrix function F( z) determining a fundamental moving-average
representation and a q-dimensional orthogonal matrix function U(z),
we can construct other moving-average representations via the formula:

[e.g. see Rozanov (1967), page 62]. In light of (i), the coefficient ma-
trices of the power series expansion of C have entries that are real
numbers. In light of (ii) and (iii), the boundary values of C on the unit
circle satisfy:

(3.7)

C[exp( -iO)] C[exp (+iO)]' =
F[exp( -iO)] U[exp( -iO)] U[exp( iO)]' F[exp( iO)]'

= F[exp( -iO)] F[exp(iO)]' .
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Since we focus only on admissible autocovariance sequences, there
exists at least one admissible D( z) that generates this sequence, say
D(z). Corresponding to this D(z) is a C(z) and an H(z) given by
formula (1.20). Consider any other C(z) = F(z) U(z) for some q-
dimensional orthogonal matrix function U(z). The matrix functions
C(z) and C(z) are related via:

(3.10) C(z) = C(z) U(z-I)' U(z) .

When restriction R3 is satisfied, the entries of Wtare in the closed linear
space At generated by current and past values of W,. Hence the closed
linear .space At generated by current and past values of Wt is no larger
than At. It follows from Lemma 1 that the restrictions are preserved
for any moving-average representation associated with an information
reduction. Alternatively, this special case of Lemma 1 could be proved
by assuming that (1.8) is satisfied for the information set At-l and
applying the Law of Iterated Projections (see Chapter 2, Lemma 3.5)
to show that (1.8) is also satisfied for the smaller information set At-f.'

Restriction R2 turns out to be weaker than restriction R3. Thus
Lemma 1 covers cases other than those associated with an information
reduction. To see this, consider the following example.

Example 1: Let>. be any real number such that 1>'1< 1. Form the
spectral decomposition of the symmetric positive semidefinite matrix

Since C(z) and H(z) satisfy equation (1.19),

(3.11) [A(z)j B(z-I)] C(z) = zl H(z-I) .

Post-multiply both sides of (3.11) by U(z-I)' U(z) to obtain

(3.12) [A(z)j B(z-I)] C(z) = zlh(z-I) U(z-I)' U(z) .
(3.15) h(>.)' h().) = UlVUf

. Therefore, C(z) satisfies the restrictions if and only if:

Restriction R2: H(z) U(z)' U(z-I) is analytic on the domain {z : Izi <
1}.

We have established:

Lemma 1: Suppose that C(z) = F(z) U(z) for some q-dimensional
orthogonal matrix function U(z). Then C(z) satisfies (1.14) for some
admissible D(z) if, and only if U(z) satisfies R2.

Since H(z) is analytic inside the unit circle of the complex plane,
one convenient sufficient condition for R2 is:

Restriction R3: U(z)' U(z-:-I) is analytic on {z: Izi < 1}.

Restriction R3 is always satisfied when U is a constant orthogonal
matrix independent of z. Hence the restrictions are always satisfied
for fundamental moving-average representations. More generally, note
that

where UIU~ = U~Ul = I and V is a diagonal matrix with strictly
positive real numbers in the diagonal entries of its first block and zeros
in the second block. Then the second column block of H(),)Ul contains
only zeros. As in Rozanov (1967, page 47), we construct an orthogonal
matrix function U2(Z) of the form

(3.16)
U2(Z) = [~ (3(~)I]

where (3(z) is the Blaschke factor

(3.17) (3(z) ==(z - ),)/(1 - >.z) .

Notice that

(3(z)(3(z-I) = (z -).) (z-I - >')/[(1- >.z)(1- ).z-I] .
= 1.(3.18)

(3.13)
Yt= C(L)wt

= C(L)U(L-1)'U(L)w,
= C(L)Wt .

Consequently, U2(z) is a q-dimensional orthogonal matrix function. Let

(3.19) U(z) = U(z) UIU2(Z) .

Consequently, the W process must satisfy:
Then U(z) also is a q-dimensional orthogonal matrix function. Note
that

I
I

I

I

I

r ~ ~ "'... I~ =~;}~~Bifit~~~~ IlL e J --~ .~. ;=- -~ ~"~

(3.14) Wt = U(L-1)' U(L)w, . (3.20) H(Z)U(Z)'U(Z-I)=H(Z)UIU2(Z-I).
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Although U2(z-I) has a pole at z = A,H(Z)UIU2(Z-I)is analytic
on {z : Izl < I} because the singularity at z = A is removable by
construction. This followsfrom the fact that H(A)UI has all zeros in
its second column block whereas the pole of U2(z-I) at z = Aoccurs
in its secondrow block. Consequently,U(z-I) given by (3.19) satisfies
R2. Furthermore,

(3.21) U(z)' U(z-I) = UIU2(Z-I) ,

which has a pole at z = A that is not removable. Therefore, U(z)fails
to satisfy R3.

Following the construction in Example 1, a rich family of U(z)'s can
be generated, each member of which satisfies R2 but fails to satisfy R3.
For instance, any real value of A for which IAI< 1, can be used. In
addition, given any finite number of U(z-I)'s that satisfy R2 but fail to
satisfy R3, the product of tIiese U(z-I )'s possesses this same property.
Finally, a construction similar to that given in Example 1 will work for
complex values of A with some minor modifications. First, the matrix
H().)' on the left side of (3.15) should be replaced by its conjugate in
constructing a (conjugate) symmetric matrix that is positive semidefi-
nite. Second, the coefficient matrices of the power series expansion of
the resulting U(z) may not have all real entries. However, by repeating
the construction using the complex conjugate of A in the second stage
and post multiplying by an appropriately chosen unitary matrix, this
complication can be avoided. In summary, there exists a rich collection
of q-dimensional orthogonal matrix functions that satisfy R2 but not
R3.

In practice, one typically adopts a finite-dimensional parameteriza-
tion of D2(Z). It is of interest to see what impact this specification has
on the analysis. Suppose that D2(Z) is given by the ratio of polynomi-
als:

By assumption, D2(Z) and hence the right side of (3.24) is analytic
inside the unit circle of the complex plane. However, the right side
of (3.24) will not necessarily be a polynomial. Hence the restriction
that Dn(z) be a finite order polynomial with the same degree as Dn(z)
limits further the class of admissible C(z)'s.

Consider first the case in which the more stringent restriction R3
is satisfied. In this case the right side of (3.24) is analytic everywhere
in the complex plane. Furthermore, since U(z-l)'U(z) has a one-sided
Laurent series expansion in terms of negative powers of z, it can be
extended to be analytic at the point 00. Therefore

(3.25) lim z-N+t Dn(z) U(z-I)' U(z) = 0 .z-oo

It follows that Dn(z) U(z-I)' U(z) has a finite order pole at 00 and that
the order of this pole does not exceed N; Therefore, Dn(z) U(z-I)' U(z)
is a finite order polynomial and its order does not exceed N. Hence
requiring that Dn(z) be an Nth order polynomial does not alter the
analysis of R3.

We consider next the more general restriction R2, and ask whether
R2 can be satisfied even though R3 is violated.

Example 2: We show how to modify the construction in Example 1
to accommodate the order restriction on Dn(z). Since A(z), B(z) and
D(z) are matrices of rational functions, so is H(z). In Example 1
we exploited the fact that the matrix H(W H(A) is always singular.
However, in this example we must confine our attention to only a finite
number of values of A. In particular, let

(3.26)
det [~~~?] = Sn(Z)jSd(Z)

(3.22) D2(Z) = Dn(z)jDd(Z)
where Sn(Z) and Sd(Z) do not have any zeros in common. Suppose that
there exists a real number A such that IAI< 1 and A-I is a zero of Sn(Z)
but not a zero of Dd(Z) [i.e., A is not a pole of D2(Z)]. Such a A does
not always exist, although it often does.

As in Example 1, we use A to construct U(z). In this case we
begin by forming the spectral decomposition of the symmetric, positive
semi-definite matrix:

where Dn(z) and Dd(Z) are finite-order polynomials and the zeros of
Dn(z) are all outside the unit circle. Let N denote the order of Dn(z).
Suppose we admit only C(z)'s constructed from D2(Z)'S of the form:

(3.23) D2(Z) =Dn(z)jDd(Z)

where the order of Dn(z) does not exceed N. Our candidate for Dn(z)
is gi yen by

(3.24) Dn(z) = Dn(z)U(z-I)' U(z) . (3.27) H(A)' H(A.)+ Dn(A~I)' Dn(A-I) = Ulvui .

,
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At least one entry of V, the bottom right one, must be zero because
A-I is a zero of 8n(z). Note that by construction, the second column
blocks of iI(A)Ul and Dn(A-l)Ul are zero. Use the same orthogonal
matrix functions U2(Z) and U(z) that ,were used in Example 1:

(3.28) Dn(z) U(z-I)' U(z) = Dn(Z)UIU2(Z) .

As in Example 1, H(z) is analytic inside the unit circle. However, in
this case we also preserve the requirement that Dn(z) be a polynomial
with an order no greater than N because the second column block
of Dn(A-l)Ul is zero and .the first order pole of U2(Z) occurs in the
second row block. Consequently, the singularity of Dn(Z)UIU2(Z) at
A-1 is removable.

Like Example 1, Example.2 assumes that A is real. However,8n(z)
may have complex zeros that exceed one in modulus and are not si-
multaneously zeros of Dd(Z). Such zeros come in complex conjugate

. pairs. These conjugate pairs of zeros can also be used in an analogous
_~but slightly-more-(;ompHeated1~fashiorrto construct ortnogonalmatfix
functions that respect the order restriction on Dn(z). The order re-
striction does limit us to a finite number of choices of A because 6n(z)
has a finite number of zeros. Finite products of such orthogonal matrix
functions can be formed so long as any given A is not used more times
than its multiplicity as a zero of 6n(z).

Example 3: We show by illustration that it is possible for8n(z) to
have a zero outside the unit circle of the complex plane that is not
simultaneously a zero of Dd(Z). Set A(z) = 1, B(z-l) = z-l, l =
0, Dn(z) = [1 + 2z + z2, 1] and Dd(Z) = 1. Hence n = 2, Dl(Z) = 0,
and iI(z-l) = [1 1]. Notethat

det [~~~?] = -2z - z2= 8n(z) .(3.29)

The polynomial8n(z) has one zerooutside the unit circle, namely z =
-2. Therefore, A = -1/2 can be used in the construction described in
Example 2.

In summary, in this sectionwehave investigatedthe extent to which
the cross-equationrestrictions impliedby membersof the classof exact
rational expectations modelscan be used to narrow the familyof obser-
vationally equivalent moving-averagerepresentations. We have found
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that the function D2(Z) that can be used to index alternative solutions
is not identified. Even when entries of D2(Z) are restricted to be ratios
of polynomials with prespecified orders, D2(Z) can fail to be identified.

The standard approach in reduced-form time series analysis is to
focus exclusively on fundamental moving-average representations. As
we have indicated, fundamental representations will satisfy the restric-
tions implied by the model. Requiring that C(z) be fundamental is
equivalent to the restriction that

(3.30) C(z) = F(z)U

for some orthogonal matrix U that is independent of z. However, it
may be computationally tedious to restrict the family of D(z)'s so that
resulting C(z)'s satisfy (3.30). Furthermore, this extra restriction is
ad hoc, and the underlying information structure faced by economic
agents is still left unidentified.4

~hile these_obseI-vations-are discoul'aging~from the standpoint of
identifying D2(Z), they do not overturn the validity of likelihood-based
inferences. The restricted and unrestricted likelihood functions will
typically have multiple peaks, but the peaks of interest will all have the
same value.

The analysis in this section has taken A(z) and B(z-l) as given and
has focused on the identification of D(z) and hence C(z). More gen-
erally, A(z) and B(z-l) may only be known up to a finite-dimensional
parameter vector. It is often possible to identify the parameters govern-
ing A(z) and B(z-l) even though identification of D(z) is problematic.
When A( z) and B( z) are not identified, the family of observationally
equivalent D(z)'s is likely to be expanded.

4. Restrictions Implied for First Differences

In the analysis considered thus far, we have assumed that the y pro-
cess is covariance stationary. Although we could view this assumption
as being appropriate for deviations about a linear time trend, an alter-
native strategy is to assume that the first difference of Y2 is covariance
stationary where the process y' == [yi y~] is partitioned in a manner
compatible with C(z). We maintain the model restrictions (1.3) which
for convenience are written below:

(4.1) P{[A(L) j B(L-1)] YtIOt-l} =0 .
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Recall that B(z) = E~o bjzj. Let

(4.2)

00

b; == E bj for j = 0,1, ... ,
k=j

Y2t == Y2t - Y2,t-l

and
00

B*(z) == E b;(z) .
j=1

Now bj = b; - b;+1' implying that5

(4.3) B(L -I )Y2t = B*(L -1 )Y2t+ boY2t .

Substituting (4.3) into (4.1), we obtain

. (4.4) P[A(L)Ylt + boY2t+ B*(L-I)Y2tIOt-l] = 0

Define

(4.5) yit ==A(L)Ylt + boY2t .
Then we can write the first-difference model as

(4.6)
. P{[I j B*(L-I)]Y;IOt-l} = 0

where y*' ==fyi' , yi'] is assumed to be covariance stationary. This is
just a special case of the general model presented in Section 1.

The first-difference model derived here is usefully compared to that
employed by Sargent (1979). In particular, Sargent first differenced
(4.1) and projected both sides onto °t-l-I to obtain

(4.7) P{rA(L) j B(L-1)] (Yt - Yt-l)IOt-l-l} =0 .

Although restrictions (4.7) can be tested using procedures discussed
in this paper, some implications of (4.1) are lost by projecting onto
11t-i-l rather than Ot-i. On the other hand, (4.6) involves a projection
onto 11t-i rather than 11t-i-l and imposes more restrictions than (4.7).
Therefore, it is quite possible that the procedures proposed in this
section can detect empirical contradictions of the hypothesis (4.1) that
Sargent's procedure could not.
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5. Likelihood Estimation and Inference

In this section we describe briefly how to conduct estimation and
inference using the method of maximum likelihood with a Gaussian
likelihood function. First we illustrate how to impose the restrictions
implied by the model on the moving-average coefficients. Then we de-
scribe two alternative approaches to evaluating the likelihood function.

Imposing the Restrictions

For pedagogical purposes, we focus on the following special case of
the model described in section one. Suppose A(z) = I and B(z) =
bo + bIZ + ... + bkZk and l = O. Furthermore, we consider rational

parameterizations of D2(Z) of the form described in Section 3:

(5.1) D2(Z) = Dn(z)jDd(Z)

where Dn~z) = dno + dnlZ + ... + dn/;Zk and Dd(Z) = ddO + ddlZ +
... + ddkZ . The restrictions that the polynomials B(z), Dn(z) and
Dd(Z) all have the same order is made only for notational convenience.
Additional zero restrictions can be imposed on these polynomials in a
straightforward fashion. To guarantee that Dd(Z) has a power series
expansion with square summable coefficients, we restrict the zeros of
Dd(z) to be outside the unit circle of the complex plane. A conve-
nient way to accomplish this is to use a parameterization suggested by
Monahan (1984).

For the special case of the model considered here, (1.18) simplifies
to

Cl(Z) = -B(z-I)D2(Z) + G(z-l)
C2(Z)= D2(Z)

where G(z) satisfies R1. Substituting (5.1) into (5.2) yields

(5.3) Cl(z)Dd(Z) = -B(z-l) Dn(z)+ Dd(Z)G(z-l) .

(5.2)

There are two important implications of (5.3). First, Cl(z)Dd(Z) is a
finite-order polynomial with maximum order k. This follows from the
fact that the largest positive power of z that occurs on the right side
of (5.3) is k. Hence

(5.4) Cl(Z) = Cn(Z)jDd(Z)

for some kth-order polynomial Cn(z). Second, G(z) is a finite order
polynomial with maximum order k. This follows from the fact that the
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largest (in absolute value) negative power of z that occurs in B(z-l) is
-k.

Substituting(5.4)into (5.3)gives

(5.5) Cn(z) = _B(z-I)Dn(z) + DJ(z)G(z-l)

Likelihood Evaluation

A Gaussian likelihood function can be expressed as a function of the
mean vedor and covariance matrix of the data, (say Yl, Y2, ..., YT),
and of the unknown parameters. In this paper we have abstraded
from restrictions on the mean vector, and have instead investigated the
covariance restrictions. These covariance restrictions can be viewed'
equivalently as restrictions on the spectral density of y. In sections
one, three and the first part of this section, we described the mapping
from D(z) to the spectral density matrix of y. This representation of
the restriction makes it convenient to follow the suggestions of Hannan
(1970), Robinson (1977), Dunsmuir and Hannan (1976), and Dunsmiur
(1978) by using a frequency domain approximation to the likelihood
function.

This approximation is formed as follows. First, form the finite
Fourier transform of the y sequence:

which can be viewed as a system of linear equations in the coefficients
of Cn(z) and G(z). Furthermore, there is a recursive structure to these
equations as evident by the fact that the equations determining the
coefficients of G(z) do not involve the coefficients of Cn(z). Written in
matrix notation, the first set of equations is

[

°

] [

bk ° ... 0

] [

dno

]
~ = - bk~1 .~k :: ~ ~ d~1

0 bl b2 . .. bk dnl:-l

{ [

ddO ° .. . 0

] } [

9k

]

ddl ddO ... 0 . 91:-1+ . . . . 01 .

dd':-1 dd,:-2 .:: d~o . ;1

where G(z) = 91Z+ 92Z2+. .. + 9kZk. Since the matrix in {.} in (5.6) is
nonsingular, this system of equations can be solved for the coefficients
of G. Given these coefficients, one can then compute the coefficients of
Cn(z) by

(5.6)

(5.8)
T

Y(OJ)= L: Yte-i9jt
t=1

where Wj =~, j = 1, 2, ..., T - 1. Weomit frequencyzerofrom
consideration since sample means are subtracted from our time series.
The periodogram is defined as

(5.9)
. 1

1(Oj) = T Y (OJ)Y(-Oj)' .

(5.7)
[

CnO

] [

bo bl . .. bk

] [

dno

]
C~1 = - ~ b;o ::~ bk~1 d~1

Cnk 0 0 .. . bo dnk

{ [

ddl
dd2

+ .
0

Then the log likelihood of the sample {Yt : t = 1, ..., T} is approxi-
mated by

dd2 ... ddk

] }

dd3 .. . ~ 0 1: ". :
0 ... ° [1]

(5.10)

nT 1 T-l
L = - log 211"- _2 L: log det S(Oj)2 . 1]=

1 T-l

- 2 L: trace S(Oj)-11(Oj)j=1

Therefore, the coefficients of Cn(z) can be computed using some
simple matrix manipulations.6

where S(Oj) is the theoretical spectral density defined in (3.3) and (2.3).
Note that S(Oj) can be expressed in terms ofthe free parameters of D(z)
using formulas (1.14) and (3.3). To emphasize the dependence on C(z)
and hence on D(z), it is worthwhile substituting (3.3) into (5.10) to
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obtain

(5.11)

nT 1 T-I '.
L = - - log 211"- - L log det [C(e-1Oj) C(e'Oj)']

2 2 j=I
1 T-I '.

- 2" L trace [C(e-IOj)C(e'Oj)']/(Oj) .
j=I

The initial covariance matrix required for these algorithms can be com-
puted using a doubling algorithm [see Anderson and Moore (1979),
page 67],7

The analysis in this section took A(z) and B(z-I) as given and
focused on the identification of D(z) and hence C(z). If A(z) and
B(z-I) are only known up to a finite-dimensional parameter vector, it
will only be more difficult to identify of D(z). However, even if D(z)
is not fully identified, it is often possible to identify the parameters
governing A(z) and B(z-I).

6. Inexact Models with Hidden Variable Interpretations of
Disturbances

So far, this paper has been confined to analyzing exact linear ra-
tional expectations models. In this section, we briefly indicate which
aspects of the analysis readily carryover to more general linear rational
expectations models and which aspects require modification. It turns
out that the methods of representing the cross-equation restrictions and
estimating the parameters both carryover with minimal modification.
However, the treatment of identification must be modified substantially.

Following Sargent (1978) and Hansen and Sargent (1980a), we as-
sume that a subvector of Y2t is not observed by the econometrician.
For this reason, we partition Y2t as Y~t = [Y2~'y~n where the process
Y2 is observed by the econometrician while the process Y~ is not. We
partition C(z) accordingly, so that the moving-average representation
for Y is:

In computing (5.11), it is useful to exploit the fact that

log det[C(e-iO)C(eiO)'] = log det{C[e-i(21r-O)]C[ei(2>r-O)]'} ,
and

trace [C(e-iO)C(eiO)']-l/(O)

= trace {C[e-i(2)r-O)] C[ei(2)r-O)]'} -1 /(211" - 0) .

These formulas permit (5.10) to be rewritten in terms of sums over
only T /2 frequencies. The free parameters of D( z) are estimated by
maximizing (5.11) subject to the restrictions (1.14).

Alternatively, by restricting D( z) appropriately, one can often avoid
making approximations to the likelihood function and instead use fil-
tering methods to evaluate it. For instance, consider the model and
the parameterization of D(z) given in the first subsection. In this case,C(z) can be represented as

(5.12)

C1(z) = Cn(Z)/Dd(Z)

C2(z) = Dn(z)/Dd(Z)

where Cn(z), Dn(z) and Dd(Z) are finite-order polynomials. In this

case, the Y process is a vector autoregressive moving-average (ARMA)
process. It is known that such a process has a state-space representation
[e.g. see Anderson and Moore (1979), page 236].

Recall that the joint density of Y1, Y2, . . . , YT can be expressed as

a product of conditional densities, say the product of the density of
YT conditioned on Y1, Y2, ..., YT-1, the density of YT-I conditioned on
Y1, Y2, ..., YT-2,. ..., and the marginal density of Y1. Each of these

densities is Gaussian and hence can be constructed given knowledge of
the conditional means and covariance matrices. Given the state-space
representation, one can calculate recursively the required conditional
expectations and conditional covariance matrices using one of several
possible filtering algorithms described in Anderson and Moore (1979).

(5.13)

[

Ylt

] [

C1(L)

]

Y2t = O2(L) Wt.
Y~t Cf(L)

Similarly, we partition B(z) = [BO(z)j B"(z)]. Hence we write equation
(1.3) as

(6.1)

(6.2) . A(L)Ylt + P [BO(L-I)Y2tIOt] = - P [B"(L-1)Y2tIOt]

where we have assumed that I-= O. We refer to such a model as an inex-

act rational expectations model because of the term P [B"(L-1 )Y~tlnt].
The introduction of this term means that the relationship observed by
the econometrician would not be exact even if economic agents could
forecast. perfectly.

From the vantage of model specification and solution, an inexact
model as given here is identical with an exact model. However, from

F"'..
J
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the vantage point of identification and testable restrictions, an inexact
model can be quite different. For instance, suppose that BU(z) is non-
singular inside and on the unit circle of the complex plane, implying
tha.t there are r entries of y~. Partition D2(Z) as

(6.3)
[

D~(z)
]

.
D2(Z) = D~(z)

Then

(6.4) P [BU(L-1)Y~tIAt] = J(U(L)Wt

where

(6.5) J(U(z) ==[BU(z-l)D~(z)]+ .

Inverting relationship (6.5), we have that

(6.6) D~(z) = [BU(z-I)-1 J(U(z)]+ .

Therefore, withou t restricting D~(z ), there are no restrictions on J(U(z ),
and hence relation (6.2) imposes no restrictions on the process [y~, Y2']'
observed by the econometrician. Consequently, the empirical content
of model (6.2) is tied to the a priori restrictions which are imposed on
D2(Z).

One way to restrict D2(z) is to require that it be block diagonal:

[

DO (z)] [DOO (z) 0 ]D2(Z) = D~(z) = 20 D~U(z)

where D~U(z)is a square matrix. In this case,

(6.7)

(6.8) J(U(z) = [0 [BU(z-l) D~U(z)]+] ,

and

(6.9)

[

Cl(Z)
]

-
[

-A(z)-l[BO(Z-l)D~O(Z)]+

C~(z) - D~O(z) -A(z)-l[BU~-l)D~U(Z)]+ ]

The first column partition of the right side of (6.9) is

[
~A(z)-I[BO(z-l )D~O(Z)]+

]D~O(z)
(6.10)
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which is a square matrix and has the same structure as C(z) given in
(1.14). Consequently, the analysis in Section 3 applies to this com-
ponent. Notice that the unobserved process Y~ contaminates only the
upper (q x q) portion of the spectral density of [YL Y2']'.

Recall that the number of columns of D2(Z) is equal to the number
of entries of the stochastic process y. This restriction was imposed to
ensure that y is stochastically nonsingular. Since D~U(z) is assumed to
be a square matrix, D~O(z) has q - r more columns than rows (where
r is the dimension of yJ). A second way to restrict D2(Z) is to treat y~
and Y2 symmetrically by requiring also that D~O(z) be a square matrix.
In this case, the y process is stochastically singular but the process
[y~, Y2']' observed by the econometrician is, in general, stochastically
nonsingular. Now the matrix function in (6.10) is not square and the
analysis in Section 3 will no longer apply.

It is of interest to investigate further this second restriction on

D2(z). Given the structure of the matrix [g~ ~ ~j] ,
(6.11)

det [g~~~n = - det [D~O(z)] det {[-A(z)-l] [BU(z-l)D~U(z)]+} .

Therefore, a zero of det [g}~~~] must be either a zero of det[D~O(z)]
or a zero of det {[-A(z)-I[BU(z-I)D~U(z)b}. As argued by Sargent
(1978) arid Hansen and Sargent (1980a), if D~O(z) is restricted to be
nonsingular inside the unit circle of the complex plane, then Yl should
not cause Y~ in the sense of Granger (1969). This is one of the testable
implications of the model.

Even when D2°(z) is nonsingular, moving-average representation
(6.9) may fail to be fundamental because det {-A(z)-l [Bu(z-l)
D~u(z)]+} may have zeros inside the unit circle of the complex plane.
As emphasized by Hansen and Sargent (1980a), such zeros can exist
even when D~U(z) is nonsingular at all points inside the unit circle.
However, Hansen and Sargent (1980a) also note that one can construct
a fundamental representation for the observable components of y that
satisfies the restrictions. To see this, define

(6.12) J(UU(z) ==[Bu(z~l)D~U(z)]+ .
When J(UU(z) is singular at isolated points inside the unit circle, it fol-
lows from the Wold Decomposition Theorem that there exists a matrix
J(uu. (z) that is nonsingular inside the unit circle and satisfies:

r=<
'!!1ii"""
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Notes

and values must be scaled appropriately by a process of used price
contingent claims. Alternatively, Campbell and Shiller (1988) pro-
pose log-linear approximations as a means of incorporating risk-
adjustments.

3. The probability space underlying this mean-square convergence has
[-11",11"]as the collection of sample points, the Borel measurable
subsets of [-11",11"]as a sigma algebra, and Lebesgue measure scaled
by 1/211"as a probability measure. .

4. The matrix of U in (3.30) is not identified even when (3.30) is
imposed; however, the information structure associated with these
C(z)'s is identified. As shown by Campbell and Shiller (1988), the
present-value model (Example 2 in Section 2) implies a linear re-
striction on a finite-order vector autoregressive representation for y.
This provides a convenient parameterization which enforces (3.30).

5. The rearranging of terms in the infinite sum in order to obtain (4.3)
is justified given our assumptions about B(z) and y.

6. This representation of the restrictiolls is superior to that used by
Sargent (1979). Although the present restrictions are nonlinear in
the coefficients of Dd(Z), they are considerably easier to compute
than the restrictions that Sargent (1979) imposed directly on the
vector autoregressive representation.

7. Time domain approximations to the likelihood function that as-
sume C(z) is nonsingular inside and on the unit circle of the com-
plex plane may be inconvenient for many parameterizatlons of D( z)
because it may be difficult to restrict the parameterization of D(z)
in such a way as to ensure that C(z) is nonsingular.

8. The working paper form of this chapter (Hansen and Sargent 1981e)
contained an application to the term structure of interest rates.

9. A very similar phenomenon occurs in Futia (1981). In Futia's anal-
ysis two alternative rational expectations equilibria are compared.
One endows economic agents directly with observations on an ex-
ogenous forcing process and the other presumes that information
about this process can only be extracted from observations on en-
dogenously determined prices. Futia showed that when endogenous
information is sufficient to reveal the exogenous information, the
two equilibria coincide. Otherwise the second equilibrium fails to
exist.

(6.13)

J(uu [exp( -iO)] J(UU[exp( iO)]' = J(uu. [exp(-iO)] J(uu. [exp(iO)]'

almost everywhere (see also Section 3). Define

(6.14) D~U.(z) ==[BU(z-I)-I J(uu. (z)]+ .
Then, D2 is observationally equivalent to D2, where D2 is constructed
by replacing DiU(z) by Diu. (z) . However, it is not necessarHy true
that'

(6.15) D~U[exp( -iO)] D~U[exp(iO)]' = D~u.[exp(-iO)] D~u.[exp(iO)]',

so that the implied serial c9rrelation properties for the unobservable
component of yare different. Therefore, without additional restric-
tions, the spectral density function for the unobserved process yi is
not identified. Furthermore, DUu.(~) may well have zeros inside the
unit circle of the complex plane. In other words, it may require a
moving-average representation for the unobserved process yi which is
not fundamental to construct a D2(z) associated with a fundamental
moving-averagerepresentation for the observedprocess [yL y~']'. 8
Conclusions

As indicated by the examples given in section two, the procedures
described in this paper are applicable to a variety of linear rational
expectations models. Therefore, the solution procedure, the character-
ization of identification, and the methods of estimation and inference
for exact rational expectations models are useful tools for guiding a wide
range of empirical applications. Chapter 6 of this volume contains an
application.9

1. Actually, the assumption of stationarity of mt-mt-I is not imposed
in all of these papers. In Section 4 we see how to transform the
model to 'accommodate unit roots in the process y.

2. This formulation does not include any explicit adjustment for the
riskiness of the payout process. Such an adjustment, when appro-
priate, must be incorporated into a constant term or asset payouts
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