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paper shows that the present value budget balance restriction leads
to an exact linear rational expectations model. In a separate paper
by Roberds, such a model is estimated and the restriction is tested
for U.S. data on government expenditures and taxes. Roberds finds
evidence against the restriction for these data.
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Notes

1. Chapter 2 was written in 1981-82. Chapter 3 was written in 1980-
81 (Hansen and Sargent 1981e), and revised in 1990. Chapter 4 was
written in 1982, with minor revisions being made in 1984 (Hansen
and Sargent 1984) and 1989. Most of chapter 5 was written in
1987, with the empirical work being completed in 1990. Chapter
6 was written in 1988. Chapters 7 and 8 were written in 1988-
90. They amount to revisions and extensions of ideas that initially
appeared in working papers by Hansen and Sargent that appeared
in 1980 and 1981 (Hansen and Sargent (1980b, 1981d). Chapter 9
was completed in 1980-81 (Hansen and Sargent 1981c). Chapter
10 was written as part of Albert Marcet's Ph.D. dissertation, which

. was completed in 1987. .
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1. Introduction

2. See Muth (1960,1961), Nerlove(1967), Griliches(1967), Sims (1974),
Lucas (1972), and Sargent (1971).

In these notes we establish some basic results for least squares pre-
diction theory. These results are useful in a variety of contexts. For in-
stance, they are valuable for solving linear rational expectations models,
representing covariance stationary time series processes, and obtaining
martingale difference decompositions of strictly stationary processes.

The basic mathematical construct used in these notes is an inner

product defined between two random variables. This inner product is
calculated by taking the expectation of the product of the two random
variables. Many of the results obtained using this particular inner prod-
uct are analogous to results obtained using the standard inner product
on multi-dimensional Euclidean spaces. Hence intuition obtained for
Euclidean spaces can be quite valuable in this context as well.

The formal mathematical machinery that is exploited in these notes
is the Hilbert space theory. There is a variety of references on Hilbert
spaces that should provide good complementary reading, e.g. Hal-
mos (1957) and Luenberger (1969).

2. Prediction Problem

In this section we specify formally the problem of forecasting a ran-
dom variable y given a collection of random variables H. This problem
is sufficiently general to include conditional expectations and best lin-
ear predictors as special cases. We also consider a second problem that
is closely related to the prediction problem. This second problem is
termed the orthogonality problem and can be interpreted as providing
a set of necessary and sufficient first-order conditions for the prediction
problem. In particular, we will show that these two problems have the
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3. This way of introducing errors in econometric models was used to
great advantage by Shiller (1972).

4. The paper also describes how its partial equilibrium model is to
be interpreted as a special case of the class of general equilibrium
models studied by Hansen and Sargent (1990).

5. See Sargent (1987b, chapter XIII) fora discussion of the relation-

ship between Hall's (1978) model and Barro's (1979) tax smoothing
model. Evidently, there are tax smoothing models that are simi-
larly related to the general class of consumption smoothing models
described by Hansen, Roberds, and Sargent or by Hansen and Sar-
gent (1990).
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same solution when some auxiliary assumptions are imposed on the set
H.

Taking expectations of both sides of (2.2) gives

A formal statement of the least squares prediction problem is:

PROBLEM 2.1 (Least Squares Forecasting Problem): Find'the ran-
dom variable ho in H for which E[(y - ho)2] :5 E[(y - h)2] for all h in
H.

EI~IY21 1 < 1.
E(yi)'J E(y~)'J -

Multiplyingby E(yi)! and E(y~)! gives

(2.3)

There is a second problem that often has the same solution as Problem
2.1. This second problem uses the followingdefinition in its statement.

Definition 2.1: The random variable y is orthogonal to the set H if
E(hy) = 0 for all h in H.

The second problem is:

(2.4) E(IYlY21):5E(yni E(yni .

The Cauchy-Schwarz Inequality then follows from the fact that

(2.5) IE(YI Y2)1 :5 E(IYl Y21) . I

PROBLEM 2.2 (Orthogonality Problem): .Find the random variable
ho in H such that y - ho is orthogonal to H.

To ensure that the statements of these two problems are well-
defined, we make the assumption that the random variable being fore-
cast and the random variables that are used in forecasting have finite
second moments. With this in mind, we let L2 denote the set of all
random variables defined on the underlying probability space that have
finite second moments. We assume that both y and the elements in H
are in L2. There are two important inequalities that apply to random
variables in L2.

Lemma 2.1: (Cauchy-Schwarz Inequality): For any Yl and Y2 in

L2, IE(YI Y2)1:5 E(yi)! E(y~)!.

Proof: If either Yl or Y2 is zero, then the inequality is satisfied trivially.
Suppose that Yl and Y2 are both different from zero. Then E(yi) and
E(yn are both positive. Notice that

Lemma 2.2: (Triangle lnequaltty): For any Yl and Y2 in L2, E[(YI +
Y2)2]i :5 E(yi)i + E(y~)i.
Proof: Notice that

(Yl + Y2)2 = yi + 2Yl Y2 + Y~

:5 yi + 21Yl Y21+ y~ .
(2.6)

Taking expectations and using inequality (2.4) gives

E[(YI + Y2)2]:5 E(y~) + 2E(ynt E(y~)t + E(yi)

= [E(y~)t + E(y~)t]2 .
(2.7)

(2.1)

0 < [ IYll - IY21 ]
2

- (Eyi)i (Ey~)!

[
yi 21Yl Y21

= E(yi) - E(yi)i E(y~)i

y~
]+ E(y~) .

Finally, taking square roots of each side of (2.7) gives the Triangle
Inequality. I

Among other things, the Cauchy-Schwarzand Triangle Inequalities
imply that the statements of Problems 2.1 and 2.2 are well-defined as
long as y and the elements of H are in L2. In addition, the Triangle
Inequality implies that L2 is a linear space in the sense that linear
combinations of elements in L2 are in L2. When ho solvesProblem 2.2
for a subset of G of L2, then ho also solvesProblem 2.2 for the set

(2.2) IYlY21 < 1
[

yi y~
]E(yi)! E(yn! - 2" E(yi) + E(yn .

(2.8)
H = { h : h = Cl91 + C292 + . . . + Cn9n for some integer n,

some real numbers C}, C2, ... ,Cn, and some elements

91, 92, ..., 9n in G} .

Consequently,
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(2.10) E[(y - ho)2]:5E[(y - h)2]

Since ho solves Problem 2.1 and ho + oh is in H, 0 must be zero.
However, 0 is zero only when E[(y - ho)h] is zero. Since our choice of
h in H was arbitrary, y - ho is orthogonal to H. I

Lemmas 2.3 and 2.4 showed that Problems 2.1 and 2.2 have the

same solution as long as H is a linear subspace of L2. However, we
have not shown that a solution exists for either problem. An additional
restriction on the set H is sufficient to guarantee that a solutioll exists.
This restriction uses the following definitions:

Definition 2.3: A sequence {Yn : n ~ 1} in L2 is Cauchy if
limn-oo sUPm~n E[(Yn - Ym)2] = O.

Definition 2.4: A sequence {Yn : n ~ 1} in L2 is convergent if there
exists a random variable Yo in L2 for which limn-oo E[(Yn - Yo)2] = 0.2

The linear space L2 is complete in the sense that any Cauchy sequence
in L2 is convergent (see the Appendix). If the analogous property holds
for a subset of L2, we say that the subset is closed.

Definition 2.5: A subset H of L2 is closed if any Cauchy sequence in
H converges to an element in H.

If a given set H is not closed, we can form its closure by adding all
limit points of Cauchy sequences in H to H. The resulting augmented
set will be closed.

Lemma 2.5: Suppose H is a closed linear subspace of L2. Then, for
any y in L2, Problem 2.1 has a solution.

Proof: Let 0 be the nonnegative real number that satisfies

Thus H is constructed to be a linear subspace of L2.

Definition 2.2: The set H is a linear subspacepf L2 if H is a subset
of L2 and if for any hI and h2 in H and any real numbers Cl and C2,
the random variable Clhl + c2h2 is in H.

Consequently, when ho solves Problem 2.2 on an arbitrary subset of L2,
this subset can always be expanded to be a linear subspace of L2 via
(2.8). The random variable ho will continue to solve Problem 2.2 on
the expanded set. In what follows we will focus on linear subspaces of
H.

. ,
Our next two lemmas show that Problems 2.1 and 2.2 have the

same solution when H is a linear subspace of L2.

Lemma 2.3: Suppose that y is in L2 and H is a linear subspace of L2.
If ho solves problem 2.2, then ho is the unique solution to Problems 2.1
and 2.2.1

Proof: Let ho be the solution to Problem 2.2. For any h in H,

(2.9)
E[(y - h)2] = E[(y - ho + ho - h)2]= E[(y - ho)2]+

2E[(y- ho)(ho- h)]+ E[(ho- h)2]
= E[(y - ho)2] + E[(ho - h)2] .

Hence,

for any h in H implying that ho solves Problem 2.1. Furthermore, if
E[(h - ho?] is greater than zero, then

(2.11) E[(y - ho)2] < E[(y - h)2].
Since E[(ho - h)2] = 0 only if h = ho, ho is the unique solution to
Problem 2.1. It follows that ho is also the unique solution to Problem
2.2 since we have shown that any solution to Problem 2.2 is a solution
to Problem 2.1. I

Lemma 2.4: Suppose y is in L2 and H is a linear subspace of L2. If
ho solves Problem 2.1, then ho also solves Problem 2.2.

Proof: Let ho be the solution to Problem 2.1 and let h be any element
in H. If h is zero, it followsimmediately that E[(y - ho)h] is zero. If
h is different from zero, let 0 = E[(y - ho)h]/E(h2). Notice that

( ) E[(y - ho -Oh)2] = E[(y - ho)2] + 02E[h2] - 20E[(y - ho)h]2.12
2 2 2= E[(y - ho) ] -0 E[h ] .

(2.15) 02= inf E[(y - h)2],hEH

and let {hn : n = 1, 2, ...} be a sequence of random variables in H for
which

(2.16) nli~ E[(y - hn)2]= 02 .

First, we show that when H is a linear space, {hn : n ~ I} is a Cauchy
sequence. Notice that

(2.17) E[(hm - hn)2]+ 4E{[(1/2) (hm + hn) - yf}
= 2E[(hm- y)2]+ 2E[(hn- y)2] .
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Therefore,

(2.18) E[(hm - hn)2] ~ 2E[(hm - y)2]+ 2E[(hn - y)2] - 4152

One can be interpreted as a best linear predictor and the other as a
conditional expectation.

Our final result in this section establishes that P( 'IH) satisfies a
linearity property.

Lemma 2.6: Suppose that H is a closed linear subspace of L2. Then
for any YI and Y2 in L2 and any real numbers CI and C2

since (1/2) (hm + hn) is in H and 62 < E[(y - h)2] for any h in H.
Takinglimitsof both sidesof (2.18)gives

0 ~ lim sup E[(hm- hn)2]~ 2 lim E[(hm- y)2]+
m-+oo m~n m-oo

2 lim E[(hn - y)2] - 462n-oo

= 262 + 262 - 462

=0.

(2.22) P(CIYI + C2Y2IH) = CIP(YIIH) + C2P(Y2IH) .

(2.19)

(2.20)
1 1 1

E[(y - ho)2]! ~ E[(y - hn)2]! + E[(hn - ho)2]7 .

Proof: To prove this lemma, we will show that the right-hand side
of (2.22) solves the orthogonality problem (Problem 2.2). Notice that
YI- P(YIIH) and Y2- P(Y2IH) are orthogonal to H. Consequently,

- (2.23) CIYI+C2Y2 - CIP(YIIH) - C2P(Y2IH)

is orthogonal to H. Furthermore, CIP(YIIH) + C2P(Y2IH) is in H.
Therefore, CIP(YIIH) + C2P(Y2IH)solves the orthogonality problem.
I
3. Useful Results Involving Projections

In this section we present some results that are useful in calculating
projections. In preparation for these results, we introduce some new
concepts.

Definition 3.1: The sets G and U are orthogonal if E(gu) = 0 for all
9 in G and all U in U.

Definition 3.2: The sum of the sets G and U is G + U = {g + U : 9 is

in G and u is in U}.

The sum of two closed linear subspaces of L2 that are orthogonal is
also a closed linear subspace of L2.

Lemma 3.1: Suppose that G and U are orthogonal closedlinear sub-
spaces of L2. Then G + U is a closed linear subspace of L2.

Proof: It is straightforward to show that if G and U are linear spaces,
then their sum is also a linear space. We leave this as an exercise for
the reader. To show that G + U is closed, let {(gn + Un): n > 1} be a
Cauchysequencein G + U where{gn : n ;:::1}is a sequencein G and
{un: n ;::: 1} is a sequence in U. We will show that these latter two
sequences are Cauchy. Since gn - gm is in G, Un - Umis in U, and G
and U are orthogonal,

Hence, {hn : n ;::: 1} is Cauchy as long as H is a linear space. If in
addition H is closed, this sequence converges to an element, ho, in H.
We now show that ho is the solution to the least squares forecasting
problem. By the Triangle Inequality (Lemma 2.2),

Taking limits of both sides of (2.20) gives

(2.21)
1

{E[(Y - ho)2J}! ~ Ii

which proves that ho solves Problem 2.1. I
We have shown that if H is a closed linear space then there exists a

unique solution to the least squares forecasting problem,(Problem 2.1).
In these circumstances we define the projection operator as follows.

Definition 2.6: For any H that is a closed linear subspace of L2, the
least squares projection operator, P(YIH) is the solution to Problem
2.1 of forecasting Y given H.

There are two trivial examples of projection operators. For the
first example let H be L2. The projection operator P('IL2) is just
the identity operator since P(YIL2) = y. For the second example let
H be the set Z that contains only the zero random variable. The
projection operator P('IZ) maps all random variables into the zero
random variable since the zero random variable is the only random
variable in Z. In sections fiveand six we study twonontrivial projection
operators that are used in studying time series prediction problems. (3.1) E[(gn + Un- gm - Um)2] = E[(gn - gm)2] + E[(un- Um)2].
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Therefore, the following two inequalities hold:

'j

E[(gn + Un - gm - Um)2] ~ E[(gn -:-gm)2] .

Lemma 3.3: Suppose the sequences {yn : n ~ I} and {y: : n ~ 1}
in L2 converge to Yo and y:, respectively. Then the sequence of real
numbers {E(YnY:) : n ~ 1} converges to E(yoY:).
Proof: Notice that

E(YnY:) - E(yoY:) = E[yo(Y: - y:)]

+ E[(Yn - Yo)Y:]

+ E[(Yn - Yo) (y: - y:)] .

(3.5)

(3.2) E[(gn + Un - gm - Um)2] ~ E[(un - Um)2] ,

and

(3.3)

Since {gn + Un : n ~ 1} is Cauchy, it follows that {gn : n ~ 1} and
{un: n ~ 1} are Cauchy and hence convergent. Recall that both G
and U are assumed to be closed so that {gn : n ~ 1} converges to an
element go in G and {un: n ~ 1} converges to an element Uoin U.
Since

From the Cauchy-Schwarz Inequality and the Triangle Inequality for
real numbers,

(3.4)
2 . 2 2

E[(gn + un - go - Uo) ] = E[(un - Uo) ] + E[(gn - go) ] ,

I E(YnY:) - E(yoY:) I=:; E(y~)! E[(y: - y:)2]!
1 1

+ E[(Yn- Yo)2]I E(y:2)I
1 1

+ E[(Yn- Yo)2]:2E[(y: - y:)2J2 .

The conclusionfollowsfrom noting that the right-hand side of (3.6)
converges to zero since {Yn - Yo : n ~ 1} and {y: - y~ : n ~ 1}
converge to zero. I

Our next lemma gives a construction for the set U of new informa-
tion.

(3.6)

{gn + Un : n ~ I} converges to go+ Uoin G + U. I

Among other things Lemma 3.1 guarantees that the projection op-
erator is well-definedon G + U when G and U are orthogonal closed
linear spaces. In this case the projection onto G + U is the sum of the
projections onto G and U.

Lemma 3.2: Suppose that G and U are orthogonal closed linear sub-
spaces of L2. Then P('IG + U) =P('IG) + P('IU).

Proof: Let y be any element in L2. To prove this lemma, we willshow
that y - P(yIG) - P(yIU) is orthogonal to G + U. Since P(yIG) solves
the orthogonality probleI11(Problem 2.2) for the subspace G, y-P(yIG)
is orthogonal to G. Since U is assUJ:nedto be orthogonal to G, P(ylU)
is orthogonal to G. Hence, y - P(yIG) - P(ylU) is orthogonal to G.
By reversing the roles of G and U, it follows that y - P(ylU) - P(yIG)
is also orthogonal to U. Therefore, y - P(yIG) - P(ylU) is orthogonal
to U + G. I

Lemma 3.4: Suppose that G and H are closed linear subspaces of L2
and G is a subset of H. Let

(3.7) U = {u : U = h - P( hlG) for some h in H} .

Lemma 3.2 gives a convenient way for revising forecasts when new
information is received. For instance, suppose that G contains informa-
tion available in the past and U contains new information (orthogonal
to G) that becomesavailable today. Then Lemma 3.2 showshow to up-
date forecasts after the arrival of the new information. This raises the
following question. When can new information be viewed as a closed
linear space that is orthogonal to the set of information available pre-
viously? The followingresult will be used in answering this question.

Then U is a closed linear subspace of L2 and H = U+ G.
Proof: SinceG is a subset of H, h - P(hIG) is in H for any h in
H. Therefore, U is a subset of H that is orthogonal to G. Hence,
U + G is a subset of H. However,any h in H can be represented as
h = P(hIG)+[h-P(hIG)] which shows that h is in U+G. Consequently,
H = G + U where G and U are orthogonal. Next we show that U is
a closed linear subspace of L2. Let U be any element in H that is
orthogonal to G. Then P(uIG) = 0 so that U is in U. Since any
element of U is orthogonal to G, .

(3.8) U = {u in H: u is orthogonal to G} .
Recall that H is a linear subspace of L2. Also, any linear combination of
elements in H that are orthogonal to G is also orthogonal to G. Hence,
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U is a linear space. From Lemma 3.3 and the closure of H, it follows
that any Cauchy sequence in H that is orthogonal to G converges to
an element in H that is also orthogonal to G. Therefore, U is closed. I

Given a specification of G and using (3.7) as the definition of new
information, one can always decompose a closed linear subspace of L2.
The Law of Iterated Projections can be proved using such a decompo-
sition.

Lemma 3.5: Suppose that G and H are closed linear subspaces of L2
and G is a subset of H. Then for any y in L2, P(yIG) = P[P(yIH)IG).

Proof: Using Lemma 3.4 we obtain an orthogonal decomposition of H
into the sum of U given by (3.7) and G. Using Lemma 3.2 it follows that
P(yIH) = P(yIG) + P(yIU). Since P(ylU) is in U and U is orthogonal
to G, P[P(yIU)IG] = O. Therefore, P[P(yIH)IG] = P[P(yIG)IG] =
P(yIG). I

Lemmas 3.2 and 3.5 offer an interesting comparison. Lemma 3.2
shows how to update a projection from a smaller information set G
to larger information set H. In contrast, Lemma 3.5 shows how to
calculate a projection onto a smaller information set G in terms of a
projection onto a larger information set H.

As noted previously, one interpretation of the set G is that it con-
tains past information. An alternative interpretation will also be used
in some of our analysis. This interpretation involves a continuous linear
functional 7r mapping H into the set of real numbers R.

Definition 3.3: 7r is a linear functional on a linear subspace H of L2
if 7r maps H into R, and for any hI and h2 in Hand Cl and C2in R,
7r(Clhl + c2h2) = cl7r(h1)+ c21r(h2).

Definition 3.4: A linear functional1r on a linear subspace H of L2 is
continuous if for any sequence {hn : n ~ I} in H that converges to
zero, the sequence of real numbers {1r(hn) : n ~ I} converges to zero.3

Linear functionals are important in studying competitive equilib-
rium pricing in environments with uncertainty. For instance, we can
think of H as being a set of possible portfolio payoffs and 1ras a pricing
function that assigns a price to each payoff. The pricing function can.
be used to construct G.

Lemma 3.6: Suppose H is a closed linear subspace of L2 and 7r is a
continuous linear functional on H. Let

Then G is a closed linear subspace of H.

Proof: The linearity of G follows from the linearity of 7rsince for any
gl and g2 in G and any real numbers Cl and C2,

1r(Clgl + c292) = Cl1r(gI) + C21r(92)
=0.(3.10)

The closure of G follows from the continuity of 1r. To see. this, let
{gn : n ~ I} be a Cauchy sequence in G. Then {gn : n ~ I} is a
Cauchy sequence in H and hence converges to some element go in H.
To see that go is also in G, notice that {gn - go : n ~ I} converges
to zero. Since 1ris linear and continuous, {1r(gn)- 1r(go) : n ~ I}
converges to zero. However, 1r(gn)= 0 for all n so that 7r(go)= O.
Therefore, go is in G implying that G is closed. I

The set G given in (3.9) can be viewed as the set of all portfolio
payoffs with zero prices. Taken together, Lemmas 3.4 and 3.6 provide
an orthogonal decomposition of a closed linear subspace H of L2. The
next lemma provides a characterization of U as given by (3.7) when G
is given by (3.9).

Lemma 3.7: Suppose H is a closed linear subspace of L2 and 7r is
a continuous linear functional on H. Then for G given by (3.9), the
corresponding set U given by (3.7) satisfies

(3.11) U = 7r(u)u.

for all U in U and some u' in U.

Proof: Consider two cases. First, suppose that U contains only the
zero random variable. Then u. can be chosen to be zero. Second,
suppose that U contains some element Uoother than zero. Then 7r(uo)
is different from zero since Uois not in G. Let

(3.12) U' = uo/7r(uo) .

For any U in U, U- 1r(u)u. is in G since 1r(u.) is one. Thus,

(3.13) U =7r(u)u.

(3.9) G = {g E H: 1r(g)= O}.

since U- 1r(U)u' is both in U and orthogonal to U and hence is orthog-
onal to itself. I
Lemma 3.7 shows that the set U is at most one-dimensional when a
linear functional1r is used to construct G. It turns out that an element
in this one-dimensional set can be used to represent 1r.
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Lemma 3.8: Suppose that H is a closed linear subspace of L2 and that
1r is a continuous linear functional on H. Then there exists a unique
element h* in H such that 1r(h) = E(hh*).4.

Proof: First, we study existence of h*, and then we consider unique-
ness of h*. From Lemma 3.7 we know that there exists a u* satisfying
(3.11). Suppose u* is zero. Then h* can be chosen to be zero since
7I"(h)is zero for all h. Next suppose u* is different from zero. Let
h* = u*/ E( u*2). Notice that h* is in U and

(3.14) 1r(h*) = 1/ E( u*2) .

subspace. Let Ho denote the closure of the linear subspace given in
(4.1). The following result shows how to approximate projections onto
Ho.

Lemma 4.1: Suppose {Hn : n ~ I} is an increasing sequence of closed
linear subspaces of L2. Then for any y in L2, {P(yIHn) : n ~ 1}
converges to P(yIHo).

Proof: Let y be any element of L2. For m ~ n, Hm contains Hn. Con-
sequently, Lemma 3.5 implies that P(yIHn) = P[P(yIHm)IHn] which in
turn impliesthat P(yIHm)- P(yIHn) is orthogonalto Hn. Therefore,

Since 7I"(u*)is one, for any h in H, h - 7I"(h)u*is in G and hence
orthogonal to h*. Thus,

(4.2) E{[P(YIHm) - P(YIHn)]2} = E[P(yIHm)2] - E[P(yIHn)2] .

(3.15)
E(hh*) = 7I"(h)E(u*h*)

= 7I"(h)E(u*2)/E(u*2)

= 7I"(h).

Since the left hand side of (4.2) is nonnegative, the sequence of real
numbers {E[P(yIHn)2] : n ~ 1} is nondecreasing. Furthermore,

(4.3) E(y2) = E[P(yIHn?] + E{[Y - (YIHn)]2} ~ E[P(yIHn)2] .

Next, we show that h* is unique. Let h* and h+ be any two elements
in H for which 7I"(h)= E(hh*) = E(hh+) for all h in H. Then h*- h+
is orthogonal to H and in particular is orthogonal to itself. This can
happen only if h* - h+ is zero. I
4. Infinite Sequences of Subspaces

In this section we study the limiting behavior of projections onto
infinite sequences of closed linear subspaces of L2. We present two
types of results corresponding to whether the sequences are increasing
or decreasing.

Definition 4.1: A sequence {Hn : n ~ I} of subsets of L2 is increasing
if Hn+1 :) Hn for all n ~ 1.

Definition 4.2: A sequence {Hn : n ~ I} of subsets of L2 is decreasing
if Hn :) Hn+1 for all n ~ 1.

First, we consider projections onto an increasing sequence {Hn :
n ~ I} of closed linear subspaces of L2. The set

Thus, {E[P(yIHn)2] : n ~ I} is a bounded monotone sequence. There-
fore, there exists a real number 8 such that

(4.4) lim E[P(yIHn)2] = 8 .n-oo

Limit (4.4) and equality (4.2) imply that

lim sup E{rP(YIHm) - P(YIHn)]2}n-oo m~n

= lim sup {E[P(YIHm)2]- E[P(YIHm)2]}
n-oo m~n

= o.

(4.5)

because {E[P(yIHn)2] : n ~ I} is a convergent and hence Cauchy
sequence of real numbers. Thus, {P(yIHn) : n ~ I} is Cauchy and
hence convergesto some element ho in Ho.

To prove that ho = P(yIHo), let h be any element in Ho. Then
there exists a sequence {hn : n ~ 1} in Ho that convergesto h for
whichhn is in Hn. Thus by Lemma3.3, .

(4.1) U Hn
n~l

(4.6) E[(y- ho)h]= lim E {[y - P(YIHn)]hn } .
n-oo

is a linear subspace of L2 that is not necessarily closed. We leave it as
an exercise for the reader to verify that the set given in (4.1) is a linear

However,E{[y - P(yIHn)]hn} is zero for all n ~ 1. Consequently,

(4.7) E[(y - ho)h] = 0
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for any h in Ho which proves that ho solves the orthogonality problem
(Problem 2.2). I

One way to construct an increasing sequence of closed linear sub-
spaces of L2 is as follows. Let {yn : n ~ I} be a sequencein L2, and
let

Hn is a subspace of L2, Un + Hn-I is a subset of Hn. However, any
element in Hn can be represented as

(4.12) h = CIYI + C2Y2 +... + cnP(YnIHn-d+ cn[Yn- P(YnIHn-I)] .

(4.8)
Hn = {h: h = ClYI + CIY2 +... + enYn for some

real numbers CI, C2, . . ., cn} .

Therefore, Un + Hn-I = Hn which proves that Hn is closed. I
Taken together, Lemmas 4.1 and 4.2 characterize the limiting be-

havior of projections as additional variables are included in the space
onto which we are projecting. In particular, Lemma 4.1 shows that
the sequence of projections converges to a random variable that can be
interpreted as the projection onto the limiting space.

In some cases the increasing sequence of subspaces of L2 is con-
structed from an underlying sequence of orthogonal spaces.

Definition 4.3: The sequence of subsets {Un: n ~ I} of £2 is orthog-
onal if Un is orthogonal to Um for all n ~ 1 and m ~ 1 for which
n:F m.

Definition 4.4: The sum of a sequence of orthogonal subsets of £2 is

Lemma 4.2: If YI, Y2, ..., Yn are in L2, then Hn given by (4.8) is a
closed linear subspace of £2.

Proof: It is straightforward to prove that Hn is a linear subspace of
L2. We leave this as an exercise for the reader. To prove that Hn is
closed, first suppose that n = 1. Let {hm : m ~ I} be any Cauchy

. sequence in HI. 'We consider two cases. First suppose YI is zero. Then
hm is zero for each m implying that {hm : m ~ I} converges to zero.
Hence HI is closed in this case. Next suppose YI is different from zero.
Then for each n ~ 1, hm = CmYIfor some real number em. Hence for'
I!.~m,

00

{

00 OO

}E Un= u: U =E Un where Un is in Un and E E(Un)2 < 00 .
n=I n=I n=I

Ii

(4.9) E[(hl - hm)2]= (Cl- em)2E(y~) .
A sequence {Un: n ~ I} of orthogonal closed linear subspaces of

£2 can be used to construct an increasing sequence of closed linear
subspaces of L2. Let

II
t

Since {hn : n ~ I} is Cauchy in £2 and E(y~) > 0, {en : n ~ I} is
a Cauchy sequence of real numbers. Thus {en : n ~ I} converges to
some real number co. Let ho = CoYI. Then

(4.13) HI = UI ,

and

(4.10)
lim E[(hn - ho)2] = lim (en - co)2E(ynn-oo n-oo

=0 (4.14) Hn = Un+ Hn-I for n ~ 2 .

(4.11) Un = {u : U= c[Yn- P(YnIHn-I}] for some Cin R} .

Then Lemma 3.1 guarantees that Hn is a closed linear subspace of
£2 for n ~ 1. Furthermore,sincethe zero randomvariableis in Un,
Hn contains Hn-I' The following result is the infinite dimensional
counterpart to Lemmas 3.1 and 3.2.

Lemma 4.3: Suppose {Un : n ~ I} is a sequence of orthogonal closed
linear subspaces of £2 and Hn is given by (4.13) and (4.14). Then

which proves that HI is closed since CoYIis in HI.
Next, suppose that Hn-I is closed. Let

,1

Notice that Un is a subset of Hn since elements of Un are linear combi-
nations of Yn and an element in Hn-I' By mimicking the proof that HI
is closed, it can be shown that Un is closed. Hence, Lemma 3.1 implies
that Un + Hn-I is closed. Since Hn-I and Un are subsets of Hn and

(4.15)
00

Ho = E Un
n=1
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(4.16)
00

P('IHo)= L P('IUn).
n=l

Hence, h is in 2:~=1 Un. Conversely, suppose that u is in 2:~=1 Un.
Then u can be represented as

and

(4.23)
00

u = L Un
n=l

Proof: Let y be any element in L2. By repeated application of Lemma
3.2, it follows that

(4.17)
m

P(yIHm) =E P(yIUn) .
n=l

where Un is in Un for n ~ 1. Notice that Um is orthogonal to Hn for
m > n. Hence, Lemma 3.3 guarantees that 2:~=n+1 Urnis orthogonal
to Hn. This in turn implies that

(4.24)
n

P( ulHn) = E Um.
m=l

Lemma 4.1 implies that {P(yIHm) : m ~ 1} converges to P(yIHo) so
that {P(yIHm) : m ~ 1} is a Cauchy sequence in Ho. Thus,

Applying Lemma 4.1 then gives

(4.18)
l

lim sup E{[ L P(YlUn)]2} =0 .
m-oo l~rn+l n=m+l

(4.25)

00

P(uIHo) = L Urn
m=l

=u.

(4.19)
l l

E{[ E P(YIUn)]2}= E E[P(yIUn)2]
n=m+l n=m+l

Therefore, u is in Ho. I
For the remainder of this section, we study decreasing sequences of

subspaces. Let {Hn : n ~ 1} be a decreasing sequences of subspaces of
L2. Define the limiting set to be

Since the sequence {Un: n ~ 1} is orthogonal,

I
'" for any l ~ m + 1. Thus (4.18) implies that (4.26)

00

Hoo= n Hn .
n=l

(4.20)
00

,J!P00 E E[P(yIUn)2] =0
n=m+l

(4.22)
00

h = E P(hlUn) .
n=l

Lemma 4.4: Suppose {Hn : n ~ 1} is a decreasing sequence of closed
linear subspaces of L2. Then Hoo is a closed linear subspace of L2.

Proof: To prove that Hoo is a linear subspace of L2, let hI and hi be
any two elements in Hoo and let C} and C2 be any two real numbers.
Then hI and h2 are in Hn for all n ~ 1. Since Hn is a closed linear
subspace of L2, clhl + c2h2 is in Hn for all n ~ 1. Thus clhl + c2h2 is
in Hoo which proves that Hoo is linear. '

To prove that Hoo is closed, let {hn : n ~ 1} be any Cauchy
sequence in Hoo. Then {hn : n ~ 1} is in Hm for all m > 1. Since
Hm is closed, {hn : n ~ 1} converges to some element hoc in Hm.
Consequently, hoo is in Hoo which proves that Hoo is closed. I

Lemma 4.5: Suppose {Hn : n ~ 1} is a decreasing sequence of closed
linear subspaces of L2. Then for any y in L2, {P(yIHn) : n ~ 1}
converges to P(yIHoo).

which in turn implies that

(4.21)
00

E E[P(yIUn)2] < 00 .
n=l

Consequently, 2:~=1 P(yIUn) is in 2:~=1 Un and is the limit point of
{P(yIHn) : n ~ 1}. This proves (4.16).

To prove (4.15), let h be any element of Ho. Then h = P(hIHo).
Applying (4.16), it followsthat
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Proof: Let y be any element of L2. The first part of this proof mimics
the proof of Lemma 4.1 except that for m ~ n, P(yIHm)=
P[P(yIHn)IHm]. Hence P(yIHn) - P(yIHm) is orthogonal to P(yIHm).
Consequently,

(4.27) E{rP(YIHm) - P(YIHn)]2} = E[P(yIHn)2] - E[P(yIHm)2] .

and {E[P(yIHn)2] : n ~ 1} is a decreasing sequence with a lower bound
of zero. Thus {P(yIHm) : m ~ n} is a Cauchy sequence in Hn for each
n ~ 1. Since all of the Hn spaces are closed, the limit point hoo is in
each of these spaces. Hence, hoo is also in Hoo.

To prove that hoo = P(yIHoc), let h be any element of Hoc. Then
for all n ~ 1, y - P(yIHn) is orthogonal to h since Hoc is contained in
Hn. Lemma 3.3 implies that

Notice that the sets on the right-hand side of (4.31) are mutually or-
thogonal. Let h be any element in Hn. Then applying Lemma 3.2,

i-I

h = P(hIHn)= L P(hIUn+m)+ P(hIHn+l) .
m=O

(4.32)

Lemma 4.5 implies that {h - P(hIHn+i) : f ~ 1} converges to h -
P(hIHoo). Consequently,

(4.33) {

i-I

}L P(hlUn+m): f ~ 1
m=I

converges. Lemma 4.3 guarantees that

(4.28)
E[(y - hoo)h]= lim E {[y - P(YIHn)]h }71-00

=0.

(4.34 )
00

2: Un+m
m=O

Therefore, hoo solves the orthogonality problem (Problem 2.2). I

When {Hn : n ~ 1} is a decreasing sequence of closed linear sub-
spaces of L2, it is always possible to obtain an infinite dimensional
orthogonal decomposition of any space in the sequence. To see this, let

is a closed linear subspace of L2. Hence, the random variable

(4.35)
00

2: P(hlUn+j) = h - P(hIHoo)
j=o

is in that closed linear space. Therefore,
(4.29) Un = {u: u = h - P(hIHn+d for some h in Hn}.

Lemma 3.4 shows that Hn = Un + Hn+I where Un is a closed linear
subspace of L2 that is orthogonal to Hn+!. Also, for m ~ n + 1, Um
is contained in HnH so that Um is orthogonal to Un. Consequently,
{Un: n ~ 1} is an orthogonal sequence of closed linear subspaces of
L2.

Lemma 4.6: Suppose {Hn : n ~ 1} is a decreasing sequence of closed
linear subspaces of L2. Then for any n ~ 1,

(4.36)
00

h = 2: P(hlUn+m) + P(hIHoo)
m=O

where P(hIHoo) is in Hoo and L:~=o P(hIUn+m) is in L:~=o Un+m. Re-
lation (4.36) implies that the set on the left-hand side of (4.30) is con-
tained in the set on the right-hand side. The equality follows from the
fact that Hn is closed and Un+m is contained in Hn for all m as is Hoo.
I

(4.30)
00

Hn = L Un+m+Hoo
m=O

Lemma 4.6 gives an important decomposition of decreasing se-
quences of closedlinear subspacesof L2. In the next two sections wewill
use this decomposition with two different notions of prediction. One of
these notions of corresponds to calculating the conditional expectation
and the other to finding the best linear prediction.

s. Conditional Expectations

In this section we show that conditional expectations can be viewed
as a special case of projections. Our treatment of this topic presumes

where Un is given by (4.29).

Proof: Given n ~ 1 and f ~ 1,

Hn = Un + HnH

= Un + Un+!+ . . . + Un+l-l + Hn+l .
(4.31)
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(5.1) G = {y in L2 : y = f(x) for some Borel measurable function
f mapping RP into R} .

Both y+ and y- are in G*. Indicator functions for sets in B can be
expressed as Borel measurable functions of x. Hence, simple functions
(linear combinations of indicator functions) can also be expressed as
Borel measurable functions of x. Since y+ can alwaysbe approximated
by an increasing sequence of simple functions, there exists an increasing
sequence Un(x) : n ;:::1} that converges almost surely to y+ where fn
is a Borel measurable function for each n. Let

some familiarity with measure theory. Since this discussion is not es-
sential to the subsequent analysis, readers may choose to proceed to
section six.

Let (0, A, Pr) denote the underlying probability space, let x be a
p-dimensional random vector defined on this space, let RP denote the
p-dimensional Euclidean space, and let

(5.8) f * = lim sup fnn oo

Lemma 5.1: G given by (5.1) is a closed linear subspace of L2.

Proof: Let B be the collection of subsets of 0 given by

B = {b: b = {V.Jin 0 such that x(V.J)is in b*} for some

Borel set b* in RP} .

and

(5.9) f+= {f* iff*<oo
0 otherwise.

(5.2) Then both f* and f+ are Borel measurable and Un(x) : n ;:::I} con-
verges almost surely to f+(x) = y+. A similar argument can be used
to construct a Borel measurable function f- such that y- = f-(x).
Let f = f+ - f-. Then f is Borel measurable and y = f(x). I

Next we show that projections onto G are equal to expectations
conditioned on x.

Lemma 5.2: For G given in (5.1), P(zIG) =E(zlx).

Proof: Notice that B given in (5.2) is the smallest sigma algebra for
which x is measurable. Let b be any set in B, and let b* be the corre-
sponding Borel set in RP for which

We leave it as an exercise for the reader to verify that B is a subsigma
algebra of A. In the appendix we prove that the £2 space given in
section two is complete. This space is defined using the sigma algebra
A. By replacing A with B it follows that

(5.3) G* = {y : y is measurable with respect to Band E(y2) < oo}

is a closed linear subspace of £2.
We will prove that G = G*. First, suppose y is in G. Then y is in

£2 and y = f(x) for some Borel measurable function f. Let b+ be any
Borelset in R. Then (5.10) b = {V.J : x(V.J)is in b*} .

(5.4) b*= {r : f(r) is in b+} We define

is a Borel set in RP. Hence
(5.11) 1

{
I if x is in b*

b= 0 otherwise.
(5.5) {V.J: f[x(V.J)] is in b*} = {V.J: x(V.J) is in b*}

Then 1b is in G since it is a Borel measurable function of x and E(I~) <
00. For any y in £2, P(yIG) solves the orthogonality problem (Problem
2.2). Hence

is in B. Therefore, y is in G*.
Next, suppose y is in G*. Then we can write y = y+ - y- where

(5.6) y+ = {
y if y ;:::0
0 otherwise (5.12) E{[P(YIG) - y]lb} = 0 ,

and or equivalently

(5.7) y- =
{

-y if y $ 0
0 otherwise. (5.13) 1 P(yIG)dPr= 1 ydPr .
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Since P(yIG) is measurable with respect to B, and (5.13) holds for any
bin B, it followsthat P(yIG) = E(ylx).5 I

In light of this Lemma 5.2, we see that conditional expectations solve
the least squares forecasting problem (Problem 2.1) as long as arbi-
trary (Borel measurable) nonlinear forecasting rules are permitted in
constructing elements of G. Thus conditional expectations are special
cases of projections.

Next, weshift from conditioning on a random vector to conditioning
on current and past values of a vector stochastic process. Let {x(t) :
-00 < t < +oo} be a p-dimensionalstochasticprocess,and let

The collection of events B* is an algebra since for any bI and b2 in B*
the union of bI and b2 is in B*, and for any b in B* the complement of
b is in B*. However, B* is not necessarily a sigma algebra. For any b
in B*, the random variable

(5.18) 16= {
Ion b
0 otherwise

is in Hm(t) for some positive integer m. Hence, for any y in L2, y -
P[yIHn(t)] is orthogonal to 16for all n ~ m. It followsfrom Lemmas
3.3 and 4.1 that

(5.14)

Hn(t) ={ y in L2 : y = j[x(t), x(t -1), ..., x(t - n)] for some

Borel measurable function j mapping RP(n+I) into R} .
Then Lemma 5.1 guarantees that Hn(t) is a closed linear subspace of
L2, and Lemma 5.2 guarantees that projections onto Hn(t) are the same
as expectations conditioned on x(t), x(t - 1),..., x(t -n). Wedefine
H (t) to be the closure of

(5.19) E{ {y - P[YIH(t)]}16} = nli~ E{ {y - P[YIHn(t)]}1b}
=0.

Therefore, y - P[yIH(t)] is orthogonal to all indicator functions of sets
in B* or equivalently, .

(5.20) 1 y dPr = 1 P[yIH(t)]dPr

(5.15)
00

U Hn(t).
n=l

for all b in B*.

As in the proof of Lemma 5.1, we write y = y+ - y- where y+ and
y- are given by (5.6) and (5.7) respectively. Since (5.20) holds for any
y in L2 it must hold for y+ as well. For a given y+, we define a measure
p. on B* to beLemma 4.1 shows that projections onto H(t) can be approximated

by projections onto Hn(t) for sufficientlylarge n. This raises the ques-
tion of whether projections onto H(t) can be interpreted as expectations
conditioned on {x(t - n): for n ~ OJ.

Lemma 5.3: P[zIH(t)] = E[zlx(t), x(t - 1), ...] .
Proof: For each n ~ 1, let

Bn ={b: b= {[x(t)',x(t - I)', ..., x(t - n)']'is in b*}

for some Borel set in RP(n+I)} .
Then {Bn : n ~ 1} is an increasingsequenceof subsigmaalgebrasof
A. Let

(5.21) p.(b) = 1 y+ dPr = 1 P[y+IH(t)] dPr .

Let Bo be the smallest sigma algebra containing B*. This sigma algebra
is also the smallest sigma algebra for which x(t), x(t - 1), ..., are
measurable. There exists a unique extension of the measure p. from B*
to Bo.6 Thus

(5.16)
p.(b) =1 y+dPr =1 P[y+IH(t)]dPr

for all b in Bo. Recall that {P[y+IHn(t)] : n ~ I} converges to
P[y+IH(t)]. The Riesz-Fischer Theorem (see the appendix) implies
that the space

(5.22)

(5.17) B* = U Bn.
n~l (5.23) G = {y*in L2 : y* is measurable with respect to Bo}
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is complete. Therefore, P[y+IH(t)] is measurable with respect to Bo
and satisfies the defining characteristics for E[y+lx(t), x(t - 1), .. .].7

A similar argument can be applied to y-. Combining these results
and applying Lemma 2.6 gives

Lemma 4.2 guarantees that Hn(t) is a closed linear subspace of L2 for
each t and each n ~ 1. Also, {Hn(t) : n ~ I} is an increasing sequence
of subspaces for each t. We define H(t) to be the closure of

(6.2)
00nHn(t).

n=1(5.24)
P[yIH(t)] = P[y+IH(t)] - P[y-IH(t)]

= E[y+lx(t), x(t -1), ...] - E[y-Ix(t), x(t -1), ...]
= E[ylx(t),x(t -1), ...]. I

A convenient way to calculate projections is as follows. First obtain
an orthogonal decomposition of the linear subspace being projected
onto. Then calculate projections onto these smaller orthogonal sub-
spaces and add them together, This approach can be used in calculating
projections onto H(t) since the sequence of subspaces {H(t-n) : n ~ O}
is decreasing. Lemma 4.6 shows how to obtain an infinite-dimensional
decomposition of this decreasing sequence. This decomposition uses
the subspaces

Lemma 4.1 shows that projections onto H(t) can be approximated by
projections onto Hn(t) for large values of n. We interpret the projection
operator onto H(t) as the best linear predictor given current and past
values of x(t).

One is tempted to think that any element in H(t) can be repre-
sented as

(6.3)
00

E ar'x(t-r)
T=O

for some sequence {aT: r ~ O}in RP. It turns out that this is not
always true. For example, suppose that p is one, and let

(6.4) x(t) = v(t) - v(t - 1)
(5.25)

U(t - n) = {u: u = h - P[hIH(t -1- n)] for some h in H(t -n)}

for n ~ O. In general, these subspaces will be infinite-dimensional.
Also, projections onto U(t) cannot be interpreted as conditional ex-
pectations although they can be interpreted as revisions in conditional
expectations. In the next section, we consider an alternative notion of
prediction that has the computational advantage that the space corre-
sponding to U(t - n) in (5.25) is finite-dimensional.
6. Linear Prediction Theory

In this section we consider an alternative notion of prediction to
conditional expectations. This notion has the advantage that the as-
sociated orthogonal decompositions are easier to characterize. In order
to obtain this simplification we restrict forecasting rules to be linear
functions of an underlying set of random variables. As in section five,
a sequence of closed linear spaces is generated using a p-dimensional
stochastic process {x(t) : -00 < t < +oo}. We assume that each
component of x(t) is in L2 for each time period t, and we define
(6.1)

Hn(t) = {h : h = al .x(t) + a2 .x(t - 1) +... + an' x(t - n + 1)
for some vectors a}, a2, . . . , an in RP} .

where

(6.5) E[v(t)2]= 1 for all t
E[v(t) v(t - r)] = 0 for all t and for all r :F 0 .

First, we will show that v(t) is in H(t). To see this, let

(6.6) Yn(t)= (nln)x(t)+[(n-l)ln]x(t-l)+...+(l/n)x(t-n+l).

Then Yn(t)is in H(t) and

(6.7)
n

Yn(t) = v(t) - (1/n) E v(t - r) .
r=1

Notice that

(6.8)
n

E{[(I/n) E v(t - r)]2} = (1/n) .
T=1

Therefore, {Yn(t) : n ~ I} converges to v(t) proving that v(t) is in
H(t). It turns out that v(t) cannot be representedas .

(6.9)
00

v(t) = E aT' x(t - r) .
T=O
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To see this, suppose to the contrary that (6.9) is true. Multiplying both
sides of (6.9) by v(t - j) and taking expectations gives

1 = ao for j =0

0 = aj - aj-l forj ~ 1 .

Thesecalculationsuse Lemma3.3. Relation(6.10)impliesthat aj = 1
for all j ~ 1. However,

for some vectors a~, aY, .. ., a: in RP. Then

(6.10)
(6.17) hn - P[hnIH(t -1)] =a(j. {x(t) - P[x(t)IH(t - 1)]}

= aij .u(t) .

For m ~ n

(6.11)
n

E x(t - 1")=v(t) - v(t - n - 1) .
r=O

(6.18)
E[(hn - hm)2]= E{[(arf - aij) .u(t)]2}

+ E{ P[(hn- hm)IH(t _1)]2} .

(6.12)
n

v(t) - E x(t - r) = v(t - n - 1)
r=O

Therefore, {aij. u( t) : n ~ 1}is a Cauchy sequencein U. (t) where U. (t)
is given by the right-hand side of (6.14). Lemma 4.3 guarantees that
U*(t) is closed so that there exists a in RP such that {a~' u(t) : n ~ 1}
converges to a . u(t). Similarly, (6.18) implies that {P[hnIH(t - 1)] :
n ~ 1} converges to some random variable ho in H(t - 1). For any h*
in H(t - 1),

Thus,

!,I
, f

~
'r

I.

. Clearly, the right-hand side of (6.12)does not convergeto zero as n goes
to infinity. Therefore, a representation of the form (6.3) does not exist
for v(t). Consequently, we cannot necessarily characterize the elements
of H(t) as infinite linear combinations of current and past values of
x(t).

It is often fruitful to characterize H(t) in terms of an orthogonal
decomposition. As in section five, we define

(6.19)

(6.13) U(t) = {u: u = h - P[hIH(t -1)] for some h in H(t)} .

E[(h - ho)h*] = nl.!.~ E{ {hn - P[hnIH(t - 1)]}h*}
=0

so that ho = P[hIH(t - 1)]. Thus {hn- P[hnIH(t- 1)] : n ~ 1}
convergesto h - P[hIH(t - 1)]= a. u(t). I

Lemma 6.1 shows that U(t) is a finite dimensional subspace of H(t)
containing linear combinations of the one-step ahead forecast errors in
forecasting x(t) using H(t - 1). This characterization underlies the
Wold decomposition of a time series process. Let

ili,:
Iii
[,I'
I

The following result illustrates an advantage of using linear predictors.

Lemma 6.1: The set U(t) given in (6.13) satisfies

(6.14) U(t) = {u : u = a .u(t) for some a in RP}

where u(t) = x(t) - P[x(t)IH(t -1)].8

Proof: Let U*(t) be the space defined by the right side of (6.14). Sup-
pose h is in H(t). We must prove that

(6.20)
00

~(-oo) = n H(t - n) .
n=l

Notice that this definition of H( -00) does not depend on the choice of
time t. Lemma 4.6 shows that

(6.15) h - P[hIH(t- 1)]= a. u(t)
(6.21)

00

H(t) =E U(t-n)+H(-oo).
n=O

for some a in RP. Since h is in H(t), Lemma 4.1 implies that there
exists a sequence {hn : n ~ 1} converging to h such that

Projecting x(t) onto H(t) and applying Lemma 4.6 gives

(6.16) hn = aij . x( t) + af . x(t - 1) + .. . + a: . x(t - n) (6.22)
00

x(t) = E P[x(t)lU(t - n)] + P[x(t)IH(-00)] .n=o
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(6.23)
00

x(t) =E .8;u(t-n)+P[x(t)IH(-oo)]
n=O

We shall show that {x*(t) : -00 < t < +oo} is linearly regular and
{x+(t): -00 < t < +oo} is linearly deterministic.

Lemma 6.2: The process {x*(t): -00 < t < +oo} is linearlyregular.

Proof: Let H*(t) be defined in the same manner as H(t) except with
x(t) replaced by x*(t). Also, let

In light of Lemma 6.1, we obtain

where {.8~ : n ~ O} is a sequence of p X P matrices of real numbers
satisfying

(6.24)
00

E trace {.8~E[u(t - n) u(t - n)'].8~} < 00 .n=o

(6.29)
00

H*(-oo) = n H*(t - n) .
n=l

Representation (6.23) is referred to as the Wold decomposition of a
stochastic process. Notice the coefficients of this representation depend
on the time period t. In the special case that {x(t)} is a covariance sta-
tionary stochastic process, the coefficients turn out to be time invariant.
In this case, (6.23) is known as a "Wold representation for x(t)."

It is convenient to mention two (not exhaustive) categories of stochas-
tic processes:

Definition 6.1: The stochastic process {x(t) : -00 < t < +oo} is
linearly regular if H(-oo) = to}.
Definition 6.2: The stochastic process {x(t) : -00 < t < +oo} is
linearly deterministic if H(t) = H( -(0) for all t.
When a stochastic process is linearly regular, the term P[x(t)IH(-oo)]
drops out of the Wold decomposition. When a stochastic process is
linearly deterministic,

Now x*(t) is orthogonal to H( -(0) for all t which implies that H*( -(0)
is orthogonal to H( -(0). However, x*(t - n) is contained in H(t) for
all n ~ 0 so that H*(t) is contained in H(t). Consequently, H*(-oo) is
contained in H(-oo). Therefore, H*(-oo) is orthogonal to itself. The
only subspace that is orthogonal to itself is H* (- (0) = {O}.I

Lemma 6.3: The process {x+(t) : -00 < t < +oo} is linearly deter-
ministic.

Proof: Let H+(t) be defined in the same manner as H(t) except with
x(t) replaced by x+(t). Also, let

(6.30)
00

H+( -(0) = n H+(t - n) .
n=l

(6.25) x(t) = P[x(t)IH(t - n)]

Now x+(t) is in H( -(0) for all t which implies that H+(t) is contained
in H( -(0) for all t. Let h be any element of H( -(0). Then there exists
a sequence {hn : n ~ 1} convergingto h such that

for all n so that x(t) can be forecast perfectly given past information.
These two types of stochastic processes represent two extremes from the
standpoint of linear prediction theory. It turns out that any stochastic
process can be represented as the sum of a linearly regular process and
a linearly deterministic process. Let

(6.31) hn = a(j . x(t) + af . x(t - 1)+ ... + a: . x(t - n)

for some vectors a~, a~, . . . ,a: in RP. Notethat

(6.32) E[(hn - h)2] ~ E{P[hn - hIH(-00)]2}

(6.26) x*(t) = x(t) - P[x(t)IH(-oo)] ,

(6.28) x(t) = x*(t) + x+(t) .

so that {P[hnIH(-oo)] : n ~ 1} converges to P[hIH(-oo)] = h.
However, P[hnIH( -(0)] is in H+(t) which proves that H+(t) contains
H( -(0). Therefore H+(t) =H( -(0) = H+( -(0) for all t. I

In many applications in economics,including all of those contained
in this book attention is restricted to processesthat are linearly regular.
In making such a restriction, wehave a decompositionsuch as (6.28) in
mind. Then our attention is focused on the portion of the forecasting

and

(6.27) x+(t) =P[x(t)IH(-oo)].

Clearly,
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problems that can be related to the one-step ahead forecast errors in
current and past values of x(t). This portion of the prediction problems
is dynamic in the sense that information is accumulating over time.

Appendix

In this appendix we prove that the space L2 is complete. This is a
special case of the Riesz-Fischer Theorem. Our proof of this theorem
uses the Monotone and Dominated Convergence Theorems.

Theorem A.I: Suppose {yn : n ~ I} is a Cauchy sequence in L2.
Then there exists a random variable Yo in L2 such that {yn : n ~ I}
converges to Yo.

or equivalently,

(A.7) E[(yk)2] ~ {E[(Ynl)2]~+ I} 2 for all k ~ 1 .
Thus, by the Monotone ConvergenceTheorem,

(A.B)
E[(y;2)]= lim E[(yk)2]Ie-+oo

~ {E[(Ynl)2]! + I} 2

so that Y: is finite with probability one and is in L2.
Now,

Proof: Since {Yn : n ~ I} is Cauchy, for each k ~ 1 there is an nle
such that

(A.I)
1

E[(Ym - YnlYP ~ I/21e for all m ~ nle .

Ie

Yn"= Ynl + L (Ynj+1 - Ynj) .
i=1

Also, absolutely summable sequences of real numbers are summable.
Thus, Yogiven by

(A.9)

Therefore,

(A.2)
00 1

L E[(Ynj+l - Ynj)2]I ~ 1 .
i=1

-
{

limle-+ooYnk if Y: is finiteYo- .
0 otherwise.

is a well-defined random variable since Y: is a random variable. Equal-
ities (A.4) and (A.5) imply that

(A.IO)

By the Triangle Inequality,

(A.3) { [
Ie 2

}

~
E j;IYnj+l - Ynjl] ~ 1

for all k ~ 1 . (A.ll) IYnkI ~ Y; for all k ~ 1 ,

which in turn implies that

For k ~ 1, let (A.I2) IyoI~ Y;.

(A.4)
Ie

Yk = IYnll + L IYnj+l - Ynjl .
i=1

Consequently, Yois in L2. Inequalities (A.ll) and (A.I2) and the Tri-
angle Inequality guarantee that

The sequence {Yk : k ~ I} is nondecreasing. Consequently, Y: given by (A.I3) (Yo - Ynk)2~ 4(y;)2 .

(A.5)
. .

Y. = hm Yle
0 Ie-+oo

It followsfrom the Dominated ConvergenceTheorem that

(A.I4) lim E[(yo- Ynk)2] = 0Ie-+oo
is a well-defined random variable that is possibly infinite-valued. By
the Triangle Inequality and (A.3), smce

(A.6) [E(yn2]~ ~ E[(Ynl)2]! + 1 , (A.I5) lim Ynk=YoIe-+oo






